
Citation: Ozkaya, M.; Akdur, D.;

Toptani, E.C.; Kocak, B.; Kardas, G.

Practitioners’ Perspectives towards

Requirements Engineering: A Survey.

Systems 2023, 11, 65. https://

doi.org/10.3390/systems11020065

Academic Editor: Ed Pohl

Received: 28 December 2022

Revised: 14 January 2023

Accepted: 24 January 2023

Published: 27 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Practitioners’ Perspectives towards Requirements Engineering:
A Survey
Mert Ozkaya 1,* , Deniz Akdur 2 , Etem Cetin Toptani 3 , Burak Kocak 3 and Geylani Kardas 4

1 Computer Engineering Department, Yeditepe University, Istanbul 34755, Turkey
2 ASELSAN Inc., Ankara 06830, Turkey
3 DFDS, Istanbul 34746, Turkey
4 International Computer Institute, Ege University, Izmir 35100, Turkey
* Correspondence: mozkaya@cse.yeditepe.edu.tr

Abstract: In this paper, we discuss the results of our survey among 84 practitioners in order to
understand practitioners’ perspectives towards requirements engineering. We asked 28 questions
to learn the practitioners’ motivations, the techniques and technologies used for different activities,
practitioners’ experiences with customer involvement, and any challenges encountered. Some
important results are as follows: the practitioners’ top motivations are the precise communication of
requirements and analyzing the requirements to detect issues. Most practitioners (i) insist on using
natural languages, (ii) specify requirements as the use case and scenario descriptions, (iii) neglect
using/transforming requirements for making high-level decisions and reasoning about requirements,
(iv) neglect the specifications of quality requirements and their reasoning while considering quality
requirements important, and (v) neglect any technologies for facilitating requirements engineering
(e.g., meta-modeling technologies, formal verification tools, and advanced tools). Practitioners
are challenged by the cost and effort spent in specifying requirements, the omissions of errors,
misinterpretations of requirements and their incorrect (manual) transformations, and customers’ lack
of technical knowledge. With the survey results, practitioners can gain an awareness on the general
perspectives, academics can trigger new research addressing the observed issues, and tool vendors
can improve their tools with regard to the weaknesses determined.

Keywords: practitioners survey; requirements engineering; specification; analysis; evolution; trans-
formation; customers

1. Introduction

Today, many software systems are either developed but not used, developed over
budget and time limits, or do not work as expected. Such issues are considered as a software
crisis or chaos [1]. As Standish group indicated that, in their recent chaos reports [2], 56% of
the software projects have been developed over budget, 60% of them exceeded the planned
time interval, and 44% of them failed to support the desired set of features and functions.
Indeed, several big software failure incidents have occurred since the early nineties and
led to catastrophic results, causing huge losses of money and human life. Some of the
most remarkable ones are the Ariane 5 rocket failure [3], US soldiers’ Precision Lightweight
GPS Receiver failure [4], Therac-25 radiation therapy machine software failure [5], and
Knight Capital Group’s trading software failure [6]. Moreover, more recent failures include
British Airways software failures [7], Google Plus software failure [8], and Amazon AWS
software failure [9]. All such software failures are partially (or even fully) due to the wrong
or inadequate applications of requirements engineering in software development projects,
which affect the system boundaries, system architecture and design, implementation and
testing, and therefore prevent the development of quality software systems on time and
within budget.

Systems 2023, 11, 65. https://doi.org/10.3390/systems11020065 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems11020065
https://doi.org/10.3390/systems11020065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0003-2329-9925
https://orcid.org/0000-0001-8966-2649
https://orcid.org/0000-0002-0198-7500
https://orcid.org/0000-0001-6975-305X
https://doi.org/10.3390/systems11020065
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems11020065?type=check_update&version=1


Systems 2023, 11, 65 2 of 29

Requirements engineering has been always considered as an indispensable part of the
engineering process and is concerned with the systematic and disciplined application of
techniques, technologies, and scientific approaches for gathering requirements and their
specifications that can further be analyzed, changed, and even transformed [10–13].

Software requirements can be gathered through different requirements gathering
techniques such as observation, interviewing, prototyping, and brainstorming [14]. The
gathered requirements can then be specified for such purposes as documentation, version-
ing, communication among different stakeholders (e.g., customers, developers, testers, and
analysts), and analysis. To specify the gathered requirements, different approaches can
be preferred. These include using natural languages in a restricted or unrestricted form,
office tools (e.g., PowerPoint and Word), de-facto general-purpose modeling languages
(e.g., UML [15] and SysML [16]), and any domain-specific modeling languages (DSMLs)
(e.g., AADL [17] and any in-house languages). The analysis of requirement specifications is
highly crucial for determining the quality of the requirements before using the requirements
in other stages of systems development (e.g., design, implementation, and testing) [18,19].
Note, however, that analyzing requirements may not always be possible depending on the
approaches used for specification. Whenever the software requirements are specified and
analyzed, the next thing to do is to use the requirements and produce some useful artifacts
for the system to be developed. That is, the requirement specifications can be transformed
into high-level design decisions (e.g., interaction and behavior decisions), skeleton program
code, and test scenarios [20].

Requirements also inevitably evolve constantly throughout the development lifecycle
due to many needs including the customer or user demands, platform changes, regulation
changes, design issues, and time and budget constraints. If the necessary changes cannot
be handled correctly by practitioners, this may even result in systems that fail to meet
their quality properties and work incorrectly [21,22]. For requirements engineering to
be performed effectively, one essential criteria is the involvement of customers [23,24].
With the customer involvement, requirements can be specified, analyzed, changed, and
transformed in a way that satisfies the customer needs.

While requirements engineering is highly important for developing quality software
systems, it is not clear how practitioners in industry approach requirements engineering.
With the current literature, it is very difficult (if not impossible) to understand practitioners’
motivations, the applications of different activities (e.g., gathering, specification, evolu-
tion, analysis, and transformation), the techniques, languages and tools used in different
activities, the challenges faced by practitioners in different activities, and practitioners’
relationships with their customers (e.g., the activities that customers are involved in and any
challenges). While the survey studies in the literature help in understanding practitioners’
experiences on some particular activities, none of those studies cover a diverse set of activi-
ties including requirements gathering, specification, change, analysis, and transformation.
Indeed, the requirements transformation and analysis are such important activities for
requirements engineering that are nevertheless not handled by most of the survey studies.
Additionally, while some surveys address practitioners’ relationship with customers, it
is not easy to understand which particular activities customers are involved in and how
challenging it is to work with the customers in those activities.

The goal of this paper is to conduct a practitioner survey so as to understand practi-
tioners’ perspectives towards requirements engineering by focusing on practitioners’ (i)
motivations for specifying and changing requirements, (ii) experiences with diverse activi-
ties of requirements engineering and challenges, and (iii) experiences with the customer
involvement. We uniquely consider all the gathering, specification, analysis, transforma-
tion, and evolution activities of requirement engineering and aim to learn practitioners’
knowledge and experiences and the tools and languages used for each activity. We also
intend to learn their challenges for each activity.

We strongly believe that the survey results will be highly useful for (i) the industries
who perform different activities of requirements engineering, (ii) tool vendors who develop



Systems 2023, 11, 65 3 of 29

languages and tools for requirements engineering, and (iii) academia who conduct active
research for improving requirements engineering. The industry practitioners could gain
some awareness on the practitioners’ general perspectives towards the requirements engi-
neering, general trends on the techniques, languages and tools, and any challenges. The
tool vendors could determine practitioners’ challenges on different activities and improve
their existing languages and tools accordingly. Lastly, academia could use the survey results
to determine new research questions to be investigated about requirements engineering.

2. Related Work

In this section, we analyze fourteen different empirical studies that surveyed prac-
titioners from different industries with regard to requirements engineering. In Table 1,
we show the analysis results of those surveys for a set of concerns that are addressed by
our survey study discussed in this paper. Those concerns are (i) practitioners’ motivation
for specifying and changing requirements, (ii) practitioners’ experiences towards different
requirements activities, (iii) the techniques, languages, and tools employed in different
activities, (iv) practitioners’ challenges, and (v) the customer involvement.

In the rest of this section, we discuss each survey study in a separate paragraph. At
the end, we give a summary of all those similar surveys.

In [25], Franch et al. surveyed 153 practitioners to understand practitioners’ point
of views with regard to the current research on requirements engineering. Franch et al.
studied and created short summaries of 435 different papers on requirements engineering.
The summaries have been presented to the practitioners via an online survey to obtain their
feedback.

In [26], Fernandez et al. surveyed 228 companies from 10 countries to understand
practitioners’ experiences and challenges on the requirements engineering. To this end,
Fernandez et al. designed 33 different questions focusing on different aspects, including
how practitioners gather, specify, and change requirements, any standards on requirements
engineering followed by the companies, and practitioners’ problems on applying require-
ments engineering and communicating with customers. Fernandez et al. aimed to analyze
the problems that practitioners face while performing the requirements engineering in
general and the causes of those problems.

In [27], Verner et al. surveyed 143 developers working in the U.S. or Australia so as
to understand the developers’ thoughts about how requirements engineering impacts on
the project success. Verner et al. designed 42 questions categorized into three groups—
the questions about the customers and users involved in the developers’ projects, the
questions about the requirements, and the question about how the development processes
are managed. Verner et al. essentially aimed to analyze how the quality of requirements
affects the project success and the project management impacts on the requirements quality.

In [28], Solemon et al. surveyed 64 practitioners from software development compa-
nies in Malaysia. Solemon et al. aimed to understand the external (e.g., customer related
issues) and internal factors that impact on the problems faced while performing the require-
ments engineering practices. Solemon et al. considered the Capability Maturity Model
Integration (CMMI) model to understand how CMMI impacts on the companies dealing
with requirements engineering problems.

In [29], Kassab conducted three different surveys between 2003 and 2013, all of which
attracted more than 500 practitioners. Kassab’s participants are actually the former MSc
Software Engineering students in the Masters of Software Engineering degree program at
the Penn State Great Valley School of Graduate Professional Studies. In his surveys, Kassab
focused on different activities related to requirement engineering, including requirements
gathering, analysis, presentation, management, prototyping, tools and effort estimation.
Kassab essentially aimed to understand to what extent the techniques and tools preferred
by practitioners in those activities change over time.

In [30], Juzdago et al. conducted a survey with 11 different organizations, each
of which has five to one hundred employees so as to learn practitioners’ experiences



Systems 2023, 11, 65 4 of 29

and challenges on requirements engineering from three different perspectives. These are
adoption, the source of requirements, and dependability. Adopting new technologies
has to do with how practitioners tackle using newly emerged tools and techniques and
any challenges that they face. Dependability has to do with practitioners’ experiences on
managing the quality requirements (e.g., safety and security). The source of requirements
has to do with the sources from whom/which practitioners gather the requirements and
any challenges faced.

Table 1. The analysis of the similar survey studies.

Similar
Works Year Survey Summary Country # of

Res.
Practitioners’
Motivation Activities Languages,

Tools
Challen-
ges

Custo-
mers

Franch
et al. [25] 2017

-Online survey
-Practs thoughts on
435 research papers

General 153 No No No No No

Fernandez
et al. [26] 2017

-Company survey
- Practs’ challenges
- Gathering, spec.,
changing req.

General 228 No Ga, spe, evol No Yes Yes

Verner
et al. [27] 2005

-Survey
-Practs’ thoughts
- Project man. impact
on req. quality

U.S.,
Australia 143 No No No No Yes

Solemon
et al. [28] 2009

-Survey
-Practs’ thoughts
-Challenges (internal,
external)
–CMMI impact
on companies

Malaysia 64 No No No Yes Yes

Kassab [29] 2015

-3 surveys
-Techniques, tools
usage and changes
over time

U.S. 500 No Ga, spec,
ana, man Yes No No

Juzdago
et al. [30] 2002

-Survey
-Practs’ experiences
-Adopting new techs.,
source of reqs.,
dependability

General 11 * No Ga No Yes No

Neill
et al. [31] 2003

-Online survey
- Req. gathering
and spec.
-Tools, notations

General 194 No Ga, spec Yes No No

Carrillo de
Gea et al. [32] 2012

-Survey
-Tool vendors
-Tool capabilities

General 38 No No No No No

Liu et al. [33] 2010
-Online survey
- Success, failure
scenarios

China 377 No Ga, spec Yes No Yes

Nikula
et al. [34] 2000

-Interview
- Techniques, tools
-Practs needs
- Industry-Academia

General 12* Yes No Yes No No

Memon
et al. [35] 2010

-Student survey
-Challenges on
learning req. eng.

Malaysia 48 No No Yes Yes No

Jarzębowicz
et al. [36] 2019

-Online survey
-Practs’ thoughts
-Req. eng. and agile
development

Poland 69 No Spec. Yes No Yes

Agren
et al. [37] 2019

-Interview
-Automative
-Practs thoughts
-Req. eng. impacts on
automative software

General 20 No No No No No

Palomares
et al. [38] 2021

-Interview
-Practs thoughts
- Roles involved
in gathering
-Gathering challenges

Sweden 24 No Ga Yes Yes Yes

Our Work 2023

- Survey
-Practs’ thoughts
-Several activities
-Techniques, tools,
languages in activities
- Activity challenges
-Customers

General 84 Yes Ga, spe, ana,
trac, evol, tran Yes Yes Yes

Ga: Gathering / Elicitation, Spe: Specification, Ana: Analysis, Trac: Traceability, Man: Management, Evol:
Evolution, Tran: Transformation, Practs: Practitioners, Req. Eng.: Requirements Engineering, *: Companies/Orga-
nizations, Req.: Requirements, Res.: Responses.

In [31], Neill et al. surveyed 194 practitioners so as to understand their knowledge
and experiences on requirements gathering and specifications. Neill et al.’s survey consists
of 22 questions on the techniques, tools, and notation used for the requirements gathering
and specifications. Neill et al. aimed to understand the techniques used for requirements
gathering and any modeling notations used for requirement specifications.



Systems 2023, 11, 65 5 of 29

In [32], Carrillo de Gea et al. surveyed 38 different tool vendors that provide tools
for requirements management so as to learn the capabilities of their toolset. To this end,
Carrillo de Gea et al. used the ISO/IEC TR 24766:2009 framework, which provides the
features for a requirements engineering tool, and designed a set of questions to be sent to
the tool vendors.

In [33], Liu et al. surveyed 377 practitioners from China so as to understand their
perspectives towards requirements engineering. Liu et al. focused on the techniques
used for requirements gathering and specifications. Additionally, Liu et al. further asked
the practitioners to learn their success and failure scenarios in applying the requirements
engineering activities.

In [34], Nikula et al. interviewed 12 companies so as to determine the improvement
needs for requirements engineering from the perspective of industry. Nikula et al. focused
on the techniques and tools for requirements specification and management. Nikula et
al. further focused on the general development needs for requirements engineering and
industry’s expectations from academia.

In [35], Memon et al. surveyed 48 students who have been educated in Malaysian
universities and took the requirements engineering course. Memon et al. intended to
understand the problems that the students face while learning the basics of requirements
engineering and their suggestions for improving the requirements engineering courses.

In [36], Jarzębowicz et al. surveyed 69 practitioners from the Polish IT industry
so as to understand practitioners’ approach towards requirements engineering in agile
software development projects. Jarzębowicz et al. considered the source of requirements in
agile projects, customers’ involvement in the agile projects, and the techniques used for
documenting requirements.

In [37], Agren et al. conducted two-stage interviews with practitioners from the
automotive domain so as to understand the impacts of requirements engineering on
increasing the development speed of the automative software. In the first stage, Agren
et al. conducted semi-formal interviews with 20 different practitioners, and the collected
data have been validated in the second-stage together with 12 practitioners. Agren et al.
focused on how the current techniques employed for requirements engineering affect the
development effort, any new techniques that could help reducing the development effort,
and how the agile development process supports all those.

In [38], Palomares et al. conducted interviews with 24 practitioners from 12 Swedish
IT companies. Palomares et al. aimed to understand practitioners’ perspectives towards
the requirements elicitation and focused more on the techniques employed for the require-
ments elicitation, practitioners’ challenges, and the different roles that are involved in the
elicitation processes (e.g., customers).

Summary

As shown in Table 1, none of the analyzed survey studies address all the concerns that
are fully addressed in our study. Indeed, our survey study is considered to be unique, which
sheds light on the reasons that encourage practitioners to specify and change requirements,
practitioners’ experiences on (i) a number of activities (gathering, specification, analysis,
transformation, and evolution), (ii) any modeling languages and tools used for each activity,
(iii) any challenges faced during each activity, and (iv) the customer involvement.

None of the existing surveys focus on understanding what motivates (or demotivates)
practitioners for specifying and changing the software/system requirements—the only
exception here is Nikula et al.’s survey [34]. Concerning the requirements engineering
activities, none of the existing surveys consider the requirements transformation activity,
which we believe is highly important for understanding practitioners’ experiences on
using the requirements for producing some other important artifacts including the high-
level design decisions (e.g., system interaction and behaviors), skeleton program code,
and test scenarios. Additionally, none of the existing surveys consider the analysis of
requirement specifications for detecting errors early on, which we consider as another



Systems 2023, 11, 65 6 of 29

limitation of the existing studies. The only exception here is Kassab’s work [29], which,
however, does not give any information about practitioners’ choice of performing manual
or automated analysis and any challenges faced during the requirements analysis that our
work considers as well.

Concerning the tools and languages employed, the existing survey studies either
show the tools and languages used in general or the tools used for a particular activity
only. It is not possible to understand what languages and tools practitioners use for the
specification, analysis, transformation, and evolution activities. Additionally, one cannot
easily understand any challenges faced regarding practitioners’ language and tool usages
and their experiences with different activities. Concerning the customer involvement,
while a few studies asked some questions about the customer involvement, it is not easy
to determine which activities of the requirements engineering customers are made to be
involved in and any challenges faced with.

3. Research Methodology

We followed the online survey method in our study and intended to collect the
responses online and analyze them in the quickest way possible [39].

3.1. Research Questions

In our survey, we investigate the following four research questions so as to achieve
the paper goal introduced in Section 1.

RQ1: What motivate practitioners for specifying and changing the software require-
ments? In this research question, the goal is to understand the reasons that impact on the
practitioners’ motivation for specifying requirements and changing them later on. To this
end, we aim to learn (i) any reasons that make practitioners specify and change require-
ments, (ii) the types of requirements that practitioners prefer to specify, (iii) the types of
concerns that practitioners prefer to address in their requirements specifications.

RQ2: What techniques and technologies do practitioners use for performing different
activities of requirements engineering? In this research question, the goal is to understand
for each activity considered in our survey—i.e., gathering, specification, analysis, evolution,
and transformation—any techniques and technologies used by the practitioners. To this
end, we aim to learn any (i) techniques used for the requirements gathering, (ii) modeling
approaches used for the requirement specifications, and (iii) technologies (e.g., languages
and tools) used for changing (i.e., evolving), analyzing, and transforming requirements. To
the best of our knowledge, there is no requirements modeling language or management tool
used by practitioners for performing all the activities considered. Therefore, we decided to
consider the languages and tools for each activity separately.

RQ3: What are the challenges that practitioners face in different activities of require-
ment engineering? In this research question, the goal is to understand any difficulties that
practitioners face while performing the activities of requirements engineering. To obtain
precise results, we aim to learn the challenges for different activities separately rather than
learning the challenges in general.

RQ4: To what extent are the customers involved in the requirement engineering?
In this research question, the goal is to understand to what extent practitioners involve
customers in their requirements engineering activities and the activities that the customers
are more or less involved with. We are also interested in learning any challenges that
practitioners face while involving customers.

3.2. Survey Design

To design our survey, we (i) used our expertise and experiences on the requirements
engineering and designing surveys [40–43], (ii) went through similar surveys conducted
in the past, which are discussed in Section 2, (iii) examined the well-known guidelines on
requirements engineering (e.g., [11,12]) and conducting surveys (e.g., [44]). Finally, we
ended up with a draft of survey questions.



Systems 2023, 11, 65 7 of 29

The survey draft starts with an introduction section, which introduces to any potential
participants what the survey is about and the expected time that the survey takes. Then, if
the participant agrees to continue, a profile section is presented to the participant, which
consists of a set of questions for learning the participants’ demographic information. Then,
we provide a list of sections that each consists of a set of relevant questions for (i) each
activity of requirements engineering (i.e., gathering, specification, analysis, transformation
and evolution) and (ii) the customer involvement. The questions in the survey sections
have been designed in such a way that the research questions described in Section 3.1 are
addressed completely.

To improve our survey draft, we conducted a pilot study together with a group of
practitioners and academics. Firstly, we sent our survey draft to two academics who
conduct active research on empirical software engineering. With the feedback received, we
revised the survey questions and research questions to ensure that the survey questions are
complete and consistent with the research questions and well-structured into meaningful
sections. Furthermore, we obtained some valuable feedback on the answer list of the
questions and were directed to the well-known papers that could support the questions. In
the second stage of our pilot study, we asked 10 different practitioners who are involved in
the development of software systems in one of the largest logistics companies in the world,
called DFDS [45], to share their feedback. To minimize any biases, we carefully selected the
practitioners holding different positions including analysts, software developers, testers,
scrum masters, and project managers. We asked the participants to fill in the survey
questions and note any comments or issues that they spotted. So, we got valuable feedback
about the ambiguous questions and the incomplete answer lists for the questions that could
further be improved from the practical perspectives. We also obtained feedback on the
questions’ answer types, which can be either multiple-choice, single-choice, or free-text,
and the average time that is required to fill in the survey.

Performing the pilot study on the survey draft, we finalized the questions as shown in
Table 2. So, the survey consists of different types of questions depending on the answer
types. While some questions are single-answered (Yes/No), some are multiple-answered
and some are free-text questions. The single answer questions (Q4, Q6, Q12, Q15, Q17, Q19,
and Q24) have been intended for learning precise data from the participants, e.g., the year of
experiences, the frequency of performing some activities, etc. For instance, the question “Do
you specify the requirements of any software system to be developed?" is answered with
either one of the following answers: always (100%), much of the time (>70%), often (>=50%),
sometimes (<50%), and never (0%). The multiple-answer questions are supplemented with a
pre-defined list of answers and further enable participants to type their own answers freely
if the existing list of answers does not include the participants’ possible answer(s). The
multiple-answer questions are those for learning the techniques, languages, and tools used
in different activities (Q8, Q10, Q11, Q20, Q21, Q25–26), the challenges faced in different
activities (Q14, Q23, Q28), and concerns that motivate the participants (Q7, Q9, Q16). To
determine the pre-defined answer lists for the multiple-answer questions, we considered
well-regarded books and articles in the relevant areas and came up with a list of possible
answers that have later on been revised and improved during the pilot study. The different
types of requirements in Q8 have been determined from Lethbridge et al.’s seminal book
on software engineering [14]. The different types of concerns in Q10 have been determined
from Rozanski et al.’s book on viewpoint descriptions [46]. The different analysis goals
in Q21 have been determined from Zowghi et al.’s highly-cited article on requirements
analysis and validation [19]. The different approaches for specifying requirements in Q11
have been determined from Taylor et al.’s book on software architectures [47]. Note that
the answer lists of the rest of the multiple-answer questions herein have been determined
using our expertise in the field. Lastly, some of the survey questions (Q18, Q22, and
Q27) ask the participants to type their own answers freely. Our free-text questions are the
ones that ask for any languages or tools used by the participants. Since many alternative
languages and tools are available, we did not want to provide participants with a huge



Systems 2023, 11, 65 8 of 29

list and rather asked the participants to type the names of the languages and tools that
they use freely, as also suggested in the pilot study. The free-text answers provided by the
participants are analyzed in detail using the coding strategy [48]. That is, each answer is
initially checked to determine whether the answer makes sense for the question, and any
answers that are difficult to understand are omitted. Those free-text answers that sound
close to any of the answers given in the question’s answer list (if any) are counted for that
pre-determined answer of the list. Otherwise, the free-text answer is considered as a new
answer to that question.

Table 2. The survey questions.

Res.
Que. Survey Questions Multiple

Answers
Free
Text

Single
Answer

Profile

1- Which industry(ies) do you work in? X X

2- What is (are) your current job position(s)? X X

3- What is your bachelor degree? X X

4- How many years of experience do you have in software development? X

5- Which software process models do you use for developing software
systems? X X

6- Do you specify the requirements of any software system to be developed? X

RQ1 7- Please rate the importance of the following motivations for the
requirements specification for you. X

RQ1 8- Which type(s) of requirements do you focus on? X X

RQ1 9- Which of the following concerns are important for you in the
requirements specification? X X

RQ2 10- How do you gather the requirements to be specified? X X

RQ2 11- Which approach(es) do you use for specifying the requirements? X X

RQ4 12- How often do you involve customers in the requirements specification
process? X

RQ4 13- What aspect(s) of the requirements engineering do you involve the
customers in? X X

RQ4 14- What are the challenges that you face with while involving customers
in the requirements specification? X X

RQ2 15- How often do you need to change the requirements during the
software development lifecycle? X

RQ1 16- What makes you change requirements? X X

RQ2 17- Do you use any traceability tools for determining the affected parts
(e.g., design, code, test artefacts) upon changing a requirement? X

RQ2 18- If you use any tools for changing and tracing requirements, please
tell us which tools you use. X

RQ2 19- How often do you analyse the requirements during the software
development lifecycle? X

RQ2 20- How do you analyse the requirements? X X

RQ2 21- Which of the following analysis goals are important for you? X

RQ2
22- If you use languages and tools for the requirements analysis, please
give the language and tool names and describe how you use them for
the requirements analysis.

X

RQ3 23- What are the challenges you face with while analysing the
requirements? X X

RQ2 24- How often do you transform the requirements into some other artefact? X

RQ2 25- What would you like to produce with the requirements transformation? X X

RQ2 26- How do you perform the requirements transformation? X X

RQ2 27- If you use language and tools for the requirements transformation,
please describe which language(s) and tool(s) you use and how. X

RQ3 28- What are the challenges that you face with while transforming the
requirements? X X

3.3. Survey Execution

We made our survey available online via Google forms, which was accessible for 3
months in between December 2021 and March 2022. We shared the survey link with



Systems 2023, 11, 65 9 of 29

several people who may be involved in the activities of requirements engineering in diverse
industries. In executing the survey, we initially used our personal contacts with whom
we have collaborated on different occasions including the consultancy services, R&D
projects with many industrial partners from Europe (e.g., ITEA Cluster programme), and
past/present work experiences in different industries and countries. So, we sent e-mails to
the groups of four different R&D projects and nearly 100 different practitioners whom we
know individually.

We also e-mailed the practitioners whom we identified via Google Scholar and who
contributed to the well-regarded conference and journal papers that are associated with
many relevant topics such as requirements engineering, software and systems engineering,
modeling, modeling languages, modeling toolsets, agile development applications/adapta-
tions, etc.

Additionally, we posted messages to several active mailing-lists to attract further
participation. These lists are the Eclipse modeling platforms (e.g., sirius-dev, graphiti-dev,
papyrus-rt-dev, emf-dev, emft-dev, agileuml-dev, papyrus-ic, etc.), Netbeans, IEEE architec-
ture description, and AADL. Another source of participants is social media platforms such
as Linkedin. So, we shared our survey on several Linkedin groups (e.g., agile development,
scrum, IT professionals, project management, modeling and modeling language, software
testing, and software and systems engineering groups) to reach as many participants as
possible. According to our observations, Linkedin particularly attracted many practitioners
from diverse industries, where our posts received many likes and shares.

3.4. Survey Sampling

We were not able to reach every single stakeholder who is involved in requirements
engineering activities in different industries. Therefore, we decided to perform the non-
probability sampling technique [49]. To this end, we initially attempted reaching our
personal contacts by e-mail, as we believed that this is the quickest way to attract partici-
pants to our survey. However, due to the non-random way of selecting participants, this
could cause biases. So, we intended to mimic the probability sampling by sharing our
survey link across some actively used mailing lists and Linkedin groups. By doing so, the
survey could be reached by anyone who may have an interest in participating in the survey,
and each participant who are enrolled in those mailing lists and Linkedin groups has an
equal chance to participate as they view our post.

3.5. Data Analysis and Validation

After collecting data via our survey, we proceeded with the analysis of those data
to eliminate any misleading ones. We have collected 95 different responses via Google
Forms, which are made available online [50]. Among those responses, four responses did
not include any data for the survey questions, which indicates that the corresponding
participants submitted the survey form without filling it in. We therefore eliminated those
four responses from our dataset. Additionally, we noticed that three participants answered
some of the profile questions and then refused to answer the technical parts of the survey.
We eliminated those three responses as well. So, we ended up with 88 different responses
in our dataset. Note that among the 88 responses, four participants answered question 6
(see Table 2) with the “Never” choice, which thus indicates that those participants never
specify the requirements of systems. To minimize any biases, we made the survey direct
those participants with no experience in requirements engineering to submit the survey
form without answering any questions. After the data validation, we ended up with 84
acceptable responses. Note also that we did not have the chance for offering any incentives
for attracting participants to the survey, and thus we think that the number of participants
reached here is not bad at all.

To analyze the 84 participants’ response data, we performed the voting method and
calculated the voting for each question’s answers. By doing so, we were able to draw
statistical inferences using the Google Forms and MS Excel tools. It should be noted that



Systems 2023, 11, 65 10 of 29

most of the similar surveys that we discussed in Section 1 also followed the same voting
approach to analyze the survey data. We strongly believe that the results that we obtained
and discussed in Section 4 aid in understanding practitioners’ thoughts and perspectives
on requirements engineering.

4. Survey Results
4.1. Profile
4.1.1. Work Industries

As shown in Figure 1, IT & telecommunications is the top-selected industry among the
participants (35%), which is followed by the computer manufacturing (33%) and software
outsourcing (15%) industries.

Figure 1. Participants’ work industries.

4.1.2. Job Positions

As shown in Figure 2, the top job position is the software developer/programmer
(44%), which is followed by the software architects (23%) and systems engineers (18%).

Figure 2. Participants’ job positions.

4.1.3. Bachelor Degrees

As shown in Figure 3, the top-selected bachelor degree is computer engineering (51%),
followed by the software engineering (16%) and electrical and electronics engineering
(12%) degrees.



Systems 2023, 11, 65 11 of 29

Figure 3. Participants’ bachelor degrees.

4.1.4. Years of Experience

As shown in Figure 4, the greatest portion of the participants (43%) have 10+ years of
experiences on software development, which is followed by the participants with less than
2 years of experiences (20%) and 2–5 years of experiences (20%).

Figure 4. Participants’ years of experience on software development.

4.1.5. Software Process Model

Figure 5 shows that agile software development is by far the most preferred software
development process model by the practitioners (77%). The agile model is followed by the
waterfall process model (35%).

Figure 5. The software process models preferred by the participants.

4.1.6. The Frequency of Requirements Specification

As shown in Figure 6, many participants (64%) frequently specify the software
requirements—19% chose “always” and 45% chose “much of the time”. Note that those
participants who never specify software requirements (5%) have been directed to submit
the survey without filling in the rest of the questions.



Systems 2023, 11, 65 12 of 29

Figure 6. The participants’ frequencies of requirements specifications.

4.2. Participants’ Motivations for Specifying the Software Requirements

Figure 7 shows six different concerns that can motivate the participants for specifying
software requirements. We provide a separate chart for each concern where the responses
are displayed with their percentages and the mean value is displayed at the bottom of the
chart using a red-colored circle.

Figure 7. Participants’ motivations for specifying the software requirements.

The results here reveal that “the precise communication of the requirements among
different stakeholders” is the top-motivating factor for the participants, as the mean value
here is in the middle of the “5 (Most Important)" interval. Also, “analysing requirements”
is found to be very motivating, given its mean value located in the beginning of the “5
(Most Important)” interval. So, most participants put their greatest emphasis on speci-
fying requirements in a non-ambiguous and precise way that can be understood clearly
and reasoned for detecting issues (e.g., incomplete, inconsistent, incorrect requirements)
early on.



Systems 2023, 11, 65 13 of 29

The rest of the the concerns are transforming requirements, documenting and ver-
sioning requirements and using the requirements to prepare for the software design and
implementation. While those concerns are also highly important for many participants,
their mean value is not inside “5 (Most Important)" and rather remains inside “4”.

4.2.1. The Types of Requirements

In this question, we aimed for learning what type(s) of requirements motivate prac-
titioners more and less. To this end, we considered Lethbridge et al.’s seminal book on
software engineering [14], which categorized requirements into four types—i.e., functional,
quality, process, and platform. As shown in Figure 8, almost all the participants (98%)
prefer to specify the functional requirements of software systems. Surprisingly, the ratio
of the participants who prefer to specify the quality (i.e., non-functional) requirements is
quite high (64%).

Figure 8. The types of requirements preferred by the participants.

4.2.2. The Requirements Specification Concerns

In this question, we aimed to learn what concern(s) of software systems are impor-
tant for the participants and addressed in their requirement specifications. To this end,
we offered a list of possible concerns that are inspired from Rozanski et al.’s viewpoint
descriptions [46], which provide a nice separation of concerns (aka viewpoints) that can be
addressed in the requirement specification and analysis of any software systems. Therefore,
our list of concerns include the use-case related concerns, scenario related concerns (e.g.,
test scenarios), system interactions (e.g., protocols of interactions), system behaviors (e.g.,
how the component state changes depending on events occurring), information (e.g., data
structures, data flow, data state changes), structures (systems’ decomposition into logical
elements), deployment (e.g., mapping physical elements with the logical elements), devel-
opment (e.g., source file structures and source-code structures), and operational concerns
(administering, installing/uninstalling, and operating systems).

As Figure 9 shows, the top-two concerns that have been selected by many of the
participants are (i) use-case (70%) and (ii) scenario (e.g., test scenarios that could be used
for testing the system to be developed) (65%). So, many participants specify requirements
so as to document the use-cases of their systems and the scenario descriptions. Note that
the rest of the concerns that are to do with using the gathered requirements and making
high-level decisions about the system to be developed have been selected by less than half
of the participants.

Figure 9. The concerns that the participants consider in their requirements specifications.



Systems 2023, 11, 65 14 of 29

4.3. Requirements Gathering
Techniques Used for Gathering Requirements

As shown in Figure 10, the participants’ most preferred techniques for gathering the
requirements are the use-cases provided by the customers (60%) and performing surveys
and interviews with the customers (54%).

Figure 10. The requirements gathering techniques preferred by the participants.

4.4. Requirements Specifications
The Modeling Approaches Used for the Requirements Specifications

In this question, we focused on Taylor et al.’s categorization of modeling approaches
into natural languages, PowerPoint-style modeling, and modeling languages [47]. As
Figure 11 shows, the most preferred technique for specifying requirements is natural
languages, which could be used in different formats (e.g., unrestricted natural languages,
templates, etc.). Overall, 35% the participants only use natural languages, while 29% of the
participants use natural languages together with the modeling languages and 13% of the
participants use natural languages with the PowerPoint-style approaches. Note that 16%
of the participants indicated that they use natural languages, PowerPoint, and modeling
languages together.

Figure 11. The modeling approaches used by the participants for the requirements specifications.

4.5. Customer Involvement
4.5.1. The Frequency of Involving Customers

As shown in Figure 12, more than half of the participants are highly interested in
involving customers in their requirements engineering activities—29% chose “always"
(100%) and another 26% chose “much of the time” (≥75%).

Figure 12. The participants’ frequency for involving customers in their software requirements
engineering activities.



Systems 2023, 11, 65 15 of 29

4.5.2. Customers’ Involvement in the Requirements Engineering Activities

As shown in Figure 13, the top activity in which the customers are involved is re-
quirements gathering (82%), and that is followed by the requirements analysis activity
(56%). Some participants (29%) indicated that their customers are involved in the require-
ments modeling, which is to do with specifying different types of requirements using
different types of modeling approaches (e.g., natural languages and modeling languages)
and addressing different concerns (e.g., use-case, scenarios, system interaction, and sys-
tem behavior). Lastly, 22% of the participants involve the customers in the requirements
transformation, which could be intended for different purposes, e.g., (i) producing useful
artifacts including test scenarios and program code, and (ii) making high-level design
decisions and reasoning about the requirements.

Figure 13. The requirements engineering activities that the customers are involved in.

4.5.3. Participants’ Challenges on Involving Customers

As shown in Figure 14, the participants’ top challenges are that (i) customers are not
so willing to be involved due to the technical knowledge required in the requirements
engineering activities (53%), and (ii) customers possibly do not easily understand the
precise requirement specifications that are described with some modeling languages (51%).
Some participants (42%) pointed out the challenge about the lack of a precise requirements
specification language, which causes the customers and participants to misunderstand each
other. A few of the participants (24%) face the challenge of a lack of transformation tool sup-
port that can transform the customer requirements into precise requirement specifications
automatically for different purposes such as requirements analysis and transformation
(e.g., test scenario generation and code generation). Some participants pointed out other
challenges (i.e., used the free-text option). That is, a few of the participants complain that
customers cannot separate an adequate amount of time for the requirements engineering
activities due to such reasons as the management pressure. Additionally, some participants
are concerned about some other issues including the customers’ lack of domain knowledge,
customers’ tendency for changing the requirements regularly during their involvement,
and the lack of traceability tools for tracing the impacts of changes made together with
customers.

Figure 14. The challenges that the participants face while involving customers in their requirements
engineering activities.

4.6. Requirements Evolution
4.6.1. The Frequency of Changing the Software Requirements

As Figure 15 shows, many participants do not frequently change the requirements
throughout the software development life-cycle. Indeed, just 34% of the participants
frequently change the software requirements, where 14% “always” change requirements
and 20% do so “much of the time” (≥75%).



Systems 2023, 11, 65 16 of 29

Figure 15. Participants’ frequency of changing the software requirements.

4.6.2. Participants’ Reasons for Changing the Software Requirements

In this question, we aimed to understand the source of changes by questioning the
participants who stated in the previous question that they make changes to the requirements.
As Figure 16 shows, 81% of those participants stated that the requirement changes are due to
the customers who ask to change the requirements (e.g., adding/removing functionalities,
support for new platforms or technologies, new/changed quality expectations, etc.). The
second top reason has to do with the changes on the priorities that may occur throughout
the software development life-cycles due to any technical or non-technical reasons (64%).
The rest of the possible reasons listed in the question’s answer list has been selected by less
than or equal to 40% of the participants.

Figure 16. Participants’ reasons for changing the software requirements.

A few participants pointed out some other reasons for changing the requirements,
which are not given the question’s answer list (i.e., the free-text typing). These are (i)
corporate, governmental rule or policy changes, (ii) imprecise specifications of requirements
at the beginning, and (iii) the technical limits (e.g., the lack of technical knowledge to design
and implement the system for a particular requirement).

4.6.3. Participants’ Usage Frequencies for the Traceability Tools

As Figure 17 shows, 40% of the participants “never” use any tools for tracking the
changes made on the software requirements. Just 25% of the participants frequently use
some traceability tools (10% chose “always” and 15% chose “much of the time”).

Figure 17. The participants’ usage frequencies of the traceability tools for the requirements changes.



Systems 2023, 11, 65 17 of 29

4.6.4. The Tools Used by the Participants for Tracing the Requirements Changes

Figure 18 shows the different tools used by the participants who stated in Figure 17 to
use any traceability tools for the requirement changes. Some participants use the popular
requirements management and traceability tools such as IBM Doors, Vitech, Siemens
Polarion, and IBM Rational RequisitePro, which provide advanced features for specifying
requirements, establishing their relationships and tracing those relationships to determine
any affects on the requirement changes, and also creating reports and metrics about the
requirement changes. On the other hand, some other participants prefer to use different
kinds of tools for tracing the requirement changes. These include the Office tools (e.g., MS
Word and Excel), versioning management tools (e.g., GIT), project management tools (e.g.,
Confluence, Trello, Easy Redmine, and Jira), modeling tools (e.g., Modelio, MagicDraw,
ReqIF modeling tools), and integration tools (e.g., Jenkins).

Figure 18. The tools used by the participants for tracing the requirement changes.

Concerning the tool usage rates, GIT is used by relatively more participants, which is
followed by the office tools, Jira, and DOORS. Confluence is also used by a few participants.
The rest of the tools are each preferred by one or two participants at most.

4.7. Requirements Analysis
4.7.1. The Frequency of Analysing the Software Requirements

The participants show a high-level of interest to the requirements analysis. As shown
in Figure 19, many participants (58%) frequently analyze their software requirements—26%
chose “always” and 32% chose “much of the time”.

Figure 19. Participants’ frequency of analyzing software requirements.

4.7.2. Analysis Techniques

As shown in Figure 20, among the participants analyzing requirements, most partici-
pants prefer manual inspection, which is concerned with analyzing software requirements
without using any languages and tools. Overall, 61% of the participants only perform
manual inspection and 25% of the participants use manual inspection together with some
languages and tools that promote the automated analysis of requirements. Only 14% of the
participants perform automated analysis exclusively.



Systems 2023, 11, 65 18 of 29

Figure 20. The techniques used by the participants for analyzing the software requirements.

4.7.3. Analysis Goals

In this question, we focused on Zowghi et al.’s approach for requirements validation
[19], where three different properties for requirements validation are defined—consistency,
completeness, and correctness. Consistency is concerned with if there exists any con-
tradictions between any two requirements, e.g., name inconsistency between any two
requirements that refer to the same service with different names. Completeness is con-
cerned with any requirement specifications that are incomplete with regard to the language
notation set or some design artifact (e.g., the software architecture design). Correctness is
concerned with any requirement specifications that are incorrect with regard to some prop-
erties (e.g., the incorrect behavioral requirement specification with regard to the deadlock
property).

As shown in Figure 21, a considerable number of the participants (35%) did not make
any particular choices among the completeness, consistency, and correctness properties
and chose all of them. That is, those participants are seemingly interested in analyzing re-
quirements for all the three properties and detecting any relevant issues. Additionally, 34%
of the participants are interested in analyzing requirements for just two of the properties
together. Among those selecting a single property, the top-interest has been shown to be
correctness.

Figure 21. Participants’ analysis goals for the software requirements.

4.7.4. The Languages and Tools Used for the Requirements Analysis

The greatest portion of the participants who use any languages and tools for the
requirements analysis tend to develop their own analysis tools for specifying and analyzing
requirements. Those participants seem to consider using programming technologies to
develop their analysis tools. Only one of those participants considers using the meta-
modeling technologies (i.e., Metaedit+ [51]), which support the easy and quick development
of modeling editors for any domain-specific languages and their supporting toolset (e.g.,
analysis tools and code generators).

Two of the participants use tools such as Qvscribe [52] and Vitech [53], which provide
advanced support for the requirements specifications and analysis. Another two partici-
pants use the UML/SysML modeling languages and their supplementary Object Constraint
Language (OCL), and therefore possibly use some UML modeling tools to analyze the
UML/SysML specifications with regard to the OCL constraint specifications. Additionally,



Systems 2023, 11, 65 19 of 29

another two participants use formal verification languages (e.g., Alloy [54], TLA+ [55],
and VDM [56]), to formally specify the requirements and prove the formal specifications
using the model-checking tools and theorem provers that support those formal languages.
Lastly, another participant prefers to use the office tools (e.g., MS Excel) to analyze their
requirements specifications.

4.7.5. Participants’ Challenges on Analyzing Software Requirements

As shown in Figure 22, the participants’ top challenge has to do with omitting the
requirement specification errors due to the manual analysis performed (64%). The top-
second challenge (30%) has to do with the inability of separating adequate amounts of time
and budget for the requirements analysis.

Figure 22. The challenges that the participants face with while analyzing software requirements.

A few participants indicated some other challenges that are different from the pre-
defined challenge list discussed above (i.e., the free-text option). Two of the participants
are concerned about the lack of skilled people for using the requirements analysis tools.
Indeed, formal verification languages and tools that can be used to specify and analyze
requirements require a steep learning curve. Additionally, one of the participants faced with
another challenge on the inability of common, precise understanding of the requirements
that prevents the effective analysis of requirements.

4.8. Requirements Transformation
4.8.1. The Frequency of Transforming the Software Requirements

Compared with the requirements change and analysis, the participants show a consid-
erably lower level of interest in the requirements transformation. As shown in Figure 23,
only 26% of the participants frequently transform the software requirements—7% chose
“always” and 19% chose “much of the time”. Additionally, 24% of the participants never
transform their software requirements.

Figure 23. Participants’ frequency of transforming software requirements.

4.8.2. The Types of Artifacts to be Produced

This question can be answered by all those participants who are interested in the
requirements transformation—even those who have never performed requirements trans-
formation before. As shown in Figure 24, the most considered artifact is the test scenar-
ios/cases (57%), which indicates that most participants wish to transform requirements



Systems 2023, 11, 65 20 of 29

into test scenarios. The top-second artifact (46%) is the requirements documentations (e.g.,
Word, HTML, and RTF), which indicates that the participants could use the requirements
gathered from customers (e.g., use-case scenarios) and produce formatted documentations
in some standard formats. These two artifacts are followed by the early design decisions
(44%), which has to do with transforming requirements into the high-level design decisions
about systems to be developed (e.g., structural, behavioral and interaction decisions).

Figure 24. The types of artifacts that the participants wish to produce via the transformation of the
software requirements.

4.8.3. Techniques Used for the Software Requirements Transformations

Among the participants who transform the software requirements, most of them (77%)
use manual approaches for the requirements transformation. That is, those participants
manually transform their requirements into, e.g., test scenarios, documentations, and
high-level decisions and do not use any languages and tools that could enable specifying
requirements and transforming them into a bunch of artifacts (e.g., scenarios) using a
user-defined transformation algorithm automatically and correctly.

4.8.4. The Languages and Tools Used for the Software Requirements Transformations

The small number of participants who use some languages and tools for the require-
ments transformation process followed different approaches. These include (i) developing
plugin tools for the existing modeling tools (e.g., MagicDraw) for transforming the re-
quirements specifications, (ii) using the code generation frameworks of the meta-modeling
technologies such as Metaedit+ [51], and (iii) developing in-house compiler applications
that can process the requirements specifications for different purposes.

4.8.5. Participants’ Challenges on Transforming Software Requirements

As shown in Figure 25, the greatest challenges occur due to (i) the considerable
amount of time and budget that need to be separated for the manual transformation of
requirements (54%) and (ii) the difficulties in ensuring the correctness of the transformation
process (41%). Note that, regardless of the manual and automated transformation of
software requirements, it is really difficult to check if the transformation works correctly
and produce the intended output.

Figure 25. The challenges that the participants face while transforming the software requirements.

5. Discussion
5.1. Summary of Findings

Below are the summary of the findings for the survey results that are discussed with
regard to the research questions of the survey study.

RQ1: Practitioners motivations for specifying and changing software requirements.



Systems 2023, 11, 65 21 of 29

Practitioners’ top concern is to specify the requirements precisely so that the collab-
orating stakeholders (e.g., customers, system engineers, software engineers, and testers)
understand each other in the same way and analyze those requirements to detect any
incompleteness, inconsistencies, and incorrectness issues. So, obtaining the right require-
ments the first time is essentially the main priority of the practitioners contributing to the
survey.

Almost all the practitioners (98%) specify requirements for the functional aspects of
systems. Indeed, the use-cases and scenarios are the top-concerns that are addressed in
the requirements specification process (65–70%), which have to do with the functional
requirements. It should also be noted that 64% of the practitioners specify the quality
aspects of systems, which is quite surprising and indicates that practitioners have started to
realize the importance of the quality requirements for developing the system functionalities
in a quality way. Indeed, this is quite opposite to the past survey results that indicate
practitioners’ reluctance towards the quality requirements [57–59].

Another interesting outcome has to do with the practitioners (64%) changing require-
ments due to the requirement priorities. This can be attributed to the practitioners who
prefer the agile software process model (77%), which actually promotes the software sys-
tems to be developed in multiple, iterative releases that differ from each other on the
requirements implemented depending on their priorities [60]. The requirement priorities
can change dynamically due to the time and budget constraints and cause the existing
requirements to be changed, left for a later release, or even totally omitted.

RQ2: The techniques and technologies used by practitioners in performing different activities
of requirements engineering.

The top techniques for requirements gathering are the use-case scenarios (60%) and
surveys and interviews (54%), where customers are the source in both techniques. On the
other hand, it is not so common for the practitioners to be provided with an existing list of
requirements by the customers (44%) or asked to develop novel solutions by searching the
literature and market (41%).

Concerning the requirements specification, 35% of the practitioners use solely natural
languages for the requirements specifications, while just 7% of the practitioners solely use
modeling languages. Most of the practitioners who use modeling languages indicated that
they use modeling languages together with natural languages and PowerPoint tools.

Concerning the requirement changes, while many powerful requirements manage-
ment and traceability tools are available (e.g., IBM tools, Siemens Polarion, Vitech, Magic-
Draw, Modelio, etc.), more than half of the practitioners (58%) rarely use any traceability
tools to manage the requirement changes.

Concerning the requirements analysis, 58% of the practitioners frequently analyze
their software requirements and many of them are highly interested in analyzing the re-
quirements for all properties considered (i.e., completeness, consistency, and correctness).
However, the tool usage for the automated requirements analysis is rare. This may be at-
tributed to the fact that many analysis tools essentially require some specification languages
to be learned and used [61,62]. Indeed, model checkers that can prove the correctness of
the requirement specifications need to use process algebras, which are known too have a
steep learning curve [63].

The requirements transformation is rarely performed by the practitioners—just 26%
frequently transform requirements. The top artifact that wishes to be produced from the
requirements is the test scenarios (57%).

RQ3: The challenges that practitioners face with in different activities of requirement engineering.
Many practitioners are well aware that performing requirements analysis and trans-

formation manually causes some issues, despite the lack of tool usages for the necessary
automation. Indeed, practitioners agree that the requirement specification errors are omit-
ted with the manual inspection techniques and too much time and budget need to be
spent when requirements are analyzed and transformed into some other artifacts (e.g.,
test scenarios) manually. While the requirements analysis and transformation could be



Systems 2023, 11, 65 22 of 29

performed more effectively and productively via the automation support of the different
technologies available, we believe that practitioners are either not aware of many such tools
and technologies or never use them. Indeed, tool-related challenges for the requirements
analysis and transformation that are available in the answer lists of the respective survey
questions have been rarely selected by the practitioners.

RQ4: The customer involvement in the requirement engineering.
Nearly all the practitioners (98%) involve customers in their requirements engineering

activities to some extent. Most of those practitioners (82%) involve customers in the
requirements gathering activity and more than half of those (56%) involve customers in
the requirements analysis. Note also that 22% of the practitioners involve customers in
the requirements transformation. Indeed, transforming requirements into test scenarios
or high-level design decisions can be performed together with customers more effectively.
Customers could even help the development team to transform the requirements into
code (or low-level design decisions) [64]. However, the results show that practitioners’
top challenges indicated in the survey have to do with the customers who have limited or
no technical knowledge, which causes the customers to be reluctant to participate in the
requirements engineering activities or fail to communicate precisely even if they contribute.

5.2. Lessons Learned

We have previously conducted several industrial surveys on different aspects of soft-
ware engineering, including the surveys on practitioners’ knowledge and experiences
on software architecture [40], modeling experiences [65], software architecture modeling
languages [41], meta-modeling technologies [42], and practitioners’ model-driven engi-
neering experiences in the embedded systems domain [43]. Those survey studies let us
gain experience on designing survey questions effectively, finding participants, executing
surveys, and analyzing the responses carefully. The survey discussed in this paper is our
first attempt at conducting an industrial survey on the requirements engineering. Therefore,
we learned many technical lessons regarding practitioners’ knowledge and experiences
towards the requirements engineering, which are discussed in the rest of this sub-section.

We learned that most of the practitioners show a considerable level of interest in
each activity of requirements engineering (i.e., gathering, specification, analysis, change,
and transformation). However, many practitioners still use the traditional approaches
(i.e., informal natural languages) applied in the nineties for performing requirements
specification, despite the fact that the natural language specifications are very difficult (if
not impossible) to analyze, transform, and trace via some tool support. We believe that this
outcome needs to be used by both the tool vendors and academia. Academia can perform
some empirical research in the near future to understand what really makes practitioners
stay away from the modeling languages and tools and any supporting technologies (e.g.,
meta-modeling technologies). Tool vendors can also improve their tools with regard to
the results of those empirical studies. Any tool that supports the natural language-based
specifications of requirements in a precise way for enhanced communications and their
analysis and transformation could also be attractive for practitioners.

While almost all the practitioners wish the customers to be involved in the require-
ments engineering activities, practitioners’ top challenge is the customers’ lack of technical
knowledge and therefore reluctance to become involved. This could actually be considered
as one of the reasons that practitioners still use natural languages. Indeed, if any modeling
languages were used, customers would probably have difficulties in understanding the
specifications due to the language and tools’ learning curves.

Many practitioners who use tools for the requirements analysis prefer to develop
their own analysis tools for specifying requirements and checking them against such prop-
erties as the requirements completeness, consistency, and correctness. Actually, many
meta-modeling technologies have existed for 10 (or more) years, including Metaedit+ [51],
Eclipse Xtext [66], Eclipse Sirius [67], and MPS [68]. Meta-modeling technologies make it
very easy and quick to develop modeling editors with analysis support for any domain-



Systems 2023, 11, 65 23 of 29

specific modeling languages [69,70]. However, we learned that none of the practitioners
(except one participant using Metaedit+) participating in the survey use any meta-modeling
technologies. The practitioners instead use programming technologies to develop require-
ments analysis tools, which, however, could take much more time and budget, and the
resulting tools may not be so easy to extend.

The survey results indicate that practitioners essentially show a high-level of interest
on the quality requirements. However, the results also show that practitioners tend to
specify the use-case and scenario descriptions of systems, which essentially have to do with
the user–system interactions and thus the functional requirements. Specifying high-level
decisions about the system behaviors and interactions where the quality requirements
can be addressed is not considered by many practitioners. To minimize any knowledge
gap here, academia can consider opening more university courses at undergraduate and
graduate levels such as software architectures, formal specification and verification, soft-
ware modeling, model-based systems engineering for teaching the essence of modeling,
meta-modeling, and their aid in specifying and analyzing early decisions about system
requirements.

As discussed before, practitioners have been observed to rarely use any modeling
languages and toolsets for their requirements engineering activities. One should, however,
note that the existing modeling languages and toolsets suffer from a number of problems
that we believe could make the practitioners reluctant here. While UML is considered
as the most used general-purpose modeling language in the industry, UML is essentially
an ambiguous language that consists of many confusing diagrams and thus leads to the
requirement models that are open to different interpretations [71,72]. Note that as indicated
in the survey results, practitioners’ main motivations with the requirement specifications
have to do with the precise communications among stakeholders and analyzing require-
ments to detect any issues. Moreover, while hundreds of tools support UML for the
requirements modeling and analysis, the existing tools do not support reasoning about
the requirement specifications adequately [73]. Indeed, one cannot check the UML models
for any quality properties or define their own functional constraints for checking models
easily. So, academia can consider teaching potential practitioners how to specify their own
domain-specific modeling languages and toolset that could better suit their needs rather
than teaching the general-purpose UML language solely. Additionally, formal specification
languages have been existing for the formal specification and verification of system require-
ments and proving the correctness of the specifications for the quality properties. Some of
the well-known formal specification languages include ProMeLa [74], Alloy [54], AADL
[75], LOTOS [76], and TLA+ [55], and all these languages are supported with tools that sup-
port checking the specifications for the quality properties and proving their correctness as
well. However, formal specification languages are rarely used in industry due to requiring
steep learning curves with their algebraic notation sets [63]. Therefore, tool vendors for the
formal specification languages could introduce an additional level of abstractions that can
lower the learning curve with a higher level of notation sets and let practitioners use the
formal verification tools easily.

Lastly, we learned another lesson about some missing profile questions. To reduce
the time needed to fill in the survey and attract more participants, we did not include the
questions for learning the participants’ organization size, the types of software systems
developed and the level of complexity for the projects. However, lacking that information
prevented us from observing some interesting correlations such as the correlations between
(i) the organization size and the motivation for specifying requirements, (ii) tool usages and
the project complexity, and (iii) software types and formal modeling language usages.

5.3. Threats to Validity

In this section, we will discuss the potential threats to the validity of our survey results
and how we intended to mitigate those threats.



Systems 2023, 11, 65 24 of 29

5.3.1. Internal Validity

The threats to the internal validity of the survey results essentially have to do with
the cause–effect relationships, which indicate the possibility of some unknown variables
that affect the outcome and therefore lead to biased results [77–79]. The unknown variables
may occur due to the selection of the participants for the survey, which was the non-
random selection via convenience sampling in our case. Therefore, to minimize any
potential threats herein, we tried to simulate the random sampling. That is, as discussed
in Section 3.4, we did our best to spread our survey in as many platforms as possible
(e.g., mailing lists, Linkedin groups) where any participants using those platforms may
encounter our survey posts. We also sent three reminders in three months’ time to attract
any potential participants who may have omitted the previous posts. We further asked in
each post to share/forward the post to any whom the participants know in their domain
that may be interested in participating (i.e., the snowballing technique). So, we managed
to attract 84 acceptable responses from the participants with diverse profiles, including
different industries, job positions, and educations. Note here that while the participants
enrolled in those platforms may access the survey link randomly, we attracted the interested
participants only and that is actually considered as a nonrandom sampling. Lastly, we tried
to minimize any threats due to the instrumentation biases by performing a pilot study as
discussed in Section 3.2.

5.3.2. External Validity

The threats to the external validity of the survey results have to do with generalizing
the results to the entire population who are involved in the requirements engineering
activities [77–79]. While we are not able to reach every member of the population, we
tried to minimize any external threats by sharing the survey on various platforms. So, we
managed to reach practitioners with diverse profiles. Indeed, we received 84 acceptable
responses from 16 work industries, 19 job positions, and 13 bachelor degrees.

5.3.3. Construct Validity

The threats to the construct validity of the survey results have to do with how well
the research questions are investigated via the survey questions and practitioners’ answers
to those questions [77,79]. To minimize any threats here, we divided the survey questions
into separate sections where each section targets particular research question(s) introduced
in Section 3.1. Additionally, the answer lists for the survey questions have been defined
carefully using well-cited books or articles in the corresponding areas and revised through
a comprehensive pilot study involving academics who are highly experienced in the field
and industry practitioners. To avoid any misunderstandings and thus unintended answers,
we clearly explained the purpose of the survey to the participants before the participants are
allowed to answer the survey questions and indicated that we do not collect any personal
data—all collected data are kept anonymous. Lastly, to minimize any mono-operation
bias, we accepted responses from different profiles with diverse industries, job positions,
and educations.

6. Conclusions

Thanks to the survey study discussed in the paper, practitioners’ perspectives towards
the requirements engineering have been re-considered in a more comprehensive way.
The survey study provides unique results with its consideration of multiple important
aspects together including practitioners’ motivations, (i) practitioners’ experiences on the
requirements gathering, specification, analysis, transformation, and evolution, (ii) the
customer involvement, and (iii) the techniques and technologies used.

The survey results shed light on many crucial issues. Practitioners’ top motivations for
specifying requirements are (i) the precise communications among different stakeholders to
obtain the right requirements and (ii) the analysis of the requirement specification to obtain
the right requirements. Most practitioners specify the functional requirements to describe



Systems 2023, 11, 65 25 of 29

the use-cases and test scenarios of their systems to be developed. The quality requirements
are important for many practitioners as well. However, most of those practitioners do not
specify high-level decisions about system behaviors, interactions, and deployment that
enable reasoning about the quality requirements. Most practitioners still use the traditional
approaches for performing the requirements engineering activities. That is, practitioners
use natural languages in any form to specify requirements and neglect the state of the art
techniques and technologies (e.g., meta-modeling technologies and advanced requirements
management tools, and formal specification and verification techniques). While practition-
ers give high importance to the requirements analysis, most of them manually analyze
their requirements without using specialized modeling languages and their analysis tools.
Transforming requirements to produce any useful artifacts is not as popular as the require-
ments analysis and the main focus is on using the requirements to produce test scenarios
rather than program code or high-level design decisions. Again, most of those practitioners
perform manual transformations. Concerning the requirements change, most practitioners
change their requirements because of the customer demands and the requirement priorities
that could change constantly throughout the development life-cycle. Practitioners also
face some challenges while performing the requirements engineering activities, including
(i) the time and effort that need to be spent in performing the requirements analysis and
transformation activities manually, (ii) the issue of omitting many requirement specification
errors due to the manual analysis, (iii) ensuring the correctness of the transformation. Lastly,
most practitioners involve customers in their software development to some extent. The
top activities in which customers are involved are the requirements gathering and require-
ments analysis. However, practitioners are challenged due to customers’ limited technical
knowledge, which causes the customers to be reluctant to participate in the activities or fail
to communicate precisely.

In the near future, we are planning to validate the survey results in the DFDS company
that produces software solutions in the shipping and logistics industry [45]. We will
organize interview sessions with a large group of practitioners in DFDS and ask the
survey questions. We will also conduct similar interviews with our partners from the
automotive industry with whom we work together in the AITOC project [80] that is labeled
by the European Union’s EUREKA Cluster program ITEA (Information Technology for
European Advancement).

We strongly believe that the survey results will be useful for both academia, industry,
and tool vendors. Academia can use the survey results to shed light on their research
on requirements engineering. Industry can use the survey results to learn the general
perspectives of the practitioners on requirements engineering in terms of different activities
and customer involvement. Lastly, tool vendors can improve their tools on the requirements
management so as to better satisfy the needs of practitioners.

Author Contributions: Conceptualization, M.O. and D.A.; methodology, M.O. and D.A.; formal
analysis, M.O. and D.A.; investigation, M.O, E.C.T., and B.K.; resources, M.O, E.C.T., and B.K.; data
curation, M.O., D.A., E.C.T., and B.K.; writing—original draft preparation, M.O., D.A., E.C.T., B.K.,
and G.K.; writing—review and editing, M.O., D.A., and G.K.; visualization, M.O.; supervision, M.O.
and G.K.; project administration, M.O.; funding acquisition, E.C.T. and B.K. All authors have read
and agreed to the published version of the manuscript.

Funding: The APC was funded by DFDS.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The survey raw data (including the survey questions and the data
collected from the participants) are available on https://doi.org/10.5281/zenodo.6754676

Conflicts of Interest: The authors declare no conflict of interest.

https://doi.org/10.5281/zenodo.6754676


Systems 2023, 11, 65 26 of 29

References
1. Fitzgerald, B. Software Crisis 2.0. Computer 2012, 45, 89–91. https://doi.org/10.1109/MC.2012.147.
2. Chaos Report 2015. Available online: https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf

(accessed on 15 October 2022).
3. Dowson, M. The Ariane 5 software failure. ACM SIGSOFT Softw. Eng. Notes 1997, 22, 84. https://doi.org/10.1145/251880.251992.
4. Jackson, M. Seeing More of the World. IEEE Softw. 2004, 21, 83–85. https://doi.org/10.1109/MS.2004.51.
5. Leveson, N.G. The Therac-25: 30 Years Later. Computer 2017, 50, 8–11. https://doi.org/10.1109/MC.2017.4041349.
6. Davidson, C. A dark Knight for algos. Risk 2012, 25, 32–34.
7. British Airways System Problem. Available online: https://www.theguardian.com/world/2017/may/27/british-airways-

system-problem-delays-heathrow (accessed on 12 January 2023).
8. Google Plus Data Leak. Available online: https://www.usatoday.com/story/tech/2018/12/11/google-plus-leak-social-network-

shut-down-sooner-after-security-bug/2274296002/ (accessed on 12 January 2023).
9. Amazon Software Problem. Available online: https://fortune.com/2021/12/10/amazon-software-problem-cloud-outage-cause/

(accessed on 12 January 2023).
10. Hsia, P.; Davis, A.M.; Kung, D.C. Status Report: Requirements Engineering. IEEE Softw. 1993, 10, 75–79. https://doi.org/10.1109/

52.241974.
11. Cheng, B.H.C.; Atlee, J.M. Research Directions in Requirements Engineering. In Proceedings of the International Confer-

ence on Software Engineering, ISCE 2007, Workshop on the Future of Software Engineering, FOSE 2007, Minneapolis, MN,
USA, 23–25 May 2007; Briand, L.C., Wolf, A.L., Eds.; IEEE Computer Society: Washington, DC, USA, 2007; pp. 285–303.
https://doi.org/10.1109/FOSE.2007.17.

12. Nuseibeh, B.; Easterbrook, S.M. Requirements engineering: A roadmap. In Proceedings of the 22nd International Conference on
on Software Engineering, Future of Software Engineering Track, ICSE 2000, Limerick, Ireland, 4–11 June 2000; Finkelstein, A., Ed.;
ACM: Boston, MA, USA, 2000; pp. 35–46. https://doi.org/10.1145/336512.336523.

13. Rodrigues da Silva, A.; Olsina, L. Special Issue on Requirements Engineering, Practice and Research. Appl. Sci. 2022, 12.
https://doi.org/10.3390/app122312197.

14. Lethbridge, T.C.; Lagamiere, R. Object-Oriented Software Engineering–Practical Software Development Using UML and Java; MacGraw-
Hill: New York, NY, USA, 2001.

15. Rumbaugh, J.; Jacobson, I.; Booch, G. Unified Modeling Language Reference Manual, 2nd ed.; Pearson Higher Education: New York,
NY, USA, 2004.

16. Balmelli, L. An Overview of the Systems Modeling Language for Products and Systems Development. J. Obj. Tech. 2007,
6, 149–177.

17. Feiler, P.H.; Gluch, D.P.; Hudak, J.J. The Architecture Analysis & Design Language (AADL): An Introduction; Technical Report;
Software Engineering Institute: Pittsburgh, PA, USA, 2006.

18. Boehm, B.W. Verifying and Validating Software Requirements and Design Specifications. IEEE Softw. 1984, 1, 75–88.
https://doi.org/10.1109/MS.1984.233702.

19. Zowghi, D.; Gervasi, V. On the interplay between consistency, completeness, and correctness in requirements evolution. Inf.
Softw. Technol. 2003, 45, 993–1009. https://doi.org/10.1016/S0950-5849(03)00100-9.

20. Kos, T.; Mernik, M.; Kosar, T. A Tool Support for Model-Driven Development: An Industrial Case Study from a Measurement
Domain. Appl. Sci. 2019, 9, 4553. https://doi.org/10.3390/app9214553.

21. Lam, W.; Shankararaman, V. Requirements Change: A Dissection of Management Issues. In Proceedings of the 25th EUROMICRO
’99 Conference, Informatics: Theory and Practice for the New Millenium, Milan, Italy, 8–10 September 1999; IEEE Computer
Society: Washington, DC, USA, 1999; pp. 2244–2251. https://doi.org/10.1109/EURMIC.1999.794787.

22. Jayatilleke, S.; Lai, R. A systematic review of requirements change management. Inf. Softw. Technol. 2018, 93, 163–185.
https://doi.org/10.1016/j.infsof.2017.09.004.

23. Kabbedijk, J.; Brinkkemper, S.; Jansen, S.; van der Veldt, B. Customer Involvement in Requirements Management: Lessons
from Mass Market Software Development. In Proceedings of the RE 2009, 17th IEEE International Requirements Engineering
Conference, Atlanta, GA, USA, 31 August–4 September 2009; IEEE Computer Society: Washington, DC, USA, 2009; pp. 281–286.
https://doi.org/10.1109/RE.2009.28.

24. Saiedian, H.; Dale, R. Requirements engineering: Making the connection between the software developer and customer. Inf.
Softw. Technol. 2000, 42, 419–428. https://doi.org/10.1016/S0950-5849(99)00101-9.

25. Franch, X.; Fernández, D.M.; Oriol, M.; Vogelsang, A.; Heldal, R.; Knauss, E.; Travassos, G.H.; Carver, J.C.; Dieste, O.; Zim-
mermann, T. How do Practitioners Perceive the Relevance of Requirements Engineering Research? An Ongoing Study. In
Proceedings of the 25th IEEE International Requirements Engineering Conference, RE 2017, Lisbon, Portugal, 4–8 September
2017; Moreira, A., Araújo, J., Hayes, J., Paech, B., Eds.; IEEE Computer Society: Washington, DC, USA, 2017; pp. 382–387.
https://doi.org/10.1109/RE.2017.17.

26. Fernández, D.M.; Wagner, S.; Kalinowski, M.; Felderer, M.; Mafra, P.; Vetrò, A.; Conte, T.; Christiansson, M.; Greer, D.; Lassenius,
C.; et al. Naming the pain in requirements engineering–Contemporary problems, causes, and effects in practice. Empir. Softw.
Eng. 2017, 22, 2298–2338. https://doi.org/10.1007/s10664-016-9451-7.

https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://www.theguardian.com/world/2017/may/27/british-airways-system-problem-delays-heathrow
https://www.theguardian.com/world/2017/may/27/british-airways-system-problem-delays-heathrow
https://www.usatoday.com/story/tech/2018/12/11/google-plus-leak-social-network-shut-down-sooner-after-security-bug/2274296002/
https://www.usatoday.com/story/tech/2018/12/11/google-plus-leak-social-network-shut-down-sooner-after-security-bug/2274296002/
https://fortune.com/2021/12/10/amazon-software-problem-cloud-outage-cause/


Systems 2023, 11, 65 27 of 29

27. Verner, J.M.; Cox, K.; Bleistein, S.J.; Cerpa, N. Requirements Engineering and Software Project Success: An industrial survey in
Australia and the U.S. Australas. J. Inf. Syst. 2005, 13, pp. 225–238.

28. Solemon, B.; Sahibuddin, S.; Ghani, A.A.A. Requirements Engineering Problems and Practices in Software Companies: An
Industrial Survey. In Proceedings of the Advances in Software Engineering– International Conference on Advanced Software
Engineering and Its Applications, ASEA 2009 Held as Part of the Future Generation Information Technology Conference, FGIT
2009, Jeju Island, Korea, 10–12 December 2009; Proceedings; Slezak, D., Kim, T., Akingbehin, K., Jiang, T., Verner, J.M., Abrahão,
S., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 59, Communications in Computer and Information Science, pp. 70–77.
https://doi.org/10.1007/978-3-642-10619-4_9.

29. Kassab, M. The changing landscape of requirements engineering practices over the past decade. In Proceedings of the 2015
IEEE Fifth International Workshop on Empirical Requirements Engineering, EmpiRE 2015, Ottawa, ON, Canada, 24 August 2015;
Berntsson-Svensson, R., Daneva, M., Ernst, N.A., Marczak, S., Madhavji, N.H., Eds.; IEEE Computer Society: Washington, DC,
USA, 2015; pp. 1–8. https://doi.org/10.1109/EmpiRE.2015.7431299.

30. Juzgado, N.J.; Moreno, A.M.; Silva, A. Is the European Industry Moving toward Solving Requirements Engineering Problems?
IEEE Softw. 2002, 19, 70–77. https://doi.org/10.1109/MS.2002.1049395.

31. Neill, C.J.; Laplante, P.A. Requirements Engineering: The State of the Practice. IEEE Softw. 2003, 20, 40–45. https://doi.org/10.1109/
MS.2003.1241365.

32. Carrillo-de-Gea, J.M.; Nicolás, J.; Alemán, J.L.F.; Toval, A.; Ebert, C.; Vizcaíno, A. Requirements engineering tools: Capabilities,
survey and assessment. Inf. Softw. Technol. 2012, 54, 1142–1157. https://doi.org/10.1016/j.infsof.2012.04.005.

33. Liu, L.; Li, T.; Peng, F. Why Requirements Engineering Fails: A Survey Report from China. In Proceedings of the RE 2010, 18th
IEEE International Requirements Engineering Conference, Sydney, New South Wales, Australia, 27 September–1 October 2010;
IEEE Computer Society: Washington, DC, USA, 2010; pp. 317–322. https://doi.org/10.1109/RE.2010.45.

34. Nikula, U.; Sajaniemi, J.; Kälviäinen, H. A State-of-the-Practice Survey on Requirements Engineering in Small-and Medium-Sized
Enterprises; Technical report; Telecom Business Research Center Lappeenranta: Lappeenranta, Finland, 2000.

35. Memon, R.N.; Ahmad, R.; Salim, S.S. Problems in Requirements Engineering Education: A Survey. In Proceedings of the 8th
International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 21–23 December, 2010; Association for
Computing Machinery: New York, NY, USA, 2010; FIT ’10. https://doi.org/10.1145/1943628.1943633.

36. Jarzebowicz, A.; Sitko, N. Communication and Documentation Practices in Agile Requirements Engineering: A Survey in
Polish Software Industry. In Proceedings of the Information Systems: Research, Development, Applications, Education–12th
SIGSAND/PLAIS EuroSymposium 2019, Gdansk, Poland, 19 September 2019; Proceedings; Wrycza, S., Maslankowski, J.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2019, Volume 359, Lecture Notes in Business Information Processing, pp. 147–158.
https://doi.org/10.1007/978-3-030-29608-7_12.

37. Ågren, S.M.; Knauss, E.; Heldal, R.; Pelliccione, P.; Malmqvist, G.; Bodén, J. The impact of requirements on systems development
speed: A multiple-case study in automotive. Requir. Eng. 2019, 24, 315–340. https://doi.org/10.1007/s00766-019-00319-8.

38. Palomares, C.; Franch, X.; Quer, C.; Chatzipetrou, P.; López, L.; Gorschek, T. The state-of-practice in requirements elicitation: An
extended interview study at 12 companies. Requir. Eng. 2021, 26, 273–299. https://doi.org/10.1007/s00766-020-00345-x.

39. Groves, R.M.; Fowler, F.J., Jr.; Couper, M.P.; Lepkowski, J.M.; Singer, E.; Tourangeau, R. Survey Methodology, 2nd ed.; John Wiley &
Sons: Hoboken, NJ, USA, 2009.

40. Ozkaya, M. What is Software Architecture to Practitioners: A Survey. In Proceedings of the MODELSWARD 2016–
Proceedings of the 4rd International Conference on Model-Driven Engineering and Software Development, Rome, Italy,
19–21 February 2016; Hammoudi, S., Pires, L.F., Selic, B., Desfray, P., Eds.; SciTePress: Setubal, Portugal, 2016; pp. 677–686.
https://doi.org/10.5220/0005826006770686.

41. Ozkaya, M. Do the informal & formal software modeling notations satisfy practitioners for software architecture modeling? Inf.
Softw. Technol. 2018, 95, 15–33. https://doi.org/10.1016/j.infsof.2017.10.008.

42. Ozkaya, M.; Akdur, D. What do practitioners expect from the meta-modeling tools? A survey. J. Comput. Lang. 2021, 63, 101030.
https://doi.org/10.1016/j.cola.2021.101030.

43. Akdur, D.; Garousi, V.; Demirörs, O. A survey on modeling and model-driven engineering practices in the embedded software
industry. J. Syst. Archit. 2018, 91, 62–82. https://doi.org/10.1016/j.sysarc.2018.09.007.

44. Molléri, J.S.; Petersen, K.; Mendes, E. Survey Guidelines in Software Engineering: An Annotated Review. In Proceedings of
the 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM 2016, Ciudad Real,
Spain, 8–9 September 2016; ACM: Boston, MA, USA, 2016; pp. 58:1–58:6. https://doi.org/10.1145/2961111.2962619.

45. DFDS. Available online: https://www.dfds.com.tr (accessed on 01.10.2022).
46. Rozanski, N.; Woods, E. Software Systems Architecture: Working with Stakeholders Using Viewpoints and Perspectives, 2nd ed.;

Addison-Wesley Professional: Westford, Massachusetts, USA, 2011.
47. Taylor, R.N.; Medvidovic, N.; Dashofy, E.M. Software Architecture–Foundations, Theory, and Practice; Wiley: Hoboken, NJ, USA,

2010.
48. Popping, R. Analyzing Open-ended Questions by Means of Text Analysis Procedures. Bull. Sociol. Methodol. De Méthodol. Sociol.

2015, 128, 23–39. https://doi.org/10.1177/0759106315597389.
49. Fricker, R.D. Sampling methods for web and e-mail surveys. In The SAGE Handbook of Online Research Methods; SAGE: Virginia,

USA, 2008; pp. 195–216.

https://www.dfds.com.tr


Systems 2023, 11, 65 28 of 29

50. Raw Data of Our Survey on the Practitioners’ Perspectives towards Requirements Engineering. Available online: https:
//doi.org/10.5281/zenodo.6754676 (accessed on 15 October 2022).

51. Kelly, S.; Lyytinen, K.; Rossi, M. MetaEdit+ A Fully Configurable Multi-User and Multi-Tool CASE and CAME Environment. In
Seminal Contributions to Information Systems Engineering, 25 Years of CAiSE; J.A.B., Jr., Krogstie, J., Pastor, O., Pernici, B., Rolland, C.,
Sølvberg, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 109–129. https://doi.org/10.1007/978-3-642-36926-1_9.

52. QVscribe. Available online: https://qracorp.com (accessed on 15 October 2022).
53. Vitech. Available online: https://www.vitechcorp.com (accessed on 15 October 2022).
54. Jackson, D. Alloy: A lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol. 2002, 11, 256–290.
55. Lamport, L.; Matthews, J.; Tuttle, M.R.; Yu, Y. Specifying and verifying systems with TLA+. In Proceedings of the 10th ACM

SIGOPS European Workshop, Saint-Emilion, France, 1 July 2002; Muller, G., Jul, E., Eds.; ACM: Boston, MA, USA, 2002; pp. 45–48.
https://doi.org/10.1145/1133373.1133382.

56. Plat, N.; Larsen, P.G. An overview of the ISO/VDM-SL standard. ACM SIGPLAN Not. 1992, 27, 76–82. https://doi.org/10.1145/
142137.142153.

57. Mairiza, D.; Zowghi, D.; Nurmuliani, N. An investigation into the notion of non-functional requirements. In Proceedings of the
2010 ACM Symposium on Applied Computing (SAC), Sierre, Switzerland, 22–26 March 2010; Shin, S.Y., Ossowski, S., Schumacher,
M., Palakal, M.J., Hung, C., Eds.; ACM: Boston, MA, USA, 2010; pp. 311–317. https://doi.org/10.1145/1774088.1774153.

58. Kopczynska, S.; Ochodek, M.; Nawrocki, J.R. On Importance of Non-functional Requirements in Agile Software Projects–A Survey.
In Integrating Research and Practice in Software Engineering; Jarzabek, S., Poniszewska-Maranda, A., Madeyski, L., Eds.; Springer:
Berlin/Heidelberg, Germany, 2020; Volume 851, Studies in Computational Intelligence, pp. 145–158. https://doi.org/10.1007/978-3-
030-26574-8_11.

59. Bajpai, V.; Gorthi, R.P. On non-functional requirements: A survey. In Proceedings of the 2012 IEEE Students’ Conference on Elec-
trical, Electronics and Computer Science, Bhopal, India, 1–2 March 2012; pp. 1–4. https://doi.org/10.1109/SCEECS.2012.6184810.

60. AL-Ta’ani, R.H.; Razali, R. Prioritizing Requirements in Agile Development: A Conceptual Framework. Procedia Technol. 2013,
11, 733–739. 4th International Conference on Electrical Engineering and Informatics, ICEEI 2013. https://doi.org/10.1016/j.protcy.
2013.12.252.

61. Erata, F.; Challenger, M.; Tekinerdogan, B.; Monceaux, A.; Tüzün, E.; Kardas, G. Tarski: A Platform for Automated Anal-
ysis of Dynamically Configurable Traceability Semantics. In Proceedings of the Symposium on Applied Computing, Mar-
rakech, Morocco, 3–7 April 2017; Association for Computing Machinery: New York, NY, USA, 2017; SAC ’17, pp. 1607–1614.
https://doi.org/10.1145/3019612.3019747.

62. Erata, F.; Goknil, A.; Tekinerdogan, B.; Kardas, G. A Tool for Automated Reasoning about Traces Based on Configurable
Formal Semantics. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, Paderborn, Ger-
many, 4–8 September 2017; Association for Computing Machinery: New York, NY, USA, 2017; ESEC/FSE 2017, pp. 959–963.
https://doi.org/10.1145/3106237.3122825.

63. Malavolta, I.; Lago, P.; Muccini, H.; Pelliccione, P.; Tang, A. What Industry Needs from Architectural Languages: A Survey. IEEE
Trans. Softw. Eng. 2013, 39, pp. 869–891.

64. Ramesh, B.; Cao, L.; Baskerville, R.L. Agile requirements engineering practices and challenges: An empirical study. Inf. Syst. J.
2010, 20, 449–480. https://doi.org/10.1111/j.1365-2575.2007.00259.x.

65. Akdur, D. Modeling knowledge and practices in the software industry: An exploratory study of Turkey-educated practitioners. J.
Comput. Lang. 2021, 66, 101063. https://doi.org/10.1016/j.cola.2021.101063.

66. Eysholdt, M.; Behrens, H. Xtext: Implement your language faster than the quick and dirty way. In Proceedings of the
SPLASH/OOPSLA Companion, Reno, NV, USA, 17–21 October 2010; Cook, W.R., Clarke, S., Rinard, M.C., Eds.; ACM: Boston,
MA, USA, 2010; pp. 307–309.

67. Viyović, V.; Maksimović, M.; Perisić, B. Sirius: A rapid development of DSM graphical editor. In Proceedings of the IEEE
18th International Conference on Intelligent Engineering Systems INES 2014, Tihany, Hungary, 3–5 July 2014; pp. 233–238.
https://doi.org/10.1109/INES.2014.6909375.

68. Pech, V.; Shatalin, A.; Voelter, M. JetBrains MPS as a Tool for Extending Java. In Proceedings of the 2013 International
Conference on Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools, Stuttgart,
Germany, September 11–13, 2013; Association for Computing Machinery: New York, NY, USA, 2013; PPPJ ’13, pp. 165–168.
https://doi.org/10.1145/2500828.2500846.

69. Kärnä, J.; Tolvanen, J.P.; Kelly, S. Evaluating the use of domain-specific modeling in practice. In Proceedings of the 9th OOPSLA
workshop on Domain-Specific Modeling, Florida, USA, October 25–29, 2009.

70. Nokia Case Study–MetaEdit+ Revolutionized the Way Nokia Develops Mobile Phone Software. Available online: https:
//www.metacase.com/papers/MetaEdit_{}in_{}Nokia.pdf. (accessed on 14 July 2022).

71. Siau, K.; Loo, P. Identifying Difficulties in Learning Uml. Inf. Syst. Manag. 2006, 23, 43–51. https://doi.org/10.1201/1078.10580530/
46108.23.3.20060601/93706.5.

72. Simons, A.J.H.; Graham, I. 30 Things that Go Wrong in Object Modelling with UML 1.3. In Behavioral Specifications of Businesses
and Systems; Kilov, H., Rumpe, B., Simmonds, I., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 523, The Kluwer
International Series in Engineering and Computer Science, pp. 237–257. https://doi.org/10.1007/978-1-4615-5229-1_17.

https://doi.org/10.5281/zenodo.6754676
https://doi.org/10.5281/zenodo.6754676
https://qracorp.com
https://www.vitechcorp.com
https://www.metacase.com/papers/MetaEdit_{}in_{}Nokia.pdf
https://www.metacase.com/papers/MetaEdit_{}in_{}Nokia.pdf


Systems 2023, 11, 65 29 of 29

73. Ozkaya, M. Are the UML modelling tools powerful enough for practitioners? A literature review. IET Softw. 2019, 13, 338–354.
https://doi.org/10.1049/iet-sen.2018.5409.

74. Holzmann, G.J. The SPIN Model Checker–Primer and Reference Manual; Addison-Wesley: Boston, USA, 2004; pp. I–XII, 1–596.
75. Feiler, P.H.; Lewis, B.A.; Vestal, S. The SAE Architecture Analysis & Design Language (AADL): A Standard for Engineering

Performance Critical Systems. In Proceedings of the IEEE Intl Symp. on Intell. Control, 2006 //aadl.info, Toulouse, France,
25–29 April 2006; pp. 1206–1211. https://doi.org/10.1109/CACSD.2006.285483.

76. Bolognesi, T.; Brinksma, E. Introduction to the ISO Specification Language LOTOS. Comput. Netw. ISDN Syst. 1987, 14, 25–59.
77. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B. Experimentation in Software Engineering; Springer: Berlin/Heidelberg,

Germany, 2012. https://doi.org/10.1007/978-3-642-29044-2.
78. Siegmund, J.; Siegmund, N.; Apel, S. Views on Internal and External Validity in Empirical Software Engineering. In Pro-

ceedings of the 37th IEEE/ACM International Conference on Software Engineering, ICSE 2015, Florence, Italy, 16–24 May
2015, Volume 1; Bertolino, A., Canfora, G., Elbaum, S.G., Eds.; IEEE Computer Society: Washington, DC, USA, 2015, pp. 9–19.
https://doi.org/10.1109/ICSE.2015.24.

79. Shull, F.; Singer, J.; Sjøberg, D.I.K. (Eds.) Guide to Advanced Empirical Software Engineering; Springer: Berlin/Heidelberg, Germany,
2008. https://doi.org/10.1007/978-1-84800-044-5.

80. AITOC ITEA Project. Available online: https://itea4.org/project/aitoc.html (accessed on 15 October 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://itea4.org/project/aitoc.html

	Introduction 
	Related Work 
	Research Methodology
	Research Questions 
	Survey Design 
	Survey Execution
	Survey Sampling 
	Data Analysis and Validation 

	Survey Results 
	Profile
	Work Industries
	Job Positions
	Bachelor Degrees
	Years of Experience
	Software Process Model
	The Frequency of Requirements Specification

	Participants' Motivations for Specifying the Software Requirements
	The Types of Requirements
	The Requirements Specification Concerns

	Requirements Gathering
	Requirements Specifications
	Customer Involvement
	The Frequency of Involving Customers
	 Customers' Involvement in the Requirements Engineering Activities
	Participants' Challenges on Involving Customers

	Requirements Evolution
	The Frequency of Changing the Software Requirements
	Participants' Reasons for Changing the Software Requirements
	Participants' Usage Frequencies for the Traceability Tools
	The Tools Used by the Participants for Tracing the Requirements Changes

	Requirements Analysis
	The Frequency of Analysing the Software Requirements
	Analysis Techniques
	Analysis Goals
	The Languages and Tools Used for the Requirements Analysis
	Participants' Challenges on Analyzing Software Requirements

	Requirements Transformation
	The Frequency of Transforming the Software Requirements
	The Types of Artifacts to be Produced
	Techniques Used for the Software Requirements Transformations
	The Languages and Tools Used for the Software Requirements Transformations
	Participants' Challenges on Transforming Software Requirements


	Discussion
	Summary of Findings
	Lessons Learned
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity


	Conclusions
	References

