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Abstract: Effective ways to optimise real-time pump scheduling to maximise energy efficiency are
being sought to meet the challenges in the energy market. However, the considerable number
of evaluations of popular optimisation methods based on metaheuristics cause significant delays
for real-time pump scheduling, and the simplification of traditional deterministic methods may
introduce bias towards the optimal solutions. To address these limitations, an exploration-enhanced
deep reinforcement learning (DRL) framework is proposed to address real-time pump scheduling
problems in water distribution systems. The experimental results indicate that E-PPO can learn
suboptimal scheduling policies for various demand distributions and can control the application time
to 0.42 s by transferring the online computation-intensive optimisation task offline. Furthermore, a
form of penalty of the tank level was found that can reduce energy costs by up to 11.14% without
sacrificing the water level in the long term. Following the DRL framework, the proposed method
makes it possible to schedule pumps in a more agile way as a timely response to changing water
demand while still controlling the energy cost and level of tanks.

Keywords: PPO; real-time pump scheduling; water distribution network; deep reinforcement
learning; exploration enhancement

1. Introduction

Water distribution systems (WDSs) represent vast and complex infrastructures that
are essential for residents’ lives and industrial production. Water utilities are committed
to providing customers with sufficient water of the required quantity by operating WDSs.
The corresponding energy cost of pumps constitutes the dominant expenditure of the oper-
ational cost of a WDS [1–4]. However, the energy market is experiencing great challenges.
Extreme climate [5], economic crises [6], war [7], and public health events (such as the
COVID-19 pandemic) [8,9] have produced huge negative shocks in the energy market,
making it full of uncertainties and fluctuations. These challenges in the energy market
have large implications for water utilities. On the one hand, the high operating cost caused
by rising energy prices directly affects the financial health of water utilities. On the other
hand, a significant energy shortage would make the pumping or treatment of water impos-
sible [10]. Hence, it is an important issue for water utilities to improve the energy efficiency
of pumps and integrate water supply strategies and energy conservation goals.

The problem of finding the optimum pump schedule is far from simple; both the
hourly water demand of consumers and electricity tariffs can vary greatly during the
scheduling period. Minimum and maximum levels of tanks are hard constraints that must
be satisfied to guarantee the reliability of the supply, and the desired pressures should
be maintained for consumers. In addition to these factors, the hydraulic formulas of
WDSs are highly nonlinear and complex, making computer modelling a difficult and very
time-consuming process.
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Various optimisation methods have been applied to pump scheduling problems. Deter-
ministic methods are used initially, including linear [11], nonlinear [12–14], dynamic [15,16],
and mixed-integer programming [17,18]. Most of these methods simplify the complexities
and interdependencies of WDSs by assumptions, discretisation, or heuristic rules [1,13,19].
Although these simplifications can make it easier to address the problem, they may intro-
duce bias and exclude potentially good solutions. In the mid-1990s, stochastic optimisation
methods (metaheuristics) were introduced to pump scheduling optimisation problems [20],
such as the genetic algorithm (GA) [21–24], particle swarm optimisation (PSO) [25,26],
and differential evolution (DE) [27]. These metaheuristics do not require simplification
of the hydraulic models and have proven to be robust, even for highly nonlinear and
nondifferentiable problems. However, metaheuristics require a large number of evaluations
to achieve convergence, which requires too much time for real-time processing.

In recent years, the development of machine learning has introduced opportunities
for the scientific management of water utilities. Various machine learning methods are
used in a wide variety of applications, from anomaly detection [28,29] through system
prediction [30–32] to system condition assessment [33] and system operation [34–36].

In scheduling problems, machine learning techniques are usually used as surrogate
models of WDSs in metaheuristic optimisation to save computational load. Broad et al. [37]
used an artificial neural network (ANN) as a metamodel, which can approximate the
nonlinear functions of a WDS and provide good approximation for simulation models.
However, how to reduce the error of surrogate models and ensure that the solution is still
optimal compared with a full complex network simulator remains unknown.

Deep reinforcement learning (DRL) is a promising method for nonlinear and non-
convex optimisation problems. The essence of DRL is the combination of reinforcement
learning (RL) and deep learning. It has been explored widely in recent years with the
appearance of AlphaGo [38]. However, its application in pump scheduling problems is still
very limited. In 2020, Hajgató et al. [39] applied DRL to the single-step pump scheduling
problem and took the results of the Nelder–Mead method as the reward standard. An
essential contribution of Hajgató et al. is that the method models the single-step real-time
pump scheduling problem as a Markov decision process (MDP) and considers multiple
objectives, including satisfaction of consumers, efficiency of the pumps, and the feed ratio
of the water network. However, the method sacrifices the regulation and storage capacity of
the tanks and takes the pump speeds obtained by the Nelder–Mead method as the optimal
setting, which makes the DRL results depend largely on the Nelder–Mead method.

Based on the above literature review of pump scheduling optimisation in WDSs, there
are three main limitations for real-time pump scheduling problems: heavy computational
loads, a lack of accuracy for surrogate models, and a lack of proper usage of the storage
capacity of tanks. Real-time pump scheduling based on reinforcement learning is presented
in this paper. The main contributions of this paper are as follows:

First, an RL environment of the pump scheduling problem was constructed using a
full network simulator, and the computation-intensive task was transferred from online to
offline to save application time.

Second, by constructing a reward function, the penalty form of the tank level was
explored to reduce the energy cost and maintain the tank level in the long term.

Finally, an exploration-enhanced reinforcement learning framework was proposed,
adding an entropy bonus to the policy objective. The results demonstrate that compared
with metaheuristics, the proposed method can obtain suboptimal scheduling policies under
various demand distributions within one second.

The rest of the paper is organised as follows. In Section 2, we introduce the details of
DRL, proximal policy optimisation (PPO), the exploration enhancement method, and the
designs of important factors for applying DRL in pump scheduling problems. In Section 3,
the reinforcement learning method is applied to a WDS case, the results are presented, and
key findings are analysed. Section 4 concludes this paper.
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2. Methods
2.1. Reinforcement Learning (RL)

The RL algorithm is used to solve the sequence decision problem and can mathe-
matically be formulated as a Markov decision process (MDP). The training process of
RL is carried out through the interaction between the agent and environment. At time
step t, the agent executes an action (at) according to the current state (st) and the policy
function, obtaining an immediate reward (rt); then, the environment transfers to the next
time step state (st+1). The agent adjusts its policy through the experience collected in the
interaction process. After a large number of interactions with the environment, an agent
with an optimal policy is obtained. Then, the trained policy neural network can be used
for pump scheduling. Compared with other optimisation methods such as GA, the RL
method divides the optimisation process into training and application, which can transfer
the computationally intensive training process from online to offline to achieve real-time
scheduling applications. The learned policy of RL is also able to handle the uncertainty of
the environment, such as the uncertainty of demand, as the learned policy neural network
is obtained by interactions with the environment under a large number different states
with uncertainty.

The MDP can be represented by a tuple, <S, A, P, R, γ >, where:

• S is the state space, which is a set of states;
• A is the action space, which is a set of executable actions for the agent;
• P is the transition distribution, which describes the probability distribution of the next

time step state under different st and at;
• R is the reward function, rt is the step reward after the agent takes an at under state

st; and
• γ is the discount factor used to calculate the cumulative reward (Rt), which is de-

fined as:

Rt = rt + γrt+1 + γ2rt+2 + · · ·+ γT−trT (1)

where T is the step of the episode, which corresponds to 24 h in this context, and γ ∈ [0, 1]
is set to 0.9 in this study.

2.2. Design of Significant Factors for RL Application to Pump Scheduling

In the following, the most significant factors in RL, namely S, A, and R, are discussed
in detail for application to optimal real-time pump scheduling in WDSs.

2.2.1. State Space

State space is a set of all possible states in the environment. The state consists of
relevant information for the agent to learn the optimal policy. This means that the state
should contain enough effective information of the current environment. However, excess
information may lead to confusion for the agent during the process of assigning rewards
to the state. Therefore, it is important to properly select the state space in the RL applica-
tion. For this work, the pump scheduling information in the WDS was divided into two
categories: the water demand of consumers and the status information of the tank levels.

To make the built environment approach the actual WDS, the uncertainty of water
demand in the real world was considered. The randomisation of water demand in the
environment was carried out in two steps to mimic the time and space effects. Firstly, the
general default demand pattern (as shown in Figure 1b) was multiplied by hourly random
multipliers to simulate the random fluctuation of hourly water demand. Secondly, the
base demand was obtained by the product of the nodal random multiplier and the default
base demand. The demand with uncertainty was generated in every general node as the
product of the pattern and base demand constructed above. Both random multipliers of
time and space follow the truncated normal distribution. The truncated normal distribution
has its domain (the random multiplier) restricted to a certain range of values, such as
(1− ∆, 1 + ∆). To simplify, the random multipliers of time and space are limited to the
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same range, and the water demand distribution of which the space and time random
multiplier ranges are (1 − ∆, 1 + ∆) is called demand (∆) hereafter. The probability density
distributions of the truncated normal distribution of the random multiplier for demand 0.3,
demand 0.6, and demand 0.9 are shown as examples in Figure 1a. For a large consumer,
we consider it a node with less uncertainty compared to the general consumer and do not
apply a randomisation method to it.
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The initial water levels of the tanks follow a uniform distribution of (0, 1). Then, the
following tank levels are calculated according to the state and action.

2.2.2. Action Space

Action is defined as the relative pump speed, which is the ratio of the pump speed
compared to the nominal pump speed. The pumps in a WDS are considered variable-speed
pumps. The trained agent selects the optimal pump speed from all combinations of pump
speeds for every time interval of the scheduling period under the guidance of the learned
strategy. Each relative pump speed is considered a discrete variable ranging from 0.7 to 1.0,
with an increase of 0.05 due to mechanical limitation. The size of the action space grows
exponentially with an increase in the number of pumps.

2.2.3. Reward Function

The reward function is defined to motivate the agent to achieve its goal. The value of
the reward represents the quality of the action. For this work, the reward function consists
of three important parts: the energy cost of pumps (Epump), the penalty for hydraulic
constraints (Phydraulic), and the penalty for tank-level variation (Ptank). The reward value is
calculated according to Algorithm 1.

(1) Energy cost of pumps

The essential goal of the real-time pump scheduling optimisation method proposed
in this work is to minimize the energy cost of pumps while fulfilling system constraints.
The reward design of energy cost should consider two key points. First, the lower the
energy cost of pumps, the higher the designed reward. Second, avoid obtaining all positive
or negative rewards in the learning process, as such a strategy is not conducive to agent
training. According to the above requirements, the reward of energy cost is defined as
the difference between the benchmark of energy cost (rbenchmark) and the actual energy
cost (Epump). The benchmark is to balance the positive and negative distribution of energy
cost rewards. When the energy cost is lower than the benchmark, the reward is positive;
otherwise, the reward is negative. The lower the energy cost, the larger the reward.
The benchmark is the average energy cost obtained by the agent interacting with the
environment for 20,000 episodes, making random actions.

(2) Hydraulic constraint
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When the hydraulic constraint (such as the pressure of nodes) cannot be fulfilled under
the current action, a penalty is added to the reward function. After receiving the penalty,
the agent learns that this is a bad action and adjusts the corresponding policy.

(3) Tank-level variation

Tank-level variation (mainly refers to tank-level reduction in a day) should be as small
as possible to avoid the agent learning to reduce the energy cost by overconsuming water in
the tanks. This may lead to water shortages and extra costs of complementing water in the
tanks. For these reasons, when the water volume in the tank at the end of the scheduling
period (Vt=24) is less than the initial volume (Vt=0), a negative reward is added to the
reward function. Compared with the strict limit of the tank level in a day, we attempted to
find a way to make full use of the storage and regulation capacity of the tanks to reduce
energy cost and maintain the tank level in the long term. The form of the negative reward
(Ptank) has a great impact on the learned policy, as explored in Section 3.1.

Algorithm 1 Reward function

1: for t ∈ {0, . . . , 23} do

2:
Take action at for state st, collecting

energy cost of pumps Epumpt , initial water volume in tanks Vt=0, final water volume
in tanks Vt=24.

3: if hydraulic punishment = False then
4: if t < 23 then
5: rt = rbenchmark/24− Epumpt

6: else
7: if Vt=24 < Vt=0 then

8:
rt =

rbenchmark
24 − Epumpt + Ptank

(Ptank = k (Vt=24−Vt=0)
Vt=0

rbenchmark or Ptank = Constant)
9: else

10: rt = rbenchmark/24− Epumpt

11: end if
12: end if
13: else
14: rt = Phydraulic
15: break
16: end if
17: end for

2.3. Reinforcement Learning Model
2.3.1. Proximal Policy Optimisation (PPO)

In this study, we applied the PPO algorithm [40] to determine the optimal real-time
pump schedule. PPO is an on-policy RL method that updates policy with a new batch of
experiences collected over time. The policy gradient method estimates the policy gradient
and inputs it into gradient ascent optimisation to improve the policy. The original policy
estimation has the following form:

LPG(θ) = Etlogπθ(at|st)Ât (2)

where πθ is the policy, and Ât is the estimation of advantage at timestep t This is a process
alternating between sampling and updating. To reuse the sampled data and make the
largest improvement to the policy, the probability ratio rt(θ) is used in PPO to support
several off-policy steps. The definition of rt(θ) is expressed as Formula (3). Moreover, to
avoid excessively large policy updates, the PPO algorithm has a clipping mechanism in the
objective function, as shown in Formulas (4) and (5).

rt(θ) =
πθ(at|st)

πθold(at|st)
(3)



Systems 2023, 11, 56 6 of 13

LCLIP(θ) = Et
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]
(4)

clip(rt(θ), 1− ε, 1 + ε) =


1 + ε, i f rt(θ) > 1 + ε
rt(θ), i f 1− ε < rt(θ) < 1 + ε
1− ε, i f rt(θ) < 1− ε

(5)

where ε is a hyperparameter. When the new policy πθ(at|st) is far from the old pol-
icy, πθold(at|st), clipping removes the incentives for moving rt(θ) outside of the interval
[1− ε, 1 + ε]. The PPO training process is expressed as Algorithm 2.

Algorithm 2 PPO

1: Initial the policy parameters θ0, initial the value function parameters φ0,
2: for k = 0, 1, 2, . . . , do
3: Collect set of trajectories Dk = {τi} by running policy πθk

in the environment.
4: Compute reward-to-go Rt based on the collected trajectories.
5: Compute advantage estimation Ât based on the current value function Vφk .
6: Update the policy by maximising the PPO objective:

θk+1 = argmax
θ

1
|Dk |T ∑

τεDk

T
∑

t=0
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

7: Update the value function parameters φ0 by regression on mean-squared error:

φk+1 = argmin
φ

1
|Dk |T ∑

τεDk

T
∑

t=0
min

(
Vφ(st)− Rt

)2

8: end for

2.3.2. Exploration Enhancement

The PPO algorithm suggests adding an entropy bonus to the objective to ensure
sufficient exploration when using a neural network architecture that shares parameters
between the policy and value function [40]. The objective is obtained as follows:

LCLIP+VF+S(θ) = Et

[
LCLIP(θ)− c1LVF(θ) + c2S[πθ ](st)

]
(6)

where LVF is the square-error loss between the target value and the estimated value, S is
the entropy bonus, and c1 and c2 are coefficients.

In this paper, an exploration-enhanced PPO (E-PPO) based on an entropy bonus is
proposed. The idea of the entropy bonus is extended to the PPO model, which does not
share parameters between the policy and value function. The policy objective is obtained
as Formula (7). The objective of the value function remains unchanged. Moreover, as the
initial entropy is expected to be as large as possible to reduce the probability of learning
failures [41,42], all the dimensions of state were normalised to maximise the initial entropy.
We found that the idea of normalisation is a simple but efficient method for maximising the
initial entropy.

LCLIP+S(θ) = Et
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)
+ σ S[πθ ](st)

]
(7)

3. Case Study: EPANet Net3

The EPANet Net3 water network was chosen as the test case to illustrate the applica-
bility of the proposed method. This network is one of the most commonly used benchmark
networks, owing to its data availability and flexibility to be modified for different optimisa-
tion problems [2]. The numerical model of the EPANet Net3 water network is accessible
online in an EPANET-compatible format from the web page of the Kentucky Hydraulic
Model Database for applied water distribution systems research [43].

The EPANet Net3 water network is based on the North Marin Water District in
Novato, CA. The network has 2 raw water sources, 2 pump stations, 3 elevated storage
tanks, 92 nodes, and 117 pipes. The topology of the EPANet Net3 water network is depicted
in Figure 2. The time horizon is 24 h divided into 1 h intervals for the case study.
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In this study, the wire-to-water efficiency of pumps 10 and 330 was 0.75. It is worth
noting that the efficiency of pumps depends on water capacity and rotation speed. In this
paper, it is simplified as a fixed value. The electricity tariffs and intervals of peak and
off-peak are shown in Figure 3. The peak tariff is USD 0.1194/kWh, and the off-peak tariff
is USD 0.0244/kWh [44].
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Some modifications were made as follows:

(1) All the control rules for the lake source, pipe 330 and pump 335, were removed. In
addition, pipe 330 was kept closed. This means that these two raw sources only
supply water through pumps 10 and 335, which are controlled by the agent, rather
than supply water under specific control rules;

(2) To simulate the stochastic water demand in a real-world WDS, the randomisation
method described above was used.

The epoch of metaheuristics is 100. The values of the crossover probability and
mutation probability of the GA are 0.95 and 0.1, respectively. The value of the local
coefficient of PSO is 1.2. For DE, the weighting factor and crossover rate are 0.1 and
0.9, respectively. The detailed settings of PPO and E-PPO in the experiments are listed
in Table 1.

Table 1. Detailed settings of the agent.

Symbol Hyperparameter Value

NlayerA Structure and number of neurons in layers of the actor network [256, 128, 64]
NlayerC Structure and number of neurons in layers of the critic network [256, 128, 1]

αA Learning rate of the actor network 1× 10−4

αC Learning rate of the critic network 1× 10−3

M Maximum episode length 24
γ Discounter factor 0.9
ε Clip range 0.2
K Epochs 10

rbenchmark Benchmark reward of energy cost 406.54
Phydraulic Negative reward for the hydraulic constraint −200
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3.1. Effects of the Penalty Form of Tank-Level Variation

In pump scheduling problems with tanks in WDSs, the penalty form of tank-level
variation must be reasonably designed to make full use of the regulation and storage
capacity of the tanks to minimize the energy cost of pumps. According to Algorithm 1
described above, to achieve the goal of the agent, the penalty can be a large constant or
a value that is proportional to the reduction rate of the tank level. To study the effects of
penalty forms of tank-level variation on energy cost, 6 agents with different penalty forms
were trained and tested on 100 random test sets. The results are shown in Figure 4. The
uncertainty setting of water demand in the environment is demand 0.3, and the agent used
is the PPO algorithm.
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rbenchmark in the experiments.

For the penalty terms of large constants, such as penalty 1 and penalty 2 in Figure 4a,
almost all the cases had not lost the water in tanks at all at the end of the scheduling period.
The larger the penalty value, the more conservative the agent is; that is, the agent tends
to add water to the tanks as much as possible to avoid default. However, this tendency
generates a high energy cost, as shown in Figure 4b. The average energy costs of penalty 1
and penalty 2 are USD 241.96/day and USD 242.45/day, respectively. For penalty forms
(penalty 3 to penalty 6) that are proportional to the reduction rate of the tank level, the
greater the coefficient of the penalty, the higher the energy cost, but the corresponding level
of the tanks only increases slightly.

As presented in Figure 4b, penalty 3 performs best, with an average energy cost of
USD 215.45/day, representing savings of 6.08% and 11.14% energy cost relative to penalty 4
and penalty 2, respectively. For penalty 3, the volume variation ratios in the tanks in most
cases (Figure 4a) are positive, and the negative ratios of the few other cases are concentrated
in a small area not exceeding−9.56%. However, the positive variation ratio reaches 184.93%.
Suppose the 100 test cases are the states of the water distribution system for 100 different
days. On most of the 100 days, the tank level rises at the end of the day. On only a few days,
the level drops slightly. However, this reduction in water volume is replenished on other
days when the water level rises. It can be inferred that the form of penalty 3 can reduce
energy costs by up to 11.14% compared to the other five penalties without sacrificing the
water level in the long term. Hence, penalty 3 was used in subsequent studies in this work
for tank-level variation.

3.2. Effects of Cross Entropy

Due to the effects of sampling limitation in the experiments, the exploration range
expressed by the coefficient of cross entropy (σ) has a significant impact on the training
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process. In this study, we compared and verified the various settings of the coefficient of
cross entropy (σ) under different water demand distributions. Figure 5 shows the experi-
mental results, which contain the PPO model and E-PPO model with different values of σ.
The same experiment was conducted three times for each model. The solid line shows the
average cumulative reward to eliminate the contingency of results, and the shaded part
represents the reward variance for three times.
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The best performance in Figure 5a reached approximately 178. Meanwhile, optimal
σ value is 0.2. The PPO model achieved the worst performance, which may be due to the
smaller exploration scope of the agent, leading to premature convergence to the subop-
timal solution. When the uncertainty coefficient of water demand increases, the optimal
performance of the agent decreases. The σ setting of 0.2 is the best, with a reward of
approximately 170 for a demand uncertainty of 0.6 (Figure 5b), and the σ setting of 0.3 is the
best with a reward of approximately 160 for a demand uncertainty of 0.9 (Figure 5c). That
is because when the environment has great uncertainty, it is difficult to learn an optimal
strategy network, as the state transition becomes blurred. The selection of the agent tends
to be conservative. When the coefficient exceeds the optimal setting, the performance
decreases as the coefficient increases (Figure 5a–c). A σ setting of 0.5 for the demand
uncertainty of 0.6 (Figure 5b) and 0.9 (Figure 5c) shows poor performance. It may be that
an entropy coefficient that is too large leads to policy degradation, which takes too much
time or even cannot be optimised. Exploration ability often affects the convergence rate
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and final performance. Considering that tasks are often sensitive to exploration ability, it is
necessary to adjust this parameter for specific tasks.

3.3. Comparison of Models

To better verify the performance and robustness of the exploration-enhanced PPO,
15 optimisation test cases were conducted under three different demand distributions in
the environment. Each test case simulates 24 h of pump scheduling with a 1 h interval. The
agent receives the current state of the WDN at the beginning of each hour, then executes the
action of that hour online until the end of the day. The simulation period of 24 h guarantees
the tank-level variation in a day, as shown in Sections 2.2.3 and 3.1. The results were
compared with metaheuristics, including GA, PSO, and DE, as shown in Tables 2 and 3.
Table 2 shows the energy cost during the scheduling period. Table 3 shows the training
time and test time of the models. The PPO and E-PPO methods are trained in advance
by interacting with the environment. In the application process, operators just need to
call the trained model. However, the metaheuristic methods need to train the model for
every single scheduling case. Simulations were carried out on a computer with an NVIDIA
GeForce RTX 3070 GPU and an Intel Core i7-11700K CPU. The RL models were built by
Keras, and the WDS environment was built by WNTR, which is compatible with EPANET.
All the models were written in Python version 3.9.

Table 2. Comparison of E-PPO, PPO, and metaheuristics performance for the test cases.

Uncertainty
Parameter of

Demand
Test Case

Energy Cost (USD/Day)

GA PSO DE PPO E-PPO

0.30

Case 1 190.251 231.889 205.586 213.210 207.941
Case 2 193.700 256.125 231.793 215.387 209.001
Case 3 206.623 283.127 239.610 218.477 215.993
Case 4 198.713 242.322 229.684 218.099 211.868
Case 5 190.328 223.991 212.200 237.575 215.848

0.60

Case 1 194.435 279.038 223.849 214.965 206.268
Case 2 204.636 279.256 229.777 214.099 208.265
Case 3 194.163 255.669 226.321 229.907 204.839
Case 4 190.837 245.699 221.987 232.683 203.932
Case 5 200.929 268.320 224.463 216.151 209.488

0.90

Case 1 187.169 238.844 214.211 230.172 208.123
Case 2 185.796 232.904 219.973 211.734 196.397
Case 3 201.102 259.644 216.285 209.971 186.099
Case 4 201.855 257.274 219.415 218.811 202.868
Case 5 217.869 253.887 238.714 227.810 220.299

Table 3. Computation time of the models.

Uncertainty
Parameter of

Demand

Time (s)

GA PSO DE PPO
Training

E-PPO
Training

PPO
Application

E-PPO
Application

0.3 1699.32 1291.18 1448.63 5479.30 5573.58 0.42 0.41
0.6 1640.72 1214.62 1475.45 5333.92 5407.01 0.44 0.42
0.9 1586.19 1181.03 1408.05 5833.19 5506.07 0.42 0.42

GA converges after 100 epochs of training; therefore, the results of GA are considered
as optimal solutions and benchmarks for test cases in this paper. As shown in Table 2,
E-PPO exhibited optimal performance besides GA, followed by PPO, DE, and PSO, with
average costs of USD 207.15/day, USD 220.60/day, USD 223.59/day, and USD 253.87/day,
respectively. Compared with the optimal solution of GA, E-PPO only consumes 5.03%
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more energy cost on average but saves approximately 6.10% of the energy cost compared
with PPO, 7.35% compared with DE, and 18.40% compared with PSO. This may be due
to the fact that metaheuristics had limited performance with limited training time and
parameter tuning.

Although the average training time of the E-PPO algorithm is 5495.55 s, which is
longer than that of metaheuristics, it only needs 0.42 s in the scheduling process, as shown
in Table 3. This is an almost negligible time consumption for hourly scheduling. However,
the computation time of the GA is nearly half an hour, which is impractical for hourly
scheduling. The performance of the E-PPO is only slightly worse than that of GA, but the
application time cost of the E-PPO is only less than a second. As time is a very important
factor in industrial production, E-PPO is a potential real-time scheduling method to obtain
suboptimal solutions.

4. Conclusions

In this paper, the real-time scheduling of pumps in water distribution systems based on
exploration-enhanced deep reinforcement learning is proposed. By constructing a reward
function, the penalty form of the tank level was explored. We found a form that can make
full use of the storage and regulation capacity of the tanks that also saves up to 11.14%
energy cost compared to the other five penalty forms with almost no water-level sacrifice
in the long term. In addition, cross entropy was introduced into the policy objective of
PPO to enhance exploration. The results show that E-PPO can learn suboptimal scheduling
policies for various demand distributions. The application time is almost negligible, which
is a great advantage for practical real-time scheduling applications.

However, the proposed method still has some limitations. In this paper, we did not
consider the attention mechanism. The dimension of state is high, as there is a large number
of demand nodes in practical WDSs. Utilizing the most relevant parts of the input sequence
in a flexible manner will be considered in future work.

Author Contributions: Conceptualization, S.H. and J.G.; methodology, S.H.; software, S.H.; val-
idation, J.G., D.Z., L.L. and R.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This investigation was funded by the National Key Research and Development Program of
China (No. 2022YFC3203800), the National Natural Science Foundation of China (No. 51978203), and
the Unveiling Scientific Research Program (No. CE602022000203).

Data Availability Statement: Please contact the authors for data and software used in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Van Zyl, J.E.; Savic, D.A.; Walters, G.A. Operational optimization of water distribution systems using a hybrid genetic algorithm.

J. Water Res. Plan. Man. 2004, 130, 160–170. [CrossRef]
2. Mala-Jetmarova, H.; Sultanova, N.; Savic, D. Lost in optimisation of water distribution systems? A literature review of system

operation. Environ. Modell. Softw. 2017, 93, 209–254. [CrossRef]
3. Bohórquez, J.; Saldarriaga, J.; Vallejo, D. Pumping Pattern Optimization in Order to Reduce WDS Operation Costs. Procedia Eng.

2015, 119, 1069–1077. [CrossRef]
4. Cimorelli, L.; Covelli, C.; Molino, B.; Pianese, D. Optimal Regulation of Pumping Station in Water Distribution Networks Using

Constant and Variable Speed Pumps: A Technical and Economical Comparison. Energies 2020, 13, 2530. [CrossRef]
5. Perera, A.; Nik, V.M.; Scartezzini, J. Impacts of extreme climate conditions due to climate change on the energy system design and

operation. Energy Procedia 2019, 159, 358–363. [CrossRef]
6. Xu, B.; Fu, R.; Lau, C.K.M. Energy market uncertainty and the impact on the crude oil prices. J. Environ. Manag. 2021, 298, 113403.

[CrossRef]
7. Zhou, X.; Lu, G.; Xu, Z.; Yan, X.; Khu, S.; Yang, J.; Zhao, J. Influence of Russia-Ukraine War on the Global Energy and Food

Security. Resour. Conserv. Recycl. 2023, 188, 106657. [CrossRef]
8. Lin, B.; Su, T. Does COVID-19 open a Pandora’s box of changing the connectedness in energy commodities? Res. Int. Bus. Financ.

2021, 56, 101360. [CrossRef]

http://doi.org/10.1061/(ASCE)0733-9496(2004)130:2(160)
http://doi.org/10.1016/j.envsoft.2017.02.009
http://doi.org/10.1016/j.proeng.2015.08.936
http://doi.org/10.3390/en13102530
http://doi.org/10.1016/j.egypro.2019.01.002
http://doi.org/10.1016/j.jenvman.2021.113403
http://doi.org/10.1016/j.resconrec.2022.106657
http://doi.org/10.1016/j.ribaf.2020.101360


Systems 2023, 11, 56 12 of 13

9. Si, D.; Li, X.; Xu, X.; Fang, Y. The risk spillover effect of the COVID-19 pandemic on energy sector: Evidence from China. Energy
Econ. 2021, 102, 105498. [CrossRef]

10. Wakeel, M.; Chen, B.; Hayat, T.; Alsaedi, A.; Ahmad, B. Energy consumption for water use cycles in different countries: A review.
Appl. Energy 2016, 178, 868–885. [CrossRef]

11. Jowitt, P.W.; Germanopoulos, G. Optimal Pump Scheduling in Water-Supply Networks. J. Water Res. Plan. Man. 1992, 118, 406–422.
[CrossRef]

12. Yu, G.; Powell, R.S.; Sterling, M.J.H. Optimized pump scheduling in water distribution systems. J. Optimiz. Theory Appl. 1994,
83, 463–488. [CrossRef]

13. Brion, L.M.; Mays, L.W. Methodology for Optimal Operation of Pumping Stations in Water Distribution Systems. J. Hydraul. Eng.
1991, 117, 1551–1569. [CrossRef]

14. Maskit, M.; Ostfeld, A. Multi-Objective Operation-Leakage Optimization and Calibration of Water Distribution Systems. Water
2021, 13, 1606. [CrossRef]

15. Lansey, K.E.; Awumah, K. Optimal Pump Operations Considering Pump Switches. J. Water Res. Plan. Man. 1994, 120, 17–35.
[CrossRef]

16. Carpentier, P.; Cohen, G. Applied mathematics in water supply network management. Automatica 1993, 29, 1215–1250. [CrossRef]
17. Brdys, M.A.; Puta, H.; Arnold, E.; Chen, K.; Hopfgarten, S. Operational Control of Integrated Quality and Quantity in Water

Systems. IFAC Proc. Vol. 1995, 28, 663–669. [CrossRef]
18. Biscos, C.; Mulholland, M.; Le Lann, M.; Brouckaert, C.; Bailey, R.; Roustan, M. Optimal operation of a potable water distribution

network. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2002, 46, 155–162. [CrossRef]
19. Giacomello, C.; Kapelan, Z.; Nicolini, M. Fast Hybrid Optimization Method for Effective Pump Scheduling. J. Water Res. Plan.

Man. 2013, 139, 175–183. [CrossRef]
20. Geem, Z.W. Harmony Search in Water Pump Switching Problem. In Proceedings of the International Conference on Natural

Computation, Changsha, China, 27–29 August 2005; pp. 751–760, ISBN 978-3-540-28320-1.
21. Wu, P.; Lai, Z.; Wu, D.; Wang, L. Optimization Research of Parallel Pump System for Improving Energy Efficiency. J. Water Res.

Plan. Man. 2015, 141, 4014094. [CrossRef]
22. Mackle, G.; Savic, G.A.; Walters, G.A. Application of genetic algorithms to pump scheduling for water supply. In Proceedings of

the First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, Sheffield, UK,
12–14 September 1995; pp. 400–405.

23. Zhu, J.; Wang, J.; Li, X. Optimal scheduling of water-supply pump stations based on improved adaptive genetic algorithm. In
Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; pp. 2716–2721.

24. Goldberg, D.E.; Kuo, C.H. Genetic Algorithms in Pipeline Optimization. J. Comput. Civ. Eng. 1987, 1, 128–141. [CrossRef]
25. Wegley, C.; Eusuff, M.; Lansey, K. Determining Pump Operations using Particle Swarm Optimization. In Proceeding of the

Joint Conference on Water Resource Engineering and Water Resources Planning and Management, Minneapolis, MN, USA,
30 July–2 August 2000.

26. Al-Ani, D.; Habibi, S. Optimal pump operation for water distribution systems using a new multi-agent Particle Swarm Optimiza-
tion technique with EPANET. In Proceedings of the 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering
(CCECE), Montreal, QC, Canada, 29 April–2 May 2012; pp. 1–6.

27. Zhao, W.; Beach, T.H.; Rezgui, Y. A systematic mixed-integer differential evolution approach for water network operational
optimization. Proc. R. Soc. A Math. Phys. Eng. Sci. 2018, 474, 20170879. [CrossRef]

28. Li, D.; Chen, D.; Jin, B.; Shi, L.; Goh, J.; Ng, S. MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative
Adversarial Networks. In Artificial Neural Networks and Machine Learning—ICANN 2019: Text and Time Series; Springer: Cham,
Switzerland, 2019; pp. 703–716.

29. Jiao, Y.; Rayhana, R.; Bin, J.; Liu, Z.; Wu, A.; Kong, X. A steerable pyramid autoencoder based framework for anomaly frame
detection of water pipeline CCTV inspection. Measurement 2021, 174, 109020. [CrossRef]

30. Nasser, A.A.; Rashad, M.Z.; Hussein, S.E. A Two-Layer Water Demand Prediction System in Urban Areas Based on Micro-Services
and LSTM Neural Networks. IEEE Access 2020, 8, 147647–147661. [CrossRef]

31. Ghalehkhondabi, I.; Ardjmand, E.; Young, W.A.; Weckman, G.R. Water demand forecasting: Review of soft computing methods.
Environ. Monit. Assess. 2017, 189, 313. [CrossRef]

32. Joo, C.N.; Koo, J.Y.; Yu, M.J. Application of short-term water demand prediction model to Seoul. Water Sci. Technol. 2002,
46, 255–261. [CrossRef]

33. Geem, Z.W.; Tseng, C.; Kim, J.; Bae, C. Trenchless Water Pipe Condition Assessment Using Artificial Neural Network. In Pipelines
2007; American Society of Civil Engineers: Reston, VA, USA, 2007; pp. 1–9.

34. Xu, J.; Wang, H.; Rao, J.; Wang, J. Zone scheduling optimization of pumps in water distribution networks with deep reinforcement
learning and knowledge-assisted learning. Soft Comput. 2021, 25, 14757–14767. [CrossRef]

35. Bhattacharya, B.; Lobbrecht, A.H.; Solomatine, D.P. Neural Networks and Reinforcement Learning in Control of Water Systems.
J. Water Res. Plan. Man. 2003, 129, 458–465. [CrossRef]

36. Fu, G.; Jin, Y.; Sun, S.; Yuan, Z.; Butler, D. The role of deep learning in urban water management: A critical review. Water Res.
2022, 223, 118973. [CrossRef]

http://doi.org/10.1016/j.eneco.2021.105498
http://doi.org/10.1016/j.apenergy.2016.06.114
http://doi.org/10.1061/(ASCE)0733-9496(1992)118:4(406)
http://doi.org/10.1007/BF02207638
http://doi.org/10.1061/(ASCE)0733-9429(1991)117:11(1551)
http://doi.org/10.3390/w13111606
http://doi.org/10.1061/(ASCE)0733-9496(1994)120:1(17)
http://doi.org/10.1016/0005-1098(93)90048-X
http://doi.org/10.1016/S1474-6670(17)51596-7
http://doi.org/10.2166/wst.2002.0228
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000239
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000493
http://doi.org/10.1061/(ASCE)0887-3801(1987)1:2(128)
http://doi.org/10.1098/rspa.2017.0879
http://doi.org/10.1016/j.measurement.2021.109020
http://doi.org/10.1109/ACCESS.2020.3015655
http://doi.org/10.1007/s10661-017-6030-3
http://doi.org/10.2166/wst.2002.0687
http://doi.org/10.1007/s00500-021-06177-3
http://doi.org/10.1061/(ASCE)0733-9496(2003)129:6(458)
http://doi.org/10.1016/j.watres.2022.118973


Systems 2023, 11, 56 13 of 13

37. Broad, D.R.; Dandy, G.C.; Maier, H.R. Water Distribution System Optimization Using Metamodels. J. Water Res. Plan. Man. 2005,
131, 172–180. [CrossRef]

38. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature
2016, 529, 484–489. [CrossRef]

39. Hajgató, G.; Paál, G.; Gyires-Tóth, B. Deep Reinforcement Learning for Real-Time Optimization of Pumps in Water Distribution
Systems. J. Water Res. Plan. Man. 2020, 146, 4020079. [CrossRef]

40. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

41. Jang, S.; Kim, H. Entropy-Aware Model Initialization for Effective Exploration in Deep Reinforcement Learning. Sensors 2022,
22, 5845. [CrossRef]

42. Varno, F.; Soleimani, B.H.; Saghayi, M.; Di Jorio, L.; Matwin, S. Efficient Neural Task Adaptation by Maximum Entropy
Initialization. arXiv 2019, arXiv:1905.10698.

43. Ormsbee, L.; Hoagland, S.; Hernandez, E.; Hall, A.; Ostfeld, A. Hydraulic Model Database for Applied Water Distribution
Systems Research. J. Water Res. Plan. Man. 2022, 148, 04022037. [CrossRef]

44. Bagirov, A.M.; Barton, A.F.; Mala-Jetmarova, H.; Al Nuaimat, A.; Ahmed, S.T.; Sultanova, N.; Yearwood, J. An algorithm for
minimization of pumping costs in water distribution systems using a novel approach to pump scheduling. Math. Comput. Model.
2013, 57, 873–886. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1061/(ASCE)0733-9496(2005)131:3(172)
http://doi.org/10.1038/nature16961
http://doi.org/10.1061/(ASCE)WR.1943-5452.0001287
http://doi.org/10.3390/s22155845
http://doi.org/10.1061/(ASCE)WR.1943-5452.0001559
http://doi.org/10.1016/j.mcm.2012.09.015

	Introduction 
	Methods 
	Reinforcement Learning (RL) 
	Design of Significant Factors for RL Application to Pump Scheduling 
	State Space 
	Action Space 
	Reward Function 

	Reinforcement Learning Model 
	Proximal Policy Optimisation (PPO) 
	Exploration Enhancement 


	Case Study: EPANet Net3 
	Effects of the Penalty Form of Tank-Level Variation 
	Effects of Cross Entropy 
	Comparison of Models 

	Conclusions 
	References

