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Abstract: Digital Elevation Models (DEMs) are commonly used for environment, engineering, and
architecture-related studies. One of the most important factors for the accuracy of DEM generation is
the process of spatial interpolation, which is used for estimating the height values of the grid cells.
The use of machine learning methods, such as artificial neural networks for spatial interpolation,
contributes to spatial interpolation with more accuracy. In this study, the performances of FBNN
interpolation based on different parameters such as the number of hidden layers and neurons,
epoch number, processing time, and training functions (gradient optimization algorithms) were
compared, and the differences were evaluated statistically using an analysis of variance (ANOVA)
test. This research offers significant insights into the optimization of neural network gradients,
with a particular focus on spatial interpolation. The accuracy of the Levenberg–Marquardt training
function was the best, whereas the most significantly different training functions, gradient descent
backpropagation and gradient descent with momentum and adaptive learning rule backpropagation,
were the worst. Thus, this study contributes to the investigation of parameter selection of ANN for
spatial interpolation in DEM height estimation for different terrain types and point distributions.

Keywords: DEM generation; spatial interpolation; artificial neural networks; gradient optimization

1. Introduction

A Digital Elevation Model (DEM) is a representation of the earth’s surface composed
of equal-sized grid cells with a specific height assigned to each [1,2]. DEMs are commonly
used for environment, engineering, architecture-related studies, and a variety of applications
such as mapping, geographic information systems, remote sensing, geology, hydrology,
and meteorology [3]. A DEM can be generated using photogrammetry (aerial and satellite
images), SAR interferometry, radargrammetry, airborne laser scanning (LIDAR), cartographic
digitization, and surveying methods. The accuracy of DEMs is influenced by the data source
as well as a range of factors such as topographic variability, sample size, interpolation methods,
and spatial resolution.

Spatial interpolation is used for the approximation of spatial and spatiotemporal
distributions depending on location in a multi-dimensional space [4]. Spatial interpolation
is required in DEM generation to determine the height values of grid cells [3,5,6]. Therefore,
the model outcome is heavily dependent on the accuracy of the interpolation technique
chosen. It is of great importance to determine more accurate interpolation methods for
specific purposes, such as the creation of fine-scale DEMs [7]. Current spatial interpolation
techniques can be broadly categorized into three traditional groups: (1) Deterministic
methods (e.g., Inverse Distance Weighted, Shepard’s method), (2) Geostatistical methods
(e.g., Ordinary Kriging), and (3) Combined methods (e.g., Regression Kriging). In addition,
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the use of machine learning methods and artificial neural networks has been established as
an effective solution for spatial interpolation [8].

Notable studies have compared traditional methods, machine learning methods, and
artificial neural networks in spatial interpolation. The common feature of these studies is
that the use of machine learning methods or the combination of traditional methods and
machine methods provides superiority over the sole use of traditional methods. For example,
ref. [9] compared traditional and machine learning methods for mud content prediction.
The results showed that Random Forest (RF) with Ordinary Kriging (OK) or Inverse
Distance Squared (IDS) combination was the most effective and sensitive to input variables.
Ref. [10] used several machine learning algorithms and evaluated against the Kriging
approach for the prediction of spatial temperature patterns, and a combined Cubist and
residual Kriging approach was considered the best solution. Ref. [11] compared two
machine learning algorithms, Support Vector Machines (SVM) and RF, with Multiple Linear
Regression (MLR) and OK to estimate the air temperature using satellite imagery. Machine
learning algorithms, especially RF, reached significantly higher accuracy values. RF with
OK obtained the most accurate results. Ref. [12] applied RF and seven other conventional
spatial interpolation models to a surface solar radiation dataset. RF outperformed the
traditional spatial interpolation models. As a result, the use of machine learning methods
for spatial interpolation contributes to spatial interpolation with more accuracy.

Artificial Neural Networks (ANN) can approximate non-linear relationships and their
derivatives, even without an understanding of the exact non-linear function, allowing
them to make accurate predictions in highly complex non-linear problems such as the
estimation of height values in DEM generation [13,14]. The Feedforward Backpropagation
Neural Network (FBNN), a type of ANN, is used for supervised learning tasks such as
classification and regression. It has one or more layers of interconnected neurons, called
hidden layers, between the input and output layers. Each neuron produces its output
through a non-linear process called an activation function based on the weighted sum of its
input. A learning algorithm called backpropagation iteratively modifies the connections
between neurons (the weights) to minimize the least square error objective function, which
is defined by the differences between the network’s predictions for each tuple with the
actual known target value. This iterative process continues until the error reaches an
acceptable threshold [15–18]. Estimation of height values of DEM using FBNNs is very
efficient for two reasons. First, FBNNs can learn non-linear relationships (non-linearity)
between input variables and outputs (performing non-linear regression from a statistical
perspective); the determination of height values of DEM is also inherently a non-linear
process. Second, they can handle a wide array of real-world data, making them suitable for
dealing with large-scale spatial datasets [19].

FBNNs outperform traditional methods for spatial interpolation in several studies.
For example, the wind speed prediction using an FBNN was compared with measured
values at a pivot station. It was shown that the use of a suitable FBNN architecture leads to
better predictions than the traditional methods used in the literature [20]. Ref. [13] used
Inverse Distance Weighted (IDW), OK, Modified Shepard’s (MS), Multiquadric Radial
Basis Function (MRBF), Triangulation with Linear (TWL), and FBNN to predict height
for different point distributions such as curvature, grid, random and uniform on a DEM.
FBNN was a satisfactory predictor for curvature, grid, random, and uniform distributions.
Ref. [8] compared the performance of two interpolation methods, FBNN and MLR, utilizing
data from an urban air quality monitoring network. The results showed that FBNN was
significantly superior in most cases. Ref. [21] compared traditional methods such as Kriging,
Co-Kriging, and IDW with FBNN to predict the spatial variability of soil organic matter.
FBNN is the most accurate method via the cross-validation results.

The use of FBNNs in spatial interpolation is highly efficient [8,13,20,21]. Despite the
efficiency of FBNNs in spatial interpolation, there are still some research gaps that need
to be addressed to optimize the performance of FBNNs for this task. One of the major
research gaps is the selection of optimal parameters for FBNNs in spatial interpolation,
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including the determination of the appropriate number of hidden layers and neurons
(nodes), the activation function to use, the learning rate and momentum constant, and the
weight initialization method [22,23]. The optimal values for these parameters can vary
greatly depending on the specific dataset and spatial interpolation task, and there is still
much research needed to determine the optimal parameters for different cases. Another
research gap is the comparison of training (gradient optimization) functions of FBNNs for
spatial interpolation. A gradient optimization method is used to find the set of weights that
minimizes the cost function (a measure of the difference between the network’s predicted
output and the target output), which corresponds to the global minimum error in the neural
network. The global minimum error represents the best possible performance that the
neural network can achieve, and it is the target that we aim to reach through training the
network. The cost function is often a non-linear, multivariate function, and finding the
global minimum of the cost function is a difficult optimization problem. Therefore, there is
still much work needed to optimize their performance for spatial interpolation [15,16,24,25].

This study aims (1) to evaluate the height estimation accuracy of the FBNN for gener-
ating the DEM in terms of different parameters and training functions for different point
distributions and terrain types, which is important for the generation of high-quality DEMs,
and (2) to statistically evaluate the differences between the height estimation of FBNN
using different training functions. In this study, we evaluated the FBNN method consider-
ing different parameters (the number of hidden layers and neurons, epoch number, and
processing time) and training functions (gradient optimization algorithms) for DEM height
estimation through different point distributions (curvature, grid, random, uniform) and
terrain types (flat, hilly, mountainous). Furthermore, an analysis of variance (ANOVA)
test was conducted to investigate the differences between the training functions of FBNNs
for height estimation in DEM generation for different terrain types. This study offers
significant insights into the optimization of neural network gradients, with a particular
focus on spatial interpolation. In this study, the accuracy of Levenberg–Marquardt function
was the best, whereas the most significantly different training functions, gradient descent
backpropagation and gradient descent with momentum and adaptive learning rule back-
propagation, were the worst. In addition, the accuracy of the height estimation using FBNN
for the flat terrain was the best, whereas the mountainous terrain was the worst. In terms
of point distributions, the accuracy of distributions was similar based on the RMSE values
of height estimation.

2. Materials and Methods

A general flowchart of the FBNN pipeline for DEM height estimation and evaluation
is shown in Figure 1. Section 2.1 describes input data. Section 2.2 describes the point
processing to create different distributions. Section 2.3 describes the normalization of the
input parameters, FBNN training, testing and validation, DEM height estimation using
different FBNN parameters and training functions, and evaluation of FBNN models using
RMSE calculation. Section 2.4 describes a statistical test (ANOVA) for the determination of
the effect of six different training functions for different terrain types. Finally, Section 2.5
describes the software used in this study.
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Figure 1. Flowchart of the FBNN pipeline used in this study.

2.1. Experimental Data

In this study, we used a 1/3 arc-second DEM, approximately 10 m grid spacing,
from the USGS (United States Geological Survey) National Elevation Dataset (NED). The
production method of the DEM is an improved contour-to-grid interpolation. The vertical
accuracy expressed as RMSE is 2.17 m [26].

Morphometric parameters are important for the comparison of different surfaces.
Surfaces such as flat, hilly, and mountainous can be classified according to the ruggedness
and slope of the terrain. The study area is Lower Beaver in Colorado, USA (see Figure 2). In
this study, regarding these morphometric parameters, three different areas (2 km × 2 km),
flat, hilly, and mountainous, were chosen by the ruggedness and slope values. The mor-
phometric parameters of these areas were calculated and given in Table 1. The area with
the highest ruggedness and slope values refers to mountainous, the area with the least
ruggedness and slope values refers to flat, and the area with the average values refers to
hilly. The 3D models of these study areas are illustrated in Figure 3. The same exaggeration
value, which is 2 inches, was used in 3D models.
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Figure 2. Geographic location of three different DEMs used in this study for flat, hilly, and mountain-
ous terrains in the United States.

Table 1. Morphometric parameters for the three different study areas.

Morphometric Parameters Symbol Description Flat Hilly Mountain

Area A Measure in km2. 4 km2 4 km2 4 km2

The total length of 1 m interval
contour lines Lc Measure in km. 21.489 133.993 976.09

Relief [27] R
The maximum and minimum height

differences are given in meters.
R = Zmax − Zmin

3.12 82.21 245.29

Melton’s ruggedness
number [28] M M = R/

√
A 0.0016 0.041 0.123

Slope [29] S S = e ∑ Lc/A
e, is the equidistance (1 m in this study) 5.37 33.5 244.02
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Figure 3. The 3D Models of the study areas (Top left: hilly, Top right: flat, and Bottom: mountainous).

2.2. Point Processing

In this study, the effect of different point distributions (grid, curvature, random, and
uniform) of the 3D data sets representing different topographies, such as flat, hilly, and
mountainous areas, in the height estimation using FBNN was determined. The total
number of points in the 3D datasets representing flat, hilly, and mountainous areas was
reduced by 50% to generate grid, curvature, random, and uniform distributions. Thus, the
effect of point reduction on spatial interpolation was also investigated.

The grid distribution reduces the number of points in an irregular point space without
considering the curvature and the original density of the pattern. However, the curvature
distribution reduces the number of points on surfaces that are very close in height but
preserves the detail in areas of high slope. The uniform distribution evenly reduces the
number of points on surfaces whose heights are very close to each other but reduces the
number of points on curved surfaces to a certain density. Random distribution removes
a random percentage of points from an irregular point space. A 3D model of the grid,
curvature, random, and uniform distributions of the points of the mountainous area is
given in Figure 4.

2.3. Feedforward Backpropagation Neural Networks

A feedforward backpropagation neural network is composed of three layers: the input
layer, one or more hidden layers, and the output layer. A layer consists of units. The
network uses the attributes (features) measured for each training tuple as inputs. In this
study, the attributes of the input are the x-y coordinates of the points (see Figure 5).
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Since the mean and variance of input attributes are significantly different from each
other, attributes with large averages and variances have a greater impact on others and
significantly reduce their roles. Therefore, for the preprocessing step, the input values for
each attribute measured in the training tuples are normalized. In this study, input values
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were normalized to the range of 0.0 and 1.0 using maximum-minimum normalization. For
the normalized value of x coordinate, xnorm:

xnorm =
x− xmin

xmax − xmin
(1)

where xmin is the minimum x coordinate value and xmax is the maximum x coordinate value
in the study area. Additionally, the attribute y coordinate values are normalized.

In the feedforward step, the inputs pass through the input layer, they are weighted and
fed concurrently to a second layer of units called the hidden layer. A nonlinear (activation)
function is implemented to the sum of weighted input in the units. There can be one or
more than one hidden layer. Therefore, the outputs of the hidden layer can be the input of
the next hidden layer. The sum of weighted input from the last hidden layer is transmitted
to the output layer, which emits the network’s prediction for each tuple [17,19,30]. In this
study, the predicted output value is the height value (z coordinate) of the points.

Each input connected to the unit is multiplied by its corresponding weight, and this is
added up to calculate the net input. The net input of unit j in a hidden or output layer, Ij:

Ij = ∑i wijOi + θj (2)

where wij is the weight of the connection from unit i in the previous layer to unit j; Oi is the
output of unit i from the previous layer; and θ is the bias of the unit.

Each hidden and output layer unit applies an activation function to its net input. In
this study, the tangent-sigmoid (tanh) activation function was used. It converts net input to
the range [–1, 1]. The actual output Oj;

Oj =
1− e−2Ij

1 + e−2Ij
(3)

In the backpropagation step, to propagate the error of the network’s prediction,
weights and biases are updated backwards. Various optimization algorithms can be used
to minimize the error between the expected output and the FBNN output. The gradient
optimization algorithm finds local minima by calculating the gradient of the minimized
function. The global minimum can be reached by considering multiple gradient opti-
mization results. Gradient optimization algorithms vary in performance efficiency and
speed [13]. In this study, six different gradient optimization algorithms (training functions)
were used (see Table 2). In addition, different layer, neuron, and epoch numbers were used
in the height estimation (see Table 3), and RMSE values (see Equation (4)) were determined
by comparing the predicted heights and target heights. One of the architectures of the
FBNN for predicting the heights in DEM is given in Figure 5 (input: x, y; 2 hidden layers
each have 10 neurons; output: z).

RMSE =

√
1
n ∑n

i=1

(
zi − z′i

)2 (4)

where n is the number of samples, zi is the target height value, and z′i is the predicted
height value.

Table 2. Training functions used for the training.

Acronym Algorithm Description

lm trainlm Levenberg–Marquardt [31],
rp trainrp Resilient Backpropagation [32],
scg trainscg Scaled Conjugate Gradient [16],
cgf traincgf Fletcher-Powell Conjugate Gradient [33],
gd traingd Gradient Descent Backpropagation [34],

gdx traingdx Gradient descent with momentum and adaptive
learning rule backpropagation [35].
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Table 3. FBNN parameters used for the training.

Parameters Values

Number of layers 2, 4, 6

Number of hidden layer nodes 10, 30, 80

Transfer function tanh

Epoch 1000, 2000, 3000

Performance function RMSE

When training multilayer networks, the data can be partitioned into three different
subsets. The first subset, referred to as the training set, is used to calculate the gradient
and update the network weights and biases. The second subset, known as the validation
set, is used to monitor the error during the training process. Typically, the validation error
decreases initially, along with the training set error. However, when the network starts
to overfit the data, the validation error can begin to rise. The third subset called the test
set, is not used during training, but instead, it is utilized to compare different models. The
test error is not backpropagated from the FBNN outputs to the input. In this study, the
percentage of training, testing, and validation subsets were 70%, 15%, and 15%, respectively.

2.4. Statistical Tests: Analysis of Variance (ANOVA)

Analysis of variance (ANOVA) was carried out to determine the effect of the six differ-
ent training functions in FBNN for spatial interpolation in generating the digital terrain
models for different terrain types. In statistical tests, ANOVA is used to determine whether
there is a significant difference between two means or more than two means. In ANOVA,
the effect of independent variables on dependent variables is investigated. It is required
that all the groups be normally distributed with homogenous variances. F-test is used in
variance analysis. If the F-test statistic (p-value or Sig.) is less than 0.05, the Ho hypothesis
is rejected, which means there is a significant difference between the groups. If there is a
significant difference between groups, Post Hoc tests are used to determine which groups
differ from each other. To determine which groups differ from each other, the Tukey test
is used if variance homogeneity is ensured, and Tamhane’s T2 test is used if variance
homogeneity is not ensured [36,37]. In this study, the RMSE values calculated from the
differences between the target and predicted heights are used as the dependent variable,
while the training functions in artificial neural networks (trainlm, traincgf, traingd, traingdx,
trainrp, and trainscg) based on different terrain types (hilly, flat, and mountainous) are
used as independent variables. An ANOVA test was performed for these dependent and
independent variables and their subsets to determine whether there is a statistical difference
between the height estimation obtained from the variables.

2.5. Software

We used Matlab neural network toolbox and SPSS to implement FBNN and ANOVA
tests, respectively. In addition, we used ArcMap 10.5 for the map visualization. The
performance of different FBNN parameters was observed using the neural network toolbox
graphical user interface (GUI) for the height estimation for different terrains with different
distributions. For example, the Matlab graphic interfaces of the height estimation for the
flat area with grid distribution (sample size: 50%) using the FBNN including 2 layers with
10 neurons using trainlm function with 170 epochs are illustrated in Figure 6. In Figure 6a,
neural network architecture, training function, training time, performance, and epoch
number are monitored. In Figure 6b,c, gradient descent and mean squared error graphics
can be observed, respectively. In Figure 4d, regression graphics of the predicted and target
values of training, validation, test, and all sets are given.
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Figure 6. The FBNN training of the flat area with grid distribution (sample size: 50%) to predict the
height values. Neural network tool (a), gradient descent optimization graphic (b), best validation
performance shown by a green circle on mean squared error graphics (c), correlation graphics between
output and target values for the training, validation, testing, and all data (d).

3. Results and Discussion

The term epoch in ANNs refers to an iteration during the training process that corre-
sponds to the complete processing of the entire training dataset by the network. In each
epoch, the training data are presented to the network repeatedly, and the performance of
the network is evaluated using a criterion such as error function or accuracy value. As the
number of epochs increases, the network generally performs better, but the training time
also increases. The number of epochs is important for learning and preventing overfitting.
Epoch values obtained from different FBNNs are given in Table 4. In this study, the network
was trained with 1000, 2000, and 3000 epochs for different FBNN parameters. Performing
too many epochs on training can cause the network to memorize the data and negatively
affect its overall performance (overfitting). However, not performing enough epochs can
lead to the network not learning the data well enough and performing weakly (underfit-
ting). Generally, the number of epochs is adjusted based on the size of the training data
and the complexity of the network. In this study, the maximum number of iterations (1000,
2000, and 3000) was performed for the training function traingd, whereas the minimum
number of iterations was performed using the training function traingdx.
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Table 4. Number of epochs for the FBNNs to predict the height values for each parameter, terrain
type, and point distribution in DEM.

Terrain Distirbution
Layer:2,

Neurons:10,
Epoch: 1000

Layer:4,
Neurons:30,
Epoch: 2000

Layer:6,
Neurons:80,
Epoch: 3000

Type (%) cgf gd gdx lm rp cgf gd gdx lm rp gd gdx scg

Flat

All 518 1000 189 265 817 904 2000 150 536 1504 3000 132 672
Curvature (50%) 255 1000 182 199 936 439 2000 161 179 517 3000 116 209

Grid (50%) 482 1000 184 209 643 437 2000 144 436 726 3000 142 203
Random (50%) 388 1000 83 79 398 418 2000 160 705 734 3000 143 550
Uniform (50%) 293 1000 178 241 667 340 2000 143 585 784 3000 132 550

Hilly

All 678 1000 172 787 1000 774 2000 143 480 1000 3000 128 1074
Curvature (50%) 308 1000 63 989 532 62 2000 159 429 1243 3000 150 948

Grid (50%) 141 1000 171 134 576 932 2000 161 663 2000 3000 22 522
Random (50%) 277 1000 63 275 1000 252 2000 161 795 1833 3000 143 678
Uniform (50%) 156 1000 172 376 688 482 2000 161 747 1493 3000 142 539

Mountain

All 279 1000 173 415 381 825 2000 152 1123 1681 3000 12 2755
Curvature (50%) 263 1000 163 48 233 278 2000 154 1043 2000 3000 132 2998

Grid (50%) 337 1000 169 166 1000 453 2000 152 810 1763 3000 116 786
Random (50%) 71 1000 168 281 220 320 2000 151 9 2000 3000 114 1800
Uniform (50%) 232 1000 173 126 677 449 2000 2000 319 1738 3000 113 646

The processing time of ANN solutions is important in the training of the model, espe-
cially for real-time applications. ANNs usually operate on large data sets, and processing
these data sets can be time-consuming. The training of ANN models involves many itera-
tive calculation processes, which can extend the processing time. In addition, an efficient
processing time is also useful when the model needs to be retrained or adjusted. The
processing speed also reduces processing costs. Especially when processing large data sets,
a faster model may require less computer memory and be less costly. The processing times
of FBNN height estimation for different terrain types and point distributions based on
different parameters such as transfer function (trainlm, traincgf, traingd, traingdx, trainrp,
and trainscg), number of epochs, layers, and neurons are given in Table 5. In this study, an
increase in the number of layers, neurons, and epochs led to an increase in processing time,
while a decrease in point density resulted in a decrease in processing time. In addition,
the training functions traingd and trainlm required a long time to the process, whereas the
training function traingdx required the least time. This study found a direct correlation
between processing time and epoch number.

The gradient value in ANN models is a value calculated by optimization algorithms
during the training of the model. The gradient is obtained by calculating the derivatives of
an error function concerning the weights and threshold values. Optimization algorithms
use the gradient value to minimize the error function and thus improve the performance of
the model. The gradient value is used to prevent overfitting in the training. High gradient
values indicate that the network is progressing rapidly during training but may be at risk
of overfitting. A low gradient indicates a slow training process and requires more time. The
gradient values obtained from FBNNs with different parameters are given in Table 6. In
this study, generally, as the number of layers, neurons, and epochs increased, the gradient
values decreased, and as the point density decreased, the gradient values increased. The
gradient values of the training function trainlm were lower than the other functions, and
a longer duration of the training occurred. In addition, gradient values for the training
function traingdx were higher, and the duration of the training was lower.



Systems 2023, 11, 261 12 of 19

Table 5. Processing time values for the FBNNs to predict the height values for each parameter, terrain type, and point distribution in DEM.

Terrain Distirbution
Layer:2,

Neurons:10,
Epoch: 1000

Layer:4,
Neurons:30,
Epoch: 2000

Layer:6,
Neurons:80,
Epoch: 3000

Type (%) cgf gd gdx lm rp cgf gd gdx lm rp gd gdx scg

Flat

All 7 m 38 s 6 m 6 s 1 m 5 s 2 m 58 s 5 m 16 s 26 m 19 s 26 m 35 s 1 m 56 s 2 h 4 m 1 s 30 m 56 s 2 h 58 m 34 s 8 m 38 s 1 h 19 m 45 s
Curvature (50%) 1 m 41 s 2 m 56 s 30 s 1 m 14 s 4 m 39 s 5 m 44 s 14 m 26 s 51 s 19 m 43 s 6 m 21 s 1 h 8 m 47 s 4 m 42 s 10 m 28 s

Grid (50%) 4 m 04 s 3 m 33 s 36 s 51 s 2 m 9 s 6 m 27 s 15 m 37 s 1 m 5 s 46 m 14 s 5 m 22 s 2 h 14 m 3 s 3 m 29 s 7 m 25 s
Random (50%) 3 m 39 s 4 m 16 s 21 s 39 s 2 m 25 s 9 m 53 s 23 m 42 s 1 m 37 s 2 h 36 m 27 s 12 m 57 s 1 h 10 m 18 s 7 m 46 s 30 m 0 s
Uniform (50%) 2 m 24 s 3 m 26 s 34 s 1 m 22 s 2 m 57 s 6 m 50 s 12 m 35 s 58 s 1 h 53 m 19 s 8 m 21 s 1 h 20 m 3 s 4 m 26 s 25 m 36 s

Hilly

All 12 m 41 s 6 m 13 s 1 m 30 s 6 m 14 s 6 m 16 s 21 m 15 s 41 m 29 s 3 m 1 s 51 m 55 s 13 m 34 s 2 h 29 m 3 s 11 m 15 s 2 h 7 m 12 s
Curvature (50%) 3 m 14 s 4 m 40 s 17 s 3 m 13 s 1 m 42 s 8 m 13 s 21 m 1 s 1 m 37 s 40 m 55 s 9 m 50 s 1 h 30 m 6 s 3 m 27 s 43 m 56 s

Grid (50%) 2 m 7 s 5 m 14 s 59 s 43 s 1 m 54 s 25 m 5 s 15 m 12 s 1 m 55 s 2 h 21 m 51 s 20 m 51 s 1 h 45 m 2 s 48 s 27 m 26 s
Random (50%) 2 m 9 s 3 m 16 s 12 s 1 m 1 s 3 m 8 s 3 m 47 s 14 m 35 s 1 m 7 s 1 h 30 m 32 s 12 m 01 s 1 h 5 m 54 s 3 m 4 s 31 m 34 s
Uniform (50%) 1 m 55 s 5 m 5 s 51 s 2 m 10 s 3 m 12 s 12 m 9 s 24 m 39 s 1 m 56 s 2 h 31 m 43 s 15 m 54 s 1 h 31 m 45 s 4 m 48 s 28 m 15 s

Mountain

All 4 m 14 s 12 m 33 s 1 m 2 s 2 m 49 s 6 m 14 s 24 m 25 s 28 m 37 s 4 m 16 s 4 h 14 m 31 s 25 m 44 s 5 h 35 m 10 s 39 s 4 h 44 m 44 s
Curvature (50%) 2 m 47 s 4 m 25 s 44 s 11 s 43 s 3 m 37 s 14 m 32 s 1 m 34 s 1 h 47 m 40 s 36 m 5 s 1 h 24 m 51 s 2 m 59 s 2 h 17 m 41 s

Grid (50%) 3 m 5 s 3 m 15 s 33 s 2 m 4 s 4 m 30 s 7 m 51 s 24 m 55 s 1 m 4 s 1 h 30 m 36 s 22 m 32 s 1 h 28 m 35 s 3 m 15 s 53 m 53 s
Random (50%) 40 s 4 m 28 s 41 s 1 m 4 s 41 s 4 m 36 s 14 m 55 s 1 m 30 s 1 m 19 s 13 m 40 s 1 h 43 m 24 s 2 m 35 s 1 h 31 m 13 s
Uniform (50%) 1 m 43 s 3 m 8 s 33 s 30 s 2 m 16 s 7 m 17 s 1 h 50 m 58 s 25 m 48 s 35 m 49 s 12 m 38 s 1 h 14 m 19 s 2 m 47 s 40 m 50 s

Table 6. Gradient values for the FBNNs to predict the height values for each parameter, terrain type, and point distribution in DEM.

Terrain Distirbution
Layer:2,

Neurons:10,
Epoch: 1000

Layer:4,
Neurons:30,
Epoch: 2000

Layer:6,
Neurons:80,
Epoch: 3000

Type (%) cgf gd gdx lm rp cgf gd gdx lm rp gd gdx scg

Flat

All 0.0002 0.0295 0.0135 0.0000 0.0004 0.0006 0.0079 0.0256 0.0000 0.0000 0.0054 0.0358 0.0003
Curvature (50%) 0.0002 0.0296 0.0296 0.0000 0.0003 0.0021 0.0128 0.0163 0.0002 0.0001 0.0041 0.0265 0.0014

Grid (50%) 0.0005 0.0501 0.0501 0.0001 0.0002 0.0009 0.0107 0.0250 0.0001 0.0001 0.0053 0.0246 0.0012
Random (50%) 0.0004 0.0294 0.0294 0.0000 0.0004 0.0009 0.0100 0.0144 0.0003 0.0003 0.0041 0.0134 0.0003
Uniform (50%) 0.0002 0.0351 0.0351 0.0000 0.0005 0.0049 0.0115 0.0182 0.0005 0.0005 0.0051 0.0249 0.0006

Hilly

All 0.0003 0.0307 0.0122 0.0008 0.0002 0.0003 0.0093 0.0183 0.0001 0.0001 0.0048 0.0009 0.0004
Curvature (50%) 0.0008 0.0213 0.0633 0.0027 0.0002 0.0004 0.0119 0.0292 0.0000 0.0001 0.0053 0.0276 0.0012

Grid (50%) 0.0052 0.0244 0.0230 0.0000 0.0002 0.0009 0.0004 0.0216 0.0001 0.0001 0.0048 0.2390 0.0007
Random (50%) 0.0005 0.0214 0.0636 0.0001 0.0003 0.0018 0.0117 0.0200 0.0000 0.0001 0.0046 0.0340 0.0004
Uniform (50%) 0.0015 0.0240 0.0080 0.0002 0.0002 0.0006 0.0022 0.0218 0.0000 0.0001 0.0048 0.0510 0.0004

Mountain

All 0.0011 0.0214 0.0190 0.0005 0.0003 0.0080 0.0110 0.0243 0.0002 0.0001 0.0064 0.9680 0.0003
Curvature (50%) 0.0011 0.0326 0.0258 0.0001 0.0053 0.0195 0.0114 0.0314 0.0000 0.0002 0.0074 0.0659 0.0005

Grid (50%) 0.0008 0.0341 0.0198 0.0001 0.0006 0.0101 0.0090 0.0343 0.0003 0.0001 0.0064 0.0949 0.0009
Random (50%) 0.0008 0.0226 0.0203 0.0000 0.0007 0.0052 0.0117 0.0409 0.0072 0.0002 0.0059 0.0804 0.0009
Uniform (50%) 0.0004 0.0391 0.0099 0.0000 0.0003 0.0033 0.0117 0.0197 0.0000 0.0002 0.0061 0.0742 0.0019
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In ANNs, the best validation performance value represents the validation performance
of the network at the point where it achieves the best performance during training. An
ANN model typically uses a portion for the training data and another portion for validation.
While the training data are used to adjust the model’s weights, the best validation perfor-
mance value is also a measure used to prevent the overfitting of the model. Overfitting
refers to the model fitting to the training data but performing weakly on test datasets. The
best validation performance measures the ability of the ANN model to make accurate
predictions, determines the overall performance of the model, and can be used to compare
it with other models. It can also be used to optimize the model’s hyperparameters (such
as learning rate, number of epochs, etc.). The best validation performance refers to the
lowest error rate or highest accuracy rate on the validation dataset. The best validation
performance values obtained from the FBNN based on different FBNN parameters for
different terrain types and point distributions are given in Table 7. Note that since the
best validation values are normalized, the value range is between 0 and 1. In this study, it
was observed that the best validation performance generally improved as the number of
layers, neurons, and epochs increased. Additionally, the best validation performance of the
training function trainlm was better than the results obtained by other training functions.
Furthermore, the performance of interpolation for flat terrain was the best, whereas the
mountainous was the worst. In addition, the performance of interpolation for uniform
distribution was the best, whereas the random distribution was the worst.

Table 7. Best validation performances for the FBNNs to predict the height values for each parameter,
terrain type, and point distribution in DEM.

Terrain Distirbution
Layer:2,

Neurons:10,
Epoch: 1000

Layer:4,
Neurons:30,
Epoch: 2000

Layer:6,
Neurons:80,
Epoch: 3000

Type (%) cgf gd gdx lm rp cgf gd gdx lm rp gd gdx scg

Flat

All 0.0008 0.0117 0.0019 0.0006 0.0009 0.0001 0.0033 0.0014 0.0000 0.0001 0.0012 0.0008 0.0001
Curvature (50%) 0.0008 0.0118 0.0048 0.0007 0.0009 0.0003 0.0046 0.0015 0.0000 0.0001 0.0009 0.0085 0.0002

Grid (50%) 0.0012 0.0246 0.0039 0.0007 0.0008 0.0002 0.0042 0.0015 0.0000 0.0001 0.0011 0.0008 0.0001
Random (50%) 0.0008 0.0117 0.0252 0.0010 0.0008 0.0002 0.0032 0.0013 0.0000 0.0001 0.0009 0.0008 0.0001
Uniform (50%) 0.0007 0.0164 0.0029 0.0006 0.0007 0.0004 0.0040 0.0009 0.0000 0.0001 0.0011 0.0008 0.0001

Hilly

All 0.0005 0.0242 0.0031 0.0004 0.0007 0.0001 0.0024 0.0011 0.0000 0.0000 0.0010 0.0393 0.0000
Curvature (50%) 0.0010 0.0112 0.0276 0.0005 0.0007 0.0001 0.0043 0.0012 0.0000 0.0000 0.0013 0.0012 0.0000

Grid (50%) 0.0031 0.0121 0.0047 0.0009 0.0007 0.0001 0.0001 0.0012 0.0000 0.0000 0.0010 0.0594 0.0000
Random (50%) 0.0009 0.0112 0.0271 0.0010 0.0008 0.0003 0.0041 0.0011 0.0000 0.0000 0.0012 0.0010 0.0000
Uniform (50%) 0.0008 0.0193 0.0024 0.0005 0.0007 0.0001 0.0078 0.0009 0.0000 0.0000 0.0010 0.0009 0.0000

Mountain

All 0.0030 0.0186 0.0076 0.0023 0.0029 0.0009 0.0060 0.0030 0.0000 0.0002 0.0026 0.0721 0.0000
Curvature (50%) 0.0038 0.0277 0.0060 0.0034 0.0036 0.0027 0.0063 0.0034 0.0000 0.0003 0.0035 0.0031 0.0001

Grid (50%) 0.0036 0.0177 0.0066 0.0024 0.0029 0.0017 0.0048 0.0034 0.0000 0.0002 0.0028 0.0025 0.0001
Random (50%) 0.0031 0.0170 0.0037 0.0027 0.0030 0.0013 0.0055 0.0028 0.0634 0.0002 0.0025 0.0024 0.0001
Uniform (50%) 0.0030 0.0184 0.0039 0.0027 0.0028 0.0012 0.0055 0.0029 0.0000 0.0002 0.0024 0.0028 0.0002

In this study, RMSE values were calculated based on the differences between the
predicted height of the FBNN and the target output height. Specifically, comparisons were
made to determine the performance of the FBNNs in the height estimation for different
terrain types and distributions with different ANN parameters. Figures 7–9 present com-
parisons of RMSE values obtained from different FBNN parameters based on different
terrain types and point distributions. For flat terrain, the RMSE was within a centimeter,
and for hilly or mountainous terrain, within a meter. It was observed that as the number of
layers, neurons, and epochs increased in different terrain types and distributions, the RMSE
values decreased. Generally, the training function trainlm gave the best result, whereas
traingd and traingdx functions gave the worst results. Furthermore, the accuracy of the
interpolation for flat terrain was the best, whereas the mountainous was the worst. In the
comparisons of RMSE values, the performance of both traingd and traingdx was lower than
the others. However, for the training function traingd, the maximum number of iterations
was performed, whereas the minimum number of iterations was performed using the
training function traingdx. Therefore, the optimum number of epochs can vary depending
on the complexity of the network or the size of the training data set.
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For example, the RMSEs for the FBNN model using trainlm training function, which
has four hidden layers with 30 neurons each, were 0.02 m, 0.13 m, and 1.45 m, for the
grid point distributions on flat, hilly, and mountainous terrains, respectively. The contours
obtained from ground truth and spatial distributions of height errors in meters have been
illustrated in Figure 10. It was observed that elevation errors increase dramatically on the
skeleton lines of the terrain (ridges and drainage lines), as well as at sink and peak points.
Since the mountainous terrain has more ridges and drainage lines than the flat terrain,
RMSE for the mountainous terrain were higher than that of the flat terrain.
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In addition, the ANOVA test was utilized to determine whether there was a significant
difference between the RMSE values of FBNN using different learning functions (trainlm,
traincgf, traingd, traingdx, trainrp, and trainscg) for the height estimation on different
terrain types. If there is a significant difference, it is determined between which learning
algorithms this difference is. In the test of homogeneity variance, the significance (sig.)
value was less than 0.05. Since the variance homogeneity was not ensured, Tamhane’s
T2 was used to determine the differences between groups. The test of homogeneity of
variances based on different learning algorithms of FBNN is given in Table 8.

Table 8. The test of homogeneity of variances based on different learning algorithms of FBNN.

Levene Statistic df1 df2 Sig.

Training
Functions

mountain 15.108 5 59 0.000
flat 11.258 5 59 0.000

hilly 13.249 5 59 0.000

The statistics of the ANOVA test for determining the difference between the groups of
different training functions for different terrain types are given in Table 9. If the sig. value
is less than 0.05, there is a significant difference between groups. In this study, there were
significant differences between the groups of each terrain type.

Table 9. ANOVA statistics based on different training functions and terrain types.

Sum of Squares df Mean Square F Sig.

mountain
Between Groups 2275.565 5 455.113 12.921 0.000
Within Groups 2078.207 59 35.224

Total 4353.772 64

flat
Between Groups 0.286 5 0.057 13.894 0.000
Within Groups 0.243 59 0.004

Total 0.529 64

hilly
Between Groups 229.796 5 45.959 11.282 0.000
Within Groups 240.348 59 4.074

Total 470.144 64

As a result of the analysis of variance, the Post Hoc Test was applied to determine
which training functions are different for different terrain types. Therefore, pairwise
comparisons were conducted between FBNN applications. In Table 10, the results of
pairwise comparison for the mountainous terrain are given as an example, where the
differences are significant (sig. < 0.05). For example, the traingd is significantly different
from the traincgf, trainlm, trainrp, and trainscg regarding the RMSE values, which is the
most different function.

Table 10. Pairwise comparisons for training functions for the mountainous dataset.

(I) Functions (J) Functions Mean Difference (I–J) Std. Error Sig. 95% Confidence Interval
Lower Bound Upper Bound

traincgf traingd −10.069 2.656 0.021 −19.071 −1.067
trainscg 9.461 0.942 0.000 5.954 12.967

traingd

traincgf 10.069 2.656 0.021 1.067 19.071
trainlm 13.920 3.143 0.003 3.658 24.182
trainrp 13.314 3.005 0.003 3.474 23.155
trainscg 19.530 2.521 0.000 10.710 28.349

traingdx trainscg 12.667 0.802 0.000 9.951 15.384

trainlm traingd −13.920 3.143 0.003 −24.182 −3.658

trainrp traingd −13.314 3.005 0.003 −23.155 −3.474

trainscg
traincgf −9.461 0.942 0.000 −12.967 −5.954
traingd −19.530 2.521 0.000 −28.349 −10.710

traingdx −12.667 0.802 0.000 −15.384 −9.951
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In addition, in Table 11, subsets were formed to determine whether different training
functions have similar results compared to each other and to make statistical evaluations
for the height estimation obtained with different training functions for mountainous, hilly,
and flat terrain types. In Table 11, training functions gave similar results in the subsets
generated for the mountainous, hilly, and flat datasets. The training functions were divided
into three subsets for each different terrain dataset. For example, in the mountainous
dataset, trainscg, trainlm, and trainrp were similar in estimating the heights in the first
subset, while traingdx and traingd were similar in the third group. It has been determined
that the results of the training functions in these two subsets differ from each other in
height estimation.

Table 11. Subsets created for different training functions regarding different terrain types.

Trainings Functions N
Mountain Flat Hilly

1 2 3 1 2 3 1 2 3

Tukey HSD a

trainscg 5 2.333 0.034 0.457
trainlm 10 7.942 7.942 0.051 0.051 1.134 1.134
trainrp 10 8.548 8.548 0.061 0.061 1.363 1.363
traincgf 10 11.794 0.068 0.068 1.809 1.809
traingdx 15 15.000 15.000 0.133 0.133 3.664 3.664
traingd 15 21.862 0.218 5.781

Sig. 0.219 0.116 0.136 0.847 0.079 0.059 0.692 0.085 0.217

Means for groups in homogeneous subsets are displayed. a Uses Harmonic Mean Sample Size = 9.474.

It is crucial to investigate other factors that may potentially influence the results,
such as the resolution of the DEM, which was used 1/3 arc-second in this study. The
resolution of the DEM plays a significant role in the performance of the FBNN estimation
for spatial interpolation. Comparison of the interpolation performances obtained from
different DEM sources, such as ASTER GDEM (1 arc-second), can provide insights into
the robustness of the FBNN method. Additionally, the process of DEM super-resolution
allows high-resolution DEMs to be economically obtained by recovering from easily ob-
tainable low-resolution DEMs [38]. Considering the accuracy achieved in this study, it is
assumed that high-resolution DEMs can be generated from low-resolution DEMs using the
FBNN method.

To generate high precision DEMs in urban areas, which encompass numerous surface
elements such as buildings, roads, etc., the classification and extraction of the earth surface
elements are needed to fuse to complete the DEM of urban plots [39]. Therefore, since
the surface elements are dense in urban areas, generating DEMs for urban areas is more
complex compared to rural areas. In this study, we used DEMs of USGS, which produces
a Digital Terrain Model but calls it a bare-earth DEM [40]. In other words, USGS DEMs
are generated based on the bare-earth surface without earth surface elements. Note that
the evaluation of DEM height estimation using FBNN in this study encompasses the
bare-earth surface.

4. Conclusions

A crucial component in the creation of DEMs is spatial interpolation. This requirement
has encouraged researchers to enhance current interpolation methods and improve DEM
construction as much as possible. Hence, it is of utmost importance to identify interpolation
methods that are more accurate for specific purposes, such as generating fine-scale DEMs.
The accuracy of DEM construction is significantly affected by variations in terrain types and
point distributions. To determine the accuracy of the spatial interpolation using our method,
we selected areas with diverse geomorphic features with different point distributions to
construct the DEM and then compared the results with the accuracy obtained. The use
of ANN models has been established as an effective solution for interpolating non-linear
problems, such as height estimation of grid cells of a DEM. In this study, we used FBNN
with different parameters (numbers of epochs, layers, neurons) and different transfer
functions (gradient optimization algorithms) to predict the height values for different
terrain types and point distributions. Processing time increased with an increase in layers,
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neurons, and epochs, whereas processing time decreased with a decrease in point density.
The interpolation accuracy for flat terrain was the best, while the accuracy for mountainous
terrain was the worst. Significant increases in elevation errors were observed along the
skeleton lines of the terrain, including ridge and drainage lines, as well as at sink and
peak points for terrain types used in this study. This research offers significant insights
into the optimization of neural network gradients, with a particular focus on spatial
interpolation. Generally, the training function trainlm (which required a long processing
time) gave the best result, whereas the most significantly different training functions
traingd and traingdx (which required a short processing time) gave the worst result. In a
future study, the performance of FBNN can be utilized to generate high-resolution DEMs
from low-resolution DEMs. Spatial interpolation for a high-quality DEM generation is
still challenging. The investigation of performances of machine learning/deep learning-
based approaches in spatial interpolation seems to continue to contribute to this important
research topic.
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