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Abstract: In public health, the routine use of linear forecasting, which restricts our ability to un-
derstand the combined effects of different interventions, demographic changes and wider health
determinants, and the lack of reliable estimates for intervention impacts have limited our ability
to effectively model population needs. Hence, we adopted system dynamics modelling to forecast
health and care needs, assuming no change in population behaviour or determinants, then generated
a “Better Health” scenario to simulate the combined impact of thirteen interventions across cohorts
defined by age groups and diagnosable conditions, including “no conditions”. Risk factors for the
incidence of single conditions, progression toward complex needs and levels of morbidity including
frailty were used to create the dynamics of the model. Incidence, prevalence and mortality for each
cohort were projected over 25 years with “do nothing” and “Better Health” scenarios. The size
of the “no conditions” cohort increased, and the other cohorts decreased in size. The impact of
the interventions on life expectancy at birth and healthy life expectancy is significant, adding 5.1
and 5.0 years, respectively. We demonstrate the feasibility, applicability and utility of using system
dynamics modelling to develop a robust case for change to invest in prevention that is acceptable to
wider partners.

Keywords: system dynamics; public health; decision making; prevention; long-term conditions;
resource allocation; complex systems

1. Introduction

In any local health system, data and intelligence are essential for service planning and
investment/disinvestment decision making for a defined population. This will invariably
include forecasting demographics, health determinants, disease distribution and health
status. At present, most attempts at forecasting the future health and care needs of local
populations rely on linear extrapolations, which use a series of limited assumptions to
estimate the likely burden of a specific health condition or demand for a service. These
assumptions include trends in population change as well as in the condition or service
under investigation [1]. This method of forecasting can be described as predictive analytics,
where historical data are used to make predictions about future events [2]. Prevention
is a key activity in public health, and this requires robust evidence to convince decision
makers to invest in prevention where the gains may not be immediately apparent.

A variety of tools explaining the public health cost-effectiveness of individual in-
terventions have been published, providing evidence for implementing them or not [3].
However, the use of such tools may not be feasible when it comes to extrapolating directly
to local systems and contexts for financial and capacity planning, and decision making for
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investing in prevention. While this provides a baseline estimate, it does not consider the
complexities and interdependencies within populations and systems. For example, the
onset of multimorbidity, the effect of intersectionality [4] and the interaction between social
and economic factors. Historically, evidence-based public health relied upon estimating
the health impacts of interventions separately. However, in local health systems, health
planners are routinely expected to calculate the combined effect of multiple interventions
to make robust decisions on resource allocation. Due to the current limitations of evidence
in the field of public health, this is not always feasible. Moreover, estimates of the effec-
tiveness of interventions are from varied populations and may not be externally valid.
Traditional public health approaches are limited by our inability to assess the combined
effects of multiple interventions and their interdependencies, the issues of external validity,
i.e., applying the results of peer-reviewed external research to a given local population,
and the use of linear extrapolation in forecasting. Hence, we need an evidence-based
approach that overcomes the above limitations and addresses the key properties of com-
plex systems, such as systems dynamics modelling (SDM). SDM is a powerful tool for
assessing the impact of multiple interventions within a complex and dynamic system [5].
Jadeja et al. [6] conducted a recent systematic review that found at least 29 studies that
used SDM approaches that incorporate health economic efficiency analyses for decision
making, either as embedded sub-models or as cost calculations based on SDM outputs,
across a variety of themes ranging from communicable diseases to behavioural and wider
health determinants.

There have been previous attempts to use SDM “to align prevention efforts and max-
imise the effect of limited resources” [7]. A prevention impacts simulation model [8] was
employed in the field of cardiovascular disease prevention to simulate the medium- and
long-term impact of the various interventions. However, the simulation and the applica-
tion of the SDM approach here were disease-specific. From a complex adaptive system
perspective, population health needs are dynamic, and are shaped by socio-economic risk
factors as well as the level of access to health and care services. Rutter et al. [9] describe the
following properties of complex systems: emergence is defined as “properties of a complex
system which cannot be directly predicted from the elements within it and are more than
just the sum of its parts”, feedback where “a change reinforces, or balances further change”
and adaptation, which refers to “adjustments in behaviour in response to interventions”.
Such properties are the basis on which public health practice operates within a local health
system. As such, it is essential that we move towards an approach that takes these com-
plexities into account to help to answer the key questions in public health of what can
be done and how it can be done in practice. Prescriptive analytics is the process of using
data to determine an optimal course of action [2]. This would not only provide more
accurate estimates of future health need but enable the system to better plan services and
to ultimately reduce health inequalities. There are many evaluations of the use of SDM in
health policy and planning; however, recent reviews [10,11] in this area have highlighted
the lack of research prior to 2013. Reviews also highlighted the importance of stakeholder
involvement [12], which was highly valued in our study.

Cohort modelling using SDM is an accepted methodology in improving health policy
making in complex systems, using qualitative and quantitative approaches. One such
international example is the “Rethink health dynamics model” developed by the Rippel
Foundation [13]. The model simulates a range of scenarios for a combination of preventive
interventions, including reducing health risks and improving healthcare, on a defined
US population over a 40-year period. This has generated evidence on the value of these
interventions, which informs the planning and decision making, including investment in
prevention. To our knowledge, such an approach has not been employed across multiple
programme areas within a local health system in the United Kingdom to inform policy and
decision making.

The Joint Strategic Needs Assessment (JSNA) uses a range of health indicators to
identify the current health and care needs of the population and is a mandatory requirement
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for all local authority public health departments in England. Using the JSNA [14], local
system leaders can work together to understand and agree on the needs of all local people,
setting the priorities for collective action. Our aim is to demonstrate and apply the use
of simulation modelling in the area of routine public health intelligence, analysis and
inference. In this regard, our objective is to create a population cohort model using SDM
to generate necessary evidence on the value of various preventive interventions for local
priority setting within the current Kent JSNA development process and intelligence tools.

2. Materials and Methods

This study was carried out in the county of Kent, positioned in the southeast of Eng-
land, with a diverse population of approximately 1.6 million [15] that varies considerably
in terms of deprivation and ethnicity. Like other local areas in England, Kent exhibits
wide health inequalities by geography and different vulnerable groups [16]. The model
outputs were presented at the level of three sub-geographical regions, which aligned with
existing commissioning boundaries—West Kent, East Kent and North Kent—and for this
communication, we present selected examples from North Kent.

The prototype model was co-produced with the local council public health team, and
was conceptualised, tested, populated and validated over a period of 9–12 months. Two
parallel group model building workshops were run alongside each other, one for adults
and one for children and young people (CYP). A series of three dedicated engagement
sessions were carried out for each cohort and involved between 8 and 12 experts from
across health and care settings as appropriate, as well as regular contact, dialogue and
checking in with group participants in between sessions. These two groups were brought
together at the Better Health Workshop in 2018. The model conceptualisation was socialised
and developed, followed by scenario generation and testing, which was an iterative process.
Stakeholders explored the key factors that influenced better health outcomes for population
health within the Kent system. Variables, interactions and feedback loops were identified
and informed the design of the causal loop diagram. We discussed key interventions
impacting population health outcomes, identified cohorts of interest, selected relevant
peer-reviewed evidence and agreed on appropriate data sources to input into the model.
Data sources are described in Table S1 [17–27]. Cohorts were based on the health or disease
status of the individuals, and disease status is further broken down into individual long-
term conditions (LTCs). The Kent County Council (KCC) senior team of public health
specialists met to identify a combined scenario in which thirteen prevention/public health
measures were achieved, including, for example, the rates of breastfeeding, the presence of
adverse childhood experiences and the levels of smoking and obesity in the population.
This has resulted in a ‘Better Health’ scenario being created that forecasts potential changes
in the prevalence of a range of conditions, and, as a result, the prospects for increasing
healthy life expectancy and the potential demand for health and care services. This exercise
took place in January 2019 within days of the release of the NHS Long Term Plan [28]
blueprint, in which many of the prevention strategies included in the model were heralded.
This gave the public health specialists a ‘real-time’ opportunity to evidence the benefit of
the Long Term Plan in our local context.

Population segmentation: Segmentation aims to categorise the population according
to their health status, healthcare needs and priorities. According to this approach, groups
of people share characteristics that influence the way they interact with health and care
services. There is value in segmenting patients by need, complexity and severity of condi-
tions. Segmentation was performed differently for children and adults. Segmentation for
the CYP cohort was based on earlier work from the Derbyshire local health system [29].
Adult segmentation was based the work carried out by Outcome Based Health Care on
behalf of NHS England [30].

For CYP, the population aged under 25 years was initially segmented into 8 cohorts
and 6 age groups using a local person-level longitudinally linked population dataset known
as the Kent Integrated Dataset (KID) [17]. The hierarchy for segmentation is illustrated in
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Figure 1. The eight cohorts for CYP were physical enduring, mental health enduring, learn-
ing disability, physical non-enduring, mental health non-enduring, autism and attention
deficit hyperactivity disorder and no identified condition. This list is comprehensive and
includes 100% of all people within the KID. These cohorts are described in Table S2.
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For adults, the population was segmented using the English Longitudinal Study of
Ageing (ELSA) [31] to gain insight about the progression of need and mortality. The
hierarchy of segmentation is illustrated in Figure 2. The KID was also accessed in the same
hierarchy to extract local prevalence and rates of access to health and care services.

The modelled adult population was segmented into five cohorts based on the presence
of pre-defined health conditions or frailty. These cohorts are (1) severely frail, (2) single
conditions with high/complex needs, (3) multiple conditions, (4) single conditions and
(5) no conditions. In Figure 2, cohorts (2) and (3) are combined into “Multiple and Complex
needs”. These cohorts have an increasing progression of need, with cohort (5) as the lowest
and cohort (1) as the highest need, and if an individual meets the requirements for more
than one cohort, they are assigned to the highest need cohort. Cohort (1) includes those who
are severely frail, which is defined as a score of 6 or more disabilities equivalent to moderate
and severe frailty within the electronic frailty index [32]. Cohort (2) includes individuals
with high-needs serious mental illness, severe learning disability, dementia or neurological
conditions. Cohort (3) includes individuals with more than one of the following conditions:
asthma, coronary heart disease, chronic obstructive pulmonary disease, type 2 diabetes,
heart failure, stroke or moderate frailty. Cohort (4) includes individuals who have one of
the conditions listed for cohort (3). Cohort (5) includes individuals who do not meet the
requirements for cohorts (1–4). These cohorts are described in Table S3.

Model building: The model was split into two sections, CYP (under 18 years and
under 25 years for selected health conditions) and adults (18 years and over). The CYP
section and adult section have different structures, and the CYP section provides projected
populations at age 18 years (and 25 years for selected health conditions), which form
inputs to the adult section. The starting point for the model used the incidence, prevalence
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and mortality for each cohort in 2012 and projects forward to 2037. Initial prevalence as
well as incidence and mortality for CYP and adults are shown in Tables S4–S10 [17,19,31].
This was calculated using local data analysis from the KID and nationally published
longitudinal studies [17–20] The approach used epidemiological information to estimate
the contributions of changes in population-level risk factors relating to health and wellbeing
where the impacts were mainly on the incidence of individual conditions and cohorts.
Changes in the uptake of evidence-based interventions were subsequently applied and
the impacts of these interventions were mainly measured using case fatality rates over
time. The model scope incorporated additional risk factors relating to socioeconomic
circumstances. Tables S11 and S12 [21,31] provide details about the sources and methods
that were used to accommodate socio-economic circumstances. We used socio-economic
status as a proxy indicator of socioeconomic circumstances. This model examined the
effects of changes in treatment uptake and risk factor trends on changes in cohort incidence,
prevalence and mortality. It also explored the extent to which prevention strategies impact
the incidence and mortality of cohorts.
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The model estimated changes in incidence and deaths related to changes in adult risk
factor levels in the population. The risk factors considered were cigarette smoking, total
cholesterol (TC), systolic blood pressure (SBP), body mass index (BMI), physical inactivity
and alcohol consumption, and these are listed in Table S13 [21]. The Health Survey for
England was used to calculate trends in the prevalence (or mean values) of each risk
factor. In both the CYP and adult sections of the model, two approaches to calculating
relative risk reductions from changes in risk factors were used: the regression approach
and change in the population attributable fraction (PAF). In the regression model for adults,
the incidences of cohorts in 2012 (the start year) were multiplied by the absolute change in
risk factor level and by a regression coefficient (‘beta’) quantifying the estimated relative
change in cohort incidence and mortality that would result from a one-unit change in risk
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factor level. The regression (beta) coefficients used in these analyses for key risk factors
are listed in Tables S14–S16 [33–36]. A ‘fixed gradient’ approach was used to stabilise
the estimates of risk factor change across the quintiles. Natural logarithms were used,
as is conventional, in order to best describe the log-linear relationship between absolute
changes in risk factor levels and relative change in incidence and mortality. The PAF
approach can be interpreted as the proportion by which the incidence or mortality would
be reduced if the exposure were eliminated. Worked examples for the two approaches
are presented in Figures S1 and S2. Relative risks are displayed in Tables S17–S23 [37–43].
The CYP section included 5 interventions, as shown in Table 1, which were activated to
test projected future impact. For each of the CYP cohorts, we estimated the proportions of
incidence that were attributable to various treatments or interventions. We adopted the
general approach of calculating the risk reduction from an intervention among a particular
cohort by multiplying the change in the proportion of people exposed to a risk factor by the
incidence rate and by the relative reduction due to the change in intervention or exposure.
The approach to measuring the impact of interventions or risk factors for children was
exactly the same as for adults using the PAF in most cases. The only difference was the
application of a delay if the impact of an intervention in childhood occurs in adulthood.
For example, the impact of changes in adverse childhood experience upon serious mental
illness in adults is delayed by an average of 10 years. However, changes in smoking
during pregnancy impact upon stillbirths immediately, similarly for breastfeeding upon
child obesity.

Table 1. Population-level interventions to achieve “Better Health” scenario. Impacts were applied
proportionally or absolutely to the baseline to achieve the target.

Intervention Title Baseline Impact (%) Number Start End Target Implementation

1 Increase breastfeeding at
6–8 weeks 45.2 20 NA 2019 2024 65.2 absolute

2 Reduce smoking in
pregnancy 13.9 6 NA 2019 2025 7.9 absolute

3 Reduce child obesity 16.5 20 NA 2019 2025 13.2 proportional

4 Reduce fuel poverty
in children 17.4 20 NA 2019 2022 13.9 proportional

5 Reduce ACE in
childhood 24 20 NA 2020 2030 19.2 proportional

6
Improve recognition

and treatment
of hypertension

40 30 NA 2020 2025 28 proportional

7 Improve recognition and
treatment of CVD risk 50 30 NA 2020 2025 65 proportional

8 Improve smoking
cessation 20 8 NA 2019 2024 28 absolute

9 Increase weight
management 25 10 NA 2019 2024 27.5 proportional

10 Alcohol screening NA Screening 50,000 2019 2025 NA absolute

11 Alcohol treatment NA Treatment 5000 2019 2030 NA absolute

12 Reduce fuel poverty for
older people 11.5 20 NA 2019 2024 9.2 proportional

13 Reduce ACE at 15 years 7.5 20 NA 2020 2030 6 proportional

The primary outcome measures of the model were cohort incidence, prevalence and
deaths projected over the model timescale and the impacts of cohort incidence and preva-
lence on potential demand for health and wellbeing services. The calculation of the mod-
elled impacts of change on incidence and mortality was based on utilising two well-studied
relationships. The first is a change in risk factor against a relative change in incidence and
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mortality, and the second is changes in intervention uptake resulting in mortality reduc-
tions. Estimates in relative risk reduction for both relationships were derived from previous
randomised controlled trials and meta-analyses, as shown in Tables S17–S23 [37–43]. The
incidence and mortality benefits from the risk factor reduction in the population and the
treatment and intervention benefits in patient groups were then summed. This summing
used a cumulative approach rather than an additive approach [44] to avoid double-counting
benefits in the same individual. This sum represents the changes in incidence and mortality
‘explained’ by policy changes made within the model.

Model structure: SDM was chosen for this project due to the complex interactions and
dynamic nature of the system. An example of the causal loop diagrams used to investigate
and visualise relationships in the system prior to model building is demonstrated in the
Supplementary Materials (Figure S3). As the final SDM model has a total of 63 stocks,
170 flows and 869 converters, which generated 9024 variables including multiple element
arrays and graphical functions, a simplified model structure is illustrated in Figure 3. The
first five interventions in Table 1 apply to CYP section of the model and the others apply
to the adult section. The left of the figure shows the CYP model structure and illustrates
the movement of the population from birth through an aging chain (0–1, 2–4, 5–10, 11–15,
16–17 and 18–24 years) whilst also moving between different health cohorts, represented
by the vertical arrows. The aging chain arrows represent the natural flow of the population
from birth on to different age groups and flowing to the adult model at 18 and 25 years.
The physical and mental enduring and LD cohorts move to the adult model at 25 years
and progress to the same cohort group. For all other cohorts, they enter the adult model
at 18 years and progress to the healthy cohort. Risk factors for CYP do carry a rate of risk
across to the adult cohorts (e.g., child obesity and adult diabetes). The vertical arrows
represent the progression or recovery of CYP who are flowing from different cohorts or
health states over time (incidence). Adults flow from one cohort to another cohort without
an aging chain, e.g., from healthy to a single condition. People flowing into or out of the
geography are included in the model via net migration per cohort and people flowing
out of a cohort due to death are represented by the red arrows. These rates of flow were
determined by the data outlined in Tables S4–S12 [17,19,31]. Tables S2 and S3 outline the
cohorts used in the model and illustrate the SD model structure in more detail.
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Model calibration: To initiate the model with population cohorts through incidence,
prevalence and mortality, we used various data sources, which are outlined in
Tables S4–S12 [17,19,31]. Additionally, population-level risk factors were used to influence
the impacts across cohorts, which are listed in Tables S17–S23 [37–43]. In the first instance,
we used local data to initiate the model to consider differences in demographics and risk
factors. The process of calibration involved importing baseline data and projections from
various national sources including the Office for National Statistics and KCC housing
forecast [18] to carry out validation of general outcome measures such as population and
mortality. Locally, further validation took place to check against known outcome measures
such as the Quality Outcome Framework [45] and health and care activity data.

The model validation process followed the framework outlined by Yarnoff et al. [46],
and the five validation stages were undertaken in accordance with this. Face validation,
involving assessment by subject matter experts (public health consultants from the local-
ity), was achieved through model development in group model building workshops and
through ongoing testing. This included continual one-way sensitivity analysis in order
to validate input factors and the ranges of variables with their associated effect. Internal
validation, verifying the model’s code and calculations, involved a secondary modeller
and analyst, who had not participated in the model development, reviewing model logic
and calculations and evaluating the sensitivities. In cross validation, which compared
the model output to other available models, we reviewed all of the available evidence of
comparable models. Due to the novel nature and aims of this project, we were unable to
find models with a similar magnitude and scope; however, individual sources of evidence
were used in calibration and sensitivity testing. We encountered a similar challenge with
external validation, which compares modelled outputs to surveillance data, and predic-
tive validation, which compares modelled impacts to actual observations resulting from
interventions. Although surveys were not available for the local health population and
limited intervention and actual data could be retrieved, consensus amongst public health
experts and healthcare providers along with the triangulation of academic literature was
used where data were not available. Where appropriate, proxies for comparable regions
or national average data were used in agreement with subject matter experts. Due to
the complexity of the model and high number of variables, including graphical functions
and arrayed elements, a small number of key prevalence percentages were selected for
single output-level validation through discussion with subject matter experts and ongoing
sensitivity testing throughout development. Similarly to Zhang et al., [47] relative deviation
rate and average relative deviation rate were used to demonstrate the deviation between
simulated outputs and surveillance data or externally modelled data (calculations for these
are available in Figure S4). Single output and population validation results are shown
in Figures S5 and S6 and Tables S24 and S25. The model represented the time trends in
the population for CYP (0–17) and adults (18+) well when compared to ONS 2018 [48]
population projections, with the largest average relative deviation of 1.12% (Table S25
and Figure S6). Validation against external data sources was difficult because the base
population of the model included major longitudinal studies. However, there was good
agreement between modelled condition prevalence for CHD, COPD, stroke and diabetes
compared to quality and outcomes framework (QoF) data (Table S24 and Figure S5) [45].
The relative deviation for these variables ranges from 0.01% to 10.35%, and the average
relative deviation ranges from 3.77% to 4.84%.

Sensitivity testing was based on Hekimoğlu and Barlas’ behaviour sensitivity analysis
algorithm [49]. The initial screening of key input factors was created during development,
where sensitivities and ranges of input values, practical for public health planning and
policy, were agreed on by experts. As noted above, sensitivities were further tested during
internal validation. The regression model of behaviours was undertaken using ranges
around selected input values (for example, input variables for healthy life expectancy at 18
are shown in Table S26), and five runs for each variable based on incremental steps were
run through Stella Architect’s model analysis tool (including all combinations). For the
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healthy life expectancy at 18 output, this resulted in 625 runs and the behaviour shown in
Figure S7. However, selecting a dependent variable value that represents the behaviour did
not fall within the examples of Hekimoğlu and Barlas’ work [49]. Firstly, this model can not
be defined as an inherently oscillating or tipping point. Secondly, our model is significantly
more complex and has a far greater number of elements, including graphical interface
variables and multiple arrays. The regression-dependent variable selected was based on
the difference between the start and end values of the outputs, representing the change in
health over the modelled period. The results of the regression in this example based on this
calculation showed an R2 adjusted >80 and significance at p < 0.05 of all included variables.

The model was developed using a software platform known as Stella Architect devel-
oped by Isee Systems, which is accessible via Isee exchange [50]. Following calibration of
the model, outputs were viewed and extracted.

Model interventions: Thirteen public health interventions were agreed on by Kent
County Council public health professionals to achieve “Better Health” for their population.
They were selected based on the latest published evidence and national policy [27] of these
interventions in improving health. The interventions are listed in Table 1. The level of
change and the target to be achieved were also agreed on by local professionals in the better
health workshop by mutual consensus.

The CYP section of the model included interventions 1–5 in Table 1, and relative
risk is shown in Table S27 [51–57]. The adult section of the model included interventions
6–13 in Table 1, which could be activated to test the projected future impact. For each
cohort, we estimated the proportion of incidence and deaths that were attributable to
various treatments or interventions. Data sources used to estimate the percentage at risk
from the included interventions are displayed in Table S1 [17–27]. The general approach
to calculating the risk reduction from an intervention among a particular cohort was to
multiply the change in the proportion of people exposed to a risk factor by the incidence
rate and by the relative reduction due to the change in intervention or exposure. Sources
for current risk factors and treatment uptake are shown in Table S1 [17–27]. Sources
for estimates of treatment efficacy (relative risk reductions) are shown in Tables S17–S23
and S27 [37–57]. When multiple risk factors impacted simultaneously on incidence and
mortality, they were jointly estimated by calculating cumulative risk reduction. Examples
of the calculations to find treatment or incidence impacts, cumulative risk factor impact and
proportional changes in incidence and mortality over time are shown in Figures S8–S11.
This accounts for risk factor prevalence overlap but assumes independence of effects [44].

3. Results

We present the outputs of the model using North Kent as an example, which covers
22% of the Kent population and 27% of Kent County’s land mass.

The children’s section was primarily used for setting appropriate assumptions on
interventions and other factors within the children age group, and the model scenarios
were run to determine the consequential impact in the adult population over time. Hence,
results are presented for the adult population of the model (Figures 4–6). Table 2 shows
the prevalence of long-term conditions in 2012 and 2037 and demonstrates the percentage
difference between no interventions and “Better Health” scenarios.
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Table 2. Modelled changes in the prevalence of long-term conditions due to no interventions or
“Better Health” scenario.

Long-Term
Condition

2012
No Interventions Better Health Difference between

Better Health and No
Interventions2037 Percentage

Difference 2037 Percentage
Difference

Asthma 6.83% 5.95% −12.90% 5.88% −13.90% −1.00%

CHD 1.92% 1.59% −17.23% 1.51% −21.48% −4.25%

COPD 0.75% 0.63% −15.79% 0.57% −23.92% −8.13%

Diabetes 2.76% 3.25% 18.02% 3.07% 11.35% −6.66%

HF 0.02% 0.02% −10.74% 0.02% −10.96% −0.22%

Stroke 0.67% 0.59% −12.52% 0.49% −27.56% −15.04%

Frail moderate 1.30% 1.53% 17.88% 1.55% 19.27% 1.39%

Multiple 3.89% 3.51% −9.61% 3.42% −12.01% −2.40%

SE MI 0.54% 0.46% −14.18% 0.44% −18.27% −4.09%

Neuro 0.18% 0.19% 4.82% 0.19% 5.17% 0.35%

Dementia 0.32% 0.34% 8.12% 0.34% 7.60% −0.52%

LD 0.28% 0.26% −7.46% 0.26% −7.59% −0.13%

Frail severe 2.96% 3.35% 13.21% 3.27% 10.45% −2.76%

4. Discussion
Main Finding

We have described an SD simulation model for the population of Kent in southeast
England, showing the impacts of a range of prevention interventions on life expectancy,
the prevalence of long-term conditions, healthcare utilisation and cost. The model was
initialised from 2012 and closely matches the historical data up till 2018. Of the 13 evidence-
based prevention interventions that were simulated, 5 were applied to children and young
people and 8 to the adult section. The application of the “Better Health” scenario in the
model resulted in changes to the size of the four cohorts over the model period (Figure 4).
The size of the no-condition cohort increased, and the other three cohorts decreased in
size. This shows the marginal benefit of the combined effect of the interventions across the
course of life, at pace and scale. The impact of the interventions on both life expectancy
at birth and healthy life expectancy is significant, adding 5.1 and 5.0 years, respectively
(Figure 5). This is significant from an individual perspective in terms of adding years to
life and life to years, but the increase in the overall proportion and size of the healthy
living population is moderated due to the dynamic properties of complex systems. Any
improvement in the health status of the population leads to a productive workforce and its
associated positive impact on the wider economy and society as a whole.

Using the modelling approach, we have also demonstrated the impact on healthcare
utilisation in terms of emergency admissions and attendance at accident and emergency
centres. Although the reduction in activity appears insignificant, the estimated accrued cost
savings calculated using the unit price of activity over the model period is noteworthy, as for
one area of Kent, it is GBP 7.8 million (GBP (Pound Sterling) 1 = USD (United States Dollar)
1.22) (Figure 6). In the “Better Health” scenario, the modelling shows a significant reduction
in most of the long-term conditions over the course of the model. All thirteen conditions
except neurological conditions and moderate frailty show varying levels of reduction. Three
conditions show a reduction well over 5% when compared to no interventions—stroke
(15.04%), COPD (8.13%) and diabetes (6.66%). This demonstrates the robustness of the
evidence base behind the included interventions (Table 2).
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The result of our study aligns with broader research in this area that uses SDM to
address the complexities of preventing chronic diseases and other associated conditions. By
creating “do nothing” versus “do something” scenarios, important distinctions are revealed,
showing the long-term gains by investing in preventative actions [58]. To our knowledge,
the systematic review by Wang et al. is the first attempt to evaluate the application of SDM
to chronic diseases, which included 34 studies. Surprisingly, there were no studies from
the UK, and the majority were from the USA. This represents a gap in the literature in
the UK and the relevance of this research. Studies analysed differences between upstream
and downstream prevention measures for chronic conditions. Upstream interventions
include wider determinants such as improving income and community cohesion, whereas
downstream interventions include behaviour-related interventions. Although only down-
stream interventions were found to significantly reduce chronic disease and mortality, the
resources to fund them would need to be redirected from upstream allocations to meet these
pressures. Upstream interventions, however, would reduce the prevalence of chronic illness
but would have the added value of an increased impact on economic productivity. This
demonstrated how SDM analyses health challenges as a whole, rather than taking a less
reliable, simplistic view. Homer and Hirsh [7] explain the conditions that are best suited for
the application of SDM to public health actions. They state that prevention models should
incorporate all the elements of the ecological approach, incorporating disease outcomes,
health and risk behaviour, environmental factors and health-related resources and delivery
systems. There were notably very few examples of studies that simulated wider deter-
minants, including employment, socioeconomic status and community cohesion, in the
literature. This is one of the limitations of our model, as explained in the limitations section.
Some studies focus on the qualitative process of engaging thought leaders and health
planners in prioritising actions. Loyo et al. [59] demonstrated that SD modelling and local
expertise were valuable tools in reprioritising community issues, obtaining community
buy-in and determining the best use of community resources.

Further steps and future direction: The model provided the basis for conversations
with health leaders, particularly in the North Kent system, where this needs-led approach
to forecasting future demand became the subject of healthy debate. The approach was
distinct from the extant ‘big consultancy’ solutions that projected future demand based on
recent trends, sometimes also ‘adding on’ demographic changes, making the relationship
between need and demand opaque. This led to a significant over-estimation of future
demand, to the point that local plans to invest in community alternatives to inpatient care
became unaffordable, thus undermining the confidence of local leaders in their ability to
achieve a sustainable long-term solution. The use of the cohort model outputs formed the
basis of a blended approach to demand forecasting that used trend analysis in the short
term, gradually being replaced in a blended fashion using a needs-led approach. Cohort
modelling is seen as complementary to population health management approaches [60]
that are also based on segmentation but are designed to enable targeted interventions by
professionals rather than strategic prospective modelling. Population health management
represents the population segmented at a particular point in time. In SDM, the segmentation
data are used to produce a dynamic projection of the population across segments and
cohorts. Thus, both approaches complement each other. Going forward, investment is
required to build up local research infrastructure to undertake evaluation studies in order
to generate reliable evidence for model inputs. Currently, the cohort model does not
include wider determinants. However, we are in the process of expanding the model by
including wider determinants such as income, housing and education. This is likely to
simulate much more pronounced health effects on the population than behavioural and
healthcare determinants [61].

Strengths and limitations: SDM is a better approach than the traditional linear mod-
elling and forecasting as it is able to deal with complex and dynamic systems and their
interactions. For example, the draining of a stock through the application of incidence rates
based on the presence of risk factors feeds back to reduce the absolute size of the stock
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and, therefore, the relationship between relative and absolute rates of flow, i.e., absolute
rates of flow will reduce as a result of this feedback. These complex relationships are easily
represented and calculated at each model time-step using the stock–flow characteristics of
SDM, making these explicit and transparent to a model user. During the development of the
model, we involved key stakeholders, including subject matter experts, in conceptualising
the model, testing and developing the various inputs, and validated the selected scenarios.
We also used validated, up-to-date local data to inform model assumptions and calibrate
the model outputs.

In terms of the reliability of the results of the model, SDM is deterministic and, hence,
the scenario run outputs will remain the same, assuming model inputs and assumptions
remain constant, which is the case in our study.

Consideration of possible lag time and our approach: As the model is operating at
a population level, the concept of considering lag at an individual patient level is not
directly applicable. In the ‘no intervention’ scenario, disease incidence is routinely applied
as an annual rate, which is converted into a monthly rate. Changes in risk factors in
the Better Health scenario are applied to the incidence to increase or decrease this rate.
Secondly, the specification of a timescale for each intervention is displayed in Table 1. This
also affects disease incidence rates and is applied over the model timeframe.

Our model did not include an aging chain for the adult model and, hence, age-level
assumptions could not be used. This led to the model being more generic. As set out in
the Main Finding section, our initial model also did not incorporate wider determinants,
and we are addressing all the identified limitations in the future version of the model,
which is currently under development. Additionally, in regard to the sensitivity analysis
performed, the significance of the input values on change in health over the model period
are meaningful. However, the understanding of behaviour patterns and the ability to
compute the simulation runs needed to test the model based on the behaviour sensitivity
analysis algorithm [48] mentioned above require further study.

5. Conclusions

We have demonstrated the feasibility, applicability and utility of using system dy-
namics modelling to simulate the impacts of various preventive interventions on health
status and healthcare utilisation in the local population. We created a “Better Health”
scenario based on 13 interventions and were able to produce outputs through the model
compared to the “no intervention” scenario. From the model conception stage to selecting
interventions, we worked with stakeholders and subject matter experts, which further
strengthened and added value to our approach. Through our modelling, we were able to
demonstrate to the decision makers that investing in these prevention interventions will
lead to an increase in the proportion of healthy people in the local population, a reduction
in those with one or more health conditions and frailty, an increase in life expectancy,
reduced urgent healthcare utilisation and reduced expenditure to the local health services,
and will prevent the occurrence of many long-term conditions. If these results are scaled up
to a wider geography, this could be potentially very significant. This modelling approach
has helped us to have informed conversations backed by evidence with local healthcare
leaders in our attempt to provide a realistic view of prevention impact on population health
and reducing demand on local health services and cost.

Supplementary Materials: The following supporting information can be downloaded at: https://ww
w.mdpi.com/article/10.3390/systems11050247/s1. The Supplementary Materials include Table S1:
Data inputs and sources, Table S2: Children and young people cohort definitions, Table S3: Adult
cohort definitions, Table S4: Prevalence of children and young people long-term conditions, Table S5:
Prevalence of adult long-term conditions, Table S6: Adult percentage prevalence of single-condition
long-term conditions within multiple and frail cohorts, Table S7: Incidence per 1000 people aged 18
and over, Table S8: Incidence and mortality rates per 1000 people aged 18 and over, Table S9: Cause
of death percentage aged 50 and over, Table S10: ONS mortality by main cause of death, Table S11:
Adult percentage prevalence of long-term conditions by social group, Table S12: Observed risk factor
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levels in 1999 and 2009 by social class, Table S13: Variable definitions for adult risk factors, Table S14:
Beta coefficients for major risk factors: systolic blood pressure, Table S15: Beta coefficients for major
risk factors: body mass index, Table S16: Beta coefficients for major risk factors: cholesterol, Table S17:
Relative risk for underlying risk, incidence and mortality: smoking in adults, Table S18: Relative risk
for underlying risk, incidence and mortality: physical inactivity in adults, Table S19: Relative risk for
underlying risk, incidence and mortality: obesity and overweight in adults, Table S20: Relative risk for
underlying risk, incidence and mortality: dementia in adults, Table S21: Relative risk for underlying
risk, incidence and mortality: hypertension and hypercholesterolaemia in adults, Table S22: Relative
risk reduction for CHD and stroke, Table S23: Relative risk for underlying risk, incidence and
mortality: alcohol consumption in adults, Table S24: Single prevalence validation through relative
deviation rates for Kent, Table S25:Population validation through relative deviation rates for Kent,
Table S26: Sensitivity analysis testing ranges, Table S27: Relative risk for underlying risk, incidence:
breastfeeding, smoking in pregnancy, child obesity, fuel poverty and ACE in Children and Young
People, Figure S1: Estimation of risk factor changes using regression method, Figure S2: Estimation
of incidence and mortality changes from risk factor changes using the PAF method, Figure S3: Causal
Loop Diagram, Figure S4: Relative deviation, Figure S5: Visual single prevalence model validation for
Kent, Figure S6: Visual population model validation for Kent, Figure S7: Sensitivity analysis variation
for Healthy Life Expectancy (HLE) at 18, Figure S8: Model validation, Figure S4: Estimation of
incidence and mortality changes from a specific treatment, Figure S9: Estimation of incidence changes
from fuel poverty changes, Figure S10: Cumulative risk-reduction and Figure S11: Proportional
change in cohort incidence and mortality rate over time.
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