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Abstract: Enterprise production is often interfered with by internal and external factors, resulting in
the infeasible original production scheduling scheme. In terms of this issue, it is necessary to quickly
decide the optimal production scheduling scheme after these disturbances so that the enterprise is
produced efficiently. Therefore, this paper proposes a new rescheduling decision model based on
the whale optimization algorithm and support vector machine (WOA-SVM). Firstly, the disturbance
in the production process is simulated, and the dimensionality of the data from the simulation
is reduced to train the machine learning model. Then, this trained model is combined with the
rescheduling schedule to deal with the disturbance in the actual production. The experimental results
show that the support vector machine (SVM) performs well in solving classification and decision
problems. Moreover, the WOA-SVM can solve problems more quickly and accurately compared to
the traditional SVM. The WOA-SVM can predict the flexible job shop rescheduling mode with an
accuracy of 89.79%. It has higher stability compared to other machine learning methods. This method
can respond to the disturbance in production in time and satisfy the needs of modern enterprises for
intelligent production.

Keywords: flexible job shop; rescheduling model; machine learning; whale optimization algorithm;
support vector machine

1. Introduction

In a flexible job shop, a variety of sudden disturbances often occur, such as machine
failure, urgent order insertion, part arrival time deviation, processing time delay, etc.
These disturbances are characterized by random and discrete distributions [1], and these
disturbances cannot be predicted in advance. Therefore, the rescheduling procedure after
the disturbance must be timely and accurate, so as not to delay the delivery term and bring
losses to the enterprise.

Numerous academics have undertaken studies from the perspectives of optimiza-
tion algorithms and intelligent scheduling in order to meet the needs of automation and
intelligent production of modern enterprise shop scheduling. As an earlier intelligent
optimization algorithm, the Genetic algorithm (GA) has been improved by many scholars,
and has been proven to be quite effective at solving the shop scheduling problem. For
example, Dai et al. [2] established a multi-objective optimization model to minimize en-
ergy consumption and completion time for flexible job-shop scheduling problems with
transportation constraints. Zhang et al. [3] ameliorated the genetic programming super-
heuristic algorithm for dynamic flexible job shop scheduling and proposed an individual
adaptation strategy. Liu et al. [4] proposed a genetic algorithm based on the multi-objective
and multi-population framework for the multi-objective job-shop scheduling problem.
Yan et al. [5] discussed the influence of finite transportation conditions on flexible job-shop
scheduling problems and improved the genetic algorithm. Kacem et al. [6,7] used the local
heuristic method for initialization, and then used the genetic algorithm for multi-objective
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optimization of the initial solution. For solving multi-objective problems, Wu et al. [8]
and Yu et al. [9] combined genetic algorithms with local search algorithms, such as the
immune algorithm, to amplify the ability of local search in the algorithm. On the basis
of certain research studies on shop scheduling and algorithms, many scholars seek more
suitable algorithms. Afsar et al. [10] proposed a multi-objective optimization model and
a new enhanced mode gene algorithm for the green-scheduling problem of the job shop.
Alkhateeb et al. [11] integrated the optimization operator of the simulated annealing al-
gorithm into the Cuckoo search algorithm and proposed a discrete simulated annealing
algorithm to solve the job-shop problem. Caldeira et al. [12] proposed a multi-objective
discrete Jaya algorithm for solving scheduling problems based on the Pareto multi-objective
algorithm. Ibrahim et al. [13] proposed an efficient solution strategy with better perfor-
mance for job-shop scheduling problems by combining the artificial algae algorithm with
the differential evolution algorithm. Brandimarte et al. [14], aiming to solve the multi-
objective Flexible Job Shop Problem (FJSP), used the assignment rule to solve the machine
selection problem, and then adopted tabu search to solve the shop scheduling problem.
Baykasoglu et al. [15] studied the dynamic flexible job-shop scheduling problem under new
order arrival, delivery date change, machine failure, order cancellation, and urgent order
arrival. Mohan et al. [16] summarized the development of a dynamic job-shop schedul-
ing problem, and pointed out that future research should be in-depth in the direction of
integration, practicability, multi-targeting, and networking. Although the algorithm in the
job-shop scheduling problem has been the subject of extensive research, it is rarely applied
to actual or intelligent production in enterprises. As a result, the research focus of job-shop
scheduling has changed to successful algorithm implementation, intelligent scheduling
implementation in production, and intelligent scheduling achievement.

In order to keep high decision accuracy, make shop scheduling intelligent, and reduce
the artificial experience judgment operation, research should be conducted from the view-
points of machine learning and deep learning. Priore et al. [17] summarized scheduling
methods of machine learning to select the most appropriate scheduling rules for a flexible
manufacturing system at any given time. Wang et al. [18] proposed a dynamic scheduling
method based on deep reinforcement learning and adopted Proximal Policy Optimization
(PPO) to find the optimal scheduling strategy. Zhang et al. [19] suggested a graph neural
network-based approach to integrate the states encountered in the solving process through
end-to-end deep reinforcement learning. Chen et al. [20] proposed a self-learning genetic
algorithm (SLGA) and made an intelligent adjustment of its key parameters using reinforce-
ment learning. Cao et al. [21] aimed at the problem of wireless network resource allocation,
and proposed a machine learning method based on support vector machines and deep
belief networks to directly calculate approximate solutions. Weckman et al. [22] used the ge-
netic algorithm to investigate a neural network scheduler for job shop scheduling. Based on
a graph neural network, Hameed [23] proposed a new method to solve job-shop scheduling
problems by using deep reinforcement learning. Inspired by the idea of machine learning
to job-shop scheduling, many scholars have further studied digital twinning and cloud
computing. Fang et al. [24] developed a new shop scheduling method based on digital twin
(DT) to reduce scheduling deviation. Zhang et al. [25] introduced digital twin technology
to further integrate the physical space and virtual space of the workshop for realizing
dynamic scheduling. From the standpoint of cloud computing, Tong et al. [26] proposed a
task scheduling algorithm combining Q learning and heterogeneous earliest completion
time method. Morariu et al. [27] proposed a machine learning method for reality percep-
tion and optimization in the cloud environment to reduce the cost of cloud computing
implementation and deployment for manufacturing enterprises. Liu et al. [28] suggested
a user scheduling algorithm for data acquisition in edge learning, taking into account
communication reliability and information volume of data samples. Ghasemi et al. [29]
introduced evolutionary learning to the simulation method of stochastic optimization.
In addition to the above research, many scholars also study shop scheduling from other
perspectives and technical means. Amiri et al. [30] presented an algorithm iteration that
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can simulate stochastic gradient descent to significantly reduce the average completion
time, aiming at the computational task scheduling problem of multiple workers in large-
scale distributed learning problems. Faraji et al. [31] proposed a new power management
system based on weather and load forecasting for optimal day-ahead automatic scheduling
and operation of the microgrid. Müller et al. [32] studied five constraint programming
solvers and developed a prediction method of the best solver according to the instance
features or parameters for a given problem. Jun et al. [33] suggested a method, which
could be called Random Forest for Obtaining Rules for Scheduling (RANFORS), to extract
scheduling rules from optimal scheduling. Li et al. [34] proposed an elite non-dominated
sorting hybrid algorithm to solve multi-objective flexible job shop scheduling problems
with sequence-dependent setup time and cost.

Obviously, machine learning, which is an important means to realize precision and
intelligence in modern intelligent manufacturing enterprises, can be applied to find rules
and predict development from previous production experience and data.

Therefore, this paper develops a prediction method based on an improved whale
optimization algorithm and support vector machine (WOA-SVM) for rescheduling mode
decisions in a flexible job shop. A big sample of data is produced when there is a random
disturbance. A variety of machine learning methods are used to train and predict the data,
and are compared with the method proposed in this paper. It is proved that the proposed
method can respond to rescheduling decisions quickly.

2. Problem Description

Compared with the traditional Job-shop Scheduling Problem (JSP), there are operations
of assigning processes to machines in FJSP [35]. FJSP means the n workpieces to be
processed on m machines, and each process can be carried out on one or more machines.
The problem constraints are as follows:

1. The processing sequence of the same workpiece is fixed;
2. There is no sequential connection between any process of different workpieces;
3. Each process can only be processed on one machine at the same time;
4. Each machine can only process one process at the same time;
5. The processing priority of different workpieces is the same;
6. The processing time of the same process in different machines can be different;
7. The processing cannot be interrupted.

Optional machine examples of the process can be seen in Table 1. Table 2 shows
examples of processing time. Oij represents the j process of the i workpiece. Taking process
O101 as an example, it can be carried out on machine 1 or machine 4, and its processing
time on the two machines is 3 min and 4 min, respectively. According to Tables 1 and 2, the
double-layer coding genetic algorithm [35,36] is used to generate the original scheduling
scheme, as shown in Figure 1.

Table 1. Optional machine examples of the process.

Process 1 Process 2 Process 3

Workpiece 1 M1, M4 M4 M2, M3
Workpiece 2 M2 M1, M3 M4
Workpiece 3 M4 M2, M3 M1, M3
Workpiece 4 M1, M4 M3 -
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Table 2. Example of processing time.

Process 1 Process 2 Process 3

Workpiece 1 [3, 4] 9 [9, 10]
Workpiece 2 6 [8, 8] 4
Workpiece 3 5 [7, 8] [7, 6]
Workpiece 4 [7, 7] 3 -
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3. Rescheduling Mode Selection Model Based on Machine Learning

For realizing fast and accurate rescheduling mode decisions, the rescheduling mode
selection model based on machine learning is adopted. Its framework is displayed in
Figure 2. Firstly, it is assumed that a disturbance occurs during processing. Rescheduling
mode selection is carried out, and then the data collection and processing start. These steps
are repeated several times. Next, model training and algorithm optimization are performed
and output the prediction model. Lastly, the actual disturbance can be disposed of in the
rescheduling decision module when it happens in the actual production process.

3.1. Rescheduling Decision

When a disturbance occurs in actual production, we need to estimate the effect of the
disturbance and the necessity of rescheduling, first. Therefore, a rescheduling schedule is
constructed to define the time limit for each process in which rescheduling is triggered.

The dynamic correlation among processes in the scheduling scheme [37] is constructed,
and the linkage influence brought by the disturbance of a certain process has been described
in Figure 1. Figure 3 displays the correlation among processes. When O201 is disturbed, the
processes O202 and O302 will be influenced directly, and the processes O203, O402, O303 and
O103 will be influenced indirectly. It is obvious that each process directly affects at most two
processes, including the next adjacent process on the machine and the next adjacent process
on the workpiece. Therefore, two dimensions are used to summarize the two different
types of impacts (machine dimension and workpiece dimension).
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Figure 3. Correlation among processes.

The latest tolerated completion time of each working procedure can be derived back-
wards from the connection between the two dimensions of the machine and the workpiece,
if each workpiece’s delivery date or the latest acceptable completion time can be deter-
mined. Figure 4 demonstrates the determination of the rescheduling time point. If the
delivery time of process 103 is t, it can still be completed, although process 201 is delayed
to time point t1. Therefore, t1 can be defined as the rescheduling time point of process 201.

The above example simply illustrates that the calculation of the rescheduling time point
of a certain process needs to take into account the delivery time of all the workpieces and
the linkage effect of the two dimensions. Then, the rescheduling time points of all processes
are calculated, and the rescheduling schedule is constructed. The initial scheduling scheme
is maintained if the disruption in actual production does not last longer than the associated
rescheduling time. If not, the production plan needs to be rescheduled.
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3.2. Rescheduling Mode Selection

When the production order arrives, the rescheduling mode selection consists of the
following steps. Firstly, the original scheduling scheme and rescheduling schedule are
generated. Secondly, the disturbance process and the disturbance duration, which can
trigger rescheduling, are randomly generated. Finally, based on the three scheduling
modalities, the three rescheduling strategies are constructed.

There are three rescheduling modes: right shift rescheduling (RSR), partial reschedul-
ing (PR), and total rescheduling (TR) [1,2]. RSR means that the sequence and machine
among working procedures will not be changed, but the processing start time will be
adjusted. PR can be used to rearrange the affected processes that have not started at the
rescheduling time point, and maintain the original scheme for other unaffected processes.
TR is a complete rescheduling of all processes that have not started at a rescheduling point
in time. RSR has the least impact on the original scheduling scheme among the three
rescheduling techniques, followed by PR, while TR has the greatest impact.

After the disturbance occurs, three rescheduling schemes are generated, and their
corresponding maximum completion times Tmax1, Tmax2, and Tmax3 are obtained to make
rescheduling decisions:

f = min(Tmax1 + l, Tmax2 + 2l, Tmax3 + 3l) (1)

type =


a, f = Tmax1 + l
b, f = Tmax2 + 2l
c, f = Tmax3 + 3l

(2)

In Formula (1), l represents a minimal positive number. It can be used to choose an
optimal rescheduling scheme when the Tmax of different rescheduling modes is equal. f
represents the minimum completion time of the three rescheduling schemes. The corre-
sponding schemes are selected through the type function defined in Formula (2). a, b, and
c, respectively, represent the three rescheduling schemes. They are decision labels in the
data collection and processing module.

3.3. Data Collection and Processing

In the process of data collection, an important parameter (mean activity level of
key branches) needs to be calculated based on the RSR scheme. As shown in Figure 5,
the key branch is defined as the branch from a disturbed process to an overdue process.
If one overdue process happens several times, the branch with the most compact time
between processes and the preferential machine dimension influence will be selected. If the
disturbance in process 201 leads to the overdue completion of processes 103 and 303, two
key branches (201→302→103; 201→302→303) will occur.



Systems 2023, 11, 59 7 of 18

Systems 2023, 11, x FOR PEER REVIEW 7 of 18 
 

 

processes and the preferential machine dimension influence will be selected. If the dis-

turbance in process 201 leads to the overdue completion of processes 103 and 303, two key 

branches (201→302→103; 201→302→303) will occur. 

 

Figure 5. Key branches. 

For obtaining the key branches, the average activity level of the key branches is de-

fined as follows: 

𝑅𝑂𝑀_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ ∑ 𝑅𝑂𝑀𝑙𝑘

𝑘
1

𝐿
1

𝐿
  (3) 

𝑅𝑂𝑀𝑙𝑘
= {(𝐶𝑙𝑘

− 1)/(𝐶𝑚𝑎𝑥 − 1)}*𝛿 (4) 

𝛿 = {
0 , Step 𝑙𝑘 can not be completed ahead of time on other optional machines

1 ，Step 𝑙𝑘  can be completed ahead of schedule on other optional machines
 (5) 

Formula (3) indicates some information in the key branch process set. 𝑅𝑂𝑀_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 

is the average activity level of the key branch, 𝑅𝑂𝑀𝑙𝑘
 is the activity level of the 𝑙𝑘 pro-

cess, and 𝐿 is the number of the key branches. Formula (4) represents the activity level of 

𝑙𝑘, which is the process 𝑘 of the branch 𝑙. 𝐶𝑙𝑘
 represents the number of selectable ma-

chining machines in the process 𝑙𝑘, and 𝐶𝑚𝑎𝑥 represents the maximum number of se-

lectable machining machines in all the processes. 

After data collection, duplicate samples and abnormal samples need to be deleted. 

For the abnormal samples, the data belonging to RSR will not appear for individuals 

whose average activity level of key branches is greater than 0. However, during the opti-

mization process, the algorithm could find itself in a local optimal condition. Therefore, 

these samples should be deleted. 

The next step is feature selection. Since most of the collected data have a nonlinear 

relationship with the decision label, the Spearman Correlation Coefficient [38] is used to 

analyze the data correlation, and then the feature vector with a correlation coefficient less 

than 0.1 is deleted. The feature vector finally selected is shown in Table 3: 

Table 3. Feature vectors and correlation coefficients. 

Feature vector ① ② ③ ④ ⑤ 

Correlation coefficient 0.1282 0.2420 0.2532 −0.2748 0.1032 

Feature vector ⑥ ⑦ ⑧ ⑨ ⑩ 

Correlation coefficient 0.2487 0.3682 0.2532 0.2420 0.3719 

The feature vectors from 1 to 10 are as follows: ① the value beyond the time point of 

the processing end time of the disturbed procedure; ② the number of unprocessed pro-

cedures; ③ the number of affected procedures; ④ whether the disturbed procedure and 

overdue procedure are the same as the workpiece; ⑤ the load rate; ⑥ the total remaining 

processing time; ⑦ the total remaining idle time; ⑧ the proportion of PR procedures; ⑨ 

the proportion of TR procedures; and ⑩ the average activity level of key branches.  

It is important to explain the decision label in addition to the feature vectors men-

tioned previously. There are three kinds of prediction results: RSR, PR, and TR, which are 

represented by labels “a”, “b”, and “c”, respectively, just as shown in Formula (2). 

Figure 5. Key branches.

For obtaining the key branches, the average activity level of the key branches is defined
as follows:

ROM_average =
∑L

1 ∑k
1 ROMlk
L

(3)

ROMlk =
{(

Clk − 1
)
/(Cmax − 1)

}
∗ δ (4)

δ =

{
0 , Step lk can not be completed ahead of time on other optional machines
1 , Step lk can be completed ahead of schedule on other optional machines

(5)

Formula (3) indicates some information in the key branch process set. ROM_average is
the average activity level of the key branch, ROMlk is the activity level of the lk process, and
L is the number of the key branches. Formula (4) represents the activity level of lk, which is
the process k of the branch l. Clk represents the number of selectable machining machines in
the process lk, and Cmax represents the maximum number of selectable machining machines
in all the processes.

After data collection, duplicate samples and abnormal samples need to be deleted. For
the abnormal samples, the data belonging to RSR will not appear for individuals whose
average activity level of key branches is greater than 0. However, during the optimization
process, the algorithm could find itself in a local optimal condition. Therefore, these samples
should be deleted.

The next step is feature selection. Since most of the collected data have a nonlinear
relationship with the decision label, the Spearman Correlation Coefficient [38] is used to
analyze the data correlation, and then the feature vector with a correlation coefficient less
than 0.1 is deleted. The feature vector finally selected is shown in Table 3:

Table 3. Feature vectors and correlation coefficients.

Feature vector 1© 2© 3© 4© 5©
Correlation coefficient 0.1282 0.2420 0.2532 −0.2748 0.1032

Feature vector 6© 7© 8© 9© 10©
Correlation coefficient 0.2487 0.3682 0.2532 0.2420 0.3719

The feature vectors from 1 to 10 are as follows: 1© the value beyond the time point
of the processing end time of the disturbed procedure; 2© the number of unprocessed
procedures; 3© the number of affected procedures; 4© whether the disturbed procedure and
overdue procedure are the same as the workpiece; 5© the load rate; 6© the total remaining
processing time; 7© the total remaining idle time; 8© the proportion of PR procedures; 9© the
proportion of TR procedures; and 10© the average activity level of key branches.

It is important to explain the decision label in addition to the feature vectors men-
tioned previously. There are three kinds of prediction results: RSR, PR, and TR, which are
represented by labels “a”, “b”, and “c”, respectively, just as shown in Formula (2).
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3.4. Model Training and Algorithm Optimization

Finally, the processed data are input into the model training and optimization module
to train the machine learning model. When the rescheduling needs to be carried out in actual
production, the disturbance data are input into the trained model, and the rescheduling
selection decision is output. Model training and algorithm optimization are described in
the next chapter.

4. Improved Whale Optimization Algorithm to Optimize Support Vector Machine

The goal of the support vector machine (SVM), which is widely used in classification
regression problems, is to obtain the best classification regression effect with limited data
information. It is crucial to determine the proper SVM parameters in enhancing prediction
accuracy. Many researchers use optimization algorithms to optimize parameters. However,
the majority of conventional optimization techniques suffer from sluggish convergence and
are susceptible to local optimality [39]. Therefore, this paper selects the whale optimization
algorithm with good performance in both global and local searches to determine the SVM
parameters [40]. Additionally, the initial search range of the whale optimization algorithm
(WOA) is then optimized on this basis to make its search efficiency higher.

4.1. Whale Optimization Algorithm

The Whale Optimization Algorithm (WOA) [41], proposed by Mirjalili and Lewis in
2016, is a meta-heuristic algorithm. WOA is a swarm intelligence optimization algorithm
that simulates the social behavior of humpback whales in the hunting process. It hunts by
encircling prey, searching for prey, and doing a spiral trajectory search.

(1) Encircling prey

When |A|< 1 , the position update formula can be expressed:

D =|E·X∗(t)− X(t)| (6)

X(t + 1) = X∗(t)− A·D (7)

where D represents the distance from the whale to prey, X represents the position of the
current individual whale, X∗ represents the best individual whale, t represents the number
of iterations, and A and E are coefficient vectors:

A = 2a·r− a (8)

E = 2r , r ∈ [0, 1] (9)

where r is the random number in the range, and a decreases linearly from 2 to 0 in the
iteration process.

(2) Search for prey

When |A|≥ 1 , the position update formula can be expressed as follows:

D =|E·Xrand − X(t)| (10)

X(t + 1) = Xrand − A·D (11)

where Xrand represents random whale individuals. When |A|≥ 1 , it is selected as the
optimal individual to update the location of other individuals.

(3) Spiral trajectory search

The formula of motion trajectory can be calculated as follows:

D′ =
∣∣X∗(t)− X(t)

∣∣ (12)

X(t + 1) = X∗(t) + D·eb·l · cos 2πl (13)
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where b is the constant to define the shape of the logarithmic helix and l is the random
number between [−1, 1].

4.2. Support Vector Machine

Support vector machine (SVM) is a new classification algorithm developed on the
basis of statistical learning proposed by Aljarah I [42], which has the advantages of fewer
training samples, short time, and high precision. It is originally designed to solve binary
classification problems, and its classification idea is to make the maximum interval between
two separate categories as far as possible. On the basis of binary classification, the SVM
classification method of multiple categories is developed.

SVM binary classification needs to find a linear function to determine the hyperplane.
The linear function can be shown as follows:

y = ωT ·x + b (14)

where ω is the coefficient vector and b is the offset vector. Formula (14) can be converted to
a convex quadratic programming optimization problem:

minJ(ω, ξ) =
1
2
|ω|2 + C

n

∑
i=1

ξi (15)

s.t.
{

yi
(
ωT ·xi + b

)
≥ 1− ξi

ξi ≥ 0, i = 1, 2, . . . , n
(16)

In Formula (15), ξi is the relaxation vector; C is the penalty parameter; the Lagrange
multiplier is introduced in Formula (17), which transforms the problem into a dual problem.
It can be represented by the following:

maxW(α) =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjk
(
xi, xj

)
(17)

s.t.


n
∑

i=1
αiyi = 0

c > αi > 0
i = 1, 2, . . . , n (18)

where k
(

xi, xj
)

is the kernel function and αi is a Lagrange multiplier. Based on Formulas (17)
and (18), the classification model is obtained as follows:

f (x) = sgn

(
n

∑
i=1

αiyik
(
xi, xj

)
+ b

)
(19)

In this paper, the formula with RBF kernel function is as follows:

k
(

xi, xj
)
= exp

(
−‖xi − xj‖2/g2

)
(20)

where g is the kernel parameter.

4.3. Improved WOA to Optimize SVM Parameters

The penalty parameter C and the kernel parameter g are two important parameters that
affect the classification accuracy of the SVM. Through the use of an optimization method,
a better parameter combination must be found. This paper improves the WOA-SVM in
finding better parameters. Figure 6 expresses the flow of reducing parameter range.
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Figure 6. Flow chart of WOA-SVM parameters.

The flow of determining the range of parameters C and g is as follows:
Step 1: Normalize the data in the data set and randomly extract the data set.
A total of 80% is the training set and 20% is the test set.
Step 2: Narrow the range of parameters C and g. As shown in Figure 6, the range of

initial parameters C and g is divided into z segments within their respective ranges, and
the breakpoint of each segment is tested for prediction accuracy. Then, collect the data
and information of each breakpoint, select the best breakpoints according to a reasonable
proportion, and then select the corresponding parameter range.

Step 3: Receive the range of parameters C and g, and initialize the population and
location.

Step 4: Perform parameter optimization by WOA and cross validation.
Step 5: Calculate the fitness function to determine whether the termination condition

is met.
Step 6: Update the current optimal solution.
Step 7: Output the optimal solution.

5. Experiment
5.1. Single Sample Example

In order to confirm the effectiveness of the machine learning method in reschedul-
ing decision problems, we undertook a single sample experiment. In the experiment,
6 workpieces are processed on 10 machines, and each workpiece needs to be processed
for 6 processes. The optional processing machines and processing time are shown in
Tables 4 and 5.
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Table 4. Optional machining machines for the process.

Process 1 Process 2 Process 3 Process 4 Process 5 Process 6

Workpiece 1 5 6 4 [2, 9] [3, 7] 5
Workpiece 2 4 [2, 9] 8 [6, 7] 5 [1, 10]
Workpiece 3 3 [6, 8] 7 [2, 1] [4, 10] 5
Workpiece 4 5 2 [4, 7] [3, 10] [2, 5] [3, 6]
Workpiece 5 [4, 5] 5 [9, 10] 6 2 [3, 8]
Workpiece 6 [2, 6] 4 [6, 9] 7 8 [3, 9]

Table 5. Schedule of processing time.

Process 1 Process 2 Process 3 Process 4 Process 5 Process 6

Workpiece 1 3 10 9 [5, 4] [3, 3] 10
Workpiece 2 6 [8, 6] 4 [2, 6] 3 [3, 3]
Workpiece 3 4 [5, 7] 7 [5, 5] [9, 11] 1
Workpiece 4 7 3 [4, 6] [3, 3] [1, 7] [3, 6]
Workpiece 5 [6, 4] 10 [7, 9] 8 5 [4, 7]
Workpiece 6 [3, 7] 10 [8, 7] 9 4 [9, 4]

Firstly, genetic algorithm (GA) was used to obtain the original scheduling scheme [43,44],
and the processing state and makespan data of each process could be obtained, as shown
in Figure 7. Figure 8 shows the RSR scheme. If there is a disturbance in process 502 and the
disturbance time is 1.8 min, many processes, such as 503, 104, and 603, are delayed, while it
is assumed that the original delivery time of workpiece NO.6 is at time point 56 min. So,
the rescheduling time point of process 502 is deduced to 21 min. The final delivery time of
workpiece NO.6 is put off until 56.8 min after disturbance. RSR is, therefore, inappropriate
in this scenario.
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Figure 9 shows the PR scheme, and the delivery time of workpiece NO.6 is still 56 min.
Only processes 503 and 104 are moved to other machines after disturbance occurring in
process 502. PR does not significantly alter the original scheduling scheme.
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Figure 9. PR scheme.

Figure 10 shows the TR scheme, and the delivery time of workpiece NO.6 is still
56 min. It can be seen that there are much more processes that have changed the processing
machine, compared with PR scheme. Therefore, the TR scheme changes the original scheme
very much and wastes a lot of manpower and resources.
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In summary, 10 feature vectors are obtained from the three rescheduling methods,
as shown in Table 6. By contrasting the three schemes, “b”, or the PR scheme, is the final
decision label.

Table 6. Feature vector data table.

The Exceedance of the End Time of the
Disturbed Operation 0.80 min

Number of unprocessed processes 23
Number of processes affected 16

Whether the disturbance process and overdue
process are the same as the workpiece 0

Load rate 0.6043
Total remaining processing time 129.80 min

Total free time 85.00 min
Proportion of PR process 0.4444
Proportion of TR process 0.6389

Average activity level of key branches 1
Makespan of RSR (label 1) 56.80 min
Makespan of PR (label 2) 56.00 min
Makespan of TR (label 3) 56.00 min

Decision label b

5.2. Large Sample Data Collection

According to the method of single sample data collection, repeat many times to obtain
large sample data set. The operation steps are as follows:

Step 1: Delete duplicate values. Deduplication is performed on 30,000 samples data,
and the number of samples after deletion is 27,603.

Step 2: Delete outliers. Filter the samples after deleting duplicate values. There
are 1347 abnormal samples labeled “a” with the average activity of key branches greater
than 0, and the probability of abnormal data is 4.88%. The number of samples is 26,256
after deletion.
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Step 3: Sample distribution. The 26,256 groups of data retained are analyzed, as shown
in Figure 11. The abscissa is the process number, and the ordinate is the sample size. A
total of 36 processes from 101 to 606 are numbered on the horizontal coordinate.
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Figure 11. Sample distribution.

Among 26,256 groups of sample data, the number of samples with decision label “a”
is 14719, accounting for 56.06%. The number of samples whose decision label is “b” is 3422,
accounting for 13.03%. The number of samples with decision label “c” is 8115, accounting
for 30.91%.

5.3. Machine Learning Contrast Test

To test the accuracy of machine learning under different sample sizes. There are
300 groups, 900 groups, 1800 groups, 3000 groups, and 6000 groups of data being predicted
through different machine learning ways. The sample size of three rescheduling schemes is
same. Taking the test of 6000 data sets as an example, parameters C and g are divided into
100 breaks, respectively, and the accuracy of each breakpoint is calculated. The relationship
between parameters C, g, and the prediction accuracy is shown in Figure 12.

According to the statistical data and Figure 13, the distribution with the highest
accuracy is in the range of parameter C [0.00001, 10] and parameter g [0.00001, 1000],
which are also the two-parameter search range of WOA. WOA is used to find the optimal
parameter values in this range. Then, the parameters are input into SVM to train the model.
A total of 80% of the data are used as the training set. A total of 20% of the data are used
as the test set. Predictions of different data scales are tested 100 times, and the average
accuracy is shown in Table 7.
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Table 7. Accuracy Rate.

Machine Learning
Techniques

Scale of Data

300 900 1800 3000 6000

WOA-SVM 70.08% 75.57% 80.35% 83.46% 89.79%
SVM(RBF) 71.41% 71.24% 71.88% 72.56% 70.01%

BP 71.95% 74.33% 73.99% 75.29% 71.94%

As can be seen from Table 7, the prediction accuracy of the WOA-SVM increases with
the growth in sample size. Its prediction accuracy is low when the sample size is small.
The reason is that the algorithm falls into local optimality. To show the frequency of this
problem, Pauta criteria [45] are used to check abnormal data. The frequency of abnormal
data is shown in Table 8.
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Table 8. Abnormal rates.

Machine Learning
Techniques

Scale of Data

300 900 1800 3000 6000

WOA-SVM 1% 34% 27% 5% 0%
SVM(RBF) 8% 6% 8% 4% 5%

BP 14% 6% 3% 4% 0%

In Table 8, the frequency of abnormal data decreases with the increase in sample size
in general. The abnormal frequency of 6000 groups in the WOA-SVM has gone down to 0%.
At this time, the prediction accuracy also reached the highest (89.79% in Table 7). In Table 9,
The total number of samples in the test set is 1200, with 400 samples for each of the three
categories. The number of samples with correct prediction in RSR is 351. The number of
samples with correct prediction in PR is 366. The number of samples with correct prediction
in TR is 360. It can be seen that the prediction accuracy in the RSR sample is the lowest,
only 87.85%. In the other two samples, the prediction accuracy is relatively high, resulting
in an overall prediction accuracy of 89.79%.

Table 9. Confusion matrix.

Predictive Classification Aggregate Accuracy
RateRSR PR TR

RSR 351 14 35 400 87.75%
PR 18 366 16 400 91.50%
TR 11 29 360 400 90.00%

Aggregate 380 409 411 1200

The accuracy of 100 tests in 6000 groups is summarized in Figure 13. The abscissa is
the number of the experiment. The ordinate represents prediction accuracy. Obviously, the
accuracy of BP and SVM are between 64% and 76% and have large swing ranges, while the
accuracy of the WOA-SVM stays around 89%, and the fluctuation is no more than 1%. So,
the WOA-SVM method is superior to SVM and BP methods in terms of prediction accuracy
and stability.

6. Conclusions

For the various disturbances in the flexible job shop, a rescheduling schedule is
constructed by analysis of the dynamic correlation among processes, and the time point of
rescheduling is specified at each process. This method can be used to solve the problem of
unclear rescheduling boundaries when disturbances occur in the actual production.

A decision method of rescheduling mode based on machine learning is proposed.
Experimental results show that machine learning technology has higher accuracy in the
decision of flexible job shop rescheduling mode, compared with the traditional decision
mode by personnel experience. It means that the decision method by machine learning can
better meet the requirements of intelligent patterns, precision, and high efficiency in modern
manufacturing enterprises. The improved WOA-SVM mothed is used to predict some
randomly generated data samples. It is proved that the WOA-SVM has a good performance
in prediction accuracy and prediction stability compared to other prediction methods.

Author Contributions: Conceptualization, L.S. and J.S.; methodology, L.S. and Z.X.; software,
Z.X.; formal analysis, L.S.; resources, C.W. and J.S.; writing—original draft preparation, Z.X.;
writing—review and editing, L.S. and C.W. All authors have read and agreed to the published
version of the manuscript.
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