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Abstract: E-commerce companies generate massive orders daily, and efficiently fulfilling them is a
critical challenge. In the “parts-to-picker” order fulfillment system, the joint optimization of order
allocation and rack selection is a crucial problem. Previous research has primarily focused on these
two aspects separately and has yet to consider the issue of workload balancing across multiple
picking stations, which can significantly impact picking efficiency. Therefore, this paper studies a
joint optimization problem of order allocation and rack selection for a “parts-to-picker” order picking
system with multiple picking stations to improve order picking efficiency and avoid uneven workload
distribution. An integer programming model of order allocation and rack selection joint optimization
is formulated to minimize the racks’ total moving distance and to balance the orders allocated to
each picking station. The problem is decomposed into three sub-problems: order batching, batch
allocation, and rack selection, and an improved simulated annealing (SA) algorithm is designed to
solve the problem. Two workload comparing operators and two random operators are developed and
introduced to the SA iterations. Random instances of different scales are generated for experiments.
The algorithm solutions are compared with those generated by solving the IP model directly in a
commercial solver, CPLEX, and applying the first-come-first-serve strategy (FCFS), respectively. The
numerical results show that the proposed algorithm can generate order allocation and rack selection
solutions much more efficiently, where the moving distances of the racks are effectively reduced and
the workloads are balanced among the picking stations simultaneously. The model and algorithm
proposed in this paper can provide a scientific decision-making basis for e-commerce companies to
improve their picking efficiency.

Keywords: “parts-to-picker” picking system; order allocation; rack selection; workload balancing;
improved simulated annealing algorithm

1. Introduction

In recent years, the proliferation of internet users and the growth of e-commerce plat-
forms have made online shopping a significant mode of consumption. In 2021, the number
of online shoppers in China was estimated at 842 million. The substantial increase in users
presents a challenge for e-commerce warehouses, which must process an increasing volume
of orders. The efficient processing of orders and the completion of picking activities have
thus become a pressing issue for companies operating in this domain [1]. Order picking
refers to extracting products from storage locations in a warehouse to fulfill customer
orders [2]. The traditional “picker-to-parts” picking system entails workers continuously
visiting racks, incurs non-productive costs and labor expenses, and is ill-equipped to meet
the growing demand for order fulfillment [3]. With the advancement of Internet of Things
technology and intelligent devices, the “parts-to-picker” order picking system has emerged
to address these challenges, which becomes a crucial means for e-commerce warehouses to
enhance order picking efficiency [4,5].
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To improve the efficiency of order processing in distribution centers, major e-commerce
companies have adopted “parts-to-picker” robotic mobile fulfillment systems (RMFS) with
higher degrees of automation, such as Amazon’s Kiva system [6,7]. As depicted in Figure 1,
RMFS consists of a series of mobile robots, movable racks, picking stations, other hardware
systems, encompassing inbound docks, outbound docks, storage area, picking area, and
storage and charging areas for the handling robots [8]. Goods are stored on movable racks
in the warehouse and are transported by robots between picking stations and storage areas,
significantly reducing the labor costs and workload of pickers and improving order picking
efficiency [9].
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Figure 1. Warehouse layout of the robotic mobile fulfillment system.

However, the “parts-to-picker” picking system has also brought challenges. The
daily order amount for large warehouses with multiple picking stations can reach tens
of thousands, with various products in each order. The stations work in parallel with
a shared storage strategy, i.e., the same rack can store different products, and the same
product can be stored on different racks. Thus, multiple rack selection options exist for the
same order set. The critical decisions include selecting the optimal combination of racks,
allocating orders to picking stations, and efficiently completing all orders with the shortest
rack moving distance [10,11]. For rack selection, the ordered quantity of goods and the
storage capacity of goods on the racks must be matched. Moreover, since the orders are
too large to handle and some may require overlapped items, the orders can be batched
before rack selection to improve the working efficiency. For order allocation, since multiple
racks could provide each given product, it is necessary to consider the allocation of orders
among multiple stations with the decisions on rack selection simultaneously. The joint
optimization of the two decisions is more challenging, and efficient algorithms are required
to avoid conflicts of racks and improve efficiency.

Our literature review found a lack of research on order allocation and rack selection in
“parts-to-picker” picking systems that consider the parallel operation of multiple picking
stations and the workload balancing across these stations.

Therefore, we consider a joint optimization for the order allocation and rack selection
problem with multiple picking stations for the “parts-to-picker” mobile robot fulfillment
system, taking the workload balance among the stations into account. An integer pro-
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gramming model is formulated to minimize the workload imbalance rate and the total
moving distance of the selected racks. We also designed an improved simulated anneal-
ing algorithm to solve the problem efficiently. In an order-picking system with multiple
picking stations, the pickers work in parallel, so workload balance has to be considered
during order allocation and rack selection. If the workload is balanced, then the overall
completion time of the entire warehouse system could be completed, which will cause
employee dissatisfaction or even affect the picking efficiency in the long term.

The innovation and contribution of this paper can be summarized as follows:
(1) A more comprehensive mathematical programming model is developed, simulta-

neously addressing order batching, batch allocation, and rack selection while considering
constraints on rack storage capacity and workload balancing for picking stations.

(2) The paper considers the shared storage strategy of racks in the “parts-to-picker”
system and considers order-rack similarity when batching orders.

(3) We propose an enhanced simulated annealing algorithm. Specifically, we have
designed two workload comparison operators and two random exchange operators based
on the objective. The former serves as a targeted domain action to facilitate a faster
workload balance, while the latter aims to expand the solution space. By integrating
the two operators, we perform iterative optimization of the initial solution to identify
optimal solutions.

The remaining parts of this paper are organized as follows: Section 2 reviews the
relevant literature. Section 3 provides a detailed description of the joint optimization
problem and the integer programming model. Section 4 proposes the improved simulated
annealing algorithm, which first introduces the generation of initial solutions and then
designs neighborhood search operators to find better solutions iteratively. Section 5 verifies
the effectiveness and efficiency of the proposed model and algorithm through extensive
numerical experiments. Section 6 provides further conclusions and discussions.

2. Literature Review

In the current state of research, there is limited study on the joint optimization problem
of order allocation and rack selection in the “parts-to-picker” system. Most studies focused
on considering each decision-making aspect separately, making it challenging to obtain
optimal solutions.

The problem of rack selection in the “parts-to-picker” mobile robot fulfillment system
refers to selecting a collection of racks with the shortest total transportation distance or the
minimum total number of racks based on the number of product types required by a batch of
orders and the number of product types stored on the racks. Furthermore, this combination
of racks must satisfy the picking requirements of the batch of orders. The rack selection
problem is unique to the “parts-to-picker” system and is a relatively new combinatorial
optimization problem that has received relatively little research attention. Li et al. [12]
studied the rack selection problem for a given batch of orders by establishing a 0–1 linear
programming model, aiming to minimize the round-trip time of shelves and proving its
NP-hardness. They proposed a three-stage hybrid heuristic algorithm to solve this model.
Wang Zheng [13] also assumed a known set of orders to be picked and studied the best
rack selection problem by establishing an integer programming model and designing a
simulated annealing algorithm with six local search operators to update the initial solution.
Through various example scenarios, their findings demonstrated the superiority of their
algorithm. Similarly, Zhang Tingting [14] established an integer programming model to
minimize the number of times shelves are moved and designed a heuristic algorithm to
solve it. The study proved that rack selection in e-commerce warehousing systems directly
impacts picking efficiency and cost. However, these studies only consider single-picking
platforms and do not consider similar picking scenarios for multiple-picking platforms
commonly found in existing warehouses.

The allocation of orders in the “parts-to-picker” mobile robot fulfillment system refers
to grouping or sorting orders to maximize picking efficiency while minimizing duplicated
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resources and labor. About this, Wang Shanshan [15] proposed an improved genetic algo-
rithm to solve an order batch optimization model for a shuttle storage system to minimize
the total number of container outbounds. This approach resulted in a reduced number
of outtakes and improved the overall picking efficiency of the system. Li Zhenping [16]
conducted a similar study of order batching in a shuttle-based “parts-to-picker” picking
system and analyzed the impact of parameters such as the capacity of the picking station
and the similarity weighting coefficient on the batching results. The research showed
that as the capacity of the picking station increased, the number of outbound containers
decreased. Boysen et al. [17] studied the order allocation and rack selection problem in
a single picking station and designed a simulated annealing decomposition program to
address each sub-problem. Yang et al. [18] jointly optimized order allocation and rack
selection in a single picking station in a robot movement performance system. Despite this,
neither study accounted for the specific quantities of products on the racks, assuming their
mere presence was sufficient to fulfill orders.

Furthermore, the joint optimization problem has also been explored by various re-
searchers. Valle and Beasley [19] addressed the combined issue of order allocation, rack
allocation, and rack ordering by assigning customer orders and mobile racks to pickers and
determining the rack sequence within a single picking station. Wang et al. [20] investigated
the problem of order picking in a robot movement performance system with multiple
picking stations, intending to reduce the number of rack movements. This problem encom-
passes sub-problems such as order allocation, sorting, rack selection, and scheduling. It
considers the specific consideration of inter-station rack selection and the queueing effect
at each picking station, proposing a two-stage hybrid heuristic algorithm. Qin et al. [21]
created two-stage A* and adaptive large neighborhood search algorithms. They used these
algorithms to solve the problem of order allocation and path planning in multiple picking
stations. This helps in efficiently scheduling and configuring e-commerce warehousing
resources and provides practical decision-making guidance for e-commerce warehousing
intelligence. Zhao Jinlong et al. [1] have developed an optimized order-picking model
that considers delivery deadlines. They propose improved algorithms and rules to opti-
mize order allocation, sorting decisions, and rack access orders. Despite the research on
joint optimization problems, these studies have not considered the workload balance in a
multi-picking station system, which does not reflect the warehouse layout.

In summary, the existing literature, both domestic and foreign, has laid a theoretical
foundation for this paper. However, our investigation has revealed that there is currently
a lack of research in the joint optimization of order allocation and rack selection with
workload balancing for multiple picking stations in the “parts-to-picker” picking system.
Specifically, previous research has yet to address the challenge of determining order batches
for picking stations and the appropriate set of racks while ensuring workload balance and
minimizing the distance traveled by the racks. Thus, there is a need for further research
on the joint optimization problem of order allocation and rack selection that considers
workload balancing while minimizing the rack movement distance in order to improve the
efficiency and workflow of the “parts-to-picker” picking system.

3. Problem Description and Formulation
3.1. Problem Description

The order picking process of the “parts-to-picker” system is shown in Figure 2 be-
low. For the customer order set obtained from the e-commerce information system, the
system first performs order allocation, including order batching and batch allocation, and
establishes a correspondence between orders and picking stations. Workload balancing is
essential as we consider multiple picking stations working in parallel in this paper. Given
that each order has a different total number of items and thus requires different amounts of
work, we evaluate the workload of a picking station based on the total number of items
assigned to it. Secondly, appropriate racks are selected to meet the picking requirements of
orders, and correspondence between racks and picking stations is established. Since the
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racks to be picked need to be transported by robots to the corresponding picking stations
and then returned to their storage locations after picking, the walking distance of the robot
is a critical factor that affects the efficiency of order picking. The robot’s walking path
includes three parts: (1) from the current location to the target rack; (2) transporting the
rack to the corresponding picking station; and (3) returning the rack to its storage location
after picking. Among them, (1) is the distance traveled without a load, while (2) and (3) are
the distances traveled with a load. It can be seen that the distance traveled with a load
(i.e., the rack moving distance) accounts for the central part of the total distance; therefore,
minimizing the rack moving distance is crucial for improving order picking efficiency [10].
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Furthermore, considering the limited capacity of the picking station, workers can
handle up to I orders simultaneously, and the number of orders in each batch can be at
most I. The problem is to batch orders, allocate them to picking stations, determine the
combination of racks, and minimize the total rack moving distance while balancing the
workload of each picking station.

3.2. Assumptions

In this study based on a rack-moving mobile robot picking system, the following
assumptions are made:

• The location of the racks in the warehouse is fixed, and the racks return to their initial
storage position after completing the picking task;

• All racks have the same specification attributes;
• All picking stations have the same capacity;
• The rack inventory can meet the order demand;
• Orders in the same batch can be processed simultaneously without considering the

order or rack order within the same batch.

3.3. Integer Programming Model

The descriptions of relevant parameters and variables can be found in Tables 1 and 2.
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Table 1. Description of symbols and parameters.

Parameters Descriptions

J Order Set, J = {j|j = 1, 2, · · · , m}
R Rack Set, R = {r|r = 1, 2, · · · , n}
B Batch Set, B = {b|b = 1, 2, · · · , u}
P Picking Station Set, P = {p|p = 1, 2, · · · , s}
K Commodity Category Set, K = {k|k = 1, 2, · · · , t}

I The maximum number of orders a batch can accommodate, which is also
the maximum order capacity a picking station can handle simultaneously

Wp The workload of picking station p
aj The number of SKUs contained in order j
ajk The number of SKUs k required by order j
drk The storage capacity of SKU k on rack r
lrp The distance from rack r to picking station p
c1 Representative unit product picking cost
c2 Representative unit rack movement cost
qk

br The number of SKUs k provided by rack r for batch b

Table 2. Decision variables.

Decision Variables Descriptions

xjb
0–1 Variables: 0 indicates that order j is not assigned to batch b;

1 indicates that order j is assigned to batch b

ybp
0–1 Variables: 0 indicates that batch b is not assigned to picking station p;

1 indicates that batch b is assigned to picking station p

zbr

0–1 Variables: 0 indicates that batch b does not select rack r as its
provider of SKU;

1 indicates that batch b selects rack r as its provider of SKU

wjp

0–1 Variables: 0 indicates that order j is not processed by picking
station p;

1 indicates that order j is processed by picking station p

vp
br

0–1 Variables: 0 indicates that rack r is not assigned to picking station p
when it processes batch b;

1 indicates that rack r is assigned to picking station p when it processes
batch b

Objective Function:
(a) Minimize the level of imbalance in the workload of the picking stations, i.e., mini-

mize the difference between the maximum and minimum workloads of the picking stations:

F1 = min(maxWp −minWp) (1)

(b) To minimize the rack movement distance:

F2 = 2min
s

∑
p=1

u

∑
b=1

n

∑
r=1

vp
brlrp (2)

Since the uneven workload allocation increases the waiting time for workers, in order
to reduce the waiting time, the unit product picking cost is introduced, transforming the
objective function (a) into a penalty cost incurred due to the uneven workload allocation.
At the same time, the unit distance movement cost is introduced to transform the objective
function (b) into the rack movement cost. Additionally, two weight coefficients are intro-
duced. Thus, the multi-objective function is transformed into a single objective function,
as follows:

minF = ω1c1F1 + ω2c2F2 (3)

Constraints:
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(a) Each order can only be assigned to one batch:

u

∑
b=1

xjb = 1 ∀j (4)

(b) The total number of orders in each batch cannot exceed its maximum capacity:

m

∑
j=1

xjb ≤ I ∀b (5)

(c) A batch can only be assigned to one picking station:

s

∑
p=1

ybp = 1 ∀b (6)

(d) Each order is assigned to the picking station to which its batch is posted:

ωjp = xjb × ybp ∀j b p (7)

(e) Each batch selects the racks to go to the corresponding picking station:

υ
p
br = ybp × zbr ∀b p r (8)

(f) The number of products offered by the racks cannot exceed their storage quantity:

µ

∑
b=1

qk
br ≤ drk ∀b r k (9)

(g) The product requirements of each batch order are met:

m

∑
j=1

xjbajk =
n

∑
r=1

qk
br ∀b k (10)

(h) The range of values for the decision variables:

xjb, ybp, zbr, ωjp, ν
p
br ∈ {0, 1} (11)

qk
br ∈ N (12)

4. Improved Simulated Annealing Algorithm

The joint optimization problem of order allocation and rack selection is an NP-hard
problem. This paper proposes an improved simulated annealing algorithm to rapidly and
effectively solve this problem. The algorithm first generates an initial solution: an improved
seed algorithm is used to batch the orders based on the order-rack similarity; a random
strategy is used to allocate the batches to the picking stations; a greedy algorithm based
on the rack cost–performance ratio generates the rack selection scheme. Subsequently,
two types of neighborhood search operators are designed to generate new neighboring
solutions: workload comparison operators and random operators. If the neighboring
solution is better than the current solution, it replaces it; otherwise, it is accepted with a
probability of exp(−∆ f

T ).

4.1. Order-Rack Similarity

Order similarity is a numerical value that measures the similarity of the order’s
attributes, and allocating orders with high similarity to the same batch can reduce repeated
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picking and improve picking efficiency [22,23]. In traditional “picker-to-parts” order
picking systems, the order batching is mainly based on the similarity of order items, which
refers to the ratio of the number of standard products contained in two orders to the total
number of products. Orders usually contain various products in the “parts-to-picker”
system considered in this paper. The same rack can store different products, and different
products on the same rack can be picked simultaneously. Therefore, considering order item
similarity in this system is difficult to obtain an effective order batching result. This paper
proposes order-rack similarity, which is similar to order-item similarity [17] and is defined
as Rj = (Rj1, Rj2, · · · , Rjr)

T .

Rjr =

{
1, The existence of a certain product in order j being stored on rack r
0, Otherwise

;

The similarity between orders j and j′ in terms of their respective racks is calculated
as follows:

Sjj′ =
RT

jrRj′r

RT
jrRjr + RT

j′rRj′r − RT
jrRj′r

Example: Suppose four products are stored in racks R1 = {a, a, a, b, b}, R2 = {a, a, c, c},
R3 = {b, b, b, d}, and R4 = {b, c, c, d, d}, and there are three orders to be picked, J1 = {b},
J2 = {a, a}, and J3 = {c, d}. Then, for R1r = (1, 0, 1, 1)T , R2r = (1, 1, 0, 0)T , and
R3r = (0, 1, 1, 1)T , the rack similarity between order one and order two is S12 = 0.25,
between order two and order three is S23 = 0.25, and between order one and order three is
S13 = 0.5.

4.2. Generation of Initial Solutions

This section presents a heuristic algorithm to generate the initial solution for the
improved simulated annealing algorithm, consisting of the following three parts:

Part 1: Generation of Initial Batch Result Based on the Similarity of Order Racks

Step 1: Calculate the ratio of the number of orders m and the maximum number of
orders that a batch can accommodate I and round it up to µ = [m

I ];
Step 2: Calculate the similarity S between any two orders, sort the order similarity
values S in descending order, and select the first µ− order pairs with high similarity
values as seed order pairs;
Step 3: Calculate the average similarity value of the remaining orders with each seed
order pair and add it to the seed order pair with the maximum average similarity
value until reaching the batch capacity limit or there are no orders to be added;
Step 4: Output the batch result B.

Part 2: Random Generation of Order Batch Allocation

Step 1: Calculate the picking workload for each batch Wb = ajxjb based on the order
batch result, wherein aj = ∑t

k=1 ajk.
Step 2: Sort the batches in descending order of picking workload.
Step 3: Allocate the batches to picking stations sequentially.
Step 4: Output the order batch allocation result X0 and calculate the difference between
the maximum and minimum picking station workload F1.

Part 3: Greedy Algorithm Based on Rack Cost-effectiveness for Generating Initial Rack
Selection Solution

We propose a rack cost-effectiveness method to determine which racks are more cost-
effective. This method prioritizes racks with higher cost-effectiveness because each
rack’s moving distance is different.
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Step 1: Initialize R = (1, 2, · · · , n), Y = ∅; use vector Qb = (ab1, ab2, · · · , abk)
T

(b = 1, 2, · · · , u) to represent the vector of the demand for all goods in batch b, where
abk represents the amount of goods k contained in batch b.

Step 2: Remove redundant racks. Set b = 1, and calculate E =
t

∑
k=1

abkdrk for any rack

r = {1, 2, · · · , n}. If E = 0, remove the rack from R, effectively reducing the search
space and improving solution speed; otherwise, go to step 3.
Step 3: Calculate the cost–performance of the rack. Define the cost–performance of the
rack as a rate:

rate(r) =

t
∑

k=1
qk

br

lrp

where: qk
br = min{abk, drk} represents the number of products k that rack r provides

for this batch, and lrp represents the distance of rack r from picking station p.
Step 4: Sort the racks in descending order of cost–performance.
Step 5: Add the rack with the highest cost–performance to set Y and remove it from R,
updating Qb.
Step 6: If Qb = 0, go to step 6; otherwise, go to step 2.
Step 7: Set b = b + 1. If b > u, go to step 7; otherwise, go to step 1.
Step 8: Calculation ends; output the rack set Y corresponding to each batch and
calculate the distance F2 required to move all racks for picking all batches.

4.3. Improved Simulated Annealing Algorithm

In order to search for better solutions to the problem at hand, two types of neighbor-
hood search operators have been designed: workload comparison operators (Operators
1 and 2) and random exchange operators (Operators 3 and 4). Workload comparison
operators steer the perturbation towards a balanced workload, serving as a targeted neigh-
borhood action that leads to a faster workload balance. Random exchange operators are
advantageous for expanding the solution space. Combining these two types of operators
improves computational efficiency and increases the probability of obtaining the optimal
global solution.

Revised Neighborhood Operation:

Operator 1: Select the order batch with the enormous workload from the picking
station with the enormous workload and add it to the picking station with the minor
workload, ensuring that the new solution satisfies the batch capacity constraint of the
picking station.
Operator 2: Randomly select an order batch b from the picking station with the most
considerable workload and exchange it with an order batch b′ from the picking station
with the minor workload where Wb > Wb′ .
Operator 3: Randomly select an order and add it or exchange it with another batch,
ensuring that the batch capacity constraint is satisfied after addition.
Operator 4: Randomly select two picking stations; select one batch from each and
exchange the batches.

The specific steps of the algorithm are as follows:

Step 1: Initialization. The order allocation solution X = X0 obtained in the above
stage, the total cost F = f (X) of the objective function, the initial temperature T = T0,
and the number of iterations L;
Step 2: Under the current temperature T, randomly select a neighborhood search
operator to perturb the current solution, obtain a new solution X′, and calculate the
corresponding total cost f (X′);
Step 3: Calculate the incremental cost 4 f = f (X′)− f (X). If 4 f < 0, accept X′ as
the new current solution, X = X′, F = f (X′), l = l + 1; otherwise, accept the current
solution with a probability of exp(−∆ f

T ); that is, randomly generate a random number
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rand in the interval (0, 1) if exp(−∆ f
T ) > rand, accept X′ as the new current solution,

X = X′, F = f (X′), l = l + 1; otherwise, retain the current solution;
Step 4: Determine whether L iterations have been performed under temperature T. If
l ≤ L, go to step 2; otherwise, go to step 5;
Step 5: Set T = αT(0 < α < 1) to reduce the temperature. If T ≤ Tmin, output the
current order allocation solution X, the corresponding rack set Y, and the total cost F,
and end the program; otherwise, go to step 2.

5. Experimental Results and Discussions

In order to verify the validity of the proposed model and algorithm, the case in the
literature [20] was adopted, and simulations were conducted using small-scale [10 × 15],
medium-scale [10 × 30], and large-scale [20 × 30] warehouse grid maps as shown in
Figure 3. The distances were measured in grid units, and the distance between the racks
and the picking stations was their Manhattan distance. The racks, picking stations, and
robots are the same size and occupy one grid, and the robot walking step length is 1. The
parameters for the different-sized cases are shown in Table 3. The improved simulated
annealing algorithm proposed in this paper was compared with the CPLEX solver and the
commonly used first-come-first-served (FCFS) strategy in practice, respectively. The initial
temperature T of the improved SA was set to 500; the decay coefficient α was set to 0.98;
the number of iterations L was set to 100; and the final temperature Tmin was set to 0.01.
The results were finally compared with and without considering the balancing factor.
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The methods were implemented using the Python programming language, and the
experimental environment was Windows 10, Intel(R) Core(TM) i7-10875H CPU @ 2.30 GHz
with 16.0 GB RAM.
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Table 3. Setting of Different-Sized Instances.

Parameters Small-Scale Instances Medium-Scale Instances Large-Scale Instances

Number of picking stations (s) 2 3 4
Number of racks (n) 50 100 200

SKUs 100 100/200 100/200
Batch capacity (Wp) 5 15 15

Unit product picking cost (c1) 0.6
Unit rack movement cost (c2) 0.1

weight coefficients ω1 = ω2 = 0.5

5.1. Comparison with CPLEX Results

The CPLEX solver and the improved simulated annealing algorithm proposed in this
paper were used to solve small-scale cases. As shown in Table 4, when the number of
orders is within 20, CPLEX can solve the problem within 1.1 s and find the optimal solution.
However, as the number of orders increases, the computation time increases exponentially.
When the number of orders is 40, the computation time reaches 7159.8 s, and CPLEX
cannot solve the problem when the number of orders is 50. Compared to CPLEX’s solution
time, the improved simulated annealing algorithm proposed in this paper has a significant
advantage, with an average computational time of 138.3 s. Compared to CPLEX’s solution,
the error rate of the improved simulated annealing algorithm proposed in this paper does
not exceed 10% with an average error rate of 6.2%. When the number of orders is 30, the
solution quality is the best with only a 1.9% error.

Table 4. Resolution Results of Small-Sized Instance.

Scale of Example CPLEX ISA 1 Gap (%)

Example Number of Orders F Running Time per Second (s) F Running Time per Second (s) 4

1 10 3.6 0.5 3.9 48.5 7.7
2 20 3.7 1.1 4.1 82.7 9.8
3 30 5.1 203.3 5.2 119.3 1.9
4 40 7.1 7159.8 7.5 147.6 5.3
5 50 - - 10.4 201.8 -
6 60 - - 15.2 230.1 -

Average 1841.2 138.3 6.2
1 ISA: Improved Simulated Annealing Algorithm.

5.2. Comparison with FCFS Results

Due to difficulties in generating feasible solutions with CPLEX, our algorithm and
the commonly used first-come-first-served (FCFS) strategy in the warehouse were applied
to solve medium- and large-scale instances. In order to more clearly demonstrate their
respective objectives for workload balancing and rack movement distance, a comparison
was made between the two regarding their workload balancing level and rack distance.
The results are shown in Tables 5 and 6.

Tables 5 and 6 demonstrate that the proposed algorithm significantly improves the
workload balance. Compared to warehouses commonly used “first-come-first-served”
allocation strategy, the proposed method reduces the rack-moving distance. With average
reductions of 94.4% and 86.2%, the maximum workload imbalance can be reduced by 100%.
The proposed method also results in average reductions of 47% and 47.2% in the maximum
rack-moving distance, with a maximum reduction of 56.4%.” When the number of racks
in the warehouse increases to 200, the total number of products to 200, and the number of
orders to 400, the algorithm’s runtime remains acceptable.
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Table 5. Resolution Results of Medium-Sized Instance.

Scale of Example FCFS Improved Simulated Annealing
Algorithm Gap (%)

Example SKUs Number
of Orders F1 F2 F1 F2

Running Time
per Second (s) F1 Decline Rate F2 Decline Rate

7

100

50 18 264 2 120 210.2 88.9 44.4
8 100 27 530 1 238 343.5 96.3 55.1
9 150 26 868 0 406 519.3 100 53.2
10 200 33 1152 3 574 666.0 91.0 50.2

11

200

50 25 396 3 268 220.8 88.0 32.3
12 100 29 916 0 460 410.4 100.0 49.8
13 150 18 1322 1 656 549.0 94.4 50.4
14 200 31 1958 1 1166 864.0 96.8 40.4

Average 472.9 94.4 47.0

Table 6. Resolution Results of Large-Sized Instance.

Scale of Example FCFS Improved Simulated Annealing Algorithm Gap (%)

Example SKUs Number
of Orders F1 F2 F1 F2

Running Time per
Second (s)

F1 Decline
Rate/%

F2 Decline
Rate/%

15

100

100 32 448 1 226 663.0 96.9 49.6
16 150 24 778 1 386 1037.1 95.8 50.4
17 200 41 1010 1 594 1360.2 97.6 41.2
18 300 24 1390 3 846 1803.0 87.5 39.1
19 400 23 2128 2 1128 2160.0 91.3 47.0

20

200

100 23 816 4 432 767.7 82.6 47.1
21 150 22 1384 16 604 117.2 27.3 56.4
22 200 27 1836 0 888 1584.3 100.0 51.6
23 300 18 2440 0 1382 2357.7 100.0 43.4
24 400 47 3848 8 2082 2374.2 83.0 45.9

Average 1422.4 86.2 47.2

Furthermore, we observe that when the total number of Stock Keeping Units (SKUs)
is 100, the running time is relatively short, and the reductions in the levels of unbalanced
workload and rack distance are relatively high. On the other hand, when the total number
of SKUs is 200, the running time is relatively long, and the reductions in the levels of
unbalanced workload and rack distance are relatively low. The primary reason for this
phenomenon is that when the total number of SKUs in the warehouse increases, the
possibility of having the same SKUs in different orders decreases, which unavoidably
requires more racks and results in a heavier picking workload. However, the proposed
improved simulated annealing algorithm still exhibits excellent performance.

5.3. The Impact of Workload Balancing Factors

Table 7 compares six randomly selected cases from the set of instances to demonstrate
the importance of workload balancing. The cases compare the picking station workload
with and without considering the workload balancing objective to obtain the minimum
rack moving distance. For the 6 cases, the solutions obtained by considering the workload
balancing objective showed an average decrease of 92.27% in the imbalance of the picking
station workload compared to the solutions obtained without considering this objective,
with reductions of 83.3%, 94.1%, 100%, 98.1%, 84.2%, and 93.9%, respectively. On the other
hand, the obtained rack moving distance increased by an average of 6.35%, with increases of
3.4%, 1.7%, 3.0%, 8%, 19.5%, and 2.5%, respectively. Figures 4 and 5 compare the maximum
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workload difference and rack moving distance, respectively, between considering and not
considering the balancing.

Table 7. The effect of balancing factors on the results.

Example
Ignoring Workload Balance Considering Workload Balance Comparison of Enhancements

F1 F2 F1 F2 F1 Decline Rate/% F2 Decline Rate/%

7 6 116 1 120 83.3 −3.4
8 17 238 1 242 94.1 −1.7
9 27 394 0 406 100.0 −3.0
17 53 550 1 594 98.1 −8.0
18 19 708 3 846 84.2 −19.5
19 33 1100 2 1128 93.9 −2.5

Average 92.3 −6.4
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Therefore, considering both factors, the improved simulated annealing algorithm
proposed in this paper can effectively balance the order workload distribution while
avoiding a significant increase in the rack moving distance.

5.4. Sensitivity Analysis of Weight Coefficients of Objective Functions

Due to the direct impact of weighting coefficients ω1 and ω2 on the solution of the
simulated annealing algorithm in the objective function, this section selects a specific exam-
ple from small-scale, medium-scale, and large-scale computations to conduct a sensitivity
analysis of the maximum difference in workload between different picking stations and the
total rack movement distance under varying ω1 and ω2. Figure 6 depicts the variation of
the maximum workload difference as the weighting coefficients change. As the value of ω1
increases, the workload imbalance between different sorting stations gradually becomes
balanced. It can also be observed that the balancing speed is faster when 0 ≤ ω1 ≤ 0.5 and
slower when 0.5 ≤ ω1 ≤ 1. Figure 7 illustrates the variation of the rack movement distance
as the weighting coefficients change. As the value of ω1 increases, the optimal rack move-
ment distance gradually increases. The trends of the two objective functions are opposite
and cannot be optimized simultaneously. Therefore, in practice, the weighting coefficients
of the two objective functions should be determined based on specific circumstances to
achieve satisfactory optimization results.
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6. Conclusions

This study explores the joint optimization of order allocation and rack selection in
a “parts-to-picker” picking system, considering the picking stations’ balancing factor. A
mixed-integer programming model is developed to minimize workload imbalance and the
distance to selected racks while addressing three sub-problems: order batching, batch allo-
cation, and rack selection. The correspondence between multiple orders, picking stations,
and racks are established in the system. An improved simulated annealing algorithm is
designed, which includes two workload balancing operators and two random exchange
operators to improve its efficiency. The former balances the workload quickly, while the
latter helps expand the solution space. Combining the two can increase the probability
of obtaining the optimal global solution, essential for multi-picking station environments
where workload balancing is crucial while minimizing rack movement distance.

In addition, the study considers the characteristics of the “parts-to-picker” system
when solving the simulated annealing algorithm’s initial solution. A more scenario-specific
order-rack similarity is defined to obtain more effective order-batching results. Furthermore,
rack cost-effectiveness is proposed, prioritizing the selection of closer racks that can provide
more of the required items. This approach can provide a good initial solution for the
simulated annealing algorithm, enabling it to find the optimal solution quickly.

Finally, numerical experiments on different scales demonstrate the proposed algo-
rithm’s effectiveness. The algorithm can provide an effective solution for order allocation
and rack selection in e-commerce warehouses, reducing labor costs, improving picking
efficiency, and having significant implications for warehouse management and operation.
The findings can provide practical guidance and reference for future applications.

Moreover, as e-commerce warehouses face many random events in actual scenarios,
such as cancellations and urgent orders, future research can explore the joint optimization
of order allocation and rack selection that considers workload balancing under uncertain
conditions. Additionally, introducing more decision factors, such as path planning and
robot task allocation, can make the algorithm more applicable to the actual operating
scenario of the “parts-to-picker” system.
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