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Abstract: Trajectory generation can help predict the future road network state and properly deal with
the privacy issues of trajectory data usage. To solve the problem that routes with very few journeys
(ultra-low-frequency journey routes) are difficult to generate in the large-scale complex road network
scenarios, the study designs a framework focusing on ultra-low-frequency route generation, ULF-
TrajGAIL, and proposes an original trajectory-augmentation method called the combined expansion
method. The specific original trajectory-augmentation method is determined by the pre-trajectory-
generation experiment, and high-quality synthetic trajectories with higher diversity and similarity are
output based on the final generation experiments which take the augmented trajectories as references.
Based on the real trajectories of a complex road network in a region of Guangzhou, the quality of
synthetic trajectories under different original trajectory-augmentation methods from the route, link
and origin and destination pairs levels has been compared. The results show that the method can
generate more ultra-low-frequency routes and help improve the overall diversity of routes and the
similarity between routes and the number of journeys as well.

Keywords: vehicle trajectory generation; generative model; imbalance learning; data augmentation

1. Introduction

Vehicle trajectory data contains rich information about the interaction between vehicles
and the road network environment, specifically the route-selection behaviors of vehicles in
the road network, and the information has important reference value for academic research
in the field of traffic management and planning [1]. Due to the randomness and vagueness
of route-selection behavior [2], research on trajectory data-driven trajectory feature mining
and prediction has been proliferating. With the development of deep-learning-based
generative models, the trajectory-generation task has gradually become a hot research topic
in recent years and the synthetic trajectory datasets with overall statistical characteristics
similar to the original trajectories by learning the potential distribution of the original ones
in the road network.

The trajectory-generation task is mainly used to serve two purposes. The first is to
address the dearth of real data by generating synthetic data that resembles real observations
to increase training and test samples. The second purpose is to take advantage of the
reasonable similarity of synthetic trajectories to achieve privacy protection in downstream
applications that serve this task. The resultant trajectories are all in line with the road
network topology rules, and can be selected by travelers in the real road network. Therefore,
they can be used for trajectory data-driven research. In addition, by specifying the generated
quantity of trajectories, it is possible to predict the distribution of journeys and evaluate
the future state of the road network based on the estimation of the total number of future
journeys. Thus, it can help road network administrations to manage and control in a
rational way, which in turn helps to realize richer downstream applications, such as route
recommendation to drivers through existing information systems. High-quality synthetic
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trajectories with more diversity and similarity contain more and more detailed route-
selection behavior features in the original trajectory, which can help achieve more accurate
prediction and recommendation.

Actually, in the realistic large-scale complex road network, there are many alternative
routes between multiple pairs of origins and destinations, but the vehicle trajectories
collected in this scenario usually involve many reasonable but rarely chosen routes [3].
Therefore, there are two main problems in the task of generating synthetic trajectories to the
real trajectories in this scenario due to the routes corresponding to relatively few journeys,
and this kind of route is defined as ultra-low-frequency route:

• A significant portion of ultra-low-frequency routes in the original trajectories do not
appear in the synthetic trajectories;

• The number of journeys corresponding to the learned routes will change when ensuring
the same generation quantity with the original trajectories and then the distribution
between routes and the number of journeys is destroyed as a result.

The above problems lead to the eventual loss of more diversities and similarities
in synthetic trajectories. It can be described as the problem of generating the trajectory
dataset with an unbalanced distribution of routes and number of journeys and has received
little research attention. It is similar to the extensive classification problem for unbalanced
dataset and related studies show that the dataset is unbalanced if each class does not contain
approximately equal sample sizes [4], and the imbalance learning problem occurs when
the samples are significantly unbalanced to their distribution among different classes [5].
Presently, the existing solutions adapted in imbalanced learning problems can be roughly
divided into algorithm-level and data-level approaches [6]. Some studies have shown that
the main advantage of the latter is that it is more intuitive, operational and generalizable [7].

To address the problem of generating high-quality synthetic trajectories corresponding
to unbalanced trajectory datasets that often occur in large-scale complex road networks,
ULF-TrajGAIL, a trajectory-generation framework that focuses on ultra-low-frequency
trajectory generation, is designed, and it uses TrajGAIL [8], a trajectory-generation model
based on generative adversarial imitation learning(GAIL), to generate similar trajectories
in the form of link sequences. Meanwhile, it also designs a unique data-level method often
applied to solve imbalance learning problems to help obtain high-quality synthetic trajecto-
ries and the involved expert trajectory data augmentation method uses the distribution of
routes and the number of journeys as the guide. The main contributions and innovations
of this study are as follows:

• The problem of generating the trajectory dataset with an imbalance learning problem in a
large-scale complex road network scenario has received attention for the first time, and the
ULF-TrajGAIL framework provides a fixed and integral process to solve the problem;

• A trajectory dataset imbalance degree measurement method, a trajectory group gen-
eration difficulty judgment method, and a data augmentation method oriented to
the distribution of routes and corresponding number of journey for the high-quality
trajectory-generation task are proposed;

• A more comprehensive synthetic trajectory quality measurement metric system involv-
ing route, link, and OD pairs from multiple perspectives is proposed to evaluate the
quality of the synthetic trajectories. The ability to generate ultra-low-frequency routes is
focused and the impact of each augmentation method on the correspondence between
route and journey frequency is also analyzed.

The remainder of this paper is structured as follows. In Section 2, a literature review is
presented to summarize the development of research related to trajectory generation and
the use of data-level approaches for classification imbalance learning, respectively. Then,
Section 3 will introduce the ULF-TrajGAIL and the framework will be validated with an
example in Guangzhou in Section 4. Finally, Section 5 concludes the work and discusses
future research directions.
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2. Literature Review
2.1. Trajectory Generation

With the rapid development of location sensing and wireless communication technologies,
GPS data are gradually and widely available, making GPS data-based traffic analysis gradually
popular. In the initial trajectory data-driven route feature mining tasks, there are studies on
modeling the route-selection behavior through commuters’ trajectory data directly using the
Logit model [9]. There are also related studies on trajectory periodic [10], sequence [11] and
other features mining based on historical trajectory data. However, these movement patterns
uncovered from trajectories are often subject to predefined one-sidedness.

Most of the subsequent studies go further to accomplish the task of predicting the
next position of trajectory or complete trajectory. Among related tasks, there are studies
that use the Markov model and its variants to perform next position prediction of vehicles
for single-user or multi-user aggregated trajectories [12]. There are also recurrent neural
networks and its variants which are advantageous for modeling variable-length sequential
distributions and take traffic states [13] or other contextual influences into account, such
as the purpose of travel [14]. However, the trajectories generated by multiple iterations
with tandem multiple predictions of the next location are not focused on the distribution
of the complete decision of the whole trajectory, and thus cannot be used to make route
decisions from a global perspective. In addition, some studies have used the percentage of
drivers turning at consecutive intersections to predict full trajectories [15] or find the most
popular route between two locations [16] with the same subjective limitation, thus making
the research on trajectory-generation models focusing on learning the distribution of raw
data gradually developed.

In studies focusing on the trajectory-generation task, the article [1] first envisions the
possibility of generating trajectory data using generative adversarial networks (GAN) [17]
with the TrajGAN framework. The article points out that the difficulty of trajectory gen-
eration lies in the grasp and measurement of the balanced relationship between utility
preservation and privacy protection of mobility patterns in the synthesized trajectories,
but do not provide a corresponding solution. Subsequent scholars have studied the tra-
jectories in the form of location points sequence. The TrajGen model [18] obtained by
combining GAN and Seq2Seq [19] generates the spatio-temporal synthetic trajectories of
cab trajectories, and uses cosine similarity to measure the spatial distribution. The TrajVAE
model [20] uses LSTM to model trajectories and variational autoencoder (VAE) to generate
corresponding formal trajectories, and focuses on measuring the similarity of two indi-
vidual trajectories. These trajectories in the form of location points are rich in semantic
information and can help infer the related activities of travelers in the process of trajectory
generation, but the discrete location points are not the focus of attention and do not reflect
the macro link selection behavior at intersections, so there are also related studies with
trajectories in the form of link sequences as the object. The TrajGAIL model [8] which is the
focus of this paper, aims at generating trajectories in the form of link sequences similar to
the distribution of the original trajectories. It gives attention to the geometric information
of the road network and the user’s decision at each intersection. And the study validates
the effectiveness of the model approach for generating trajectories on a regularized road
network and trajectory dataset with Jensen–Shannon divergence of routes.

However, while the trajectory-generation models can accomplish the task of generating
trajectories, none of them focus on the generation of imbalanced trajectory datasets that
are widespread in this large-scale complex road network context, and therefore lack a
process-oriented framework and specific method to solve such problems. And it is worth
noting that the original data plays an important role in the task of generating high-quality
data in autonomous driving scenarios based on imitation learning [21].

2.2. Data-Level Approaches

Data augmentation techniques mean that by adding small changes to existing data or
creating new synthetic data from existing data. The data-level approach mentioned here
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often applied to solve imbalance learning problems is one of the data augmentation methods
based on sampling techniques and it can be divided into three types: undersampling,
oversampling and hybrid sampling.

Undersampling tries to balance the dataset by reducing the number of samples of the
majority classes. In previous studies, there exist methods based on clustering methods to
obtain the distribution characteristics of samples of majority categories and thus reconstruct
the dataset [22] , but the inherent balancing mechanism of such methods always exposes
models to the risk of discarding the information-rich majority of samples [23].

Oversampling combats the difficult source of unbalanced data by increasing the sam-
ple size of minority classes to compensate for the lack of sufficient information in the
original dataset, and a related study [24] has shown that when the dataset is severely
unbalanced, oversampling methods outperform undersampling methods. Some oversam-
pling methods are further subdivided to include simple replications for samples of the
minority [25], which are the most tractable and generalizable, but may trigger overfitting
of the model with predictive purpose by improper handling. There also exists the most
widely used method for minority class sample synthesis based on interpolation techniques,
typified by SMOTE [26], which is based on the core idea that neighboring point features on
the feature space are similar. So such a method samples in the feature space instead of the
data space and thus achieves the purpose of synthesizing the data. But the principle makes
SMOTE seem to be problematic in the scenarios when the model needs to specify specific
oversampled objects because it works in feature space, which means that the output of
SMOTE is not synthetic data. In addition, more sophisticated minority sample generation
methods based on the unfolding of probability distributions are included [27], but such
methods require the availability of sufficient minority class samples to obtain the exact
potential distribution of these minority class samples through learning.

Hybrid sampling is a combination of the two methods above, where the model is
expected to ensure that enough features of the majority are learned while learning as many
small sample-size categories as possible. The study has experimentally verified that the
combination of random oversampling and undersampling can significantly improve the
correct classification rate of decision trees for the minority [28].

Although research on the problem of classifying unbalanced datasets have been
extensive and mature, it is worth noting that all of these methods require explicit boundaries
for a few or most classes in the dataset and are not designed for the task of trajectory
generation, so there is a strong need to continue exploring data-level processing methods
that can significantly improve the diversity and similarity of synthetic trajectories.

3. Methodology
3.1. Definitions

The trajectory dataset consists of thousands of trajectories and each trajectory can be
viewed as a journey, so the whole dataset can be regarded as a distribution of the journeys
corresponding to multiple routes. In a trajectory dataset where the trajectory is in the
form of link sequence, each route is composed of links in a certain order, which is also
called a trajectory category. Each trajectory contains time and spatial information of every
journey, so it is common to have multiple trajectories using the same route, and the number
of times each route adopted by drivers is called journey times or journey frequencies
corresponding to the route. Therefore, Ultra-low-frequency journey route is the route that
corresponds to relatively few journeys and is determined by the distribution of journeys,
so the corresponding trajectories are the ultra-low-frequency trajectories. Figure 1 is the
schematic of above definitions in the trajectory-generation scenario and route1 is more
likely to be the ultra-low-frequency journey route of this trajectory dataset.
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Figure 1. The schematic of related definitions in the trajectory-generation scenario.

From a macro perspective, the task of this study is to generate synthetic trajectories
that approximate the summary statistics and analytical capabilities inherent to the original
trajectory dataset, and it is also called the aggregated trajectory-generation task. However,
such a task becomes tough in a large-scale complex road network scenario due to the
imbalance learning problem triggered by ultra-low-frequency journey routes and the main
manifestation is the diversity and similarity of synthetic trajectories are reduced, i.e., low-
quality synthetic trajectories are generated eventually. In this way, the ultimate task is to
accomplish the aggregated trajectory-generation task better in large-scale complex road
network scenario with a targeted and effective framework and to generate high-quality
synthetic trajectories with higher diversity and similarity.

3.2. ULF-TrajGAIL Framework

The proposed framework consists of a key confirmation step and two stages as de-
scribed below.

In the confirmation step, the framework first calculates the values of the imbalance
degree of each trajectory group and the whole trajectory dataset separately by applying an
imbalance degree calculation method applicable to trajectory-generation scenarios. The
results are used as a basis for measuring whether the original dataset has imbalance learning
problem. Going through this step, it clarifies the pattern of imbalance degree of trajectory
groups oriented by route journey frequency, and the strategy of augmenting the expert
oriented by reducing the imbalance degree of trajectory dataset.

In the first stage, the framework determines the specific expert trajectory data aug-
mentation method through a trajectory-generation pre-experiment which uses the original
trajectory dataset E(0) as the reference expert trajectories and TrajGAIL model. During the
process, the difficulty degree of the model learning and generating each trajectory group
split by journey frequencies of related route, δk, is measured based on the preliminary
synthetic trajectories L(0). And then the specific journey frequency ranges of the ultra-low-
frequency journey route of the original expert trajectory dataset E(0), εk, is determined and
it is the direct basis for determining the special augmentation method.

In the second stage, the TrajGAIL is adopted again, but use E, the trajectory dataset
processed by the augmentation method, as the reference expert trajectories to obtain the
final synthetic trajectories L with the same number of trajectories but including more routes.
The overall process framework is shown in Figure 2.
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Figure 2. Framework of ultra-low-frequency trajectory generation using TrajGAIL.

3.2.1. Confirmation of the Imbalance Degree

The basic step is to confirm if there is a significant imbalance in the expert trajectory
dataset. The imbalance ratio (IR) is the most commonly used class imbalance metric. It
simply calculates the ratio of the sample size of the largest majority class to the smallest
minority class. However, IR is not a valid imbalance degree metric when faced with a large
number of trajectory classes because it does not take into account information about classes
with sample sizes between the two extremes, and thus IR is considered a low-resolution
metric for multi-class imbalance data [29].

Additionally, the distribution of routes and the number of journey is taken as the guide
and the routes with the same journey frequencies are divided into a route group first. Then
the original trajectories contained in the group fall into the trajectory group Ψ(k) of this
journey frequency k, which helps aptly explain the impact of unbalanced distribution of
routes and corresponding journeys on the similarity of synthetic trajectories. The number of
routes mk and the number of involved journeys k ·mk are counted for Ψ(k). The closer the
ratio of the proportion of mk in the total number of routes N and the proportion of k ·mk in
the total number of journeys W is, the lower the imbalance degree of Ψ(k) is. The distance
between the ratio of the two proportions and 1 is used as an indicator to measure the degree
of imbalance of Ψ(k) and is defined as ηk, as in Equation (1):

ηk =

∣∣∣∣mk
N

/
k ·mk

W
− 1
∣∣∣∣ = ∣∣∣∣WN · 1

k
− 1
∣∣∣∣ (1)

The impact of different frequency trajectories on the overall imbalance degree of the
trajectory dataset is described from the level of journey frequency characteristics differently.
At the same time, it can be seen from Equation (1) that each ηk within a trajectory dataset
is fixed and only related to k. Specifically, the higher ηk, the harder the routes involved
in Ψ(k) are learned fully by the generative model. But the larger the k is, the greater the
chance that the routes involved in the corresponding Ψ(k) are learned and generated,
and the occurrence of the latter will aggravate the former situation, making it difficult
to generate trajectory groups with lower journey frequencies. Thus, the metric gives
the reason the lower-frequency trajectories need more attention and targeted processing
and why the ultra-low-frequency journey routes often found in large-scale complex road
network scenario trigger imbalance problems within the trajectory group perspective. It
is the ultra-low-frequency journey routes that are the key factors affecting the imbalance
degree of a trajectory dataset. Although the routes of this kind are not the drivers’ preferred
ones, they contain numerous journey features that cannot be ignored and are important
contributors to reflect the diversity of trajectory dataset.
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Furthermore, all ηk are summed and defined as η , the measure of the imbalance degree
of the whole trajectory dataset consisting of different trajectory group, as in Equation (2):

η = ∑
k

ηk (2)

However, it should be noticed that the ultimate goal is not reducing the imbalance
degree of trajectory dataset, but the multidimensional quality of synthetic trajectory dataset
in the study. Attention needs to be paid to the quality metrics, and the fact is the reduction
of ηk is accompanied by a perturbation in the correspondence between the trajectory
dataset involving routes and journey frequency. As an important step in the generation,
the whole imbalance degree can be seen as an indicator to adjust the reference trajectories
for the trajectory-generation task, which means adjusting the correspondence between
routes and journey times in the direction of decreasing imbalance degree to reach an
appropriate distribution.

3.2.2. Theory and Application of TrajGAIL

As shown in Figure 2, the TrajGAIL model will be used twice in the ULF-TrajGAIL
framework described above. Therefore, it is necessary to introduce the idea of the model to
generate trajectories and the process of applying it.

TrajGAIL consists of a route-selection behavior model and a generative adversarial
imitation learning model. The route-selection behavior is first modeled using a Partially
Observable Markov Decision Process (POMDP), and the sequential pattern features con-
tained in each trajectory are mapped into “belief state”, st, which changes along with the
link sequence expansion. Now, the problem of learning the route-selection behavior is thus
transformed into the problem of learning the probability distribution of st.

st = f (o1, o2, · · · , ot) (3)

where o1 is the ith observation which refers to the ith link in the trajectory.
In the generative adversarial imitation learning part, multiple st have been embedded

by the GRU and defined as “expert behaviors”. Inverse reinforcement learning (IRL) tries
to find the reward mechanism r to describe the πE, the expert policies which guide the
turning behavior at intersections for each link. Reinforcement learning (RL) seeks the π,
learner’s policies, to maximize the expected cumulative reward based on r. The relationship
between these two learning processes is consistent with the idea of GAN, where the
RL can be described as a generator, G, based on r and the IRL is a discriminator, D,
to distinguish between πE and π. In the solving process, the problem of solving G and
D can be transformed into seeking the respective approximation functions. There are
a “Policy Generator” Gpolicy and a “Value Estimator” Gvalue in G in the form of deep
neural network. Gpolicy needs to complete the task of sampling the next turning behavior
based on the current link and the task of finding the corresponding next link during the
continuous expansion of link sequences. Gvalue has the task of estimating the reward value
for performing the current sampled action with the objective of minimizing the gap between
the estimated reward value Rpred and the true computed reward value Rreal . At the end of
each trajectory-generation process, D calculates the correct probability ACCE, the accuracy
of input trajectory as the expert, and ACCL which is the accuracy of input trajectory as the
learner by taking the optimization objective of minimizing binary cross-entropy.

In the concrete generation process, the first step is to construct the topology of the
road network in the study area. The topology lookup contains the next link selection
behaviors which are available and specifically refer to “turning left, straight, or right” to
drivers at each intersection based on every link. In addition, it is necessary to clarify all
the links entering and leaving the study area through the road network, because they are
the signals indicating the model to start and stop generating trajectories. Then, for the
trajectory in the form of link sequence, the study needs to complete the mutual verification
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with the road network topology and eliminate the wrong data that does not match with
the turning rules. Both the road network topology and trajectories need to be input into
the model. During multiple iterations, the network parameters are updated and saved
after each iteration by updating each st corresponding to the Gpolicy, Gvalue, and D. Finally,
the network parameter models Mpolicy, Mvalue, Gdiscrim under the corresponding iterations
can be loaded, and the synthetic trajectories of any quantity and length range are output.
The specific model application flow is shown in Figure 3.

Figure 3. Model of trajectory generation.

3.2.3. Difficulty Degree and Augmentation Method

Based on the preliminary synthetic trajectory L(0) obtained from the pre-experiment
of trajectory generation, the route that exists in the original trajectory dataset but does not
appear in the synthetic dataset is called unlearned route and corresponding journeys are
called unlearned trajectories. The number of unlearned routes and trajectories are counted
and the product of the ratio of mk to N and the ratio of uk, the unlearned routes, to the
number of mk is defined as the learning difficulty of each Ψ(k). δk is defined as follows:

δk =
mk
N
· uk

mk
=

uk
N

(4)

δk is the proportion of the number of unlearned routes with the journey frequency
k in the total number of routes involved in the original trajectory dataset. The larger the
metric is, the more the number of unlearned routes in each Ψ(k) is, and the more difficult
it is to learn and generate the involved trajectories. As mentioned before, there is a fact
that the trajectory group with lower journey frequencies is harder to be generated, so it
is only necessary to determine the upper limit of journey frequencies corresponding to
the ultra-low-frequency routes of this dataset, and then the complete range of journey
frequencies εk of the ultra-low-frequency routes can be obtained. When there is a significant
decrease between δk and δk′ of two contiguous Ψ(k) and Ψ

(
k
′
)

, then the journey frequency
k is defined as the upper limit of the journey frequency corresponding to the ultra-low-
frequency routes.

The εk obtained through the trajectory generation pre-experiments provides a reliable
basis for augmenting the unbalanced expert trajectories. Therefore, the proposed aug-
mentation method based on εk is also accurate and reasonable for the ultra-low-frequency
trajectories specifically defined based on the distribution of routes and corresponding
journeys. This augmentation method is called the combined expansion method and it
refers that the number of journeys corresponding to all routes involved in the ultra-low-
frequency trajectory are expanded to the minimum journey frequency corresponding to the
non-ultra-low-frequency trajectory at first, and then the number of journeys corresponding
to all routes involved in all trajectories are multiplied by two.

There are mainly two reasons for calling and designing this augmentation method
this way. First, since each trajectory fed into the model becomes a reference for the model,
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this method is an oversampling method for the minority categories. Second, it is called
a combined expansion method for two points of view. From the targeting perspective,
it can combine the results of pre-experiments to expand the journey times of ultra-low-
frequency routes learned with more difficulties purposefully and efficiently, and help
improve the diversity of synthetic trajectories by adjusting the overall imbalance degree
in the trajectory dataset. From the perspective of non-discriminatory treatment of journey
frequency expansion, the more the number of reference expert trajectories corresponds to,
the more time it takes to train the model usually. Therefore, after the targeted expansion
of some difficult trajectories, the number of journeys of all routes is expanded without
difference in learning probability on the premise of minimizing the size of reference expert
trajectories. In this way, such an expansion can protect the correspondence between routes
and journey frequencies to a certain extent without changing the imbalance degree of the
original trajectory dataset again, and improve the diversity of synthetic trajectories by
increasing the number of trajectories of references of experts once again.

4. Experiments
4.1. Description and Augmentation of the Original Trajectory Dataset

The distribution of floating vehicle trajectories in Guangzhou is relatively extensive,
and to ensure that there are sufficient and aggregated expert trajectories, the high-frequency
links taken as OD pairs of all trajectories within the trajectory distribution area are used as
the basis for the selection of the final study area. Then the area in and around Guangzhou
Tianhe CBD is finally delineated based on the frequency of links involved in the trajectory,
as shown in Figure 4.

Figure 4. The study area of trajectory generation. The red bold solid lines refer to the boundaries
of the study area, while the blue, green, yellow and purple solid lines represent the high-frequency
link of Origin and Destination involved in trajectories from the northeast, southeast, southwest and
northwest directions, respectively.

The study area contains 171 intersections, including 74 three-way intersections and
56 four-way intersections, involving 1273 turning relationships, with variable road direc-
tions, and the formed road network is in line with the category of large-scale complex road
network. The trajectories of the five working days from 24 to 28 February 2014 in this study
area are constructed as link sequence trajectories. The single link trajectories and circular
trajectories included in them are excluded. Finally, 503 routes with path lengths of 4–9,
i.e., the number of links contained in each route, totaling 10,499 journeys, are used as the
original expert trajectory dataset E(0) for the cumulative five days, covering 483 links which
are taken a total of 63,390 times.
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The total number of routes and journeys in the trajectory dataset corresponding to
different cumulative days are counted separately, as shown in the statistical graph on the
left of Figure 5. As the cumulative number of days increases, the total number of journeys
increases more compared to the change in the number of routes, which indicates that
there is an overlap of routes corresponding to the trajectories in the region, which in turn
indicates that the original reference trajectory dataset is available to learn the characteristics
of route-selection behavior.

Figure 5. Distribution of the number of routes and journeys and the imbalance degree of each original
expert trajectory dataset.

According to the proposed model, the imbalance status of this original trajectory
dataset is calculated in the confirmation step. Therefore, the imbalance degree η and IRs
for different cumulative days in the corresponding original reference trajectory datasets
are calculated, as on the right of Figure 5. In the context of calling a route in a trajectory
dataset as a trajectory category, IR is the ratio of the corresponding maximum journey
times to the minimum journey times in all trajectory categories. It can be seen that both
η and IR show an obvious increasing trend but different values with the accumulation
of days. On the one hand, it indicates that η can reliably reflect the imbalance degree in
the trajectory dataset while considering the distribution characteristics of the remaining
journey frequency trajectories. On the other hand, it reveals that the imbalance presented
by these trajectory dataset in this scenario is prevalent, and the imbalance degree does not
ease with the increase of the number of journeys, but gradually increases.

In addition, the imbalance degree for each journey frequency trajectory group of the
final selected original reference trajectory dataset, ηk, is calculated. Figure 6 shows that
the lower-frequency trajectory groups have more influence on the overall imbalance of
the whole dataset, while the higher-frequency trajectory groups contribute less because
the involved routes with more traveling are easier to learn due to the high. And η21 = 0
means it is k = 21 that is the optimal sample number of each trajectory category when the
trajectory dataset is balanced. However, the trajectory groups with k ≤ 21 involve 85.09%
of the total number of routes, while these trajectory groups contain only 15.57% of the total
number of journeys. It indicates that the overall imbalance of the original reference learning
trajectory is obvious, which greatly increases the number of routes that are difficult to learn
adequately for the generative model, and thus it is necessary to fall into the subsequent
stages of measurement and augmentation.

Based on the pre-experiment of trajectory generation, the difficulty of model learning
and generating routes involved in each trajectory group are calculated, in which the
routes with journey times greater than 21 are learned stably, so Figure 7 shows the final
calculated results of δk (k ∈ [1, 20]). First, δk shows a significant decreasing trend with
k, thus δ1 = 0.2644 is the maximum of all δk, which is about 2.5 times as large as δ2 and
5.5 times as large as δ3. Moreover, when k changes from 1 to 2, the difficulty of the model
to learn the trajectory group Ψ(2) decreases significantly compared to Ψ(1). It involves
33.40% of the original total routes, while the unlearned routes accounted for 79.17% of all
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Ψ(1). Therefore, the route corresponding to the journey frequency of 1 is defined as the
ultra-low-frequency route of this original trajectory dataset. When k > 5, δk has stabilized
to zero, so the routes corresponding to the journey frequency at [2, 5] are defined as the low-
frequency routes, and all journeys using the low-frequency routes are called low-frequency
journey trajectories.

Figure 6. Indicator of the imbalance degree of trajectory group.

Figure 7. Calculation results of the difficulty degree of each journey frequency trajectory in E(0).

The links covered by ultra-low-frequency journey trajectories are shown in Figure 8,
and it can be found that the links are widely distributed and contain the links taken by
trajectories of other journey frequency. It indicates that the ultra-low-frequency trajectories
in the original expert dataset of the case are stable, extensive and reasonably present in daily
journeys, containing a larger proportion of journey features in the study area. Therefore,
it is necessary to learn and generate such specific trajectories which are the most difficult
ones to be learned.

At this time, the specific augmentation method designed for this original expert
trajectory dataset is to first expand the journey times corresponding to all routes with
frequency of 1 to 2, and then the journey frequencies corresponding to all routes involved
in the original trajectories are multiplied by two.



Systems 2023, 11, 61 12 of 18

Figure 8. Links covered by ultra-low trajectories. All links covered by ultra-low-frequency trajectories
are outlined in solid green lines.

4.2. Experiments and Evaluations
4.2.1. Descriptions of Experiments

A total of ten trajectory-generation experiments are performed and all experiments
are specified to generate the same number of trajectory as the original trajectory dataset.

First, to verify the effectiveness of the above-mentioned expert trajectory-augmentation
method in improving the diversity and protecting the similarity of synthetic trajectories, E(0)

without any processing is used as the expert and the result of this experiment is used as the
benchmark for comparing the quality of synthetic trajectories. Then the different augmented
trajectories , E, are used as the expert for the other trajectory-generation experiment.

Second, in order to verify the rationality of this oversampling method, E(0) will also
be undersampled, which reduces the journey frequency k of the routes which are taken
more than 100 times to 100. And the hybrid sampling method increases k of the ultra-low-
frequency route from 1 to 2 while reducing the k of the highest frequency path from 772 to
700. But both experiments will be conducted, respectively, when the imbalance degree of
each trajectory dataset processed under corresponding methods is approximately equal to
the one under our specific augmentation method.

Moreover, to verify the superiority of the method, relevant experiments are also con-
ducted with the expert trajectories processed by different targeted expansion methods
which aim at ultra-low-frequency journey routes and low-frequency journey routes, re-
spectively. These processing methods of remaining experiments include only expanding
the journey frequency k of routes from 1 to 2, only expanding k ∈ [1, 2] to k = 3, only
expanding k ∈ [1, 3] to k = 4, and only expanding k ∈ [1, 4] to k = 5. And the experiment
only using the undifferentiated method to process E(0) is conducted as well, which ex-
pands the journey frequency of all routes to twice and takes the processed dataset as the L.
The tenth experiment using the extra combined expansion method is conducted and the
corresponding method increases k ∈ [1, 2] to k = 3 while expanding the journey frequency
corresponding to all routes involved in E(0) by twice as a whole.

Since the undifferentiated expansion method does not change the correspondence
between routes and the number of journeys, the η under Experiment 1 and 8 are same and
η under Experiment 4 and 9 are the same as well. But η of E under all targeted expansion
methods decreases continuously as the minimum journey frequency increases. Related
information is shown in Table 1.
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Table 1. Basic information of trajectory-generation experiments. The proposed method and corre-
sponding results are shown in bold.

No. Processing Method η Number of Routes of E Number of Travels of E Number of Travels of L

1 – 93.56 503 10,499 10,499

2 Undersampling 73.92 503 6267 10,499
3 Hybrid Sampling 74.00 503 10,595 10,499

4 Targeted Expansion to
k = 2 74.25 503 10,667 10,499

5 Targeted Expansion to
k = 3 65.25 503 10,919 10,499

6 Targeted Expansion to
k = 4 59.54 503 11,207 10,499

7 Targeted Expansion to
k = 5 55.43 503 11,528 10,499

8 Undifferentiated
Expansion 93.56 503 20,998 10,499

9 Combined Expansion 74.25 503 21,334 10,499

10 Extra Combined
Expansion 65.25 503 21,838 10,499

The training technique which makes the generator update six times and the discrimina-
tor update twice in each iteration is set because the discriminator usually learns faster than
the generator. And the optimal hyperparameters involved in the neuron network is same as
TrajGAIL [8]. The study sets the number of iterations for each experiment to 3000, and saves
the neuron network parameter models per hundred iterations. To ensure the stability of the
quality of the trajectories generated by each parametric model, three synthetic trajectory
datasets are generated for each model, and the optimal synthetic trajectory dataset is deter-
mined by comparing the number of “learned routes” in each synthetic trajectory dataset,
and then measuring the quality of synthetic trajectories. The “learned route” refers to the
routes which are contained in the original trajectory and appears in the synthetic trajectory,
and the corresponding part of the trajectory is called “learned trajectory”.

4.2.2. Evaluations

At first, ten groups of δk, difficulty degree of E are calculated intuitively based on the
optimal synthetic trajectory dataset corresponding to each method, as shown in Figure 9.
The overall variation trend of δk under all experiments is consistent. Compared with
Experiment 1 where the original trajectories are used as the expert, most of the δk in the
remaining experiments are reduced, especially δ1. The result means that all processing
methods can help reduce the difficulty of learning and generating trajectory groups of
different journey frequency and the effect is most significant in the ultra-low-frequency
trajectory group. Among them, the effects of Targeted Expansion to k = 5, Extra Combined
Expansion and Combined Expansion are the most significant, but the ability of the first
two methods to generate other frequency trajectory groups is gradually inferior to the
augmentation method proposed.

The quality of synthetic trajectories under each experiment in depth are further mea-
sured at three levels: route, link and OD pair. At the route level, by counting the number of
routes and journeys involved in the “learned trajectories” in the final synthetic trajectory L,
the proportion Proute and Ptraj of the corresponding items in E(0) are calculated. A larger
proportion means that L contains more categories of trajectories and similar journeys,
which indicates that the model learns more internal sequential features of trajectories.
In addition, in order to measure the ability of the model to generate ultra-low-frequency
routes, the ultra-low-frequency routes involved in “learned trajectories” in the total number
of ultra-low-frequency routes included in E(0) is calculated and called Pultra

route . In addition,



Systems 2023, 11, 61 14 of 18

the similarity of the whole L is measured by calculating the Jensen–Shannon divergence
between the distribution of the number of journeys of each route in L and the corresponding
distribution in E(0), Jroute. The closer the Jroute is to 0, the more similar the two distributions
are. The calculation formula is as in Equation (5):

JS(p, q) =

√√√√DKL

(
p‖ p+q

2

)
+ DKL

(
q‖ p+q

2

)
2

(5)

where p and q are two discrete probability distributions. DKL is the Kullback–Leibler
divergence, and the calculation formula is as in Equation (6):

DKL(p‖q) = ∑
i

pi ln
pi
qi

(6)

where pi and qi are the probabilities corresponding to the ith element of each distribution.

Figure 9. Calculation results of the difficulty degree of each journey frequency trajectory.

At the level of links and OD pairs, the proportion Plink and POD of the links and OD
pairs involved in E(0) for the corresponding items involved in the whole L are calculated
to measure the comprehensiveness of the synthetic trajectories in the coverage of links
and access to the area, i.e., the diversities of these two levels. Second, by calculating the
Jensen–Shannon divergence between the distribution of the number of journeys of different
links and OD pairs in L and the corresponding distribution in E, Jlink and JOD. In this
way, it can measure the similarity which shows the distribution of road network in detail.
The results of each experiment for each element are shown in Table 2.

Compared with the results of Experiment 1, the values of Proute and Ptraj show that
all the processing methods except the hybrid sampling method can help the trajectory-
generation model learn more internal sequential features of the trajectory. Additionally,
the results of Plink and POD mean that all methods can improve the coverage of the synthetic
trajectory in the links and the locations of access areas. Compared with other methods that
process the original trajectories, it is worth noting that the combined expansion methods
proposed by the study have the most significant improvement in all three dimensions,
especially in the ability of generating ultra-low-frequency routes.
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Table 2. The results of the diversity and similarity comparison of synthetic trajectories.

No. Processing Method Proute Ptraj Pultra
route Jroute Plink Jlink POD JOD

1 – 0.5070 0.9333 0.2083 0.2694 0.8861 0.1268 0.6266 0.2543

2 Undersampling 0.5726 0.9517 0.3155 0.3100 0.9234 0.2459 0.7110 0.2917
3 Hybrid Sampling 0.4692 0.9302 0.2619 0.2885 0.9234 0.1253 0.7110 0.2703

4 Targeted Expansion to k = 2 0.6302 0.9565 0.4464 0.2670 0.9689 0.1239 0.7852 0.2510
5 Targeted Expansion to k = 3 0.6083 0.9477 0.4464 0.2891 0.9689 0.1300 0.7724 0.2686
6 Targeted Expansion to k = 4 0.5726 0.9517 0.3155 0.2707 0.9710 0.1420 0.8900 0.2517
7 Targeted Expansion to k = 5 0.6203 0.9444 0.5238 0.3063 0.9607 0.1473 0.8875 0.2828

8 Undifferentiated Expansion 0.6183 0.9636 0.3036 0.2445 0.8923 0.1205 0.6880 0.2334

9 Combined Expansion 0.7217 0.9707 0.5833 0.2501 0.9731 0.1268 0.8031 0.2376

10 Extra Combined Expansion 0.7594 0.9721 0.6607 0.2617 0.9814 0.1431 0.8875 0.2476

We mark the comparison items with inferior performance to Experiment 1 without any processing of the original
trajectories in red, and the top two performers in each comparison item are in bold black.

From the perspective of synthetic trajectory similarity, all index values associated
with Jensen–Shannon divergence indicate that the non-differentiated expansion method
corresponding to Experiment 8 has the best ability to protect the overall distribution of
the synthetic trajectory dataset and the similarity of the distribution of road network in
detail. Therefore, the proposed combined expansion method also enhances the similarity
of synthetic trajectories from multiple angles to some extent while trying to enhance the
enhancement of diversity as much as possible. In contrast, Experiments 2 and 3 containing
undersampling processing impair above similarity obviously. In addition, the three targeted
expansion methods, except for the targeted expansion to k = 2 method in Experiment 4,
also impair the similarity of synthetic trajectories to some extent, and the extent of this
impairment deepens with the increase of the minimum journey frequency to which the
expansion is applied. Thus, although the extra combined expansion method containing the
non-differentiated treatment also produces impairment of the similarity at the synthetic
trajectory link level. These similarity losses also reveal that not the more trajectories are fed
as the expert references will result in higher-quality synthetic trajectories.

Since the combined expansion method also involves the processing of targeted expan-
sion, the study further validates the effectiveness of the method by applying the metrics
from the multi-classification problem to measure the degree of impact of these targeted
expansion on the correspondence between routes and journey times in the original tra-
jectory dataset. But there are some differences in the trajectory-generation context. It is
believed that if the trajectory group in which each route in the synthetic trajectory is located
is the same as that in the original trajectory or the number of journeys differs by 5 up and
down corresponding to trajectory groups, the number of journeys corresponding to each
trajectory category is considered to be classified correctly. When this correct classification
occurs, it means that the impact of such targeted processing on the correspondence between
the routes and the number of journeys is controllable. The metrics involved in this mea-
surement process include accuracy, which measures the global categorical sample situation,
Weighted-Precision, Weighted-Recall, and Weighted-F1-score, which take into account the
category imbalance situation by assigning different weights based on the proportion of
each category, respectively. A higher value means that the above specific classification task
is performed better, further indicating that there is less impact of targeted expansion on
the correspondence between routes and journey times. The results of each method are
shown in Table 3.
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Table 3. Theimpact degree of the correspondence between routes and the number of journeys.The
proposed method and corresponding results are shown in bold.

No. Processing Method Accuracy Weighted-Precision Weighted-Recall Weighted-F1-Score

1 – 0.46 0.55 0.46 0.49

2 Undersampling 0.42 0.56 0.42 0.47
3 Hybrid Sampling 0.40 0.51 0.40 0.44

4 Targeted Expansion to
k = 2 0.50 0.59 0.50 0.53

5 Targeted Expansion to
k = 3 0.46 0.58 0.46 0.50

6 Targeted Expansion to
k = 4 0.42 0.56 0.42 0.47

7 Targeted Expansion to
k = 5 0.36 0.58 0.36 0.42

8 Undifferentiated
Expansion 0.56 0.64 0.56 0.59

9 Combined Expansion 0.58 0.64 0.58 0.60

10 Extra Combined
Expansion 0.48 0.61 0.48 0.52

Based on the comparison results in Table 3, it can be seen that the combined ex-
pansion method has the best correspondence results, and means that it can control and
minimize the influence of its adjustment of the number of journeys corresponding to
the ultra-low-frequency routes on the correspondence of the trajectories of the remaining
journey frequencies. Due to the large number of trajectory categories and extremely high
imbalance in this dataset, the calculated values under each experiment are relatively low.
According to the results, the proportion of the ultra-low-frequency routes becoming the
low-frequency ones is more than 70%. Therefore, it is verified that the influence of the
combined expansion method on the correspondence of each journey frequency trajectory is
within the controllable range.

5. Conclusions and Discussions

Complex road networks are common in real journey scenarios, and as the scale of the
network increases, the involved turning relationships will become even larger and more
complex. Therefore, the ULF-TrajGAIL is proposed, and it provides a process-oriented
generation of the trajectory dataset with imbalanced distribution of routes and number
of journeys. The measure of imbalance degree of trajectory groups and whole datasets
involved in this framework is specially designed for trajectory-generation tasks. It can
provide a basis for judging whether there will be a imbalance learning problem for the
trajectory-generation task and reflect the reason ultra-low-frequency routes are difficult
to generate. In the example of Tianhe CBD area in Guangzhou, the study clarifies that
there is a stable imbalanced distribution and imbalance learning problem in our focused
scenario based on the trend of imbalance degree in each cumulative day corresponding to
the trajectory dataset. In order to generate higher-quality trajectories, a more reasonable
and targeted augmentation method is investigated based on the pre-experimental stage
of trajectory generation and a measure of the difficulty of generating trajectory, and the
method varies depending on the distribution of the number of journeys corresponding to
each route within the original trajectory dataset. In the example, the specific combination
expansion method is to first expand the journey times corresponding to all routes with
frequency of 1 to 2, and then expand the journey frequency corresponding to all routes
involved in the original trajectories by twice as a whole.

The experimental results based on the case will be used to validate the superiority of
the proposed method from a macro perspective. Compared with the synthetic trajectory
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learned by the original trajectory without any processing, the percentage of all learned
routes increases from 50.70% to 72.17% in the synthetic trajectory learned by the trajectory
processed by the combined expansion method, which indicates that the quality of the
synthetic trajectory is improved in terms of diversity. It is also worth noting that the
percentage of learned ultra-low-frequency routes increases from 20.83% to 58.33%, which
means the whole framework can help overcome the imbalance learning problem. In this
way, the final trajectory can provide richer route-selection behavioral features for learning
and mining. Meanwhile, the improved coverage of both link and access area may help
reflect a more realistic road network status and trip distribution, and then provide more
reasonable route recommendations. The similarity of the correspondence between all the
routes and the number of journeys in the synthetic trajectory is also improved from 0.2694
to 0.2501, so it can be concluded that this expert trajectory-augmentation method can
finally make the synthetic trajectory with higher quality, and also justifies the rationality
of the process of determining the method based on the ULF-TrajGAIL. It is novel and
relatively complete to measure the quality of synthetic trajectories from the diversity
and similarity of the three levels of the route, link and OD. In addition, the synthetic
trajectories obtained from other augmentation methods are also evaluated from the above
perspectives. The results show that the method with undersampling processing is not
suitable for the trajectory-generation task in such scenarios, while the remaining methods
with only targeted and undifferentiated expansions are much less advantageous than the
combined expansion method in improving the trajectory quality.

Since this paper attempts to investigate the quality of trajectory generation in a specific
context for the first time, several limitations can be observed while applying the proposed
solution i.e., (1) the study focuses on the aggregated characteristics of traffic behaviors in
regular situations within a defined period, but does not take into account the uncertainty
of journey behaviors, such as the impact of unexpected events or information induced
within the study area and time frame, so further studies can try to improve the applicability
of the method from the algorithm-level by adding additional information apart from the
trajectory data to enrich embeddings; (2) although the study has a relatively complete way
to evaluate the quality of trajectories, it cannot vividly demonstrate the practicality of the
study, and the subsequent attempts will be made to further enhance by testing the complete
capability of downstream applications related to trajectory generation, such as popular
route recommendations.
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