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Abstract: In order to improve the leaching efficiency of gold ore and reduce the environmental
treatment cost of residual sodium cyanide, continuous stirred tank reactors are often connected
in a cascade manner. A gold leaching system is a multiphase chemical reaction system, and its
kinetic reaction mechanism is complex and affected by random factors. Using intelligent modeling
technology to establish a hybrid prediction model of the leaching system, the dynamic performance
of the process can be easily analyzed. According to the reaction principle and the theory of substance
conservation, a mechanism model is established to reflect the main dynamic performance of the
leaching system. In order to improve the global convergence of the optimization target, a particle
swarm optimization (PSO) algorithm based on simulated annealing is used to optimize the adjustment
parameters in the kinetic reaction velocity model. The multilayer long short-term memory (LSTM)
neural network approach is used to compensate for the prediction errors caused by the unmodeled
dynamics, and a hybrid model is established. The hybrid prediction model can accurately predict
the leaching rate, which provides a reliable basis for guiding production, and also provides a model
basis for process optimization, controller design, and operation monitoring. Finally, the superiority
and practicability of the hybrid model are verified by a practical leaching industrial system test.
The prediction model of key variables in the leaching process is established for the first time using
the latest time series prediction technology and intelligent optimization technology. The research
results of this paper can provide a good reference and guidance for other research on complex system
hybrid modeling.

Keywords: leaching industrial system; mechanism model; hybrid model; parameter estimation;
particle swarm optimization; LSTM neural network

1. Introduction

A hydrometallurgical leaching system is a typical complex system involving physical
and chemical reactions, variables, and uncertainties [1]. Establishing the model of this
complex system is helpful to analyze the relationship between the internal structure charac-
teristics and the external variables [2]. With the decline in ore gold grade and increasingly
strict environmental protection standards, hydrometallurgy plays an increasingly impor-
tant role in the production of non-ferrous metals [3]. Hydrometallurgy technology can
directly deal with low-grade and complex materials, improve the comprehensive utilization
rate of resources, and realize cleaner production easily [4]. Hydrometallurgy is mainly
based on the disciplines of metallurgical physics chemistry and reaction engineering [5].
Leaching is an important process in hydrometallurgy. Leaching is a complex process of
chemical dissolution reaction between a leaching agent and specific components in solid
materials [6]. The solution containing the extracted substance can be formed by leaching
and can be preliminarily separated from other insoluble components. Leaching systems
are mainly based on filtration leaching and agitation leaching. The leaching rate is the key
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index of any leaching system, and it is usually detected by offline assay [7]. The quality of
the leaching solution directly determines the quality and benefit of subsequent production
processes. Based on experimental tests, computer simulations, and mathematical deriva-
tion, the dynamic model of the leaching system can be established [8]. The process model
can provide the necessary scientific basis for the engineering development and application
of new hydrometallurgical processes.

The main factors affecting gold cyanidation leaching are cyanide concentration, oxygen
concentration, pH value of leaching solution, ore pulp temperature, ore particle size and
shape, pulp concentration, leaching time, impurities, and associated minerals [9]. In
order to ensure that the leaching system operates in the optimal state, it is necessary
to accurately establish the prediction model of the key variables related to the leaching
rate [10]. The mechanism model of the leaching system can be established by analyzing
the structure and internal chemical changes of the leaching system. Combined with
prior knowledge and reasonable assumptions, the mechanism model is simplified to
reveal the external characteristics of the leaching system, which has important practical
significance for the leaching system [11]. The influence of related variables on the leaching
rate and key auxiliary variables can be determined by analyzing the mechanism model.
The gold cyanidation leaching system is a complex multiphase chemical reaction process.
The complicated kinetic reaction mechanism and process random factors increase the
difficulty in modeling the leaching system [12]. Due to the different production technologies,
equipment parameters, and operation modes, the structure and parameters of the kinetic
model of the gold cyanidation leaching system are different and need to be determined
by appropriate methods [13]. The achievements of researchers in determining the gold
leaching reaction mechanism provide a good guide for the establishment of the leaching
system model in this paper.

The mechanism model can be established by analyzing the internal laws of the system
and ignoring unimportant factors. Based on strict mathematical derivation or computer
simulation, the mechanism model has a strong explanatory ability and can be extended to
other similar processes [14]. Conversely, the data-driven model fully mines the relationship
between process data and can reflect complex information that cannot be explained by
the mechanism method. The data compensation model compensates for the output errors
caused by the unmodeled dynamics of the system [15]. The data model has high precision
but also has the disadvantage of poor generalization ability. The hybrid model uses
a mechanism model to reflect the main dynamic characteristics of the system, which
reduces the requirement of sample data and improves the generalization ability of the
model [16]. The hybrid model has good local approximation performance and global
dynamic performance. The hybrid model has the dual advantages of high precision of the
data model and the strong generalization ability of the mechanism model [17]. The hybrid
models commonly used in practical applications can be divided into two types, parallel
and series. The relationships between the variables and structures of cascade leaching
systems are complex [18]. Abundant mechanism knowledge and prior knowledge go into
creating leaching systems, so it is more suitable to establish a parallel hybrid model of such
systems [19]. The LSTM neural network has unique superiorities in process data mining
and time-series prediction. The LSTM is an improvement of the recurrent neural network
and has a time-recurrent structure [20]. Therefore, this paper will use the LSTM network to
research the hybrid modeling of the cascade leaching industrial process.

The mechanism analysis and data-driven modeling of industrial systems are hot topics
for researchers. Based on Merkel’s theory and mechanistic analytical techniques, a parallel
hybrid model has been constructed for a mechanical draft counter flow wet-cooling tower
by using least squares support vector machine, which can guide system energy-saving
optimization [21]. By analyzing experiment data and mechanism knowledge, the choke
finger system is modeled by a block-oriented model with a nonlinear dynamic input [22].
Based on process knowledge and real industrial data, an intelligent operational adjustment
framework based on a hybrid Bayesian network (BN) has been established for the copper
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cleaner flotation process [23]. A new hybrid wind-speed forecasting method based on a
back propagation (BP) neural network has been proposed to forecast daily average wind
speed [24]. By combing ensemble just-in-time learning and moving window techniques, a
data-driven semi-supervised weighted probability partial least squares regression (SWP-
PLSR) is developed to obtain the unmodeled dynamics in the mechanism model, and its
validity has been verified by modeling a roller hearth kiln of ternary cathode material man-
ufacturing [25]. By combining data assignment and the parameter estimation technique, a
hybrid system consisting of a Piecewise Auto-Regressive eXogeneous (PWARX) structure
has been developed for a rainfall-runoff system [26]. Hybrid modeling with a data-driven
scheme has been proposed in multiscale material and process design, in which mechanistic
models are used to describe the process-related principle [27]. For the polyethylene pro-
duction process, a hybrid model with feedforward artificial neural networks (FANNs) has
been developed by adding an empirical layer to the mechanistic model. The mechanistic
model utilizes fundamental material and energy balances to predict important process
conditions [28]. Based on empirical mode decomposition and back-propagation neural
network, a hybrid water temperature prediction model has been proposed to reduce aqua-
culture risks and optimize the operation of water quality management [29]. A quantitative
assessment hybrid model demonstrates a superior capability to predict the time evolution
of different process variables using only the initial and process conditions [30]. According
to the existing knowledge of the reaction mechanism and chemical principles, a simplified
mechanism model of a leaching system can be established [31]. The unknown parameters
involved in the non-convex mechanism model can be optimized and solved by intelligent
methods [32]. The unmodeled dynamics and prediction errors in the mechanism model
can be compensated by an error data model established by neural networks [33]. These
hybrid modeling strategies provide a good reference and guidance for the hybrid modeling
of cascade leaching systems.

In this paper, the theory of mechanism analysis modeling and the scheme of intelligent
hybrid modeling are studied for hydrometallurgical gold cyanidation leaching systems.
A typical gold cyanidation leaching system is introduced and designed. The chemical
principle of the cyanidation leaching system is introduced in detail. The structure and
model order of the process are determined by the mechanism analysis technique. The
influence of related variables on the leaching system is also discussed. Based on reasonable
assumptions and simplification, the dynamic mechanism model of single and cascade gold
leaching systems is established. The adjusting parameters of the gold dissolution rate and
cyanide ion consumption rate are estimated by using the particle swarm optimization
algorithm based on a simulated annealing strategy. The LSTM network with sliding
windows is designed to compensate for the prediction error of the mechanism model, and
the intelligent hybrid model is established. Based on the experimental test, the effectiveness
and merit of the proposed hybrid modeling algorithm are cross-verified by comparison
with the existing methods. The accurate leaching process model can not only predict
the leaching rate well but also provide the basis for the model-based predictive control
technology and the development of a process operation monitoring system. Based on the
latest data-driven modeling strategy using an LSTM neural network or a gated recurrent
unit (GRU) neural network, the proposed hybrid modeling technique can accurately predict
the leaching rate in the leaching process. The research ideas proposed in this paper can
provide inspiration for the modeling of other complex systems. The rest of this paper is
organized as below. The hydrometallurgical gold leaching system will be introduced and
designed in Section 2. Section 3 includes the chemical principle behind the gold cyanidation
leaching system. The mechanism modeling of a cascade leaching system will be given
in Section 4. Parameter identification of the mechanism model will be given in Section 5.
Hybrid modeling techniques based on LSTM networks will be presented in Section 6. The
experiment test is presented in Section 7. Finally, some conclusions are drawn in Section 8.
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2. Hydrometallurgical Gold Leaching System

In this section, the basic components of the hydrometallurgical leaching process will
be described and analyzed in detail to facilitate the establishment of system mechanism
models. Seven tank reactors in series are adopted to carry out cyanide reactions for the
hydrometallurgical gold leaching system, as shown in Figure 1. A blower is used to fill
each leaching tank with air. Sodium cyanide is added to the first, second, fourth, and
sixth reaction tanks. The ore pulp containing gold is concentrated and stored in buffer
tanks. The insoluble gold in the solid phase reacts with sodium cyanide and oxygen to
form water-soluble gold cyanide complex ions. Compressed air is passed through the
bottom of the leaching tank to provide dissolved oxygen for the reaction. Pneumatic
agitation is used to prevent ore pulp accumulation. The reacted ore pulp flows into the
subsequent leaching tank through the overflow. The cascade leaching system involves
complex physical and chemical reactions, and different leaching tanks have different kinetic
reaction rates. Ore pulp flow rate, ore pulp concentration, pH value, and dissolved oxygen
concentration can be measured online. However, gold grade and cyanide ion concentration
can only be measured offline. Low-frequency and high-frequency disturbances exist in the
measurement process, which increases the difficulty of process modeling.
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Figure 1. Schematic diagram of cascade leaching system. 
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Figure 1. Schematic diagram of cascade leaching system.

The continuous stirred leaching tank reactor (CSTR) is also called a Pachuca extractor
and has been adopted in the leaching system [7], as shown in Figure 2. The CSTR is the
key reaction equipment in the leaching process. It is not only the reaction vessel but also
the power source of the leaching process. The bottom of the leaching tank is filled with
compressed air into the central pipe, forming a large number of bubbles rising along the
central pipe. The bubble in the central pipe makes the volume of ore pulp expand and the
density decrease, which results in the pulp pressure in the central pipe being less than the
pressure outside the central pipe. Under the action of the pressure difference between the
inside and outside of the pipe, the ore pulp in the pipe moves upward and flows out from
the upper end of the central pipe. The ore pulp outside the central pipe slowly flows down
to the bottom, which forms a closed circulation of pulp flow. The bubbles that overflow
from the ore pulp are discharged through the exhaust pipe at the top of the tank.
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3. Chemical Principle of Gold Cyanidation Leaching System

In this section, the reaction principle of the hydrometallurgical leaching process will
be introduced in order to understand the difficulties in, and key points of, modeling. The
reaction of gold with sodium cyanide is electrochemical dissolution. The oxidation and
dissolution of gold occur at the anode, while the depolarization of oxygen occurs at the
cathode, as shown in Figure 3.
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Figure 3. Electrochemical principle of gold cyanidation leaching system. (A1: Cathode region
(negative electrode) A2: Anode region (positive electrode). δ: Nengst interface layer thickness).

The major chemical reactions can be expressed as
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2Au + 4NaCN + O2 + 2H2O→ 2NaAu(CN)2 + 2NaOH + H2O2 (1)

Equation (1) can be expressed as two battery reactions. The anode region reaction can
be expressed as

2Au + 4CN− − 2e→ 2Au(CN)−2 (2)

The cathode region reaction can be expressed as

O2 + 2H2O + 2e→ H2O2 + 2OH− (3)

Concentration polarization is the most important factor affecting the polarization of
the cathode and anode. The concentration polarization of oxygen and cyanide ions can be
determined by Fick’s law

d(O2)

dt
=

DO2

δ
A1{[O2]− [O2]i} (4)

d(CN−)
dt

=
DCN−

δ
A2{[CN−]− [CN−]i} (5)

where d(O2)
dt and d(CN−)

dt are the diffusion rates of O2 and CN−, respectively; DO2 and DCN−

are the diffusion coefficients of dissolved oxygen and cyanide ion, respectively; [O2] and
[CN−] are the concentrations of O2 and CN− in the solution, respectively; [O2]i and [CN−]i
are the concentrations of O2 and CN− at the interface, respectively.

The chemical reaction rate of O2 and CN− at the metal interface is much higher than
the diffusion rate, i.e., [O2]i ≈ 0, [CN−]i ≈ 0. Thus, Equations (4) and (5) can be simplified as

d(O2)

dt
=

DO2

δ
A1[O2] (6)

d(CN−)
dt

=
DCN−

δ
A2[CN−] (7)

The dissolution rate of gold is twice that of oxygen consumption and half that of
cyanide consumption. Therefore, the dissolution rate of gold v can be expressed as

v =
1
2

d(CN−)
dt

=
1
2

DCN−

δ
A2[CN−] (8)

or

v = 2
d(O2)

dt
= 2

DO2

δ
A1[O2] (9)

When the above equation reaches equilibrium, it becomes

1
2

DCN−

δ
A2[CN−] = 2

DO2

δ
A1[O2] (10)

The total surface area of metal in contact with water can be expressed as A = A1 + A2.
The dissolution rate of gold can be expressed as

v =
2ADCN−DO2 [CN−][O2]

δ
{

DCN− [CN−] + 4DO2 [O2]
} (11)

In the case of very low cyanide concentration and high dissolved oxygen concentration,
Equation (11) can be simplified as

v =
ADCN− [CN−]

2δ
= k1[CN−] (12)
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The dissolution rate of gold is mainly determined by the cyanide ion concentration.
In the case of high cyanide concentration and low dissolved oxygen concentration,

Equation (11) can be simplified as

v =
2ADO2 [O2]

δ
= k2[O2] (13)

The dissolution rate of gold mainly depends on the concentration of dissolved oxygen.

4. Mechanism Modeling of Cascade Leaching System

On the basis of understanding the structure, kinetic principle, and chemical reac-
tion principle of hydrometallurgy, the mechanism model of the leaching process can be
established by using the mechanism knowledge and partial differential equations. The
mechanism model of the leaching system mainly consists of the mass conservation equa-
tions of gold in the ore, gold in the liquid, and cyanide ion in the liquid, as well as the
corresponding kinetic reaction rate models of gold and cyanide ion. The conservation
equation of gold and cyanide in single-tank leaching systems can be expressed as

Qs

Ms
(Cs0 − Cs)− rAu =

dCs

dt
(14)

Ql
Ml

(Cl0 − Cl) +
Ms

Ml
rAu =

dCl
dt

(15)

Ql
Ml

(CCN0 − CCN) +
QCN
Ml
− rCN =

dCCN
dt

(16)

where Qs is the solid flow rate of ore pulp; Ql is the liquid flow rate of ore pulp; Cs0 and
Cl0 are the initial gold concentration of the solid and liquid, respectively; Ms is the mass of
solid ore pulp in the leaching tank; Ml is the mass of liquid ore pulp in the leaching tank;
CCN0 is the initial cyanide ion concentration of the liquid; Cs and Cl are the concentration
of solid and liquid gold in the leaching tank, respectively; CCN is the liquid cyanide ion
concentration; QCN is the addition flow rate of sodium cyanide; rAu is the gold dissolution
rate; rCN is the consumption rate of cyanide ion.

The gold dissolution rate rAu is a nonlinear function of the average diameter of ore
particles d, dissolved oxygen concentration CO, liquid hydrogen ion concentration CCN ,
and solid gold concentration Cs, and can be expressed as

rAu = f (d, CO, CCN , Cs) (17)

The consumption rate of cyanide ions rCN is a nonlinear function of the d and CCN ,
and can be expressed by

rCN = g(d, CCN) (18)

The solid and liquid mass of ore pulp satisfies the conservation relation. The relation-
ship between the solid flow rate and liquid flow rate of ore pulp can be expressed as

Ql = Qs(
1

Cw
− 1) (19)

where Cw is the ore pulp concentration.
The average residence time of the chemical reaction can be computed by

τ =
V

Qs
ρs

+ Ql
ρl

× 1000 (20)

where ρs and ρl are the solid density and liquid density of ore pulp, respectively; and V is
the volume of the leaching tank.
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The residence mass of solid and liquid in the leaching tank can be expressed as

Ms = Qs × τ (21)

Ml = Ql × τ (22)

The leaching rate of gold can be computed by

y1 =
Cs0 − Cs

Cs0
× 100% (23)

The mechanism model of the leaching system is a nonlinear function and can be
expressed as

y1 = F(Cs0, CCN0, Ms, Ml , Qs, Ql , QCN , d, Cw, Vi, ρs, ρl , Co, rAu, rCN) (24)

The leaching tank is serially connected by ore pulp overflow. The effective volume
of each leaching tank is the same. It is assumed that the reactants in the leaching tank
can be mixed adequately. Material isolation is neglected. The resistance of ore pulp is
constant. The input and output schematic diagram of the cascade leaching system is
shown in Figure 4. For the stable operation of the leaching industrial process, the mass
conservation principle satisfies Qs = Qs0 and Ql = Ql0. The total leaching rate of the
cascaded gold cyanidation leaching system can be expressed as

y =
Cs0 − CsN

Cs0
× 100% (25)

where CsN is the solid gold concentration of the Nth leaching tank.
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The addition of sodium cyanide to each leaching tank is an operational variable. The
model structure of each leaching tank in the cascade leaching system is the same, but the
kinetic reaction velocity model parameters of different leaching tanks need to be estimated.
If every leaching tank model adopts the same parameter, it will cause model mismatch and
reduce the prediction accuracy of the leaching rate. Therefore, the unknown parameters
in the model should be identified by the actual process data. There are many unknown
parameters in the leaching process mechanism model. It is difficult for conventional
optimization algorithms to obtain a satisfactory global optimal solution. It is more likely to
obtain the optimal operating variable by intelligent optimization technology.

5. Parameter Estimation Based on PSO Algorithm

The gold dissolution rate rAu = f (d, CO, CCN , Cs) and the consumption rate of cyanide
ions rCN = g(d, CCN) cannot be measured using the detection equipment for online mea-
surement. The kinetic reaction models estimated by the existing literature based on the
least square method are



Systems 2023, 11, 78 9 of 21

rAu = (1.13× 10−3 − 4.37× 10−11d
2.93

)(Cs − Cs∞(d))
2.13

CCN
0.961CO

0.228 (26)

rCN = (
1.69× 10−8

d
0.547 − 6.40

)CCN
3.71 (27)

where the residual gold concentration Cs∞ in the solid is a function of d and expressed as

Cs∞(d) = 0.357(1− 1.49e−1.76×10−2d) (28)

The differential equations of gold concentration and cyanide ion concentration can be
expressed by

dCs =
Qs

Ms
∗ (Cs − Cs∞)− (1.13 ∗ 10−3 − 4.37 ∗ 10−11d

2.93
)(Cs − Cs∞)2.13C0.961

cn C0.228
0 (29)

dCcn =
Ql
Ml
∗ (Ccn0 − Ccn) +

Qcn

Ml
− (

1.69 ∗ 10−8

d0.547 − 6.40
)Ccn

3.71 (30)

Due to different production environments and equipment parameters, the empirical
model obtained from existing literature cannot be directly applied to the leaching system
in this paper. However, it provides a good reference for constructing a leaching system
model. The key adjusting parameters uAu and uCN in the gold dissolution rate and cyanide
ion consumption rate models can be estimated based on the existing model structure. The
parameter identification objective function is composed of the error norm between the
actual leaching rate obtained by assay and the leaching rate predicted by the model, i.e.,

J(uAu, uCN) =
N

∑
i=1
‖yi − ŷi‖2

2 =
N

∑
i=1
‖yi − Fi(rAu, rCN)‖2

2 (31)

The reaction velocity model is a nonlinear function of adjustment parameters and the
sampling data may contain measurement noise. The conventional least square optimization
or Newton optimization methods cannot easily obtain satisfactory optimization results [34].
Therefore, intelligent methods should be used to optimize the solution. Among many
intelligent optimization methods, the particle swarm optimization (PSO) algorithm has
the advantages of small computation and strong global convergence, which is suitable for
optimizing large complex process models. The intelligent PSO algorithm will be used to
solve the objective function. The PSO algorithm based on a simulated annealing strategy
has the ability of probability mutation and can avoid falling into the local extremum. The
velocity update and position update formulas of a particle can be expressed as

vi,j(t + 1) = ϕ
{

vi,j(t) + c1 · r1 ·
[
pi,j − xi,j

(
t)] + c2 · r2 ·

[
pg ,j − xi,j(t)]} (32)

xi,j(t + 1) = xi,j(t) + vi,j(t + 1), j = 1, 2, . . . , d (33)

where d is the dimension of the particle; r1 and r2 are random numbers between (0, 1); c1
and c2 are positive learning factors (or acceleration coefficients); ϕ = 2

|2−C−
√

C2−4C| is the

velocity compression factor, and C = c1 + c2.
The particle fitness function constructed by the standard PSO algorithm has some

limitations. Therefore, the simulated annealing algorithm is used to construct the fitness
function of particles to improve the global convergence and convergence speed of the
optimization algorithm. The initial temperature of the simulated annealing algorithm is
taken as t0 = f (pg)/ ln 5. The annealing mode is designed as tk+1 = λtk, where λ ∈ (0, 1)
is the annealing constant. The fitness of a particle pi can be computed by
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Fpi =
e−[ f (pi)− f (pg)]/t

N
∑

j=1
e−[ f (pi,j)− f (pg)]/t

(34)

where pg is the group optimal solution and f is the fitness function. The improved particle
swarm optimization algorithm is more suitable for optimizing the leaching process and
more likely to obtain the optimal operational variables. In the actual industrial system
application, the undetermined parameters involved in the optimization algorithm can be
taken according to the following criteria [35]. The number of particles is usually set to
between 50 and 100. The learning factor c1 and c2 are usually set in the interval between
1.3 and 2.8. The value of the annealing constant is usually chosen between 0.4 and 0.6. The
number of iterations can be determined according to the requirements of the industrial
process and is usually set to between 500 and 1500.

6. Compensation Modeling Based on LSTM Neural Network

The mechanism model parameters of the system can be obtained by the optimization
technique. However, due to the simplification in the modeling process, the prediction
of the mechanism model will have a large error. Intelligent methods can be used to
train the prediction errors to obtain a compensation model. The mechanism model of
the leaching system is derived by rigorous mathematical operation. It can well describe
the main dynamic trend in the leaching rate. However, the mechanism model cannot
accurately describe all the characteristics and complex variable relationships of the actual
process. When identifying the unknown parameters of the dynamic model of the leaching
system, the errors caused by model structure approximation and ideal assumptions are
not considered. The variation in production working conditions and random disturbances
will lead to the mismatching of mechanism model parameters, which will cause a large
prediction error. By mining the relationship between process data, data-driven technology
can compensate for the undescribed information of the mechanism modeling method. A
data-driven model is used to compensate for the output error caused by the unmodeled
dynamic of the leaching system, and the hybrid model can be established. Due to the bad
operating environment of the leaching process, there may be no abundant good data for
network training. Therefore, the general neural network methods cannot easily obtain
good error compensation results. Considering that the LSTM neural network can assign
different weights to memory information by using the forget gate, this operation can
weaken the adverse effects of data dispersion and dead zone cutoff on network learning.
Considering the characteristics of the gold cyanidation leaching system, the parallel hybrid
model is constructed by utilizing the LSTM neural network and the mechanism model, as
shown in Figure 5. The data model based on an LSTM neural network compensates for
the mechanism model output error. The LSTM neural network uses the prediction error
yerror = y− ym between the mechanism model output ym and the system output y to train
the network and obtain the error compensation output yc. The hybrid model output can be
expressed as yh = yc + ym.

The gating state of the LSTM neural network consists of a sigmoid layer and a point-
wise multiplication operation. The Sigmoid layer normalizes the input signal to determine
the retained information. The pointwise multiplication operation is to multiply the input
data dimension-by-dimension. This operation can protect the original dimension of the
data from being destroyed and ensure the composability of the output results of each gate.
The LSTM neural network uses input, forgetting, and output gates to protect and control
the cell state and transmission state. The input gate normalizes the information of the
previous hidden state and the current input information. The forgetting gate solves the
gradient attenuation problem by assigning different weights to the control information
and transferring the past information to the present moment. The output gate outputs the
current hidden state and passes it to the next layer. The LSTM neural network gate structure
is shown in Figure 6, where Xt is the batch data with n samples and x dimensions at time



Systems 2023, 11, 78 11 of 21

t; ht−1 is the hidden state at the previous moment; W is the learning weight parameter;
� represents the operation of multiplying by the corresponding element, i.e., the Hadamard
product; σ is the sigmoid function with a range of [0, 1]; and tanh is a hyperbolic tangent
function with a range [−1, 1].
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The hidden layers of the LSTM network not only transmit feedforward information
but also transmit internal feedback information. The LSTM network can take into account
not only current information but also historical useful information. The LSTM network
controls the transmission state through the gating state so that the network can remember
the information which needs to be remembered for a long time and forget the unimportant
information. The LSTM uses constant error flow to solve the problem of gradient disap-
pearance and gradient explosion in time-series data training. The information propagation
of the LSTM neural network mainly consists of forward propagation and error backward
propagation. Through forward propagation and error backward propagation, each gating
unit obtains the optimal weight matrix, bias matrix, and error information proportion
according to the cost function. The output layer outputs the training results, which mainly
consist of matrix linear transformation and normalization function. The schematic diagram
of the single-layer LSTM neural network is shown in Figure 7.
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The number of hidden layer nodes has a great influence on the training and compen-
sation of an LSTM neural network. If the number of hidden nodes is too few, the learning
and information processing capability of the network will be reduced. If the number of
hidden layer nodes is too many, it will more easily fall into the local extremum, increasing
the complexity of the network structure and reducing the speed of network learning. The
optimal number of hidden layer nodes s can be determined by

s < 2n + 1
s ≤
√

0.43mn + 0.12nn + 2.54m + 0.77n + 0.35 + 0.51
s = log2 N

(35)

where N is the number of modes; n is the number of nodes at the input layer; and m is the
number of nodes at the output layer. The network node parameters used in this study are
given in Table 1.
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Table 1. Network node parameters.

s n m

60 50 40

In general, the number of hidden layer nodes can be specified as one hundred, which
can satisfy the accuracy requirements. To prevent gradient explosions, the gradient thresh-
old can be taken as one. Network convergence can be promoted by reducing the learning
rate when network training reaches half times. The cost function of the network is con-
structed by the mean square error (MES) approach. The optimization method ‘Adam’ is
used to solve the problem [36]. Adam can ensure that each network weight maintains the
same learning rate and can be adjusted separately. The adaptive learning rate of different
parameters is calculated by the first and second moments of the gradient. Adam is the
combination of the root mean square propagation and adaptive momentum algorithms,
and its weight update formula is

wt = wt−1 − α
m̂t√
v̂t + ε

(36)

where t is the number of iterations; α is the learning rate and can be taken as α = 0.001; ε is a
small constant to increase data stability and can be taken as ε = 10−8; mt is the exponential
moving mean of the gradient, obtained from the first moment of the gradient; and vt is the
square gradient, obtained by the second moment of the gradient. The update formula mt
and vt are

mt = β1mt−1 + (1− β1)gt (37)

vt = β2vt−1 + (1− β2)g2
t (38)

where gt is the gradient of the objective function; m̂t is a modification of mt; v̂t is a modifi-
cation of vt.

m̂t =
mt

1− βt
2

(39)

v̂t =
vt

1− βt
2

(40)

where β1 and β2 are the constants that control exponential decay. In this paper, the
optimization method parameters of Adam are those given in Table 2.

Table 2. Parameters of Adam.

Max Epoch Gradient Threshold Initial Learn Rate Learn Rate Drop Period

500 0.85 0.0025 250

Learn rate drop factor Adjustment
parameter β1

Adjustment
parameter β2

Small constant ε

0.1 0.9 0.999 10−8

The prediction performance of the time series can be improved by improving data
training correspondence. The corresponding step size of historical data at each point is
increased and an autoregressive form is used to improve the prediction performance. A
sliding window prediction algorithm is proposed based on the LSTM neural network. The
prediction of a single point data {ui, yi} corresponding to yi is modified to use p adjacent
historical data

{
ui, · · · , ui−p, yi, · · · , yi−p

}
corresponding to yi for prediction output. It

should be noted that the sampled data of the actual system may contain noise and distur-
bance, which need to be cleaned and processed. It may be necessary to design specific test
experiments to obtain the data that can fully reflect the system performance to improve the
performance of the training network and the model prediction precision. The flowchart of
the proposed hybrid intelligent modeling strategy is shown in Figure 8.
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7. Experimental Verification

In order to verify the prediction performance of the proposed mechanism model,
parameter optimization method, and hybrid model, a cascade leaching system is used for
practical application tests. The variables and parameter values involved in the mechanism
model are shown in Table 3. By sampling the data between the input sodium cyanide and
the output leaching rate, as shown in Figure 9, the unknown parameters in the mechanism
model can be effectively optimized and determined.

In order to identify the mechanism model’s unknown parameters, the PSO algorithm
is used to solve the objective function. The dimension of the particle is taken as d = 14. The
number of particles is taken as N = 50. The number of iterations is taken as M = 500. The
positive learning factors are taken as c1 = 2.05 and c2 = 2.05. The annealing constant is
taken as λ = 0.5. The key adjustment parameters obtained by the identification algorithm
are shown in Table 4. The mechanism model can describe the main dynamic characteristics
of the cascade leaching system output, as shown in Figure 10. Due to some simplifications
in the process of establishing the mechanism model and the noise in the sampled data, there
is a large error between the prediction output of the mechanism model and the sampling
output. To improve the prediction accuracy of the model, the LSTM neural network will be
used to compensate for the output error.
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Table 3. The variables and value in the mechanistic model.

Variables Value Unit

Cw 39 %
Cw0 0 mg/kg
Cs 5 mg/kg
Cl 0 mg/kg
CO 7 mg/kg
d 80 µm

CCN0 250 mg/kg
Qs 2500 kg/h
V 68 m3

ρs 2.8 g/cm3

ρl 1 g/cm3

Table 4. Estimation of gold dissolution rate and cyanide ion consumption rate (N# means the
Nth Reactor).

Parameter 1#
Reactor

2#
Reactor

3#
Reactor

4#
Reactor

5#
Reactor

6#
Reactor

7#
Reactor

uAu 3.12 3.07 3.32 3.71 3.09 3.42 4.01
uCN 1.16 1.02 1.43 2.22 2.65 1.49 2.42
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The 3000 data samples are divided into two parts. The first part contains 2000 data
points and is applied to train the network. The second part contains the remaining
1000 data points and is used to test the network. Different adjacent point data are se-
lected to form a sequential recursive relationship for estimating the output error. Different
sliding window lengths (p) and numbers of hidden layers (Nl) are taken to construct
different neural networks. For comparing the prediction performance of the proposed
method, the hybrid model based on the BP neural network in the reference [37] is also
tested to validate experimental data. In addition, based on the BP neural network and
GRU neural network, the data-driven models without using system mechanism model
information are also tested to validate experimental data respectively [38]. In order to
quantitatively evaluate the prediction accuracy of different algorithms, the prediction er-
ror can be computed by yerror = y− yh. The mean of the prediction error is computed

by ymean = mean(
L
∑

i=1
y(i)− yh(i)). The variance of the prediction error is computed by

ymean = var(
L
∑

i=1
y(i)− yh(i)). The output prediction results by different methods are shown

in Figures 11 and 12. The means and variances of the prediction errors by using different
data-driven modeling methods are shown in Table 5. The means and variances of the
prediction errors by using different hybrid modeling methods are shown in Table 6. Note
that to more clearly display the input and output data and the estimates of the different
leaching process models, only a portion of the data is shown in these figures. The X-axis
represents the number of samples taken by a discrete computer sampling system. If the k is
multiplied by the sampling interval, it will represent the system sampling time. But when
computing the prediction error, all the sampled data is used. The cross-validation results
show that the hybrid models have better prediction results than the mechanism model and
data models. The compensation error based on the LSTM neural network is smaller than
that of the BP neural network and the GRU neural network. For signals with fast amplitude
changes, the multilayer LSTM neural network has better prediction results. Since the BP
neural network has no time-series operation, the BP network only trains the input data at
the current moment, without considering the useful information of the input data at the pre-
vious moment. The BP network uses the gradient descent method to train the network. The
weights of the BP neural network easily obtain local minima, which causes the termination
of the training without obtaining the global optimal solution. Since the discrete distribution
of the output data is large, it is difficult to train the BP neural network effectively. The
data-driven models established based on the BP network and the LSTM network have poor
extrapolation adaptability and large output prediction error. Since the forget gate of the
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LSTM neural network can assign different weights to memory information, the adverse
effects of data dispersion and dead zone cutoff on network learning are weakened, so the
hybrid model with a sliding window based on the LSTM neural network has a smaller
estimation variance and higher estimation stability. It can be seen that, as the number of
hidden layers of the LSTM increases, the error compensation effect is better. As the sliding
window length increases, the compensation effect also becomes better. However, when
the sliding window length increases to a certain amount, the compensation effect will be
reduced due to the transitional memory of the previous data. The hybrid model based on a
three-layer LSTM neural network with sliding window length (p = 5) has achieved a good
compensation effect for the cascade leaching system. We can see that the cascade leaching
process is a complex system of gold hydrometallurgy, involving many links, equipment,
and operating variables. The hybrid modeling technique combines the mechanism analysis
technique, intelligent optimization technique, and neural network data-driven modeling
technique. Many of the latest algorithms are used in the experimental comparison test.

Table 5. Mean and variance of prediction errors by using different data modeling.

Mechanistic
Model

Data Model
(LSTM)

Data Model
(BP)

Data Model
(GRU)

Mean 0.0021 0.0033 0.0051 0.0013
Variance 2.366× 10−6 5.813× 10−6 1.804× 10−5 5.6× 10−7

Table 6. Mean and variance of prediction errors by using different hybrid modeling.

Hybrid Model
(BP)

Hybrid Model
(LSTM p = 1)

Hybrid Model
(LSTM N = 3

p = 1)

Hybrid Model
(LSTM p = 10)

Hybrid Model
(LSTM

N = 3 p = 5)

Mean 0.0011 0.0029 0.0017 0.0024 0.0005
Variance 5.4× 10−7 3.331× 10−6 1.452× 10−6 2.669× 10−6 2.83× 10−7
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8. Conclusions

A hydrometallurgical leaching system with the serial connection of several leaching
tanks is characterized by strong coupling, nonlinearity, and different reaction rates. Ac-
cording to the principles of physics and chemical reactions and the principles of mass
conservation, a mechanism model has been established to reflect the dynamic character-
istics of the cascade leaching system. The mechanism model mainly consists of the gold
conservation equation, cyanide ion conservation equation, and the related kinetic reaction
velocity equation. The reaction rate model parameters are not the same due to the different
working environments of leaching tanks. The particle swarm optimization algorithm based
on a simulated annealing strategy has been used to estimate the key adjusting parameters
in the gold dissolution rate model and the cyanide ion consumption rate model. There
are some ideal assumptions and simplifications in the process of mechanism modeling.
The variation in production conditions and random disturbances can cause parameter
mismatch in the mechanism model and large prediction errors. The LSTM neural network
is used to mine complex relationships between process data. The output errors caused by
the unmodeled dynamics of the mechanism model are trained and compensated using
the LSTM approach. An intelligent hybrid model of the cascade leaching system has been
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established. The hybrid model of the leaching system is convenient to analyze the dynamic
characteristics and understand the influence of input variables on the leaching rate. The
hybrid model facilitates designing controllers and monitoring process operation, and also
provides a scientific basis for new process development. Finally, the effectiveness and
superiority of the proposed hybrid modeling algorithm are verified by comparison with
existing methods based on the data sampled from the cascade leaching industrial process.
The proposed modeling techniques and frameworks can also be optimized using other
intelligent optimization algorithms with better performance and the latest data-driven
modeling techniques. Note that when the proposed modeling technique is extended to
other industrial systems, it will be necessary to establish a mechanism model reflecting
the main dynamics of the system, and sufficient data training prediction errors are also
required in data compensation modeling. Otherwise, the establishment model will contain
prediction errors.
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Nomenclature

Variable Terminology
A1 cathode region (negative electrode)
A2 anode region (positive electrode)
δ Nengst interface layer thickness
A total surface area of metal in contact with water
v dissolution rate of gold
CCN0 initial cyanide-ion concentration in the liquid (mg/kg)
CCN cyanide-ion concentration in the liquid (mg/kg)
Cl0 initial gold concentration in the liquid (mg/kg)
Cl gold concentration in the liquid (mg/kg)
Co oxygen concentration in the liquid (mg/kg)
Cs0 initial gold grade in the ore (mg/kg)
CS gold grade in the ore (mg/kg)
CS∞ residual gold grade in the ore (mg/kg)
Cw solid concentration in the pulp (kg/kg)
d average size of the ore particles (µm)
Ml liquid holdup in the tank (kg)
Ms ore holdup in the tank (kg)
QCN cyanide flow rate added into the tank (mg/h)
Ql liquid flow rate into the tank (kg/h)
Qs ore flow rate into the tank (kg/h)
rAu dissolution rate of gold in the tank [mg/(kg h)]
rCN consumption rate of cyanide in the tank [mg/(kg h)]
t time (h)
V net volume of the tank reactor (m3)
τ average residence time of chemical reaction
ρs solid density of ore pulp
ρl liquid density of ore pulp
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yl leaching rate of gold
y total leaching rate of the cascade leaching system
CsN solid gold concentration of the Nth leaching tank.
vi,j velocity update formulas of particle
xi,j position update formulas of particle
d dimension of the particle
c1 & c2 positive learning factors (or acceleration coefficients)
ϕ velocity compression factor
pi fitness of particle
pg group optimal solution
yerror prediction error
.ym. mechanism model output
y system output
yc error compensation output
yh hybrid model output
Xt batch data with n samples
x dimensions at time t
ht−1 hidden state at the previous moment
W learning weight parameter
� operation of multiplying by the corresponding element
σ sigmoid function with a range of [0, 1]
tanh hyperbolic tangent function with a range [−1, 1].
N number of modes
n number of nodes at the input layer
m number of nodes at the output layer
wt weight of neural network
α learning rate
ε a small constant to increase data stability
mt exponential moving mean of the gradient
vt square gradient
gt gradient of the objective function
β1 & β2 constants that controls exponential decay
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