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Abstract: Our research contributes a new point of view on China’s rare earth dynamic risk spillover
measurement; this was performed by combining complex network and multivariate nonlinear
Granger causality to construct the time-varying connectedness complex network and analyze the
formation mechanism using the impulse response. First, our empirical research found that for the
dynamic characteristics of China’s rare earth market, due to instability, uncertainty, and geopo-
litical decisions, disruption can be captured well by the TVP-VAR-SV model. Second, except for
praseodymium, oxides are all risk takers and are more affected by the impact of other assets, which
means that the composite index and catalysts are main sources of risk spillovers in China’s rare
earth trading complex network system. Third, from the perspective of macroeconomic variables,
there are significant multivariate nonlinear impacts on the total connectedness index of China’s rare
earth market, and they exhibit asymmetric shock characteristics. These findings indicate that the
overall linkage of the risk contagion in China’s rare earth trading market is strong. Strengthening
the interconnections among the rare earth assets is of important practical significance. Empirical
results also provide policy recommendations for establishing trading risk protection measures under
macro-prudential supervision. Especially for investors and regulators, rare earth oxides are important
assets for risk mitigation. When rare earth systemic trading risk occur, the allocation of oxide rare
earth assets can hedge part of the trading risk.

Keywords: TVP-VAR-SV; complex network; multivariate nonlinear causality; impulse response

JEL Classification: C32; C51; C52; C53

1. Introduction

Rare earth assets are essential ingredients for indispensable industrial raw materials
of modern society, basic conventional clean energy production, and high-quality economic
development. The specific catalytic and magnetic properties of rare earth make them
necessary for high-tech industries and frontier science research [1]. Among other technolo-
gies, clean new energy, photovoltaic cells, wind energy turbines, and electric vehicles are
decisive for a transition to a low-carbon, resilient economy [2]. The global demand for
rare earth resources is increasing year-by-year [3], especially with the commitments made
by many countries at the United Nations Climate Change Conference (UNCCC) to timely
economic decarbonization. In this case, China is one of the most predominant rare earth
supply centers in the world [2].

Hedging and investments in rare earth assets have recently attracted global investor
attention due to global countries being actively involved in the changing new energy
industrial chain and tech innovation perspective; however, the composition of these supply
chains cannot reduce reliance on China’s rare earth resources [4]. Therefore, maintaining
and expanding investment in China’s rare earth assets require a clear understanding of the
formation mechanism of rare earth asset transaction risk contagion. In fact, it is difficult
and complicated to characterize the contagion of rare earth trading risk in an inefficient

Systems 2023, 11, 168. https://doi.org/10.3390/systems11040168 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems11040168
https://doi.org/10.3390/systems11040168
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0003-3429-1195
https://doi.org/10.3390/systems11040168
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems11040168?type=check_update&version=2


Systems 2023, 11, 168 2 of 22

primary trading market, especially in China [5,6]. Investor interest in China’s rare earth
assets not only depends on their trading return, but also relates to the catalytic materials
and oxides of the rare earth assets. Consequently, expanding investors’ understanding of
the interconnection mechanisms of rare earth assets and the influence of macroeconomic
variables is critical for gauging the relative performance of rare earth assets and the useful-
ness of hedging the trading portfolio risk. Indeed, understanding of the mechanism of the
risk spillover effect of rare earth assets is also useful for policymaker decisions regarding
the promotion of the mining process.

In this study, we investigated the trading risk spillover effect among China’s rare
earth market assets, including catalysts and oxides in the Baotou Rare Earth Products
Exchange (BREPE), and we analyzed the formation mechanism using the impulse response.
Previous research has mostly focused on a single rare earth asset such as yttrium’s gen-
eral characteristics or on rare earth stocks based on geological and geochemical data to
investigate the trading risk [7]; however this has not occurred at the level of the entire rare
earth trading market [8]. Furthermore, there is much research on cross-markets such as
China and the USA as well as the linkage to traditional financial system or economic policy
uncertainty [2,8,9]. In the field of exploring the formation mechanism of rare earth market
transaction risk, there are few studies available. Hanif et al. [10] examined the impacts of
COVID-19 on dynamic return and volatility spillovers between the rare earth and six renew-
able energy stock from 1 January 2018 to 15 May 2020. The results showed that COVID-19
triggered significant increases in co-movements and spillovers in returns and volatility,
but no further influencing factors were explored. While considering the consumption of
drive volatility transmission in financial markets, Haq et al. [8] documented that the weak
financial contagion effect and connectedness across financial markets uncovers possible
diversification opportunities. The results showed that the USA sustainable financial market
was persistently not affected by volatility spillovers but that China and Australia needed to
establish strict regulations to protect sustainable financial markets.

Highly interdependent systemic trading risks will trigger significant risk linkages and
even seriously threaten the security and stability of the entire trading market [3]. It is worth
noting that most of the early studies focused on the pairwise relationship between entities
but ignored the overall network correlation of transaction risk, so it is difficult to accurately
describe the systemic shocks that appear in complex networks [11]. By using a principal
component analysis (PCA) and Granger causality analysis test, Diebold and Yilmaz [12]
constructed a financial complex network, described the important relationship between
financial institutions, and identified systemically important institutions. On the other hand,
to examine market transaction risks, van de Leur et al. [11], Acharya and Volpin [13], and
Acharya et al. [14,15] successively proposed methods such as CoVaR and MES to go beyond
the pairwise association, tracking association, and risk linkage between individual assets
and examine the overall transaction market.

In order to overcome the defect of traditional risk spillover measurement, which can
only describe the correlation in one direction, Diebold and Yilmaz [12,16,17] proposed
several connectedness measures built from pieces of variance decompositions, which
effectively unified methods such as CoVaR and MES under the same framework. Grant and
Yung [18] pointed that the robust-yet-fragile property was the most important characteristic
in the complex network method, which meant that a high degree of interconnection between
complex networks can effectively buffer and smooth most of the shocks; at the same time,
though, it can be easier for risk to rapidly spread in the complex network system. For this
reason, it has become an important research perspective in this field to investigate the shock
spillover of trading risk from complex network topology and comprehensively analyze its
contagion effect in different trading markets. For instance, Härdle et al. [19] adopted the
TENET model based on the semiparametric quantile regression framework to estimate the
complex network’s association of financial institutions according to the tail-driven spillover
effect. Shi et al. [2] investigated the connectedness spillover effects between rare earth
stocks and financial markets using the MS-VAR model.
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Our empirical research contributes to the extant rare earth trading risk mechanism
literature by investigating a suitable dynamic model for China’s rare earth market; we
used a time-varying connectedness measurement and multivariate Granger causality-based
method to observe the mechanisms and impulse response, as the dynamics of macroe-
conomic variables may influence the trading risk of China’s rare earth market. Using a
high-dimensional setup, we quantify and extend the size of price return spillovers from/to
Chinese rare earth assets to/from other Chinese rare earth assets using a time-varying
parameter vector autoregressive with stochastic volatility (TVP-VAR-SV) model, which
captures the bilateral direct price transmission channels across rare earth assets. Further-
more, the statistical significance of time-varying parameters is evaluated in 95% confidence
intervals using a Markov chain Monte Carlo (MCMC) algorithm with 50,000 replications.

Our empirical research of China’s rare earth trading market provides new insights for
investors and regulators in rare earth-related areas who hedge the risk of holding, mining,
and selling rare earth assets in trading markets. In the Chinese financial market, there is
no significant effective financial instruments related to rare earth assets for investors to
avoid trading risk. The time-varying information of the risk contagion in China’s rare earth
trading markets can help investors and hedgers make timely decisions. More specifically,
our research investigates the mechanism of trading risk spillover between rare earth assets
and macroeconomic variables, which means that changes in rare earth trading risk can
be forewarned by dynamics of macroeconomic variables. All of this information can
potentially lead to investor interest in rare earth trading and increase funding flows into
rare earth markets. Finally, our empirical results also provide policy recommendations for
the establishment of trading risk protection under macro-prudential supervision and have
implications for public policies that are aimed at supporting the rare earth trading market.

The rest of paper is organized as follows. Section 2 outlines the dynamic trading
risk spillover index (include in, out, and net connectedness spillover with time-varying
measurement), volatility spillover complex network based on the connectedness approach,
and impulse response methods with the macroeconomic-driven factors. Section 3 explains
the data sources. In Section 4, we conduct the empirical research of China’s rare earth
market trading risk, we investigate the bilateral trading risk spillover effects, and we discuss
the driven factors with mechanism analyses at the same time. We provide conclusions in
Section 5.

2. Model Specification and Estimation

We introduce and extend the econometric model below to characterize dynamic
trading risk spillover based on the connectedness approach across the rare earth trading
market and macroeconomic variables.

2.1. TVP-VAR-SV Model for Price Dynamics

In order to avoid the influence of the traditional Cholesky decomposition spillover
index on the variable ordering, Koop et al. [20] and Pesaran and Shin [21] proposed a gen-
eralized vector autoregressive framework. Diebold and Yilmaz [12,16,17] measured both
the total and directional dynamic volatility spillovers using the rolling window method.
Building on these insights, we refer to Primiceri [22], Nakajima [23], and Antonakakis et
al. [24] and enhance the dynamic trading connectedness measures with a time-varying
parameter VAR model and stochastic volatilities (SV), which replaces the original rolling
window technique. In terms of capturing the time-varying spillover effects, the TVP-
VAR-SV model has an advantage over rolling window technique where it is suitable for
large-scale Bayesian calculations without losing useful information in the original data. The
time-varying variance decomposition spillover method can not only measure the direction
of the trading risk spillover, but also the intensity of the trading risk spillover; especially, it
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can describe the characteristics of the risk contagion in a high-dimensional trading system.
We define the standard structural VAR model as follows:

Ayt = a0 + B1yt−1 + ... + Bkyt−k + εt (1)

yt is an explained variable that refer to the volatilities of all rare earth trading market
assets; A, B1, ..., Bk are coefficient matrixes with n× n shape; εt is a shock that follows the
independent identical normal distribution εt ∼ N(0, Σ); and k is the lag order. We define
Ck = A−1Bk and rewrite the structural VAR model into another minimalist form with an
error term εt ∼ N(0, In):

yt = A−1a0 + C1yt−1 + ... + Ckyt−k + A−1Σ
1
2 εt (2)

By using the Kronecker product and matrix form, we set β = vec
(
aT

0 , AT
1 , ..., AT

k
)

and

xt = I ⊗
(

1, yT
t−1, ..., yT

t−k

)
. We further rewrite (2) into yt = βxt + A−1Σ

1
2 εt. Based on this,

we expand the coefficient vector β, which has an AR(1) random walk form with an error
term εt, and define the standard TVP-VAR model:

yt = βtxt + A−1
t Σ

1
2
t εt

βt = βt−1 + εt
(3)

As for a high-dimensional state-space model, due to the complexity of likelihood
equation with stochastic volatility term, we estimate the time-varying parameters using the
Bayesian sampling method and MCMC algorithm [25,26].

In the next part, we will evaluate the volatility spillover according to the characteristics
of the sample log-return data and set the complex network to show the contagion effect of
the rare earth market trading risk.

2.2. Volatility Spillover Measures and Graph Network

After constructing the TVP-VAR-SV model for price dynamics, we decompose the
h-step forecast error variance of the explained variable yi. The contribution value θij that is
obtained by the variance decomposition is the part that can be explained by yj when yi is
impacted by exogenous factors. The proportion of prediction error components is one of
the prerequisites for us to build a complex network.

θij(h) =
σ−1

ii ∑H
h=0

(
eT

i AiΣej
)2

∑H
h=0

(
eT

i AiΣAT
i ej
)2 (4)

Σ refers to the covariance matrix for the shock vectors. σii is the standard variance
of εt. The jth element of ej equals to 1, whereas the other elements are 0. The variance
decomposition square matrix of order N, which is composed of elements θij(h), can be
used to characterize the risk spillover effect of different rare earth assets, catalysts, and
their oxides.

Θ(h) =


θ11 θ12 ... θ1N
θ21 θ22 ... θ2N
... ... ... ...

θN1 θN2 ... θNN

 (5)

In the above variance decomposition matrix Θij(h)(i 6= j), the off-diagonal elements
represent the decomposition of the forecast error variance, which reflects the degree of the
rare earth trading market risk spillover effect between asset i and asset j.

Therefore, the sum of row i in Θij(h) represents the total market trading risk spillover
effect of all other rare earth assets which, at the same time, equals to the risk-taking ability
of asset i. From the perspective of the columns in matrix Θij(h), the sum of column j
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represents the total trading market risk spillover of assets j to all other assets in the rare
earth market.

Based on the above description, we define the net spillover effect (net) as the difference
between the external spillover effect (in) and the risk tolerance of spillover from other
assets (from).

The average of all elements in matrix Θij(h) represents the trading market risk spillover
level for the entire rare earth trading system. In order to analyze the volatility spillover effect
and eliminate the dimensional influence between rare earth assets better, we normalize
θi,j(h) to ϑi,j(h) and make the sum of columns equal to 1.

ϑij =
θij(h)

∑N
j=1 θij(h)

(6)

Furthermore, to explore the mechanism of the risk contagion in the rare earth trading
market, we propose using the total connectedness index TCI(h) of the entire rare earth
trading system.

TCI(h) = 100×
∑N

i,j=1,i 6=j ϑij(h)

∑N
i,j=1 θij(h)

(7)

Finally, the statistical significance of different metrics is evaluated by TCI(h) in
95% confidence intervals using an MCMC algorithm of the TVP-VAR-SV model with
50,000 replications.

2.3. Multivariate Nonlinear Causality and Impulse Response

After measuring the TCI(h) of the entire rare earth trading system, we then consider
exploring the mechanism of TCI(h) formation under the perspective of a multivariate
nonlinear causality test and the impulse response with Chinese macroeconomic variables.

The residual components after the filtering of the classic VAR model have a nonlinear
predictive relationship. When nonlinear features emerge from variables, the classical
Granger causality test may provide an obvious bias on the research conclusions [27].

A bivariate nonlinear Granger causality test that is based on paired variables explores
the nonlinear Granger causality between bivariate time series variables, which only uses
the interaction information between two variables [28]; it fails to propose the confounding
effect with other relevant variables [29].

Following the research of Diks and Wolski [30], we expand the nonlinear Granger
causality test under heterogeneous market conditions. Then, we add the characteristics of
high-dimensional heavy rare earth data to realize the multivariate nonlinear Granger causal-
ity discrimination. All technical details of the multivariate nonlinear Granger causality can
be found in Appendix A.

After estimating the time-varying parameters with the Bayesian sampling method
and MCMC algorithm, we use the multivariate nonlinear Granger test and TVP-VAR-SV
model with impulse response analysis to take a deeper dive into the mechanism of the total
connectedness index’s macroeconomic-driven factors.

3. Data

Rare earth processing and activities that produce catalysts and oxides are undertaken
all over the world. As a major exporter of rare earth materials, China has the highest
proportion (35%) in the Global Rare Earth/Strategic Metals Index (MVREMX). Table 1
summarizes all of the necessary information (name, frequency, length, explanation and
source) and statistics of the variables (RECI, catalysts, representative oxides (holmium
and praseodymium) and macroeconomic variables) used in this paper. RECI monitors
the fluctuation in China’s rare earth market value well due to disruptions from instability,
uncertainty, and geopolitical decisions. The price of rare earth catalysts and their oxide
products should be included as the endogenous fluctuation factors of China’s rare earth
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market in our empirical research. The above variables will be used in our research on the
risk spillover effect of China’s rare earth trading market.

During the pre-handling of original data, we consider the mismatch of trading days
caused by differences in holidays among various assets and macroeconomic variables.
We take the time periods when both assets and macroeconomic variables are all data-
available as the sample for our research. After excluding the effects of holidays, we also fill
backwards to make the data sample size as large as possible without affecting the empirical
results. The log-return of each rare earth asset and macroeconomic variables are calculated
as follows:

Rt = 100× [ln(Pt)− ln(Pt−1)] (8)

The mean values and standard deviations of both the assets and variables are similar.
The skewness of all returns is positive, suggesting a greater probability of increases in these
returns. The high kurtosis of the returns reveals that extreme value changes often occur
when the tail of the return’s distribution shows fatness.

Figures 1 and 2 depict in detail the time series process of the logarithmic returns of
the analyzed rare earth assets and macroeconomic variables, which roughly reflects the
magnitude of the rare earth index price trends in different times. Visual inspection reveals
the general characteristics of rare earth assets as well as the volatility clustering of daily
frequency macroeconomic variables. Rare earth market values evolve in tandem with
catalysts and oxides and, to a lesser extent, with macroeconomic variables. When global
public events occur, the volatility of the logarithmic return sequence significantly varies
between variables.

Table 1. Data description.

Info
Name RECI Catalysts Praseodymium Holmium VXFXI EPU EER Liquidity

Observation 1249 1249 1249 1249 1249 1249 1249 1249
Frequency Daily Daily Daily Daily Daily Daily Daily Daily
Mean 0.000 −0.000 0.000 0.001 0.002 0.193 0.000 0.034
Minimum −0.040 −0.045 −0.095 −0.105 −0.184 −0.839 −0.014 −1.951
Maximum 0.045 0.046 0.081 0.124 0.418 7.264 0.010 16.592
1st Quartile −0.003 −0.003 −0.002 −0.002 −0.033 −0.309 −0.001 −0.029
3rd Quartile 0.003 0.003 0.003 0.003 0.028 0.437 0.001 0.030
Variance 0.000 0.000 0.000 0.000 0.004 0.639 0.000 0.434
S.D. 0.007 0.010 0.013 0.015 0.063 0.800 0.002 0.659
Skewness 0.228 0.028 −0.329 0.555 1.275 2.396 −0.100 19.971
Kurtosis 6.732 5.447 13.417 14.309 5.103 10.150 3.002 449.406
J–B 1906.094 ∗∗∗ 1242.977 ∗∗∗ 7547.869 ∗∗∗ 8615.170 ∗∗∗ 1362.082 ∗∗∗ 5268.712 ∗∗∗ 379.897 ∗∗∗ 7408.729 ∗∗∗

ARCH-LM 63.848 ∗∗∗ 133.090 ∗∗∗ 104.300 ∗∗∗ 34.934 ∗∗∗ 117.560 ∗∗∗ 21.726 ∗∗ 32.562 ∗∗∗ 97.098 ∗∗∗

Q(20) 168.960 ∗∗∗ 81.515 ∗∗∗ 73.460 ∗∗∗ 111.790 ∗∗∗ 101.330 ∗∗∗ 159.340 ∗∗∗ 19.193 238.150 ∗∗∗

ADF(10) −7.527 ∗∗∗ −8.202 ∗∗∗ −7.759 ∗∗∗ −7.912 ∗∗∗ −11.094 ∗∗∗ −9.049 ∗∗∗ −9.878 ∗∗∗ −6.234 ∗∗∗

K–S 0.022 0.038 0.019 0.020 0.017 0.015 0.030 0.014

Explanation

China’s rare
earth

composite
index

Catalysts
index

Rare earth
oxides

Rare earth
oxides

ETF
volatility
index of
China

Economic
policy

uncertainty

Effective
exchange

rate

3M-Spread
of SHIBOR

and treasury
yield

Source Wind [31] Wind [31] Wind [31] Wind [31] Wind [31] BIS [32] Du et al. [29] Wind [31]

Note: ∗ ∗ ∗ and ∗∗ indicate the significance at a level of 1% and 5%, respectively. J–B represents the Jarque–
Bera statistics, which tests the normality of the datasets. ARCH-LM stands for the autoregressive conditional
heteroscedasticity test based on Lagrange multiplier statistics. Q(20) represents the 20th lagged Ljung-Box Q
statistics. ADF(10) are the unit root test values after 10 lags with no constants and a time trend. K–S represents
Kolmogorov–Smirnov test; these indicate that all series satisfy the normality assumption. Due to limitations,
we only show representative rare earth time series. The remaining series (13 rare earth oxides) are reserved for
retrieval and can be obtained from the corresponding author.
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Figure 1. Logarithmic returns of rare earth assets.

Figure 2. Logarithmic returns of macroeconomic variables.

The Jarque–Bera (J–B) test obviously rejects the normality of all series. According to
the Ljung-Box (Q) statistic and autoregressive conditional heteroskedasticity Lagrange mul-
tiplier (ARCH-LM) statistic, all of the log-return series display evidence of autocorrelation
and show evidence of heteroscedasticity.

4. Empirical Analysis in China’s Rare Earth Market
4.1. Risk Spillover of China’s Rare Earth Market

In this section, the TVP-VAR-SV model for all rare earth assets return series are
estimated. The dynamic trading risk spillover indexes (including in, out, and net spillover)
with time-varying measurements are calculated based on the connectedness approach.

Refer to Primiceri [22]; we use some samples as the training set, and the constant
coefficients of the model are estimated based on the OLS method. The technical details of
the MCMC method can be found in Appendix B.
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Before calculating the TCI of China’s rare earth market, we build a TVP-VAR-SV model
and decompose the generalized forecast error variance. Figures 3–5 show the time-varying
risk spillover effect of rare earth assets and the indexes from China’s rare earth markets.
Risk spillover (From) indicates the degree of risk tolerance, which is subject to partial
connectedness spillover from other rare earth assets. Risk spillover (To) represents a partial
connectedness spillover effect on the rest of the other rare earth assets. Risk spillover (Net)
is the risk tolerance minus the partial connectedness spillover.

From the view of the volatility spillover effect between rare earth assets and the
composite index, gadolinium and magnetic material are important assets in China’s rare
earth trading system. The spillover effect of the former to the latter asset is greater than the
latter to the former one, which means the gadolinium plays a systematic important role in
China’s rare earth trading system.

Praseodymium and magnetic material have an important impact on the import and
export structure of China’s rare earth resources and the balance of international payments.
When comparing the spillover effect values of two assets, the connectedness contagion
intensity of the praseodymium to the magnetic material is higher.

It can be intuitively observed that the rare earth composite index is the main net
exporter of connectedness shocks and also has a greater impact on other types of rare earth
assets and oxide spillovers. However, dysprosium and holmium are mainly net importers
of connectedness shocks, which are extremely susceptible to risk infection.

In May 2019, the rare earth policy departments of China banned the import of Myan-
mar’s rare earth mines into China; at the same time, the Chinese government completely
stopped the export of rare earth-related materials to Myanmar. This behavior led to an
increase in the comprehensive price of rare earths and caused great fluctuations in the rare
earth trading market of China.

Reviewing the government’s public data [33], the ban on the import and export of rare
earths between Chinese and Myanmarese ports was effective. The import volume of rare
earth mines in Myanmar had continued to decline. According to the data from customs in
2019, since China Tengchong’s Customs began to implement import restriction measures
in November 2018, the import volume in November, December, and January 2019 was
801 tons, 1079 tons, and 963 tons, respectively; that was only one-third to one-half of the
monthly import volume compared with before the restricted time.

Because of this, since March 2019, the rare earth assets of praseodymium, dysprosium,
holmium, and yttrium have mutated from their previous low-risk status to main assets
with high-risk spillovers (Figure 3: praseodymium, dysprosium, holmium, and yttrium).
This shows that the price changes of the four rare earth assets have a greater impact on
China’s overall rare earth trading market and that the spillover effect is more obvious
(Figure 5: Net risk spillover of RECI). They also became the main group of trading risk
infection in China’s rare earth market, and the regulatory authorities need to pay enough
attention to all high-volatility rare earth assets.

The risk spillover of rare earth assets has intensified, which is likely to be due to
the immaturity of China’s heavy rare earth trading system. This also makes the resource
transmission mechanism not completely smooth. Moreover, the derivatives of rare earth
options and futures have not been fully allocated, which means that the sudden imported
risks cannot be mitigated in time.
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Figure 3. Risk spillover (To) in China’s rare earth trading system.
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Figure 4. Risk spillover (From) in China’s rare earth trading system.
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Figure 5. Risk spillover (Net) in China’s rare earth trading system.

Finally, we calculate the TCI based on the TVP-VAR-SV methods (see Figure 6) to
analyze the time-varying characteristics of the risk spillover effect of China’s entire rare
earth trading market.
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Figure 6. Total connectedness index (TCI) in China’s rare earth trading system.

During the sampling period, the TCI of China’s rare earth trading system is between
40% and 96%, and the risk linkage is uncertain and volatile. The more significant impact
stemmed from two policy adjustments made by China’s rare earth regulatory authorities in
October 2018 and May 2019, respectively. The TCI shows that the overall fluctuation risk
spillover level of China’s rare earth trading market is on the rise.

However, during the stable policy period of 2017–2018, China’s rare earth market
volatility index was also relatively stable. After the policy adjustment, the spillover index
reflects the risk change of the rare earth trading system in a short period of time, which
further shows that the trading risk monitor model that we used can effectively capture the
change in the systemic risk of the rare earth trading market.

It can be seen that the TCI calculated in our paper can truly reflect the overall risk
level of China’s rare earth trading system, which is conducive to the dynamic monitoring
of the risks for the rare earth regulatory department.

In addition to the two main political effects, there is a cyclical behavior in the index.
The cyclical behavior of the financial time series is not only reflected in the traditional
assets price and macroeconomics, but also reflected in the spillover effect of the trading
risks. Due to the mean reversion characteristics of the asset prices and log-returns (these
conclusions are derived from the weak form of the efficient market hypothesis and rational
investor hypothesis in economics), the risk spillover effect caused by trading friction of
different investors would also produce an obvious cyclical behavior. There is a causal
relationship between mean reversion and periodicity, and that is the reason why the TCI
has cyclical behavior. Especially, those obvious peaks are what we truly need to further
discuss (such as interconnection with macroeconomic variables or regulations of the rare
earth market). In addition to analyzing them from a macro perspective, further research
on the specific reason of cyclical behavior from the micro perspective seems to also have
important academic significance.

4.2. Bilateral Trading Risk Spillover Complex Network

To build a volatility spillover complex network, we obtained a partial connectedness
spillover table of the trading risk volatility. Table 2 reports the risk spillover effect between
different assets of China’s rare earth trading market, which was calculated based on the
17 rare earth assets from the 17-order variance decomposition risk spillover table.

The numbers on the diagonal in the table represent the lagged effect on the asset in the
current period. Thulium’s lagged effect on itself is 56.11%. As for all the rare earth assets,
thulium receives the greatest effect from its own dynamics. RECI is the least affected by
its own dynamics, which is only by 19.40%. This shows that RECI’s market trading risk
mainly comes from other assets in the rare earth trading market.
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Table 2. Risk spillover table of China’s rare earth trading market.

RECI Cata. Hydr. Lumi. Magn. Gado. Yttr. Sama. Holm. Erbi. Euro. Thul. Terb. Dysp. Lute. Pras. Ytte. FROM

RECI 19.40 7.04 6.03 6.00 15.46 4.23 2.58 2.38 3.37 3.48 3.23 1.26 3.64 4.60 2.76 12.85 1.68 80.60
Cata. 7.54 31.60 13.00 4.21 7.12 2.13 10.64 3.04 1.69 2.72 0.73 1.23 1.78 2.06 2.26 6.61 1.62 68.40
Hydr. 7.57 11.23 29.01 1.58 15.11 2.76 1.48 1.95 1.61 1.19 1.05 0.84 1.19 1.01 1.77 19.52 1.16 70.99
Lumi. 8.91 4.62 1.60 30.80 3.11 1.89 8.61 1.55 2.25 2.38 16.92 1.14 3.30 1.97 6.84 2.85 1.25 69.20
Magn. 11.16 7.93 12.58 1.43 25.80 2.99 1.30 2.31 1.54 1.54 0.88 1.44 1.61 2.15 1.98 22.04 1.31 74.20
Gado. 6.84 3.77 3.54 1.82 8.52 39.94 2.96 2.91 2.36 2.95 1.43 2.02 3.15 2.56 2.73 9.03 3.47 60.06
Yttr. 4.74 13.75 2.08 10.43 3.51 2.61 39.41 2.78 2.07 3.31 1.21 1.83 2.26 2.13 2.28 4.07 1.53 60.59
Sama. 4.02 4.75 3.63 1.88 4.83 2.78 3.06 49.88 2.35 3.95 1.08 2.46 2.27 2.96 2.19 4.77 3.15 50.12
Holm. 7.98 2.94 3.54 2.83 8.09 3.71 2.50 2.36 40.11 2.86 2.23 1.76 3.24 2.11 3.32 8.81 1.62 59.89
Erbi. 5.91 3.05 1.62 2.99 4.03 2.54 3.46 3.08 2.88 51.44 1.89 1.99 2.50 2.68 3.33 4.69 1.93 48.56
Euro. 5.71 1.30 1.65 23.54 2.79 1.98 1.53 1.15 1.83 2.09 44.99 0.88 1.47 2.00 2.67 3.13 1.27 55.01
Thul. 2.76 2.89 1.99 1.87 4.38 2.95 2.69 3.58 1.68 2.34 1.44 56.11 2.04 2.21 2.18 5.08 3.80 43.89
Terb. 8.83 2.61 1.87 4.98 6.96 4.20 2.61 2.08 2.98 2.56 1.83 1.41 43.05 3.20 2.70 6.13 2.01 56.95
Dysp. 10.53 2.80 2.03 2.59 6.73 3.82 2.73 2.46 2.72 3.06 2.18 1.85 3.13 44.19 2.72 5.04 1.42 55.81
Lute. 4.25 3.44 2.31 8.05 6.50 2.89 2.56 2.27 2.36 3.26 2.04 1.35 2.45 1.97 43.71 7.36 3.22 56.29
Pras. 6.97 7.43 17.10 1.15 22.10 2.71 1.00 2.08 0.97 1.41 0.89 1.18 1.27 1.04 1.99 29.32 1.39 70.68
Ytte. 3.41 3.45 1.89 2.02 3.49 4.10 2.17 3.75 1.89 1.85 1.42 3.81 2.72 1.87 3.67 4.18 54.31 45.69
TO 107.14 83.00 76.46 77.39 122.72 48.30 51.90 39.73 34.54 40.95 40.43 26.45 38.01 36.53 45.39 126.17 31.84 64.18/60.41

Note: Due to the column space limitations, we set the abbreviations as follows: rare earth composite index,
RECI; catalytic, Cata.; hydrogen, Hydr.; luminescent, Lumi.; magnetic, Magn.; gadolinium, Gado.; yttrium, Yttr.;
samarium, Sama.; holmium, Holm.; erbium, Erbi.; europium, Euro.; thulium, Thul.; terbium, Terb.; dysprosium,
Dysp.; lutetium, Lute.; praseodymium, Pras.; ytterbium, Ytte.

From the off-diagonal elements in Table 2, it can be seen that the risk spillover effect of
China’s rare earth trading market shows volatility, asymmetry, and uncertainty. The overall
linkage of the risk contagion in China’s rare earth trading market is strong.

Except from the perspective of the direction of risk spillover From, To, and Net) and
the net spillover effects of the rare earth oxide (except for praseodymium, 55.49%), which
are negative, the rest of assets (composite index and catalysts) are all positive. The rare
earth composite index and catalysts are the main sources of risk spillovers. Except for
praseodymium, oxides are all risk takers and are more affected by the impact of other
assets. It shows that the external risk spillover effect of comprehensive rare earth assets is
relatively large, while single rare earth oxides are more affected by the risk impact of other
types of assets.

As for the external risk spillover, RECI has the highest spillover effect of 107.14%. It is
in the leading position of information in the entire rare earth trading market. Furthermore,
it is the primary source of trading risk in the rare earth market. During the research sample
period, the average value of systemic volatility spillover in China’s rare earth market is
64.18%. The risk linkage within the rare earth trading market is relatively strong; trading
risks are more likely to be transmitted through various channels.

We then drew a heat map (Figure 7) based on the results of the above risk spillover
matrix, which more intuitively confirms our conclusion. The rare earth comprehensive
index and its catalysts region have a darker color block with a higher concentration. The
risk contagion between rare earth oxides is weak, mainly because of their trading volume
and price fluctuations.

On the basis of obtaining the risk spillover measure, we took the target of China’s
rare earth trading market as the node, the volatility spillover effect between assets as the
connection edge of the complex network, and the variance contribution degree of the
variance decomposition as the adjacency matrix. Finally, we constructed the volatility
spillover complex network and used it to reflect changes in the risk contagion.

We used the representation convention in the field of graph theory. In this paper, we
represent the clockwise connection of nodes as the information input and the counterclock-
wise connection as the information overflow.
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Figure 7. Heatmap of risk spillover based on the connectedness approach.

Figures 8 and 9 intuitively reflect the complex network of volatility spillover and
volatility taking in China’s rare earth trading market throughout the sample period. The
color and size represent the betweenness centrality, which means the degree of significance
in China’s rare earth trading system. The darker and larger the node is, the greater total
risk (in and out) of the target that it has. The edge represents the weighted degree, which
means the intensity of risk (in and out). It can be clearly seen that during the entire
transaction period, the complex network connection of risk diffusion is relatively tight.
RECI, praseodymium, and catalysts are the main risk spillover assets, and their nodes are
darker and larger. At the same time, the number of their connected edges far exceeds of
rare earth oxides, which indicates that the nodes have more connectedness.

RECI

Catalytic.Material

Hydrogen.Catalyst

Luminescent.Material

Magnetic.Material

Gadolinium

Yttrium

Samarium

Holmium

Erbium

Europium

Thulium

Terbium

Dysprosium

Lutetium

Praseodymium

Ytterbium

Figure 8. Complex network of risk spillover (Out) in China’s rare earth trading system.
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Figure 9. Complex network of risk spillover (In) in China’s rare earth trading system.

4.3. Risk Spillover Mechanism and Driven Factor Analysis

In this part, we used the TCI as a proxy variable for the risk spillover index of China’s
rare earth trading system. In order to explore the formation mechanism of China’s rare
earth trading market risk, we combined China’s macroeconomic variables (VXFXI, EER,
EPU, and liquidity) and TCI proxy variables to construct the TVP-VAR-SV model again.

Before modeling with the TVP-VAR-SV model, we used a multivariate nonlinear
Granger causality test to analysis the driven factors of China’s rare earth market trading
risk spillover effect. Table 3 shows the multivariate nonlinear Granger causality test result of
macroeconomic variables on China’s rare earth trading market TCI (RECI’s proxy variable).

Table 3. Multivariate nonlinear granger causality test result.

VXFXI EER EPU Liquidity

Panel A (H0: RECI is not the macroeconomic variables’ nonlinear Granger causality reason)

Statistics 0.5967 2.3306 ∗∗∗ 1.2915 ∗ −1.6102
p-Value 0.2753 0.0098 0.0983 0.9463
Panel B (H0: Macroeconomic variables are not the RECI’s nonlinear Granger causality reason)

Statistics 3.5733 ∗∗∗ 5.5691 ∗∗∗ 1.9882 ∗∗ 1.4185 ∗

p-Value 0.0002 0.0000 0.0234 0.0781
Note: ∗ ∗ ∗, ∗∗, and ∗ indicate significance at the level of 1%, 5%, and 10%, respectively. Macroeconomic variables
are the nonlinear Granger causality of RECI at different significance levels (1%, 5% and 10%), and vice versa.

Based on the test result of the multivariate nonlinear granger causality, nonlinear
causal relationships are buried in four macroeconomic variables and the TCI (RECI’s proxy
variable). Therefore, we further apply the TVP-VAR-SV model and impulse response to
analyze the dynamic between the RECI and the four selected macroeconomic variables.

All parameters estimated from the RECI and macroeconomic variables are shown
in Table 4. The number of samples for the MCMC method is set to 50,000 times and
5000 burnings before Bayesian sampling.
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Moreover, to provide a reference for exploring the nonlinear factors and long-run
persistence of the connectedness spillover effects, we drew 3D dynamic impulse response
plots for analysis from the result of the TVP-VAR-SV model. Among them, the x-axis
represents the lag period of the shock, the y-axis is the time axis, and the z-axis is the
response intensity of the target, respectively.

To explore the long-term response results, we used daily frequency macroeconomic
data for the model fitting. In order to make the data frequency match, we reduced the daily
frequency to a monthly time series.

Table 4. TVP-VAR-SV model estimation result.

Mean S.D. 95% C.I. Geweke Const.

Σβ1 0.0023 0.0003 [0.0018, 0.0029] 0.6720 3.0600
Σβ2 0.0023 0.0003 [0.0018, 0.0029] 0.0040 3.7300
Σα1 0.0056 0.0016 [0.0034, 0.0097] 0.7000 32.0000
Σα2 0.0055 0.0016 [0.0034, 0.0094] 0.7390 17.2000
Σh1 0.0022 0.0010 [0.0016, 0.0057] 0.1240 274.9900
Σh2 0.0052 0.0017 [0.0019, 0.0092] 0.0000 94.0100

Note: We set the lag order to 5. The three parameters’ covariance matrix are the diagonal matrix. The priori
distribution of three parameters follows Nakajima [23] and are set as

(
Σβ

)−2
i ∼ Γ(40, 0.02), (Σα)

−2
i ∼ Γ(4, 0.02),

and (Σh)
−2
i ∼ Γ(4, 0.02). The Geweke statistics represents that all the parameters in the model are valid.

The impulse response result is shown in Figures 10 and 11, where the time-varying im-
pulse responses are computed using the average posterior mean of time-varying parameters
from the TVP-VAR-SV model in every MCMC iteration.

The results show that the impact of the EER on the RECI is not significant; it is
relatively unstable from the perspective of time axis, which means that we need to analyze
it from a reverse perspective. As China is a major exporter of rare earth, the increase in
transaction risks in the rare earth market has a significantly positive impact on the EER.
The above conclusion is well proved in the impulse response function. Due to the lag of
shocks, fluctuations in the rare earth market will be transmitted to the exchange rate market
in 6 weeks.

Figure 10. Time-varying impulse response results (macroeconomic variables to RECI).
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Figure 11. Time-varying impulse response results (RECI to macroeconomic variables).

As for the EPU, rising economic policy uncertainty will lead to a sudden increase
in RECI for a short period of time, which will gradually stabilize over time. It is also a
good proof of the large fluctuations in China’s rare earth trading market due to the policy
effects during 2018–2019. Due to the bilateral nonlinear Granger causality between the
RECI and EPU, from the perspective of the increase in RECI volatility, it has a seriously
positive impact on the EPU.

From the perspective of the liquidity proxy variables represented by spreads between
treasuries, the results of the impulse response are consistent with the results of the nonlinear
Granger causality test. The increase in liquidity can simultaneously increase the fluctuation
of the RECI in a short period of time, which means that the hysteresis effect is not obvious.
The conclusion of the reverse shock is opposite to the forward shock.

The impact of rare earth (RECI) on the stock market (VXFXI) fluctuations is also
more significant. Due to the large differences in market participants and effectiveness, the
RECI in heterogeneous markets has a greater impact on semi-strong effective VXFXI in
stock markets. From the perspective of the trading time, the impact of the VXFXI on the
RECI is not stable enough, which is probably caused by different market participants and
trading policies.

5. Conclusions

In the post-pandemic period, the recovery of the global economy has become the
general trend. Rare earth mining, production, and recycling activities have progressively
achieved prominence in recent years due to their importance in global trading and advanced
technologies. There is no doubt that rare earth transactions have played a truly important
role in the recovery of the international economy for China. However, the fluctuation
in China’s rare earth market value due to disruptions from instability, uncertainty, and
geopolitical decisions can impair the economic recovery process and even lead to the
outbreak of systemic financial risk. In this context, analyzing the risk spillover mechanism
of rare earth has important practical significance for regulators and investors.

This study used the TVP-VAR-SV model to extend the dynamic risk spillover measure-
ment method based on the forecast error variance decomposition as well as macroeconomic
variables’ dynamics. Based on the above discussion, we took the target of China’s rare earth
trading market as the node, the volatility spillover effect between assets as the connection
edge of the complex network, and the variance contribution degree of the variance decom-
position as the adjacency matrix. Then, we constructed the volatility spillover complex
network and used it to reflect changes in the risk contagion. In addition, we further dis-
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cussed the mechanisms affecting risk spillover in China’s rare earth trading market using
the impact and dynamic relationships of primarily four macroeconomic variables. Finally,
the empirical results of China’s rare earth trading market show the size and direction of
the risk spillover effect; moreover, the formation mechanisms are summarized to provide
policy recommendations for trading risk protection establishment under macro-prudential
supervision, which also serves as a reference for investors to allocate rare earth assets.

According to the empirical analysis, the risk spillover effect of China’s rare earth
trading market show volatility, asymmetry, and uncertainty. The overall linkage of the
risk contagion in China’s rare earth trading market is strong. The rare earth composite
index and catalysts are the main sources of risk spillovers. Except for praseodymium,
oxides are all risk takers and are more affected by the impact of other assets. The RECI
has the highest spillover effect of 107.14% in the leading position of information in the
entire rare earth trading market. The average value of systemic volatility spillover in
China’s rare earth market is 64.18%. During the entire transaction period, in the rare earth
complex trading network, the number of connected edges of the RECI, praseodymium,
and catalysts far exceeds that of the rare earth oxides, which indicates that the nodes have
greater connectedness. These findings indicate that the promulgation of new policies in
2019 suddenly altered China’s rare earth trading market risk structure and the size of the
risk spillover.

As for the risk contagion mechanism of the rare earth trading market, the empirical
results show that in the trading risk spilling period, the increase in transaction risks in
the rare earth market has a significantly positive impact on the effective exchange rate
(EER). Furthermore, rising economic policy uncertainty will lead to a sudden increase in the
RECI for a short period of time. The increase in liquidity will simultaneously increase the
fluctuation of the RECI in a short period of time, which means that the hysteresis effect is
not obvious. The impact of the VXFXI on the RECI is not stable enough, which is probably
caused by different market participants and trading policies. Therefore, China’s rare earth
regulators should pay more attention to sudden changes on the risk spillover of China’s
rare earth trading market. Moreover, they must also be alert to the systemic trading risks
caused by the volatility of the EER, EPU, and VXFXI in China’s rare earth market.
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Appendix A

This appendix represents the technical details of the multivariate nonlinear Granger
causality. During the test process, three strictly stationary and weakly correlated high-
dimensional time series are given in {(Xt, Yt, Qt)}; let {Zt} represent 1 lagged times series
of {Xt}. They would degenerate synchronously to the results of the bivariate nonlinear
Granger causality test of Diks and Panchenko [28].
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The null hypothesis where there is no bivariate Granger causality was rewritten by
Hiemstra and Jones [34] with a joint probability integral:

CX,Y,Z(θ)

CX,Y(θ)
=

CY,Z(θ)

CY(θ)
(A1)

θ > 0, Cw(θ) is the joint probability integral of the high-dimensional time series; P(•) is the
probability function . Then, Cw(θ) = P(||W1 −W2|| < θ) and W1, W2 ∼W , where W and
Wk are the Wishart distribution. Hiemstra and Jones [34] built the HJ statistic:

Ĉw(θ, n) =
2

n(n− 1)
ΣΣIW

ij (A2)

Then, Diks and Panchenko [28] proposed another nonparametric test statistic DP to
overcome the shortcoming of the HJ statistic:

E[ fX,Y,Z(X, Y, Z) fY(Y)− fX,Y(X, Y) fY,Z(Y, Z)] = 0 (A3)

q̂n(θn) =
n− 1

n(n− 2)
E
(

f̂X,Y,Z(Xi, Yi, Zi) f̂Y(Yi)− f̂X,Y(Xi, Yi) f̂Y,Z(Yi, Zi)
)

(A4)

f (•) and f̂ (•) are the joint probability function and local estimator, respectively. The null
hypothesis that there is no Granger causality between the high-dimensional series can be
described as:

E
[

fX,Y,Z,Q(X, Y, Z, Q) fY,Q(Y, Q)− fX,Y,Q(X, Y, Q) fY,Z,Q(Y, Z, Q)
]
= 0 (A5)

Zt = Y(t+1) using the local density estimators, and the following test statistics can be
further constructed into:

q̂n(ε) =
n− 1

n(n− 2)
Σi

(
f̂X,Y,Z,Q(Xi, Yi, Zi, Qi) f̂Y,Q(Yi, Qi)− f̂X,Y,Q(Xi, Yi, Qi) f̂Y,Z,Q(Yi, Zi, Qi)

)
(A6)

f̂W(Wi) = ((n− 1)ε)−dw Σj 6=iK
((

Wi −Wj
)
/ε
)

is the local density estimator for random
vectors. K(•) is for the kernel density estimation, and dw means the dimension of the
Wishart distribution. Then, we refactor the method proposed by Diks and Wolski [30]
and perform a local sharpening on the (13). We obtain the local density estimation of the
random vector with a mapping of ψp:

f̂ s
W(Wi) = ((n− 1)ε)−dw Σj 6=iK

([
Wi − ψp

(
Wj
)]

/ε
)

(A7)

Finally, the nonlinear Granger causality test statistics in multivariate scenarios are
obtained by:

q̂n(ε) =
n− 1

n(n− 2)
Σi

(
f̂ s
X,Y,Z,Q(Xi, Yi, Zi, Qi) f̂ s

Y,Q(Yi, Qi)− f̂ s
X,Y,Q(Xi, Yi, Qi) f̂ s

Y,Z,Q(Yi, Zi, Qi)
)

(A8)

Appendix B

This appendix represents the technical details of the MCMC algorithm. With the prior
information that was provided, the initial parameter estimates follow:

β0 ∼ N
(

β̂OLS, 4V
(

β̂OLS
))

A0 ∼ N
(

ÂOLS, 4V
(

ÂOLS
))

ln σ0 ∼ N(ln σ̂OLS, In)

(A9)
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β̂OLS, ÂOLS, and ln σ̂OLS represent the OLS estimators. V(•) represents the variance. IW
represents the inverse Wishart distribution. The variance-covariance matrix of βt , ln σt,
and At is:

Q ∼ IW
(
0.0001V

(
β̂OLS

)
, 1
)

(A10)

W ∼ IW(0.0001(n + 1)In, n + 1) (A11)

Sj ∼ IW
(
0.0001(j + 1)V

(
Âj,OLS

)
, j + 1

)
(A12)

Then, we perform the posterior distribution calculation of the MCMC algorithm.
Define the collection of observation mappings: {Xt}T

t=1, {βt}T
t=1, {At}T

t=1, and {Σt}T
t=1.

V = {Q, S, W} is a variance-covariance matrix containing independent, identically dis-
tributed random variables.

In our case, we adopt the following MCMC simulation-based method to obtain the
critical values to solve for the time-varying parameter of our model:

1. Give the initial value of {Xt}T
t=1, {βt}T

t=1, {At}T
t=1, and {Σt}T

t=1;
2. Sample {βt} from p

(
βT |yT , AT , ΣT , X

)
, subject to the given condition {At}T

t=1, {Σt}T
t=1,

and {Xt}T
t=1;

Specifically, the observation equation corresponds to the linear Gaussian shocks
of equation. For the observable vector y = (y1, ..., yt)

T , the state vector is X =(
XT

1 , ..., XT
t
)T and the set of the parameter vector is k = (k1, ..., kt)

T . We have the
following conditional transformation, respectively:

p(x|yn) = p(xn|yn)
n−1

∏
t=1

p(xt|yt, xt+1),

p(k|yn, x) = p(kn|xn, yn)
n−1

∏
t=1

p(kt|xt, yt, xt+1);

(A13)

Finally, with the mean and derivative of βt|t+1 and Pt|t+1, the conditional density
function can be expressed as:

p
(

βT |yT , ΣT , AT , X
)
= p

(
βT |yT , ΣT , AT , X

)
×

T−1

∏
t=1

p(βT |βT+1),

βt|βt+1, yT , ΣT , AT , X ∼ N
(

βt|t+1, Pt|t+1

)
;

(A14)

3. Sample {At} from p
(

AT |yT , βT , ΣT , X
)
, subject to the given condition {βt}T

t=1, {Σt}T
t=1,

and {Xt}T
t=1;

4. Sample {Xt} from p
(
X|yT , AT , ΣT , β

)
, subject to the given condition {At}T

t=1, {Σt}T
t=1,

and {βt}T
t=1. Specifically, sample the independent identically distributed random

variables Q, W, and S from p
(
Q, W, S|yT , AT , ΣT , β

)
;

p
(

Q, W, S|yT , AT , ΣT , β
)
= p

(
Q|yT , AT , ΣT , β

)
× p

(
W|yT , AT , ΣT , β

)
×

n−1

∏
i=1

p
(

Si|yT , AT , ΣT , β
)

(A15)

5. Sample {Σt} from p
(
ΣT |yT , AT , βT , X

)
, subject to the given condition {At}T

t=1, {Σt}T
t=1,

and {Xt}T
t=1;

6. Return to 2.
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