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Abstract: Estimating the project effort remains a challenge for project managers and effort estimators.
In the early phases of a project, having a high level of uncertainty and lack of experience cause
poor estimation of the required work. Especially for projects that produce a highly customized
unique product for each customer, it is challenging to make estimations. Project effort estimation
has been studied mainly for software projects in the literature. Currently, there has been no study
on estimating effort in customized machine development projects to the best of our knowledge.
This study aims to fill this gap in the literature regarding project effort estimation for customized
machine development projects. Additionally, this study focused on a single phase of a project, the
automation phase, in which the machine is automated according to customer-specific requirements.
Therefore, the effort estimation of this phase is crucial. In some cases, this is the first time that the
company has experienced the requirements specific to the customer. For this purpose, this study
proposed a model to estimate how much work is required to automate a machine. Insufficient effort
estimation is one of the main reasons behind project failures, and nowadays, researchers prefer more
objective approaches such as machine learning over expert-based ones. This study also proposed an
artificial neural network (ANN) model for this purpose. Data from past projects were used to train the
proposed ANN model. The proposed model was tested on 11 real-life projects and showed promising
results with acceptable prediction accuracy. Additionally, a desktop application was developed to
make this system easier to use for project managers.

Keywords: artificial neural network; project effort estimation; customized machine development

1. Introduction

One of the most crucial issues in project management and a continuing challenge for
project managers is accurate project effort estimation. Effort estimates are one of the most
critical inputs for project planning activities such as developing a schedule and estimating
the required budget. Therefore, the accuracy of the estimates has a direct impact on the
project’s success [1]. The inaccurate estimation of project effort can result in unachievable
schedules and budgets [2]. One study on software development projects reported that 13 to
15 percentage of software projects failed because of inadequate planning [3]. Another study
reported that only 17% of the projects were completed on schedule and within budget, and
that effort overruns result in unsatisfied customers, poor quality of product, and frustrated
employees [4].

Especially in the early phases of a project, making realistic estimates is difficult due
to the high level of uncertainty [5]. There is an inherent tendency to be optimistic in
effort estimation in environments with high levels of uncertainty, and estimates made by
experts are often biased [4]. Additionally, due to human nature, decision-makers are often
optimistic [6]. Furthermore, it is difficult to demonstrate realistic effort when competing
with other companies for a project [4]. One study reported that optimism in effort estimation
is one of the primary causes of project failures [7]. Underestimation of project effort results
in the approval of projects that exceed the budgeted amount [1]. In addition, assigning
fewer resources than necessary for the project may result in staff burnout due to the high
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stress level. This leads to under-scoped projects and may raise the risk of poor-quality
deliverables [8]. However, overestimation may also result in problems. For example, if
the project effort is overestimated and more resources are committed than required, they
may waste time that could have been spent on other crucial tasks, causing the loss of
opportunities that could have been obtained from other projects [1]. This may cause the
succeeding project to be delayed. Additionally, overestimation may increase the risk of
scope extension and budget loss for the organization.

Several prediction techniques have been proposed in the project effort estimation
literature, however, mainly for software development projects [9]. These techniques can
be categorized into three categories: expert judgment, algorithmic models, and machine
learning [8]. The expert judgment method is subjective and difficult to quantify since they
rely on the estimator’s expertise with similar projects [10]. Koch and Mitlöhner [11] used
a social choice approach similar to the analogy-based technique. Using this technique,
experts rank projects rather than assign numeric values to attributes, then estimate the
effort according to the rank. Algorithmic models are the most widely used techniques in the
estimation of project effort. They examine the relationship between effort and effort drivers.
Linear and nonlinear regression fall within this category [7]. The most prevalent algorithmic
model for software effort and cost estimation is the constructive cost model (COCOMO)
proposed by Boehm et al. in 1981 [12]. This model is a regression model based on data
collected from 63 previous projects. It predicts the number of staff hours or months needed
to complete the software development project using lines of code (LOC) [13]. Bashir and
Thomson [14] proposed a parametric model for estimating the design effort of hydroelectric
generators by using the data of 15 completed projects.

As the rate of project failures due to insufficient estimation increases, the pressure on
project effort estimators increases to prefer objective approaches such as machine learning
(ML) over expert-based ones [3]. In the literature, ML models such as fuzzy logic, artificial
neural networks (ANNs), evolutionary algorithms like genetic algorithms, and regression
trees are widely used in the software effort estimation area [7,9]. Yurt, Iyigün, and Bakal [15]
used a regression tree and k-nearest neighbor algorithms for the product development
project effort. They proposed these methods to estimate the required engineering effort in
the R&D department of the wheeled armored vehicles and weapon systems manufacturer.
With the ability to handle complex problems, ANN has been implemented in numerous
predictive modeling applications. ANNs are the most prevalent ML technique in software
effort estimation [16]. Numerous researchers have compared ANN to other prediction
techniques such as regression and determined that ANN outperforms traditional regression
models [8,10,13,17,18].

This study proposed an ANN model for project effort estimation and contributes to the
literature by developing a model for the project effort estimation of the customized machine
production environment. According to our knowledge, the literature on effort estimation
for customized machine development projects is limited. The use of ML techniques in
product development projects is also limited. This study aims to fill those gaps in the
literature. In addition, this study focused on a single phase of a project, the automation
phase of a machine development project. Estimating the work required for the automation
phase of a machine development project is challenging since the machine is automated
according to customer-specific requirements and the required effort can vary from machine
to machine. Machines can be highly novel to the company, and the team may not have
much experience with their customers’ specific needs. Therefore, estimating the work
required for automation is challenging. For this purpose, this study proposes a model to
estimate how much work is required to automate a machine. The model was developed
using data from past completed projects and uses project and machine characteristics to
estimate the automation effort in person-hours.

ML is a useful method for estimating software development effort, but it has limita-
tions, since it depends highly on the quality of the dataset. In the field of software effort
estimation, numerous studies have proposed models based on the existing database in
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the literature. Most of them used the COCOMO database [8,19–21], some of them used
the NASA database [20,22], some used the Kemerer database [13,20], and others used the
Desharnais database [5,20,23]. In this study, data were obtained from completed machine
development projects that produced highly customized machines. In such a highly flexible
environment, effort estimation is also challenging. The proposed model enables project
managers to estimate automation efforts, even if they have no experience with a similar
project. Moreover, a desktop application was developed for project managers to facilitate
the use of this system.

The rest of this paper is organized as follows. Section 2 discusses various studies
on this subject and the methods used in the literature. Section 3 describes the proposed
method in detail. The results are presented in Section 4, and our conclusions are presented
in Section 5.

2. Literature Review
2.1. Project Effort Drivers

Many factors can affect the project development efforts, and it is unclear which
factors can be used as effort drivers. For product development projects in aerospace,
Jaifer et al. [24] proposed a framework for effort drivers and divided factors into uncertainty
and complexity, and proficiency categories. In the uncertainty and complexity categories,
the technological maturity level was one factor used. Bashir and Thomson [14] considered
the use of new technology in product development for defining the technical difficulty
of a project. Bashir and Thomson [14] considered the complexity of requirements for
defining technical difficulty. Yurt et al. [15] covered factors regarding requirements in
product-related factors. The other product-related factors used in the literature were
product complexity [14,15,24,25], product size [26], interactions among subsystems [25],
and innovation level [26]. Jaifer et al. [24] considered team skills and experiences within
proficiency drivers. Salam et al. [27] also considered team experience to estimate the design
efforts in product development. Team expertise [14,26], team size, a variety of disciplines
and locations [24], and supplier expertise [15,25] were also considered while estimating the
product development effort.

As previously mentioned, most studies on software projects have used ML techniques
in effort estimation, and ANN is one of the most preferred ML techniques in this area.
Since ANN performance rapidly decreases with increasing inputs and model structure, it
is crucial to identify the most critical factors affecting the project effort. Many researchers
have used line of code (LOC) to estimate software development effort, which refers to
the number of lines in the software code (i.e., the software size) [8,10,13,17,18,20]. The
number of actors and transactions within use cases [7,28] and the counts of entities and
function points in the software [7,11] were used to assess the software size. Additionally,
the complexity of application and use case are used to estimate the software development
effort [7,8]. The COCOMO database has been widely used in this area. In addition to
product size and complexity, several cost drivers are involved in this database such as the
capability and experience of analysts and programmers on applications [12]. Many studies
have also used this factor as team experience [8,10,28,29]. Product novelty is also used in
software development estimation. Park and Baek [18] used product novelty and classified
projects into three categories: new, development, and maintenance. Pospieszny et al. [9]
categorized projects as new, enhancement, or re-development.

Several units have been utilized in studies to evaluate the effort value of product
development effort. This value has been assessed in person- or man-hours [7,8,13,28,30], or
in person- or man-months [9,19,20,22,29,31].

2.2. Prediction Techniques in Project Effort Estimation

Over the last two decades, many researchers have been interested in project effort
estimation. Several estimation techniques have been proposed to estimate the required
effort for different projects. While researchers working on software effort estimation
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have mainly preferred ML techniques, researchers in other areas have mostly preferred
algorithmic models. For example, Bashir and Thomson [14] proposed a parametric model
to estimate the design effort of hydroelectric generators. Salam, Bhuiyan, Gouw, and
Raza [27] proposed a parametric model to estimate the design effort needed for aircraft
engine projects. Arundacahawat, Roy, and Al-Ashaab [25] used the analytic hierarchy
process (AHP) to estimate the design rework effort of water pump development projects. In
the field of product development effort estimation, some studies have used ML techniques,
but in a limited number. Yurt et al. [15] used two different approaches, regression tree
and k-nearest neighbor algorithms (k-NN), to estimate the engineering effort for product
development projects conducted in the R&D department of a wheeled armored vehicles
and weapon systems manufacturer.

Studies for software projects have dominated the literature in the effort estimation
area. In particular, researchers in software project effort estimation have preferred more
objective approaches such as machine learning (ML) over expert-based ones. Additionally,
the field of project effort estimation has been the main focus of AI researchers working
in project management [32]. ML models such as fuzzy logic, artificial neural networks
(ANNs), and evolutionary algorithms such as genetic algorithms are widely preferred in the
software effort estimation area [7,10]. Due to their ability to handle complex problems, ANN
has been the most prevalent ML technique in software effort estimation [8–10,13,16–18].
Numerous studies have compared ANN to other prediction techniques such as regression
and concluded that ANN outperforms traditional regression models [8,10,13,17,18].

Artificial neural networks (ANN), also known as neural networks, are massively par-
allel structured systems consisting of neurons in layers [33]. The mainly used architecture
in effort estimation is a feed-forward neural network (FFNN) with input, hidden, and
output layers [8], and it was reported that FFNN outperforms other prediction models in
software effort estimation [17]. In this typical architecture of ANN, the input layer is where
all the data enter the neural network and are processed by the successive hidden layers. A
weighted sum of inputs and corresponding weights is calculated at each neuron, and the
output is generated if the sum exceeds the threshold [8]. This process proceeds layer-by-
layer and concludes with an overall response at the output layer. Several types of FFNN,
which are multilayer perceptron (MLP), radial basis function neural network (RBFNN), and
general regression neural network (GRNN), are commonly used ANN topologies in the
software effort estimation area [13,34,35]. A MLP is fully connected and contains input and
output layers and at least one hidden layer. A similar structure is also found in RBFNN,
which consists of three layers; input, hidden, and output, like MLP. However, unlike the
MLP, the hidden units of RBFNN contain radial basis functions and the training process is
claimed to be easier than MLP [13]. An alternative type of FFNN, GRNN, is four-layered,
unlike MLP and RBFNN [34]. Several types of FFNN such as MLP [7,8,19], RBFNN [13,30],
and GRNN [10] models have been proposed to estimate the software development effort.
In several studies, the developed networks were compared with the regression results and
concluded that neural networks provide better results [10,13]. Additionally, other types
of ANNs such as functional link artificial neural networks (FLANNs) with the ability of
handling a non-linear separable problem in a single-layer structure and deep learning
neural networks (DLNN) are used in the field of software effort estimation [34].

2.3. Optimization of ANN Architecture

Most studies in the software effort estimation area have concluded that ANN out-
performs other techniques. However, the performance of the ANN highly depends on
the architecture and hyperparameters used [36]. Minor hyperparameter adjustments can
significantly impact the network performance [20]. Thus, it is crucial to find the best ANN
architecture giving good generalization to solve the complex relationship between effort
drivers and effort.

ANN parameters can be categorized as model parameters that do not require user
tuning and can be learned directly from a dataset during training and hyperparameters
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that require user tuning prior to training. The weights are model parameters that are
modified and learned through training. However, the hidden layer size, number of neurons
in each hidden layer, and activation functions of layers are hyperparameters to be tuned
prior to training. Some hyperparameters such as the learning rate and momentum also
need to be tuned specifically to the training algorithm used. In the effort estimation area,
authors have mostly tuned the total number of hidden layers, the number of neurons and
activation functions in each hidden layer, the number of training epochs, the learning rate,
and momentum. The number of hidden layers and number of neurons in each hidden layer
are typical hyperparameters tuned in the effort estimation area.

Most studies have preferred tuning hyperparameters using a trial-and-error approach
to reach the optimum architecture of ANN [20,21]. For example, Jun and Lee [37] conducted
trials with one hidden layer and the number of hidden neurons changed from 12 to 47
and concluded that the optimal architecture with 17 nodes for the neural network with
23 inputs and one output. One hidden layer was mainly preferred for the networks
developed in the estimation of software effort [8,9,19,22,29]. Goyal and Bhatia [29] reached
the best structure with eight hidden neurons and Tronto et al. [8] with 23 neurons in one
hidden layer. Pai et al. [38] carried out trials with the number of hidden neurons set as
2, 5, 10, 15, 20, and 25. They concluded that selecting ten or more hidden nodes had no
significant effect on the network performance. Heiat [13] conducted experiments with
one, two, and three hidden layers, and Rankovic et al. [20] tried one and two hidden
layers. Rao and Kumar [35] proposed a neural network with two hidden layers. The most
commonly used activation functions for hidden layers in the field of effort estimation are
sigmoid [8,19,21], hyperbolic tangent [9,20,35], and tansig [29].

Learning rate and momentum are also the mostly tuned hyperparameters. Dave
and Dutta [17] selected a learning rate of 0.85, while Rao and Kumar [35] and Arora and
Mishra [12] chose 0.1. Momentum was selected as 0.5 by Rao and Kumar [35]. Determining
the stopping criteria for training is another critical point. In the field of effort estimation,
several studies chose the termination criteria as the point where the MSE training value is
less than a specific value [13,21]. Nassif et al. [7] determined these criteria with epoch size,
MSE value, and momentum value and selected it as the point where the epoch size reached
250, the MSE value became zero, or the mu value exceeded 1e+10.

As previously mentioned, the effort estimation studies have mostly preferred a trial-
and-error approach to reach the optimum architecture of ANN. There are several other
techniques for hyperparameter optimization (HPO) that aim to find the optimal values of
hyperparameters to optimize an objective function. Grid search, often called full factorial
design, is a basic HPO approach [39]. This method sets a grid consisting of points for each
combination of possible hyperparameter values. Since the experiments and calculations for
objective values are carried out for each point, this method is expensive and inefficient in
terms of calculation time [40]. The other method, random search, is relatively less costly
than grid search. Instead of calculating the objective value for all possible combinations,
the calculations are performed for a randomly selected point alone.

As the model’s complexity increases, these methods are no longer time efficient, and
more intelligent methods have been suggested. It is important to reduce the number of
steps required to determine the global optimal value, especially for objective functions that
are costly to calculate. One of the intelligent techniques, Bayesian optimization (BO), was
proposed by Snoek, Larochelle, and Adams [41] to solve such complex HPO problems effi-
ciently. Numerous recent studies have highlighted this method’s usefulness in the field of
HPO [36,42]. The method builds a probabilistic model, which is called a surrogate function,
using Bayes theorem. By estimating the objective function, this surrogate function provides
an idea of which hyperparameter combinations are promising. Using the results of the
previous experiments, it selects the hyperparameter combination for the next experiment
and estimates the objective values of the following combination [41]. Therefore, it requires
fewer computations to find the best hyperparameter settings.
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One of the other crucial points to determine in developing an ANN is selecting an
appropriate training algorithm that gives promising results. Neural networks learn to
approximate the nonlinear relations between input and output. The backpropagation
(BP) algorithm is a widely used training algorithm in various academic fields [43] and
employs the gradient descent (GD) method. In the BP algorithm, training is initialized with
randomly assigned values of connection weights and then iteratively adjusts them as new
examples are introduced. In the project effort estimation model, this training procedure
is conducted by providing a set of historical data regarding the project attributes and
corresponding actual project effort [8]. The input layer passes the data to the hidden layers.
Each neuron generates an output according to its activation function by adding the inputs
and using the weights. Then, an overall answer from the output layer is obtained and
the error value is calculated by comparing it with the target output value. Based on this
error value, weights are gradually adjusted by feeding the error backward. The gradient
of the loss function is calculated to determine the optimal weight values to minimize the
loss function, and this calculation continues backward through the layers of ANN. This
iterative procedure continues until the network generates an answer close to the target.

Many researchers in the field of software effort estimation have used neural networks
trained with the backpropagation technique [17,21,22,37]. However, there are several draw-
backs to GD-based training algorithms. Since this gradient value determines the direction
of weight change, this method has a slow convergence. Moreover, GD-based algorithms
require the selection of some hyperparameters such as learning rate and momentum, which
significantly affect the ANN performance. The conjugate gradient (CG) algorithm over-
comes these disadvantages of GD. In contrast to GD, storage is not required for the matrix
calculations. This makes the algorithm much easier and faster than the GD-based ones [44].
The Levenberg–Marquardt (LM) algorithm is another method to overcome the drawback
of GD regarding the requirement for storage. It is faster than GD-based algorithms since
it does not require complex matrix calculation. It has also been used for software effort
estimation [7,29,38].

3. Methodology
3.1. Input Selection for the Proposed ANN Model

In this study, the ANN model was constructed using data collected from a company
that designs and manufactures customized machines for the semiconductor industry. These
machines are developed by considering the customer-specific product and process require-
ments to execute the process of customer products automatically. Machine development
projects within this company mainly consist of four main phases: design, purchasing, pro-
duction, automation, and testing, as shown in Figure 1. The project starts with the design
phase, where the mechanical, electronic, and micro-optic components and subassemblies
of the machine are designed according to the customers’ requirements. After the design
is reviewed and approved by the customer, the machine’s bill of material is transferred
to the purchasing team. Next, the process continues searching and selecting suppliers to
purchase the necessary components and parts. As necessary components are delivered,
according to the production plan, the assembly of the machine starts. The machine’s me-
chanic, electronic, and micro-optic components are assembled considering the drawings
and an integration plan. Finally, equipment that works with the machine is integrated and
tested, and the machine is prepared for automation.

Then, automation starts, and the process is developed to produce customer products
automatically using the machine. The general software system, which has already been
developed to control machines, is integrated into the machine, and the process steps are
defined to control the necessary subassemblies and equipment integrated into the machine,
in other words, to automate the production process of customer products. This phase is
crucial since each customer has a specific product and process. In most cases, the customer
production process is manual, and the product is manufactured for R&D purposes. During
machine automation, effective communication is necessary to reconstruct the customer’s
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production process according to the machine’s capabilities. In some cases, the process is
well-known for the company and has been previously developed for another customer.
Therefore, the necessary effort is relatively less than needed to develop a new process. In
conclusion, the necessary effort to develop a process and automate a machine can vary
from machine to machine.
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Effort drivers and categories were defined through brainstorming sessions with experts
within the company and considering the studies mentioned in the literature review. First,
eleven factors were selected, as listed below:

• Hardware complexity;
• Process complexity;
• Customer type;
• Customer product novelty;
• Customer process novelty;
• System configuration novelty;
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• Machine function;
• Machine main system size;
• Machine housing size;
• Machine line type;
• Outsource usage for production.

Hardware complexity defines how complex the machine’s hardware design is. To
evaluate this factor, two categories were used: low and high. Specific statements describing
the attributes of the machine’s motion, vision, and data acquisition systems were defined
for these two categories but are not explicitly presented here for security reasons. Process
complexity defines the complexity level of the process of customer products and is cate-
gorized as low and high. Customer products can require more than one different process
in a machine. Additionally, some processes can be more challenging due to the maturity
level of the technology used and the company’s familiarity with the process. Therefore,
some statements were identified for the low and high factor levels to prevent subjective
assessment considering the above situations.

The factors regarding the customer type, product, and process novelty define how
the company is familiar with this customer, product, and process. Customer type can be
new or old. If the customer has already bought at least one machine before, the customer
type is assessed as old. Two factors regarding customer product and process novelty have
a three-point scale: no change, upgraded, and new. The level of “no change” defines
the situation in which the customer has already previously purchased the same type of
machine for the same customer product and process, so there is no significant change in
the customer product or process. In the category of “upgraded”, the same type of machine
is produced for upgraded customer products and processes. Although additional effort
is needed due to the process changes for the automation phase, it is expected to be less
than in the case of new products and processes. Since the company has experienced such
machines and a process has been previously developed, the process can be developed
for a new machine with minor adjustments. The last option, “new”, is when a customer
is new, and the company has not previously experienced such products and processes
with this customer. The factor of system configuration novelty is the novelty level of the
sub-systems that comprise the entire system. This input is also on a three-point scale: no
change, upgraded, and new.

The factor regarding machine function provides information about the machine’s
primary function. It describes the process that the machine mainly executes and has five
categories. The “machine main system size” factor includes six categories that define the
complexity of the main sub-assembly that conducts the machine’s primary function, the
number of subassemblies, and the components used. The housing size is the factor that
defines the size of the exterior case of a machine that protects the internal mechanism.
This factor is assessed in six categories: no housing, extra-small, small, medium, large,
and extra-large. Most R&D-purpose machines are built without housing. An extra-small
housing is usually chosen if a machine executes only one simple function including a few
small subassemblies. A machine housing is considered as small when it is of below-average
size. Medium-sized housing is used in machines that execute more than one function. If
a machine is highly customized and performs more than one function, it includes many
subassemblies. A larger size than average is needed for housing these kinds of machines. If
a machine includes several big-sized subassemblies, the housing will be significantly larger
than the average size.

The “machine line type” factor identifies the line type in terms of the production
volume the machine will be used in, and has three categories: entry, standalone, and
in-line. If the machine is produced for a low-volume production environment and pro-
duces a low-complexity product, the machine type is entry-level. In the standalone cat-
egory, the machine can execute its primary function independently. If the machine is
integrated within a line of several machines, it is described as an in-line machine. The last
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input is outsourcing usage for machine production and categorized as outsource used or
in-house production.

Automation effort is the output of the model. The automation effort value includes all
of the efforts necessary to automate a machine. Person-hours were used to evaluate the
automation effort value. This value was obtained from a database containing the company
personnel’s time spent on projects. Then, revisions were made with the assistance of the
company experts in the case of an error.

The data for the eleven effort drivers described above as well as the automation effort
were collected from 101 completed projects. To maximize the prediction accuracy, neigh-
borhood component analysis (NCA) was applied for feature selection. This nonparametric
feature selection technique selects the best subsets of features by assigning weights to each
feature. Based on the weights, the features with low weights can be removed from the
input dataset. Instead of transforming the data into a different feature space as in principal
component analysis (PCA), NCA assigns a weight to each feature. Similarly, individual
features can be analyzed for relevance. While retaining features having significant weights,
the rest can be eliminated. This technique was used by Goyal and Bhatia [27] to select
features for a MLP-based model to estimate the software project effort. The eleven features
listed above were used as predictors and automation efforts as a response. MATLAB was
used for the implementation of the method. As shown in Figure 2, features 1, 3, and 11 have
zero weights. These features, hardware complexity, customer type, and outsource usage
were eliminated from the dataset. The remaining features with significant weights were
selected for the automation effort estimation. As a result, only eight out of 11 features were
used in the ANN model. The inputs and output defined for the ANN model are shown
in Table 1.
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Table 1. Selected features for the effort estimation.

No. Variable Name Level Role

1 Process complexity 1: low, 2: high Input
2 Customer product novelty 1: no change, 2: upgraded, 3: new Input
3 Customer process novelty 1: no change, 2: upgraded, 3: new Input
4 System configuration novelty 1: no change, 2: upgraded, 3: new Input

5 Machine function Five categories regarding types of functions
based on a machine’s primary function Input

6 Machine main system size Six categories Input

7 Machine housing size 1: No housing, 2: extra small, 3: small, 4:
medium, 5: large, 6: extra large Input

8 Machine line type 1: entry, 2: standalone, 3: in-line Input

9 Automation effort Required effort for the automation phase
of a machine development project Output

3.2. Hyperparameter Optimization of the Proposed ANN

One of the most widely used architectures in the field of effort estimation, FFNN,
was used in this study. In the effort estimation area, gradient descent-based learning
algorithms have been used to train an ANN [17,21,22]. However, there are some drawbacks.
GD-based algorithms require the selection of hyperparameters such learning rate and
momentum, which significantly affect the ANN performance. In addition, they require
matrix calculations and have slow convergence due to gradient calculations. Levenberg–
Marquardt is another learning algorithm to overcome the drawbacks of GD related to
storage requirements. Since the LM algorithm does not require complex matrix calculations,
learning rate, or momentum selection and has a higher convergence, it was chosen for this
study. The LM method is also the most effective method for t FFNN structures.

Most studies have reported that the FFNN structure outperforms other prediction
models in software effort estimation. However, hyperparameter tuning is crucial to network
performance. Any minor hyperparameter adjustment can significantly affect the prediction
accuracy. For this purpose, one of the intelligent optimization methods, BO, was used to
tune the hyperparameters. The procedure including BO for developing the network was
programmed using MATLAB and is illustrated in Figure 3.

A min–max normalization was applied first to reduce the bias of the higher values.
Normalization was applied to all of the input variables to make them all the same scale
even though they were categorical. Additionally, a log transformation was applied to the
output data to reduce skewness and make it more normal. After data preparation, the
dataset containing 101 machine development projects was randomly divided into two
parts: the training and test sets. The test data containing 11 projects were not shown to
the ANN during training and was used only for testing purposes to understand the ANN
performance on different datasets.

Next, model architecture development steps continued with the training data. The
hyperparameters selected for optimization were the number of hidden neurons, activation
functions in the hidden layers and the output layer, as shown in Table 2. In the effort
estimation area, many studies have reached the best ANN structure with one hidden
layer [8,9,19,22,29]. Thus, one hidden layer was used for this study. For the first hidden
layer, the number of hidden neurons was set to between two and eight. The possible values
for activation functions for the hidden and output layers were chosen as tansig, logsig,
and purelin. The division ratio of the data that decides the percentage of projects used
in the training and validation dataset was set as 90–10%. Validation performance is one
of the crucial points to determine how well the training process is and when it is to be
terminated. This training process is to be terminated when generalization stops to prevent
overfitting, which means that the model obtained good results for training but not for
validation. Therefore, the stopping criteria were chosen as the max validation failure, which
means that the MSEval is higher than the MSEval-best in the last six times.
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Table 2. Hyperparameters to be optimized by BO.

Hyperparameters to be Optimized Possible Values

The number of neurons at 1st HL 2–8
Activation function for 1st HL tansig, logsig, purelin

Activation function for output layer tansig, logsig, purelin

The BO procedure begins with the selection of the initial hyperparameter values.
After setting the hyperparameters, the network is initialized with randomly selected initial
weights and training and validation dataset combinations. Training with the selected
hyperparameters was repeated 100 times, and the average validation error was calculated
to determine the validation performance of the network on the different datasets. At each
training round, samples for training and validation were randomly selected. This technique
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is known in the literature as repeated random subsampling validation (Monte Carlo cross-
validation), which splits the dataset randomly into training and validation datasets and
averages the results over the splits. Repeating the training and validation rounds 100 times
helps a model to produce more repeatable results and increases the prediction robustness
by repeating this process with different randomly chosen initial weights and a combination
of training and validation datasets.

The evaluation method of mean squared errors (MSE) was chosen to assess the ANN
performance. MSE can be calculated as per the following equation:

MSEval(j) =
∑n

i=1(Actual efforti − Estimated efforti)
2

n
(1)

n : the total number of samples in validation dataset
j : number of training repeats.∀j ∈ {1, 2, . . . , 100}.

After 100 rounds of training, the average MSE value was calculated, as per the follow-
ing equation:

avg(MSEval) =
∑100

j=1 MSEval(j)

100
(2)

The calculated average performance value was taken as an objective function of BO.
Therefore, BO aims to find the best hyperparameter values that minimize this objective function.

After determining the average validation performance value over 100 rounds, BO
builds a probability model of the unknown objective function using the observed objective
function values. This prior probability model of the objective function is known as a
surrogate model. Due to its simplicity and ease of optimization, the Gaussian process is
most commonly used as a surrogate model. It provides a probabilistic representation of
the objective function’s uncertainty at any given data point by building a multivariate
Gaussian distribution from the historical data. The BO algorithm finds the next data
point, the following promising hyperparameter value that performs best on the surrogate
model. BO uses the acquisition function to find the next promising point on the surrogate
model. The mostly used acquisition function is expected improvement. BO chooses the
next data point that gives the max expected amount of improvement in the objective
function. BO then obtains the objective function value by training ANN with the selected
hyperparameters. Then, it updates GP prior distribution (surrogate model) with the new
data to produce a posterior. This posterior will become the prior in the next step. This
procedure is repeated until the stopping criteria of BO, 30 iterations.

According to the results of the BO, the optimal hyperparameter values and a number
of hyperparameter combinations that produce promising results were selected. For each
combination, training was repeated five times. For each round, the ANN test performance
was calculated over a test dataset containing 11 projects.

The mean magnitude of relative errors (MMRE) and prediction accuracy (PRED) were
used to evaluate the ANN performance. Several methods exist to evaluate the performance
of ANNs and determine how well they match the desired output. In the effort estimation
area, MMRE and PRED(x) are commonly used methods for calculating model performance.
MMRE is the mean of the magnitude of relative errors (MRE), which is calculated for each
observation i, expressed by the following equation:

MREi =

(
|Actual Efforti − Estimated Efforti|

Actual Efforti

)
(3)

MMRE is achieved by aggregating the MRE over multiple observations i as in the
following equation:

MMRE = 100×
(

1
N

) N

∑
i=1

MREi (4)
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By using MRE values, PRED(x) can be calculated as the average of the MREs (or
MERs) that are less than or equal to x [7], as shown in the equation below:

PRED(x) =
1
N

N

∑
i=1

{
1 if MREi ≤ x
0 otherwise

(5)

Model accuracy is directly proportional to PRED(x) and inversely proportional to
MMER or MMRE [7]. PRED(x) represents the percentage of project effort estimates that
are within %x of the actual [8]. In many studies, the value of x is taken as 25 [11,22,31]. A
model with the prediction accuracy of MMRE ≤ 25% and PRED(25) ≥ 75% are considered
sufficient for software effort prediction [9].

Before calculating MMRE and PRED(25) for each training experiment, the output
values were transformed to original values from the logarithmic. After calculating the
ANN test performance over the test data for each training experiment, the network with
the best MMRE and PRED(25) values was selected.

4. Results and Discussion
4.1. The Architecture and Performance of the Proposed ANN

The methodology described in the preceding section was applied to a dataset compris-
ing 101 completed machine development projects. As above-mentioned, 90 were used for
training, and the rest for testing. To determine the best hyperparameter values, BO was
applied. BO provided an idea of which combination of hyperparameter values produced
the best mean validation error value of the ANN over 100 rounds of training and validation.
The BO results showed that the optimal value of the objective function was obtained at the
sixth iteration with the best objective function value of 0.19718.

The optimal structure consisted of one hidden layer with four neurons and logsig
and purelin activation functions for the hidden and output layers. The second-best re-
sult was produced in the fifth iteration using the same activation functions but with six
neurons. In addition, the error values for structures with three and five neurons using
the same activation functions as the optimal structure were close to the optimal value.
Since the objective function of the best structure is 0.19756 and taking into account the
conditions above-mentioned, structures with error value less than 0.20500 were selected for
further evaluation. The training was repeated five times for each of the hyperparameter
combinations shown in Table 3.

Table 3. The selected hyperparameter combinations for further evaluation.

Iteration Number Observed Objective The Number of
Hidden Neurons

Activation Function of
the Hidden Layer

Activation Function of
the Output Layer

5 0.19756 6 logsig purelin
6 0.19718 4 logsig purelin
7 0.20445 5 logsig purelin
8 0.19865 3 logsig purelin
9 0.19934 4 tansig purelin
10 0.20332 6 tansig purelin

The initial weights and projects for training and validation were randomly chosen
in each round by considering the 90–10% division ratio. The ANN was tested with
11 test projects for each round. By considering the MMRE and PRED(25) values, the
ANN model that provided the best performance was selected. The structure that yielded
70% PRED(25) and 30% MMRE for all of the training, validation, and test datasets was
selected. The architecture of the ANN that obtained the best performance is shown
in Figure 4.
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The performance values of the optimal architecture are given in Table 4 and the corre-
lation (R) values are shown in Figure 6. For the values, MMRE and PRED, re-transforming
was applied to the results from the logarithmic values to the original.

Table 4. Performance values of the best ANN architecture.

MSElog R-Value MMRE PRED(25)

Training 0.04 0.95 0.15 0.83
Validation 0.03 0.94 0.13 0.89

Test 0.11 0.94 0.30 0.73
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Estimated values of the proposed ANN model and the actual values of the automa-
tion efforts for the test results are shown in Figure 7. The logarithmic output values
were re-transformed back to their original form to compare the estimated values to the
actual values.
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Figure 7. Automation effort estimations by the ANN for 11 test projects.

Studies that have used artificial neural networks in the field of effort estimation have
mainly focused on software projects. In this area, models with a MMRE less than 25%
and PRED(25) higher than 75% are considered as accurate [9]. Table 5 summarizes the
results from various studies that have used neural networks to estimate the project effort.
According to Table 5, the MMRE values ranged from 14% to 59% and the PRED values
ranged from 42% to 65%.
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Table 5. Summary table on the prediction accuracies from studies in the effort estimation area.

Year Author(s) Ref. Method Prediction Accuracy

2002 Heiat [13] RBFNN MAPE: 31.96%
2008 Tronto et al. [8] MLP MMRE: 41.53%
2008 Park and Baek [18] ANN MRE: 59.40%
2010 Reddy, Sudha, Rama, Ramesh [45] RBFNN, GRNN MMRE: 17.29%, 34.61%

2010 Kalichanin-Balich and
Lopez-Martin [46] FFNN MMER: 22%

2011 Lopez-Martin et al. [10] GRNN MMER: 26%
2011 Attarzadeh and Ow [19] MLP MMRE: 45%, PRED(25): 43.30%
2012 Attarzadeh et al. [22] FFNN MMRE: 46%, PRED(25): 45.50%
2013 Nassif et al. [7] MLP MMER: 40%, PRED(25): 45.70%
2013 Pai, McFall, Subramanian [38] MLP MMRE: 59.30%
2016 Rijwani and Jain [21] FFNN MMRE: 14.40%

2018 Pospieszny et al. [9] MLP MMRE: 21%, PRED(25): 64.65%,
MMER: 45%

2020 Goyal and Bhatia [29] FFNN MMRE: 25.80%, R-value: 90%
2020 Pandey et al. [31] MLP MMRE: 24%, PRED(25): 42%
2021 Rankovic et al. [20] MFFN with the Taguchi method MMRE: 16.10%, PRED(25): 50%
2021 Carvalho, Fagundes, Santos [5] MLP, Extreme Learning Machine MMRE: 42%, 18%

2022 Sharma and Vijayvargiya [47]

Wavelet ANN, Genetic
Elephant Herding

Optimization-based
Neuro-Fuzzy Network

MMRE: 22.08%, 16.70%

Among the trials, some candidate models with MMRE values of at most 45% and
PRED values of at least 50% are listed in Table 6. For the output layer, a linear activation
function, purelin was selected. The PRED(25) results are presented in Figure 8 as well as
the best model (candidate model 3).

Table 6. List of candidate models and the best ANN.

The Number of
Hidden Neurons

Activation
Function

Experiment No.
(Appendix A)

Candidate
Model No.

MMRE PRED(0.25)

Tra Val Test Tra Val Test

3 logsig 5 1 0.31 0.28 0.40 0.51 0.56 0.64
4 logsig 5 2 0.27 0.22 0.40 0.63 0.67 0.64
5 logsig 4 3 0.15 0.13 0.30 0.83 0.89 0.73
6 logsig 3 4 0.28 0.33 0.43 0.57 0.67 0.55
4 tansig 3 5 0.24 0.20 0.41 0.65 0.78 0.73
6 tansig 1 6 0.27 0.26 0.42 0.59 0.78 0.55
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In order to assess the effectiveness of ANN models for customized machine develop-
ment projects, the proposed ANN model was compared with multiple linear regression
(MLR). The MLR was applied with the same training data used to train the ANN. Data
from eleven test projects were used to evaluate the performance of the regression model.
Table 7 provides a comparison between the results generated by MLR and the proposed
ANN. Comparing the proposed ANN with the MLR, it can be seen that the performance of
the proposed ANN was much better than the MLR.

Table 7. Comparison of the performance of the proposed ANN and MLR.

MMRE PRED(25) MAE RMSE

MLR Proposed ANN MLR Proposed ANN MLR Proposed ANN MLR Proposed ANN

Training 0.54 0.15 0.32 0.83 94.54 32.77 128.09 52.79
Validation 0.27 0.13 0.78 0.89 57.17 44.25 67.17 62.85

Test 0.92 0.30 0.27 0.73 96.82 35.89 115.33 45.03

4.2. The ANN-Based Estimation Tool for Automation Effort of Machine Development Project

An automation effort estimation tool was developed using MATLAB 2022a App
Designer. The tool evaluates the total effort needed to develop a process for a machine to
produce customer products automatically. The process flow of the tool is given in Figure 9.
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Figure 9. Process flow of the ANN tool to support project managers in effort estimation.

A real-life example of how the effort estimation tool works is provided as follows.
This example is also the second test project presented in the previous section. Table 8
shows the selected values of the project characteristics for the example. As depicted in
Figure 9, the user enters the project characteristics. The first characteristic of the machine is
its process complexity. As indicated, the possible values for machine function type, main
system size, and housing size are not explicitly listed due to the company’s information
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security policies. As a result, limited information is provided here. For this example, a
new customer requests a testing machine that will run complex testing procedures on the
customer’s specific product. Additionally, the customer requires that the machine meets
a certain cycle time for this testing process. Therefore, a high level of process complexity
was selected.

Table 8. Selected values of the example to demonstrate how the ANN tool works.

No. Input Name Selected Value No. Input Name Selected Value

1 Process complexity High 5 Machine function Test machine
2 Customer product novelty New 6 Machine main system size Medium
3 Customer process novelty New 7 Machine housing size Medium
4 System configuration novelty New 8 Machine line type Standalone

The second and third inputs were related to the novelty of the customer’s product and
process. If the company has no prior experience with this customer, the product, or process,
the second and third input values are selected as new. The fourth input specifies the novelty
degree of the system configuration. Since the company has never previously developed this
process for this customer, a new configuration is chosen. The core system, which performs
the machine’s primary function, and housing size are selected as the medium. Finally, the
machine line type is determined to be standalone since the machine can execute the test
function without assistance from another machine and can conduct the necessary tests
by itself.

Figure 10 depicts the user interface for entering these characteristics. After entering
the values, the user clicks the “estimate” button to see the estimations. Suppose that each
input characteristic is entered, and only one option is chosen for each of them. In that case,
the system works and obtains the estimated automation effort value from the output of the
developed ANN. The ANN-based estimation tool provides project effort estimates with
tolerances. This tolerance value was determined using the MRE values of the data points in
the training, validation, and test data. The average MRE estimated across all datasets was
calculated as 0.16. To illustrate, the program predicts that 257 person-hours will be required
to automate a machine development project using the above-listed project parameters. This
was shown with a tolerance value of 257× 0.16 ∼= 41 person-hours at the user interface.

In the company’s current process, effort estimations for the automation phase of a
project are performed during project kick-off. After the order confirmation is received from
the customer and the project is approved to start, the technical sales team transfers the
project with the project charter to the project manager. Then, a project kick-off meeting is
organized with the attendance of the necessary function line managers. Next, the planning
phase starts, and the project manager makes effort estimations for project phases with the
support of function line managers. It can be challenging for project managers to provide
a reasonable estimate of the amount of effort required if they have no experience with a
project similar to the one that they are attempting to predict.

Especially at the early stages of a project, estimating the amount of work required
to automate a machine can be challenging due to the high level of uncertainty. The
process to be developed is unique to the product and the process of the customer. The
customer needs an automated machine for a process they currently perform manually. In
most cases, the production flow of customer products needs to be redesigned. In some
cases, the process is well-known and has been experienced with the same or a different
customer. In such situations, the effort required is less than that needed to develop a
new process. In conclusion, estimating the required effort is challenging because it varies
from machine to machine. The proposed ANN tool can support project managers in
estimating the automation efforts when faced with machine development projects of
different specifications, even if they have limited experience with similar machines.
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5. Conclusions

This paper presented a BO-based ANN model that was developed to estimate the
automation effort for machine development projects. To the extent of our knowledge,
no study has been conducted to estimate the automation effort for customized machine
development. Because the uncertainty is high, effort estimation is still difficult, especially
for projects that produce a customer-specific machine that automates the customer’s pro-
duction process. A high level of uncertainty and lack of experience cause poor estimations
of effort in the early phases of a project. Therefore, this study proposed a model to estimate
the required effort to automate a machine.

One of the main reasons for project failure is poor effort estimation, and nowadays,
researchers prefer objective approaches over expert-based approaches. Therefore, in this
study, an ANN model was developed to overcome the shortcomings related to effort
estimation. Data containing project characteristics and automation effort were collected
from 101 real-life projects.

In this study, BO was used to optimize the hyperparameters. The performance of
the best ANN architecture showed promising results. Effort estimation results are usually
evaluated based on the PRED(25). According to some studies in the effort estimation
area, the PRED(25) value ranges from 42% to 65%. In this study, the PRED(25) value was
calculated as 83% for training, 89% for validation, and 73% for test projects. The accuracy
of the developed model was quite good compared with other studies in project effort
estimation. If required, the accuracy of the model can be improved by increasing the
number of test projects. The proposed ANN model was applied to the real-life project effort
estimation problem of a company in the customized machine development area. More-
over, a user-friendly ANN-based estimation tool was developed for effort estimators and
project managers.
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Abbreviations

AHP Analytic hierarchy process
ANN Artificial neural network
BO Bayesian optimization
COCOMO Constructive cost model
DLNN Deep learning neural networks
FFNN Feed-forward neural network
GD Gradient descent
GRNN General regression neural network
HL Hidden layer
LOC Lines of code
ML Machine learning
MLP Multilayer perceptron
MMRE Mean magnitude of relative errors
MRE Magnitude of relative errors
MSE Mean squared errors
NCA Neighborhood component analysis
PRED Prediction accuracy
RBFNN Radial basis function neural network

Appendix A. Experiments with the Chosen Hyperparameters for
Performance Enhancement

HN
Size

Act. Func.
for HL

Trial R-Tra R-Val R-Test
MMRE-

Tra
MMRE-

Val
MMRE-

Test
PRED(25)

Tra
PRED(25)

Val
PRED(25)

Test
Best

Epoch

3 logsig 1 0.88 0.89 0.89 0.24 0.24 0.37 0.72 0.56 0.55 9
3 logsig 2 0.83 0.72 0.75 0.32 0.26 0.49 0.53 0.56 0.55 4
3 logsig 3 0.84 0.93 0.82 0.28 0.23 0.36 0.67 0.56 0.55 11
3 logsig 4 0.87 0.63 0.86 0.27 0.38 0.50 0.67 0.56 0.64 9
3 logsig 5 0.82 0.71 0.89 0.31 0.28 0.40 0.51 0.56 0.64 4
4 logsig 1 0.93 0.88 0.90 0.20 0.25 0.37 0.65 0.56 0.64 13
4 logsig 2 0.88 0.90 0.91 0.26 0.27 0.38 0.65 0.44 0.64 11
4 logsig 3 0.82 0.82 0.89 0.33 0.38 0.34 0.53 0.44 0.64 4
4 logsig 4 0.88 0.90 0.91 0.26 0.27 0.38 0.65 0.44 0.64 11
4 logsig 5 0.85 0.92 0.91 0.27 0.22 0.40 0.63 0.67 0.64 5
5 logsig 1 0.93 0.96 0.87 0.19 0.17 0.32 0.67 0.89 0.64 10
5 logsig 2 0.91 0.93 0.91 0.22 0.18 0.44 0.74 0.89 0.64 5
5 logsig 3 0.92 0.94 0.91 0.21 0.15 0.33 0.70 0.89 0.64 10
5 logsig 4 0.95 0.94 0.94 0.15 0.13 0.30 0.83 0.89 0.73 16
5 logsig 5 0.84 0.95 0.79 0.31 0.14 0.43 0.65 0.89 0.73 6
6 logsig 1 0.86 0.75 0.91 0.29 0.42 0.40 0.56 0.56 0.55 4
6 logsig 2 0.89 0.60 0.86 0.25 0.44 0.41 0.69 0.56 0.55 8
6 logsig 3 0.87 0.75 0.91 0.28 0.33 0.43 0.57 0.67 0.55 5
6 logsig 4 0.90 0.65 0.91 0.24 0.50 0.39 0.69 0.56 0.64 5
6 logsig 5 0.87 0.85 0.77 0.25 0.31 0.49 0.67 0.56 0.64 6
4 tansig 1 0.82 0.95 0.79 0.31 0.19 0.46 0.62 0.78 0.64 6
4 tansig 2 0.84 0.93 0.82 0.29 0.18 0.51 0.63 0.78 0.64 5
4 tansig 3 0.88 0.95 0.87 0.24 0.20 0.41 0.65 0.78 0.73 7
4 tansig 4 0.83 0.93 0.84 0.30 0.20 0.48 0.65 0.67 0.73 5
4 tansig 5 0.92 0.86 0.87 0.21 0.26 0.44 0.73 0.67 0.73 10
6 tansig 1 0.89 0.80 0.90 0.27 0.26 0.42 0.59 0.78 0.55 6
6 tansig 2 0.93 0.91 0.76 0.18 0.34 0.45 0.74 0.56 0.55 16
6 tansig 3 0.86 0.73 0.90 0.28 0.36 0.41 0.57 0.56 0.55 5
6 tansig 4 0.90 0.94 0.90 0.23 0.20 0.33 0.65 0.56 0.55 10
6 tansig 5 0.86 0.84 0.75 0.28 0.30 0.47 0.62 0.44 0.64 5
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