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Abstract: The potential applications of blockchain technology across various business functions
and industries have generated significant interest. However, its underlying knowledge structure
remains unclear. This study aimed to gain a deeper understanding of the technological domain
and knowledge structure of blockchain technology by analyzing 4753 USPTO patent data from
2008 to 2019. We used multiple approaches, such as analyzing patent filing volumes, constructing
co-citation networks, and examining text (patent abstract) data with a variant of bidirectional encoder
representations from transformers (BERT). The results demonstrate the advantages of using an
NLP-based BERT text analysis approach for examining technological knowledge and relationships
within the blockchain technology field. Our findings reveal that the field of blockchain technology is
expanding and diversifying, with increasing patent filings in both cryptocurrency and distributed
ledger technologies and growing knowledge similarity between these two subdomains. We also found
that patent assignees (companies) engage differently in innovative activities within the blockchain
technology domain based on their prior experience in the field. These results hold potential for
informing future research in emerging technology studies and guiding industry and policy decisions
related to blockchain technology.

Keywords: blockchain technology; patent data; co-citation network; semantic analysis; natural
language processing; bidirectional encoder representations from transformers (BERT)

1. Introduction

Blockchain technology has been the subject of much interest in recent years due to
its transformative potential across a range of domains, including finance, supply chain
management, and digital identity verification. At its core, blockchain technology is a system
of linked blocks that securely record multiple transactions using cryptography. The secure
and tamper-proof nature of blockchain makes it an ideal solution for applications that
require transparency, security, and decentralization [1,2]. Distributed ledger technology
extends these benefits by allowing for the secure and decentralized recording of information
across a network of computers, creating a shared digital database where transactions and
data can be stored and accessed simultaneously from multiple locations [3–5].

The decentralized and secure nature of blockchain technology can be used to create
more efficient and transparent systems in various industries such as finance, healthcare,
commerce, and supply chain management [3,6,7]. Many financial institutions and banks
are exploring the use of blockchain technology for various applications such as cross-border
payments, securities trading, and digital identity management. In the healthcare industry,
blockchain technology is being explored as a way to securely store and share patient data,
improve supply chain transparency, and combat counterfeit drugs [8–11]. In commerce and
supply chain management, blockchain technology is being used to create more efficient
and transparent systems for tracking goods as they move through the supply chain and
improve the traceability of products [3,7,12].
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However, despite this interest and the availability of large patent data, there is still a
lack of studies conducted to gain a systematic, in-depth understanding of the underlying
knowledge structure of blockchain technology [13]. In this study, we fill the gap in the
literature using 4753 USPTO patent data from 2008 to 2019. We conducted multiple analyses
to explore the landscape of the blockchain knowledge space. Although the technology
continues to evolve, we think that it is still important to take stock of the current state of
the field and to identify key players, incumbents, or new entrants that are participating in
the field through an analysis of the patent data available to researchers.

The first approach was to analyze patent filing volumes by different subdomains and
players, which can provide insight into how interest in this field has evolved. This can give
us an understanding of the areas in which companies and institutions are focusing their
research and development efforts. The second approach was to analyze the co-citation
network, which can reveal the relationships and connections between different patents con-
stituting the blockchain technology knowledge space. By identifying patterns of co-citation,
we can infer the relationships between different technologies and subdomains [14–16]. This
can help us understand how the different components of blockchain technology are related
to each other and how they are evolving over time [17]. The third approach, semantic
similarity analysis, was to analyze similarities between text data in abstracts. To this end,
we employ a variant of bidirectional encoder representations from transformers (BERT),
which is a natural language processing (NLP) algorithm specifically designed for under-
standing patents. This semantic analysis enables us to gain a more precise understanding
of relationships between patents that comprise the semantic space of block technology by
leveraging the technical details of the patents, which is difficult to achieve when researchers
rely only on the co-citation network analysis.

Each of these approaches can provide different insights into the technological knowl-
edge embedded in patent data. For example, by analyzing patent filing volumes, we
can see how interest in different subdomains of blockchain technology has evolved over
time, and they vary by players (assignees). By analyzing the co-citation network, we can
understand how different technologies and subdomains are related to each other. Addition-
ally, by conducting semantic similarity analysis using texts in abstracts, we can develop
similarity metrics that can be utilized to identify potentially promising knowledge areas
in the blockchain technology domain. Results revealed that cryptocurrency-related and
distributed ledger patents, the two main technological subdomains of blockchain technol-
ogy, exhibit different patterns of evolution and structure. In particular, the technology of
distributed ledgers seems to have a wide range of potential applications beyond just cryp-
tocurrency, and the knowledge structure of blockchain technology is constantly evolving.

Overall, this study is expected to contribute to the related literature by providing a
comprehensive analysis of the technological subdomains and the underlying knowledge
structure of blockchain technology. Additionally, our work demonstrates the importance of
understanding the underlying knowledge structure of emerging technologies. By allowing
a detailed understanding of the potential of the technology, our study also has the potential
to inform future research in emerging technology studies, as well as guide industry and
policy decisions related to blockchain technology.

2. Literature Review
2.1. Prior Research on Blockchain Technology Applications

Blockchain technology has become a widely recognized tool for innovation and trans-
formation in the business world, with potential to disrupt conventional processes and
provide secure, transparent, and decentralized solutions across a variety of industries.
This literature review aims to provide an overview of prior studies that have analyzed
the opportunities and challenges of blockchain in various business functions and areas.
We survey the findings and insights of these studies, which are organized into four parts,
covering (1) blockchain applications in financial transactions, (2) supply and manufacturing,
(3) the promotion of sustainability, and (4) the issues related to its decentralized, distributed
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nature. The aim of this review is to offer a comprehensive understanding of the potential
benefits and challenges of blockchain technology.

2.1.1. Blockchain Applications in Financial Transactions

The utilization of blockchain technology has been a significant area of interest in
the financial sector, where it has revolutionized the way transactions are processed and
recorded. Several studies have explored the benefits and challenges of adopting blockchain
technology in financial services, with a focus on the banking industry, pension industry,
and online auction platforms. Garg et al. [18] found that blockchain technology can offer
increased efficiency, cost savings, improved security, and enhanced customer experience for
banks through a combined analysis of the task-technology fit and technology acceptance
theory. Chang et al. [19] identified trust, security, privacy, scalability, and cost as factors that
affect the adoption of blockchain technology and noted that it can promote transactions
and reduce costs in the banking and financial services sector. Liu et al. [20] found that the
trend of research in the FinTech industry is moving towards blockchain and crowdfunding,
which are likely to have a profound impact on the FinTech business model.

Moreover, Ali et al. [21] explored the growth of the nonfungible token (NFT) market-
place and found that the trading of NFTs has influenced the growth of the decentralized
application marketplace. Sarker and Datta [22] noted that blockchain technology has
the potential to transform the pension industry by reducing turnaround time, lowering
operating expenses, and facilitating pension reform agendas. Omar et al. [2] proposed a
general framework for decentralized auctions using blockchain technology, which elimi-
nates intermediaries, ensures transparency, and reduces transaction costs, and found it to be
economically feasible and secure. In short, these studies suggest that blockchain technology
holds significant potential for transformation in various financial services; however, further
research is needed to fully understand its potential and challenges.

2.1.2. Blockchain Applications in Supply Chain Management and Manufacturing

The application of blockchain technology in supply chains has garnered interest from
various researchers, who have explored the potential of blockchain in enhancing supply
chain management through increased transparency, accountability, decentralization, and
automation. One study by Wan et al. [23] found that blockchain technology has the po-
tential to enhance collaborative innovation in the manufacturing industry in China by
strengthening the positive impact of social trust. Rodríguez-Espíndola et al. [24] developed
a model to understand the adoption of Industry 4.0 technologies, including blockchain,
for risk management from an operations manager’s perspective and found that perceived
usefulness and adoption of these technologies are influenced by digital transformation
maturity, market pressure, regulations, and resilience. Kamble et al. [25] proposed a deci-
sion support system for predicting the probability of blockchain adoption in organizations
based on factors such as competitor pressure, partner readiness, perceived usefulness, and
perceived ease of use. Chang et al. [3] proposed a blockchain-based framework for supply
chain processes using smart contracts to demonstrate its benefits, while Kamble et al. [25]
reviewed the current state of digital supply chain twins and the role of various technologies,
including blockchain, in their development. Dal Mas et al. [26] analyzed the opportunities
and potential of blockchain technologies for agrifood sustainability and found that it plays
a crucial role in the digital transformation of agrifood supply chains. Pincheira et al. [27]
also explored the potential of blockchain technology to improve agrifood traceability sys-
tems by examining the characteristics and costs associated with integrating blockchain
and Internet of Things (IoT) technologies into agrifood traceability systems. They also
discuss the advantages that such an integration could bring, such as increased transparency,
improved data security, and reduced costs.

Together, these studies provide a comprehensive understanding of the potential of
blockchain technology in supply chain management and the benefits it can bring, such
as increased transparency, accountability, decentralization, and automation, as well as



Systems 2023, 11, 111 4 of 28

contribution to sustainability goals. These findings offer insights for firms, policymakers,
and researchers to effectively implement blockchain in supply chain management.

2.1.3. Blockchain Applications in Promoting Sustainability

Blockchain technology has shown potential for promoting sustainability in various
domains. In social businesses, Devine et al. [28] explored the use of blockchain and smart
contracts to build trust and support the coexistence of social and economic logics of social
ventures. The authors present a social business blockchain model codifying the principles
of social business as smart contract functions, offering insights into how blockchain can
be used to improve the sustainability of social ventures and improve trust relationships
between stakeholders. Marsal-Llacuna [29] proposed using blockchain to reimagine the
delivery of smart city agendas and their performance measurement, as a means to make
them more empowering and collaborative. The author suggests using blockchain to create
a people-centric approach while also creating new measurement tools.

Chin et al. [30] suggested that blockchain technology can drive green innovation in
ecosystem-based business models by creating a secure, transparent, and efficient system
for value exchange between stakeholders. Friedman and Ormiston [31] explored the
potential of blockchain technology to contribute to sustainable transformations within
food supply chains through expert interviews and found that blockchain can help build
trust, increase transparency, and promote sustainability in food supply chains. Köhler
et al. [7] assessed the relationship between blockchain-based technologies and voluntary
sustainability standards, finding that most cases are coexisting, with a few cases having a
synergistic relationship and one case having an antagonistic relationship.

Pazaitis et al. [32] discussed the potential of blockchain technology in creating a
new system of value that better supports the dynamics of social sharing. The authors
envision a blockchain-based decentralized cooperation that can enable the creation of
commons-oriented ecosystems in the sharing economy. Pólvora et al. [33] argued for a
transdisciplinary approach to address the uncertainties and challenges associated with the
development and uptake of blockchain technology in Europe, based on a research project
that focused on multistakeholder engagement and cocreation. Overall, the studies suggest
that blockchain technology has the potential to promote sustainability through increased
trust and transparency in social businesses, improved smart city agendas, green innovation
in business models, improved sustainability governance in agrifood supply chains, and the
creation of a new system of value in the sharing economy.

2.1.4. Decentralized and Distributed Feature of Blockchain Technology

Blockchain technology has been a topic of extensive research for its decentralized and
distributed nature and its impact on various business applications. In recent years, various
studies have shed light on different aspects of blockchain technology. Grida et al. [34]
examined factors that need to be considered when adopting and implementing blockchain
technology, in particular, distributed ledger technology. These factors include security,
scalability, privacy, interoperability, cost-effectiveness, and user experience. The paper
also discusses the potential benefits of blockchain technology such as increased efficiency,
transparency, and trustworthiness. Liu et al. [35] discussed the use of a distributed storage
scheme based on blockchain technology to store images securely and efficiently, which
combines the advantages of distributed pooling and blockchain technology, allowing for
secure and efficient image storage.

Hou et al. [4] explored the potential of blockchain to improve the competitiveness of
distributed energy resources in China by enabling the integration of advanced technologies
such as AI and IoT. Nguyen and Nguyen [36] studied the relationship between platform
decentralization and market value and found that centralization enhances market value
through voluntary disclosures and developers’ activities, while decentralization promotes
developers’ activities to enhance market value. Nam et al. [37] proposed an IP decentralized
ledger based on blockchain to reduce IP administration costs and improve IP use. Liu
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et al. [38] propose an improved method for change address identification, which uses
a combination of heuristics and machine learning techniques to process raw datasets,
allowing for faster and more accurate clustering of Bitcoin addresses.

Santana and Albareda [39] reviewed the literature on decentralized autonomous or-
ganizations and proposed an integrative model based on decentralization, automation,
and autonomy. Pereira et al. [40] compared blockchain-based platforms with centralized
platforms and evaluated the benefits and costs of each in terms of transaction costs, tech-
nology costs, and community involvement. Jovanovic et al. [41] studied the impact of
decentralization on information security in blockchain networks and found that while
decentralization can improve security, it also creates new security risks. These studies
collectively demonstrate the benefits, challenges, and implications of the decentralized and
distributed nature of blockchain technology in various domains.

Overall, the literature reviewed in this section highlights the widespread recognition
of blockchain technology as a catalyst for transformation and innovation in the business
world. These studies suggest that blockchain is being applied to various business functions,
such as the service sector and supply chain logistics, to enhance security, transparency,
and efficiency. This is because many organizations and decision-makers hold that this
technology can offer significant opportunities to reduce operational costs, improve business
operations, and drive positive change in multiple industries. Together, a growing body
of scholarly work on business applications of blockchain technology provides insights
into the benefits and challenges associated with the implementation of blockchain technol-
ogy and emphasizes the importance of considering its unique characteristics, such as its
decentralized and distributed nature, in the adoption process.

2.2. Patent Analysis in Prior Research on Blockchain Technology

Patent data have proven to be a valuable resource for studying the development
of blockchain technology and its applications. Various patent analysis techniques have
been used to gain insights into the blockchain landscape and make informed decisions
about its future use. Co-citation analysis, the latent Dirichlet allocation topic model, main
path analysis, and patent network analysis are some of the methods used in these studies.
The studies conducted using patent data explore various aspects of blockchain such as
technological evolution, IP challenges, geographical distribution, and innovation trends.

For example, Daim et al. [42] used patent citations to understand the relative position
of a company in the technological network of IoT, cybersecurity, and blockchain. Zhang
et al. [43] developed a new analysis method, the latent Dirichlet allocation topic model, to
assess technology development and predict future trends in the blockchain field. Yu and
Pan [44] used main path analysis to understand the innovation path of blockchain technol-
ogy. Zanella et al. [45] suggested a framework for analyzing blockchain-related patents
using cosine- and density-based outlier analysis. Someda et al. [46] proposed a method for
detecting industry sectors impacted by spillover effects of emerging technologies, such as
blockchain technology, by combining patent analysis with input–output analysis to model
knowledge spillover.

These studies show that patent analysis provides valuable insights into the develop-
ment of blockchain technology and its applications. By analyzing patent data, researchers,
policymakers, and industry actors can better understand the blockchain landscape and
make informed decisions about its future development and implementation.

2.3. An Overview of This Study

As we reviewed above, the field of blockchain technology has seen rapid growth
and development in recent years, with many organizations and industries exploring its
potential applications. Despite this interest, there is limited understanding of the underlying
knowledge structure of blockchain technology. To address this gap in the literature, this
study aims to provide a comprehensive analysis of the technological landscape and the
underlying knowledge structure of blockchain technology.
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To achieve this goal, we conducted multiple analyses using 4753 USPTO patent data
from 2008 to 2019. Our analysis included trend analysis to understand the evolution of the
technological landscape and identify key players in the blockchain arena. Trend analysis
involved analyzing the volume of patent filings over time to identify patterns and trends
in the field. We also used co-citation network analysis to trace the overall patterns of
technological relationships among blockchain patents over time. This approach allowed
us to analyze the attributes of the entire network, such as network density, transitivity,
and assortativity, and enabled us to identify the positional attributes of each patent in the
network. In addition to these analyses, we also used semantic data analysis to provide
a deeper understanding of the technological knowledge embedded in patent data. This
approach involved using a variant of BERT, an NLP algorithm, to analyze the text data
within patents. This helped us to better understand the technological landscape and
knowledge structure of blockchain technology, including the subdomains and research
areas that are being explored.

While previous studies have utilized patent data to gain insights into various aspects
of blockchain technology, such as technological evolution, IP challenges, geographical
distribution, and innovation trends, our study takes a unique approach by conducting
a comprehensive analysis of the technological domain and underlying knowledge struc-
ture of blockchain technology using a combination of trend analysis, co-citation network
analysis, and semantic analysis. This multiple analysis approach provides a more compre-
hensive understanding of the landscape and knowledge structure of blockchain technology,
offering a deeper understanding of the technological knowledge embedded in patent data,
the relationships among patents and key players in the field, and the evolution of the
technology over time. Accordingly, our approach is a more robust and nuanced exami-
nation of the blockchain landscape, filling the gap in the literature by providing a more
in-depth understanding of the field compared to prior studies that have focused on a single
analysis method.

3. Data
Blockchain Patent Data

We constructed our sample of blockchain patents with the following steps. First, we
retrieved from the Patentsview platform the entire universe of utility patents granted by the
United States Patent and Trademark Office (USPTO) as of June 2022. Second, we focused on
a subset of granted patents whose application dates were between 2008 and 2019. Since we
are interested in the emergence and evolution of blockchain technology over time, we used
application dates rather than grant dates to capture the earliest observable time recorded
for the patents. Following other studies on blockchain patents and publications [46,47],
we set 2008 as the starting year for our analysis since it marks the year Bitcoin, the most
successful application of blockchain technology, was first disclosed in a whitepaper [48].
We chose 2019 as the end year to alleviate the right-censoring problem of working with
granted patents.

Third, we used the search query method outlined by Clarke et al. [49] to identify
blockchain patents. Their method combines keywords and patent classifications to pinpoint
patents related to cryptocurrency, distributed ledger, and smart contract technology. Their
search query was validated by subject matter experts and has been shown to effectively
reduce false positive results. Our study applied this query introduced by Clarke et al. [49]
to the USPTO database, resulting in the identification of a significant number of blockchain
patents. It is important to note that our categorization of these patents is not meant to
compare the concepts but rather to provide a comprehensive view of the types of blockchain
patents during the study period. This approach allows us to give a comprehensive overview
of the emergence and evolution of blockchain technology in the patent space.

Table 1 lists the combinations of keywords and CPC classes included in this query.
Guided by this search query, we were able to screen a total of 4753 blockchain patents
during the study period.
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Table 1. Search query for blockchain patents.

Concept Keyword CPC Class

Cryptocurrency

BITCOIN* OR BIT-COIN* OR
COLORED-COIN* OR
COLORED-COIN* OR

CRYPTOCURRENC* OR
CRYPTO-CURRENC* OR

DOGECOIN OR DOGE-COIN OR
ETHEREUM OR LITECOIN OR
LITE-COIN OR ZEROCASH OR

ZCASH

in combination with:
G06 OR H04

COUNTERPARTY OR XCP OR
DIGITALCURRENC* OR

DIGITAL-CURRENC* OR ETHER
OR LISK OR META-COIN* OR

METACOIN* OR NAME-COIN*
OR NAMECOIN* OR NXT OR
STELLAR OR TYPE-COIN* OR

TYPECOIN* OR ZEROCOIN OR
ZERO-COIN

in combination with:
H04L9/3247 OR H04L9/3249 OR
H04L9/3252 OR H04L9/3255 OR
H04L9/3257 OR H04L9/3236 OR
H04L9/3239 OR H04L9/3242 OR
H04L9/0637 OR H04L9/0643 OR
H04L2209/38 OR H04L2209/56

OR H04L2209/30 OR
H04L2209/46 OR H04L2209/463

OR H04L2209/466 OR
G06Q20/065 OR G06Q20/0652 OR

G06Q20/0655 OR G06Q20/0658
OR G06Q20/02 OR G06Q20/023
OR G06Q20/027 OR G06Q20/401

OR G06Q20/4012 OR
G06Q20/4014 OR G06Q20/40145

OR G06Q20/4016 OR
G06Q20/4018

Distributed ledger

BLOCKCHAIN* OR
BLOCK-CHAIN* OR BLOCKSIGN
OR DISTRIBUTED-LEDGER OR

FACTOM OR
PAY-TO-SCRIPT-HASH OR P2SH

OR PROOF-OF-STAKE OR
SIDECHAIN*

in combination with:
G06 OR H04

FORKING OR FORKS OR
LEDGER* OR MERKLE-TREE OR
MERKLETREE OR HASHTREE

OR HASHTREE OR
MERKLE-ROOT OR
MERKLEROOT OR

PROOF-OF-WORK OR
HASH-CASH OR

HASHCASH OR RIPPLE OR
ZEROKNOWLEDGE OR

ZERO-KNOWLEDGE

in combination with:
H04L9/3247 OR H04L9/3249 OR
H04L9/3252 OR H04L9/3255 OR
H04L9/3257 OR H04L9/3236 OR
H04L9/3239 OR H04L9/3242 OR
H04L9/0637 OR H04L9/0643 OR
H04L2209/38 OR H04L2209/56

OR H04L2209/30 OR
H04L2209/46 OR H04L2209/463

OR H04L2209/466 OR
G06Q20/065 OR G06Q20/0652 OR

G06Q20/0655 OR G06Q20/0658
OR G06Q20/02 OR G06Q20/023
OR G06Q20/027 OR G06Q20/401

OR G06Q20/4012 OR
G06Q20/4014 OR G06Q20/40145

OR G06Q20/4016 OR
G06Q20/4018
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Table 1. Cont.

Concept Keyword CPC Class

Smart
contracts

CODIUS OR
SMART-CONTRACT* OR

SMARTCONTRACT*

in combination with:
G06 OR H04

CHAINCOD* OR HAWK OR
ROOTSTOCK OR RSK OR

SYMBIONT

in combination with:
H04L9/3247 OR H04L9/3249 OR
H04L9/3252 OR H04L9/3255 OR
H04L9/3257 OR H04L9/3236 OR
H04L9/3239 OR H04L9/3242 OR
H04L9/0637 OR H04L9/0643 OR
H04L2209/38 OR H04L2209/56

OR H04L2209/30 OR
H04L2209/46 OR H04L2209/463

OR H04L2209/466 OR
G06Q20/065 OR G06Q20/0652 OR

G06Q20/0655 OR G06Q20/0658
OR G06Q20/02 OR G06Q20/023
OR G06Q20/027 OR G06Q20/401

OR G06Q20/4012 OR
G06Q20/4014 OR G06Q20/40145

OR G06Q20/4016 OR
G06Q20/4018

The table is excerpted from the paper by Clarke et al. ([5], Table 2).

4. Patent Trend Analysis
4.1. Trend Analysis by Subtechnology

The search query also allowed us to categorize the patents into two different types
of blockchain technologies using this query. Among these patents, 2391 were classified
as cryptocurrency technology, and 2707 patents were categorized as distributed ledger
technology, with a few patents (345) being identified as both distributed ledger and cryp-
tocurrency technology. For smart contract technology, there were very few patents (19),
and all of them were simultaneously categorized as either cryptocurrency or distributed
ledger technology. We observe two main categories of blockchain patents that are nearly
evenly split: patents related to cryptocurrency and patents related to distributed ledgers.
We use this categorization throughout the analysis.

Figure 1a illustrates the quarterly distribution of our sample blockchain patents by
type. The distribution of the volume of blockchain patents applied across time reveals
the growth of blockchain technology in the past few decades. The number of blockchain
patents has been gradually increasing since 2008, particularly with explosive growth after
the third quarter of 2017, which coincides with the cryptocurrency bubble period [50].
Figure 1b further displays the same distribution by the two types of blockchain patents.
The volume of cryptocurrency patents has increased throughout the years at a gradual pace.
In contrast, distributed ledger patents have experienced exponential growth in a relatively
short period with the start of the bubble.
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4.2. Trend Analysis by Patent Assignees

We also coded three different types of assignees associated with sample blockchain
patents. We differentiated assignees based on their prior activities in patenting blockchain
technology. First, we discerned whether the assignee of each blockchain patent had in-
vented a blockchain patent before (We searched for the entire patenting history of assignees
predating the sample period to ensure the accurate identification of new entrants.). If a
given patent was the assignee’s first blockchain patent on the date of its application, we
defined its assignee as a new entrant.

Second, we further differentiated remaining assignees based on whether the assignee
had relatively small or large shares in the blockchain patents. Specifically, from the appli-
cation date of each patent, we traced each assignee’s share among all blockchain patents
filed within a three-year window in the past. An assignee of a patent was coded as a
small assignee if its share was below 1%, the median value in the distribution, and a large
assignee if its share was above this threshold.

Table 2 illustrates the breakdown of the sample blockchain patents by assignee type.
The breakdown by assignee type reveals a high concentration level in the blockchain
technology domain. Blockchain patents of 48 large assignees account for 37% (1763) of the
total, while those of 432 small assignees and 939 new entrants make up the rest.

Table 2. Breakdown of blockchain patents by assignee type.

Assignee Type Number of Assignees Number of Patents

New entrant 939 1022

Small assignee 432 1968

Large assignee 48 1763

Table 3 provides the list of the 15 largest assignees appearing in our sample. The
list is consistent with prior studies on blockchain technology [49,51]. Big financial firms,
such as Bank of America and Mastercard, and information and communication technology
(ICT) giants, including International Business Machine, Intel, and Amazon, represent larger
players in the blockchain technology domain.
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Table 3. List of top 15 largest assignees.

Assignee Name Blockchain
Patent

Crypto-Currency
Patent

Distributed Ledger
Patent

International Business Machines Corp. 497 141 407

Advanced New Technologies Co., Ltd. 131 39 120

Alibaba Group Holding Limited 122 23 112

Bank of America Corporation 120 55 76

Mastercard International Incorporated 113 48 65

Capital One Services, LLC 108 67 49

Amazon Technologies, Inc. 108 95 13

Accenture Global Solutions Limited 75 14 69

Intel Corporation 66 46 23

Visa International Service Association 62 51 14

Microsoft Technology Licensing, LLC 56 27 33

Wells Fargo Bank, N.A. 54 28 29

Paypal, Inc. 54 40 16

Cisco Technology, Inc. 48 18 32

EMC IP Holding Company LLC 48 16 35

Figure 2 visualizes the quarterly number of different types of assignees actively patent-
ing blockchain technology. The number of active large-share assignees has been relatively
constant over time. However, in recent years, we observe an influx of a large number of
new assignee organizations and an increase in the number of active small-share assignees
in the blockchain technology domain.
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5. Co-Citation Network Analysis

In this section, we show how we use co-citation network analysis to examine the con-
nections among patents in the blockchain technology field. A patent’s backward citations
to other previously published patent documents represent an inventory of prior knowledge
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it draws on. Sharing common backward citations or having co-citations can be a proxy for
how a pair of patents are technologically related to one another [42,52].

In particular, co-citation network analysis offers two benefits to examining the evo-
lution of blockchain patents. First, we can trace how the overall patterns of technological
relationships among blockchain patents have evolved over time by tracing the attributes
of the entire networks (e.g., network density, transitivity, and assortativity) across time.
Second, we can also specifically identify the positional attributes (e.g., degree centrality,
eigenvector centrality, and coreness) of each patent in the network, further providing
insights into understanding variation among patents and how this variation relates to
other patent-level attributes such as assignee types. We describe below the construction of
co-citation networks included in our analysis.

5.1. Citation Data

We constructed co-citation networks of the sample blockchain patents in the following
steps. We first traced a total of 117,930 backward citations (about 37 citations per each
patent on average) our sample patents had made to 69,536 patent publications. Figure 3
illustrates the distribution of the volume of backward citations across the quarterly dates
of the sample blockchain patents and their backward-cited patents. The heatmap not
only reveals that the volume of backward citations of blockchain patents has increased in
recent years but also shows that more diverse knowledge and new ideas underlie recent
blockchain patents. While further analysis may be required to confirm this, we expect to
see fewer connections (as determined by co-citation) among newer blockchain patents.
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We used this list of backward citations to construct quarterly updated co-citation
networks. Specifically, the nodes included in each quarterly network were the blockchain
patents applied in a given quarter and the blockchain patents filed within a one-year
window in the past. We set a time window in constructing our networks to avoid sparsity in
the networks. Then, we defined an edge in each quarterly network if a pair of patent nodes
cited at least one common patent publication. Hence, the resulting co-citation networks
represent the connections among patents in terms of their reliance on common underlying
knowledge. We created two separate networks comprising each type of blockchain patent.

In Figure 4, we visualize the entire blockchain patent co-citation network observed
during our sample period. The network was visualized using Gephi 0.10.0 with ForceAtlas2
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layout, which simulates a balanced state of a physical system assuming repulsion and
attraction between nodes based on the presence of edges between them [53]. Hence, the rel-
atively well-connected nodes have a close distance from each other on a graph. Red-colored
nodes denote cryptocurrency patents, while the blue-colored ones represent distributed
ledger patents.

The co-citation network plot reveals a distinct separation between various types of
patents and a high concentration of patents within the same type. The graph illustrates
that two different types of blockchain patents can be distinguished only by analyzing the
structural patterns of their co-citation network. This is noteworthy because the network
representation of patents closely mirrors the classification of blockchain patents determined
by in-depth, expert-curated keywords and patent categories.
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With the co-citation network of cryptocurrency patents and distributed ledger patents,
we computed two sets of measures, one at the network level and the other at the patent level,
to be used in our co-citation analysis. We used the networkx package in Python to compute
our measures. Since a sufficient number of distributed ledger patents is only available after
2015 (Figure 1b), we restricted our network analysis to the blockchain patents that were
filed after 2015 to enable a comparison of two types of patents on the same timeline.

5.2. Network-Level Analysis

Using the quarterly updated co-citation networks described above, we computed three
network-level measures, network density, transitivity, and degree assortativity, to examine
how the system of blockchain patents has evolved over time. We illustrate below a detailed
description of each measure, along with the presentation of the result of our analysis.

5.2.1. Network Density

Network density refers to the degree to which the nodes in a network are directly
connected to each other. Typically, network density is computed by calculating the ratio of
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actual connections relative to the total number of possible connections among the nodes.
Formally, network density is computed as follows:

Density =
2m

n(n − 1)
(1)

where m is the number of edges in the network and n is the number of nodes in the network.
In our context, a high level of density of the co-citation network implies that blockchain

patents in a given period overall are highly related to each other by sharing common
underlying knowledge or backward citation patents. In contrast, network density would
be low if they do not share common citation sources, further indicating that they rely on
disparate sets of underlying knowledge.

Figure 5 illustrates the changes in the density of our co-citation networks by patent
types. The overall density of the co-citation network comprising cryptocurrency patents
is much lower than the distributed ledger patents counterpart. Furthermore, the density
of the cryptocurrency network does not show much variation across time. This indicates
that, throughout the years, cryptocurrency patents have been sparsely connected to others
in terms of citing common patents. In contrast, the density of distributed ledger patent
networks was high in its early period of emergence. However, the density has drastically
decreased in recent years. It is possible to speculate that, in recent years, the distributed
ledger technology domain has not only experienced significant growth in the volume of
patenting activities but the underlying knowledge of the patents has also become more
diversified as well.
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5.2.2. Network Transitivity

Network transitivity reflects the level of interconnectedness among the nodes. Net-
work transitivity often is correlated with network density, but they are distinct from each
other. Network transitivity considers not only the direct connections between pairs of
nodes but also the indirect ties established between them through sharing a common inter-
mediary. Hence, networks of the same density may still have different levels of transitivity
depending on the presence of tightly connected clusters of nodes. Network transitivity is
typically computed as the ratio of the realized triads to the possible triads observed in a
network. The formula for network transitivity can be written as:

Transitivity = 3
# o f triangles

# o f triads
(2)
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where triangle is a set of three nodes with an edge between every pair and triad is a set of
two edges sharing a common node.

In the context of a blockchain patent co-citation network, high network transitivity
indicates that there is a high likelihood that two patents sharing common underlying knowl-
edge will also have many other patents that also share common underlying knowledge
with the two.

Figure 6 plots the transitivity of our co-citation networks over time. We find patterns
similar to the cases of network density. The transitivity of cryptocurrency networks is
generally lower, with relatively fewer fluctuations over time than those of distributed ledger
patent networks. The distributed ledger network displays a high level of transitivity in the
early period, which steeply declines in the later years. The pattern shows that distributed
ledger patents were highly interdependent on common underlying knowledge in the initial
phase, but over time, they have evolved to be reliant on a more dispersed set of knowledge.
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5.2.3. Degree Assortativity

Degree assortativity represents the extent to which nodes of similar degrees connect
with each other. It is often computed with the Pearson correlation coefficient between the
degrees of nodes and the degrees of other nodes to which they are connected. The formula
for degree assortativity is:

Degree assortativity =
M−1∑i jiki−

[
M−1∑i

1
2 (ji + ki)]

2

M−1∑i
1
2
(

j2i + k2
i
)
−
[

M−1∑i
1
2 (ji + ki)

]2 (3)

where M is the total number of edges in the network and ji and ki are the degrees of nodes
at the ends of the ith edge.

The degree assortativity measures the correlation between the degrees of nodes that
are connected to each other, with a value ranging from −1 to 1. A higher value indicates
that high-degree nodes tend to connect with other high-degree nodes, while low-degree
nodes tend to connect with other low-degree nodes. Conversely, a lower value indicates
that high-degree nodes tend to connect with low-degree nodes, and vice versa. A highly
assortative network in our context corresponds to networks of blockchain patents, where
a highly central patent tends to share common underlying knowledge with other central
patents rather than with peripheral patents.
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Figure 7 illustrates the degree assortativity of our co-citation networks. For the cryp-
tocurrency network, we observe large fluctuations in the values across time, further obfus-
cating a clear interpretation of generalizable trends in the networks. This is perhaps due to
the inherent instability of emerging technology. For cryptocurrency patents, the patterns of
co-citation change drastically from period to period: in some periods, central patents tend
to draw on similar sets of underlying knowledge, while in some periods, central patents
and peripheral patents are more prone to rely on the same set of previous knowledge.
For the distributed ledger network, we find fluctuations in the early period, which we
speculate to be originating from the low volume of distributed ledger patents in those
periods. However, from 2016 onwards, the network gradually becomes more assortative.
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5.3. Patent-Level Analysis

We operationalized three patent-level network measures, degree centrality, eigenvector
centrality, and coreness, to capture sample patents’ positions in the co-citation networks.
Detailed descriptions of the measures and our analysis are presented below.

5.3.1. Degree Centrality

Degree centrality captures a node’s level of connections to others in a network, which
can be computed as below:

Degree centralityi =
max (di)

n − 1
(4)

where di is the degree of node i and n is the number of nodes in the network.
In our context, it counts the number of other patents that also cite a given patent’s

backward citations. We further normalized the degree centrality by dividing the maximum
degree centrality observed in the network. A high degree centrality indicates that the focal
patent draws on underlying knowledge that is well shared with many others.

We examined how the overall level of degree centrality of patents varies across time.
We visualize the temporal trends by plotting the polynomial fit between the degree central-
ity and the dates of the patents in Figure 8a. The average level of degree centrality is much
lower for cryptocurrency patents than the distributed ledger counterparts and varies little
across time. In contrast, the average degree centrality of distributed ledger patents was
initially high, with a steep decrease in value in recent years. The plot closely follows the
pattern of network density. The distributed ledger patents had a high level of connections
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with each other in the early period, but they became more disconnected in terms of sharing
common underlying knowledge as the technology evolved over time.
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One of the benefits of examining patent-level network measures is that we can capture
the variation in network positions of each patent and further check whether this variation
is related to other patent-level attributes. We sought to check whether different types of
assignees tend to invent patents that are more or less central in the network. Figure 8b
illustrates the same polynomial fit between degree centrality and time by three different
types of assignees. Unfortunately, we do not find significant variations across assignees.

5.3.2. Eigenvector Centrality

Eigenvector centrality reflects a node’s influence in the network. Formally,

Eigenvector centralityi =
1
λ∑

j
aijvj, (5)

where λ is the eigenvalue, aij is an element of the adjacency matrix of the network, and vj is
the neighbor of node i.

It is a variant of network centrality measure that additionally considers the quality of a
node’s connections. The eigenvector is computed by recursively calculating greater weights
to be assigned to a node’s connections if the node’s neighbors are also well connected to
their neighbors [54]. The normalized eigenvector centrality ranges from 0 to 1, with a high
value capturing, in our context, the degree of influence or importance of the patent in terms
of its underlying knowledge.

Figure 9a displays the polynomial fit between eigenvector centrality and time of the
sample blockchain patents. We find patterns similar to those of degree centrality. The
average eigenvector centrality of cryptocurrency patents is lower than that of distributed
ledger patents and has remained low over time. In contrast, the eigenvector centrality of
distributed ledge patents declined drastically in recent years. This indicates that distributed
ledger patents were prone to rely on key influential underlying knowledge in the early
years, but they have become more reliant on disparate sources of knowledge in recent years.
Figure 9b plots the same polynomial fit by different types of assignees, but the patterns
were not distinguishable across assignee types.
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5.3.3. Coreness

Lastly, we computed the coreness of each patent in this network. Coreness is a measure
of its position in the core, a tightly interconnected region of a network. Assuming a global
network structure comprises a core, a densely connected component, and a periphery, a
sparsely connected component, network researchers attempted to assign each node to each
category [55,56]. Several algorithms have been proposed to calculate a continuous score
of coreness based on a node’s position in the core-periphery spectrum [55,57,58]. In this
paper, we implemented an algorithm developed by Rombach et al. [58] to compute the
continuous measure of the coreness, ranging from 0 to 1, of each blockchain patent. In our
context, patents with a high coreness are those that are positioned in tightly interconnected
neighbors of patents that rely on common sets of underlying knowledge.

In Figure 10a, we visualize the polynomial fit between the coreness and the date of
sample patents. The average coreness of cryptocurrency has decreased over time, implying
that the patents belonged to the densely interconnected clusters in the early years but have
begun to occupy more sparsely connected regions of the networks. For distributed ledger
patents, a similar pattern followed in the early years, but it has reversed in recent years with
a slight increase in the overall coreness of the patents. This implies that, when measured
with coreness, distributed ledger patents seem to have formed densely interconnected
clusters in recent years in terms of their reliance on common underlying knowledge.

We further investigated whether this pattern is more or less pronounced for different
assignee types by plotting the polynomial fit by new entrants, small assignees, and large
assignees in Figure 10b. The plot indicates that large assignees in recent years have invented
distributed ledger patents that are positioned in the core areas of the network, while new
and small assignees filed patents that belonged to the more peripheral areas in the network.
The graph illustrates that the system of distributed ledger patents has recently evolved into
a core-periphery structure, where large players invent patents in the core, which rely on
prior underlying knowledge that is well shared with other patents, and new and small
players develop patents in the peripheral region.
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6. Semantic Similarity Analysis

Blockchain technology is a rapidly developing field, with new patents being filed
regularly. It is important to go beyond the traditional approach to understand the current
state of the field and identify key players. While patent co-citation analysis can provide
insights into how knowledge flows within the field and how different types of patents are
structurally related, it does not provide a detailed understanding of the similarities and
differences in the actual contents of the patents. Therefore, it is beneficial to combine this
approach with other methods, such as NLP-based analysis, to gain a more comprehensive
understanding of the underlying knowledge structure of blockchain technology.

One advantage of using BERT-based semantic analysis over co-citation analysis for
blockchain patent analysis is that it provides a more detailed understanding of the simi-
larities and differences in the contents of the patents. BERT-based semantic analysis can
also be used to analyze the patent abstracts and identify the key ideas and concepts that
are discussed in the patents to understand the key ideas and concepts that are driving the
development of the technology and identify potential areas for future research.

Additionally, BERT-based semantic analysis allows researchers to analyze the relative
positions of patents in the semantic space. The semantic space refers to the representation
of the meaning or content of patents in a numerical form, which, in this case, are the vectors
generated by the BERT model. By reducing the dimensionality of these vectors using
techniques such as uniform manifold approximation and projection (UMAP), it is possible
to project them onto a two-dimensional graph, which can be visualized and analyzed. This
approach allows for a detailed understanding of the similarities and differences in the
underlying knowledge structure of patents and can be useful for identifying key concepts,
trends, and connections within the blockchain patent landscape.

Importantly, by analyzing the relative positions of patents in the semantic space, it
is also possible to identify which patents are central to the field and which are on the
periphery. Central patents are those that are closely related to many other patents in the
field and have a high degree of similarity in terms of their underlying knowledge, while
patents on the periphery are less related to other patents in the field and have a lower
degree of similarity in terms of their underlying knowledge.

Overall, the use of an NLP-based approach, such as BERT, in combination with co-
citation analysis can provide a more comprehensive understanding of the underlying
knowledge structure of blockchain technology. It can provide insights into the relation-
ships and connections between different patents and technologies, as well as a detailed
understanding of the similarities and differences in the contents of the patents. This can
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be useful for researchers and practitioners in the field to understand the state of the art,
identify potential areas for future research, and follow the evolution of the technology.

6.1. PatentSBERTa

In a recent study, Bekamiri et al. [59] proposed a new method for classifying patents
that combines K-nearest neighbors (KNN) (K-nearest neighbors (KNN) is a traditional
machine learning algorithm that is used for classification tasks. It works by comparing
an input sample to the k closest samples in the training set and then classifying the input
sample based on the majority class of those k closest samples. It is a simple algorithm
that is easy to understand and interpret, but it can be computationally expensive for large
datasets.) and Sentence-BERT (SBERT) (Sentence-BERT (SBERT) is a pretrained transformer
model that is designed to generate semantically meaningful sentence embeddings. It is
based on the BERT model, but it is trained on a large corpus of sentence-pair data. SBERT
uses cosine similarity to compare sentences and find the most similar pair in a collection
of sentences, and it can be fine-tuned on specific domains, such as patent data, to make
it more effective at understanding that domain-specific language. This method is more
efficient than BERT and RoBERTa, which can take up to 65 h to find the most similar pair in
a collection of 10,000 sentences; SBERT can perform it in just 5 s.) to achieve higher accuracy
and efficiency than previous methods. The study proposed an augmented version of SBERT,
which is fine-tuned to the domain of patent claims to increase its performance. The study
also showed that fine-tuning SBERT to domain-specific language in textual patent data
could improve the performance of the model even without labeled examples, making the
process faster and more cost-effective [59].

The study’s approach is to first use transformer models to understand the text in
the patent claims and create a numerical representation of it called embeddings. These
embeddings capture the meaning of the text in a way that can be compared to other
embeddings. The study then uses the KNN algorithm to classify the patent claims by
comparing the embedding of the patent claim in question to the embeddings of the closest
k patents in the training dataset. The algorithm then assigns the patent claim to the
most common category among the closest k patents. This approach is different from
the traditional approach of using metadata, keywords, or citation information to classify
patents [59].

The study utilized a dataset of 1,492,294 patents from 2013 to 2017, and 8% of the
patents were used as a test dataset to evaluate the model’s performance. The proposed
framework predicts individual input patent classes and subclasses by finding the top k
semantic similarity patents. The study used transformer models based on augmented
SBERT and RoBERTa and used a different approach to predict patent classification by
finding top k similar patent claims and using the KNN algorithm to predict the patent class
or subclass [59].

6.2. Vector Representation and Visualization of Semantic Analysis Using PatentSBERTa

We conducted an in-depth analysis of the content of the sample blockchain patents
reflected in their abstracts. To do so, we utilized PatentSBERTa, introduced above. We
transformed the texts of the sample patents into 768-dimensional vectors. We visualized
the positions of the blockchain patents represented in the semantic space. To do so, we
transformed the 768-dimensional vectors into 2-dimensional vectors UMAP, a dimension
reduction technique often used in transforming high-dimensional vectors [60].

Figure 11 represents the plot of the sample patents mapped onto the two-dimensional
coordinates. Red crosses represent cryptocurrency patents, while the blue dots show the
positions of the distributed ledger patents. In the plot, we observe that patents of the same
type tend to cluster together, while different types of patents are more distanced from
each other. To statistically test this observation, we computed all pairwise cosine distances
among 768-dimensional vectors of sample patents. The average cosine distance between
the vector representations of patent texts of different types was significantly greater than
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those of the same types (t-test, p-value < 0.001). The visual inspection and the simple
statistical test demonstrate BERT’s ability to discern the difference between the two types
of blockchain patents by only using their textual information. This is especially surprising
because these two types of patents fall under the umbrella of blockchain technology and
the categorization of these patents often needs close examinations and validations from
subject-matter experts [49].
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6.3. System-Level Analysis

We used the BERT’s vector representations of patent abstracts to examine how the
system of blockchain patents has evolved. Specifically, we quantified how the contents
of the patents filed in each time period closely resemble or deviate from the contents of
the patents that were filed in the past. In so doing, we aimed to excavate whether the
blockchain patents have evolved over time towards a convergence (more similar to the
ones in the past) or a divergence (more dissimilar to the ones in the past) in technology. We
detail the two steps we took in this analysis.

First, for each time period, we computed a centroid, the average of the vector rep-
resentations, of the patents that were filed in the recent past. Since each patent’s vector
representation denotes its position in the semantic space, the numeric aggregation of these
vector representations, through averaging them, provides the center point in the seman-
tic space that is densely populated by the patents. Hence, a centroid of patents’ vector
representations corresponds to a hypothetical vector that captures the popular features
of patents that were recently filed in a given period. Specifically, for each quarter in the
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sample period, we computed a centroid of vector representations of the patents filed within
the past three years.

Figure 12 provides the visualization of the centroids across sample periods. The red
line with crosses follows the centroids of cryptocurrency patents, while the blue line with
dots represents the distributed ledger counterparts. The absolute coordinates of centroids
alone do not yield substantive interpretations. Still, the movements of the centroids show
that the popular features in the contents of the patents have changed over time at different
paces and in different directions.
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Second, we calculated the cosine distance between the vector representation of each
patent in a given period with the centroid of the patents in the recent past. Hence, the
distance captures the extent to which each patent’s textual description of its technology in
the abstract is dissimilar from the overall textual features of the patents of the recent past.

Figure 13 plots the polynomial fit between the patents’ distance from the centroid and
their dates. In general, the distance is higher for cryptocurrency patents. This implies that
cryptocurrency patents have a more diverse set of knowledge reflected in their abstract
texts in comparison to distributed ledger patents—an observation consistent with the result
of the co-citation network analysis with a low level of network density. Additionally, the
plot shows that the distance has been gradually increasing over the years. Patents filed in
recent years tend to be more semantically dissimilar from the ones in the past, implying a
trend of divergence in cryptocurrency technology.
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For distributed ledger patents, the increase in the distance seems to be steeper, indi-
cating a greater speed of divergence in this technological domain compared to the cryp-
tocurrency counterpart. However, in the most recent two years, the rate of increase in the
distance has decreased. This perhaps suggests a saturation of patents in the semantic space
or a reversing trend toward convergence in distributed ledger technology in recent years.

6.4. Patent-Level Analysis

We further examined whether the distance from the centroid varies across different
types of assignees. Figure 14 plots the same polynomial fit by different assignee types. In
both technological domains, the patterns clearly illustrate that new and small assignees
have been filing patents that are more dissimilar from previous patents. The large assignees,
on the other hand, in more recent years, perhaps after the burst of the bubble, tend to
develop patents that are less dissimilar to the preceding patents. Our patent-level analysis
of vector representations of patents using BERT shows that different types of players active
in the blockchain technology domain engage in patenting activities with different levels
of innovations.
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7. Comparison of Co-Citation Network Analysis and Semantic Similarity Analysis

The co-citation network analysis and semantic similarity analysis both captured sim-
ilar dynamics in the evolution of blockchain technology. We conducted one additional
analysis to check how the two approaches relate to each other systematically. To do so, we
compared the distance metrics obtained from the network space and semantic space. First,
we computed the shortest path length between every pair of patents in the co-citation
network. A path length of i is assigned to a pair of patents if they can be reached in ith
step to each other, with a path length of 1 indicating a direct connection (i.e., presence of
a co-citation tie) between them. Second, we computed the cosine distance between every
pair of patents using their vector representations obtained from PatentSBERTa.

Figure 15 illustrates the scatter plots of patents across the two distance metrics. The
plot indicates that patents that are more distant in terms of their co-citation network ties
are actually more dissimilar in the textual descriptions of their underlying technology. The
correlation between the two metrics was 0.193. Hence, the semantic similarity approach, to
some extent, can capture the characteristics of patents that emerge from their structural
relationships based on citations. At the same time, there are variations in the patents that
the semantic similarity approach can uniquely capture as well. For instance, among the
pairs of patents with a path length of one, we still observe a lot of variation in their semantic
similarity. The semantic similarity approach using BERT proves to be useful in capturing
more variations in patents beyond their positions in the co-citation network structures.
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The co-citation network analysis and semantic similarity analysis are two widely used
methods for analyzing the evolution of technological fields. Both methods have been shown
to be effective in capturing the dynamics of the development of various technologies. In
the case of blockchain technology, our results showed that both the co-citation network
analysis and semantic similarity analysis captured similar dynamics.
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Given the complementary nature of these two methods, we conducted a systematic
evaluation of their relationship to determine the extent to which they capture similar or
different aspects of the evolution of blockchain technology. To achieve this, we conducted a
comparative analysis by comparing the distance metrics obtained from the network space
and semantic space. The rationale behind this comparative analysis is to understand the
complementarity of the two approaches and determine the extent to which they capture
unique aspects of the evolution of blockchain technology [61–63]. By comparing the results
obtained from the two methods, we aimed to gain a more comprehensive understanding of
the dynamics of the development of blockchain technology.

Our results showed that the semantic similarity approach, to some extent, captured
the characteristics of patents that emerged from their structural relationships based on
citations. At the same time, the semantic similarity approach was able to capture unique
variations in the patents beyond their positions in the co-citation network structures.
Accordingly, our comparative analysis provides valuable insights into the relationship
between the co-citation network analysis and semantic similarity analysis and highlights
the importance of combining multiple approaches for a comprehensive analysis of the
evolution of technological fields.

8. Discussion and Conclusions

In this study, we aimed to depict the knowledge landscape of the blockchain technolog-
ical domain through an examination of blockchain technology patent data and citation data.
Our focus was on understanding the evolution of relationships among various knowledge
areas that constitute the technological space, as well as examining these subdomains based
on their respective owners (assignees). Additionally, we introduced a novel, state-of-the-art
NLP-based approach for extracting and analyzing the technological knowledge embedded
in the textual descriptions of patents within the blockchain technology field.

Our analysis showed that the number of patents related to blockchain technology
has been increasing in recent years. This increase is not only related to the specific use
case of cryptocurrency but also to the underlying technology of distributed ledgers. The
increase in volume was driven by the inflow of new entrants into the field and an increase
in the patenting activities of small assignees. Furthermore, the increase in patent filings
for distributed ledgers was more consistent, indicating a more sustained expansion in this
subdomain. This suggests that as the technology of distributed ledgers becomes more
widely understood and adopted, companies and public organizations are beginning to see
more potential uses for the technology beyond just cryptocurrency.

To further explore the knowledge landscape of the blockchain technology domain,
we used the co-citation network to trace relationships between patents based on their
reliance on common citation sources. We analyzed the evolving patterns of the blockchain
technology domain using various network-level metrics, such as density, transitivity, and
assortativity. Additionally, we used patent-level network measures, such as degree central-
ity, eigenvector centrality, and coreness, to understand how different groups of assignees
invent patents that occupy different structural positions in the network over time.

While co-citation network analysis has traditionally been used to study patent data
and identify the relationships between different technologies, it has limitations, particularly
when it comes to analyzing the content of patent documents. To address these limita-
tions, we conducted an additional semantic analysis using our NLP-based approach to
analyze the textual content of patent documents and extract the underlying knowledge
and relationships within the blockchain technology field. Specifically, we introduced the
patent-specific NLP algorithm PatentSBERTa, which is a variant of the Sentence-BERT
model that is specifically trained with patent data for the purpose of calculating patent
distance and classification tasks. Based on PatentSBERTa, we calculated the cosine distance
among patents to understand whether the contents of the blockchain technology have
evolved to become more dissimilar from the past. Finally, we compared the results of
our NLP-based approach to those obtained from traditional co-citation network analysis
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and evaluated the effectiveness of this approach in understanding patents beyond their
structural positions in the network.

Our results demonstrate the advantages of using an NLP-based approach for analyzing
technological knowledge and relationships within the blockchain technology field. Our
findings show that the field of blockchain technology is expanding and diverging, with
increasing patent filings in both cryptocurrency and distributed ledger technologies, and
that there is a growing knowledge similarity between the two subdomains. Additionally,
we also found that the ways in which patent assignees engage in innovative activities in
the blockchain technology domain vary by their relative prior experience in this domain.
Our study can inform future research and guide industry and policy decisions related to
blockchain technology by providing insights into the current state and future direction of
the blockchain technology industry and identifying the key players and the most influential
patents in the field.

The findings of this study provide valuable insights into the blockchain technology
domain. However, it is important to acknowledge some limitations of our study. Our
analysis was limited to the examination of patent data and did not take into account other
sources of information such as technical papers, news articles, and trade publications.
Although we used patent data to categorize blockchain technologies into three categories—
cryptocurrency technology, distributed ledger technology, and smart contract technology—
it may not align with the understanding of business practitioners. Patent data serve as a
useful source of information, but they may not necessarily reflect the actual implementation
and adoption of these technologies in the industry. This aspect should be kept in mind
when interpreting the results of our study. In addition, the sample of patent data used in
this study was limited to a specific period and location, which may not accurately reflect
the entire blockchain technology landscape. The NLP-based approach used in this study
also has limitations in accurately capturing and representing the complex relationships
between patents and knowledge areas.

To build on the findings of this study, future research could consider incorporating
additional sources of data and exploring alternative methods of measuring the similarity
and relationships between patents. Additionally, research could be conducted to improve
the NLP-based approach used in this study by incorporating state-of-the-art models such
as transformer-based models.
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