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Abstract: Effective ways to optimise real-time pump scheduling to maximise energy efficiency are 

being sought to meet the challenges in the energy market. However, the considerable number of 

evaluations of popular optimisation methods based on metaheuristics cause significant delays for 

real-time pump scheduling, and the simplification of traditional deterministic methods may intro-

duce bias towards the optimal solutions. To address these limitations, an exploration-enhanced 

deep reinforcement learning (DRL) framework is proposed to address real-time pump scheduling 

problems in water distribution systems. The experimental results indicate that E-PPO can learn 

suboptimal scheduling policies for various demand distributions and can control the application 

time to 0.42 s by transferring the online computation-intensive optimisation task offline. Further-

more, a form of penalty of the tank level was found that can reduce energy costs by up to 11.14% 

without sacrificing the water level in the long term. Following the DRL framework, the proposed 

method makes it possible to schedule pumps in a more agile way as a timely response to changing 

water demand while still controlling the energy cost and level of tanks. 

Keywords: PPO; real-time pump scheduling; water distribution network; deep reinforcement learn-

ing; exploration enhancement 

 

1. Introduction 

Water distribution systems (WDSs) represent vast and complex infrastructures that 

are essential for residents’ lives and industrial production. Water utilities are committed 

to providing customers with sufficient water of the required quantity by operating WDSs. 

The corresponding energy cost of pumps constitutes the dominant expenditure of the op-

erational cost of a WDS [1–4]. However, the energy market is experiencing great chal-

lenges. Extreme climate [5], economic crises [6], war [7], and public health events (such as 

the COVID-19 pandemic) [8,9] have produced huge negative shocks in the energy market, 

making it full of uncertainties and fluctuations. These challenges in the energy market 

have large implications for water utilities. On the one hand, the high operating cost caused 

by rising energy prices directly affects the financial health of water utilities. On the other 

hand, a significant energy shortage would make the pumping or treatment of water im-

possible [10]. Hence, it is an important issue for water utilities to improve the energy effi-

ciency of pumps and integrate water supply strategies and energy conservation goals. 

The problem of finding the optimum pump schedule is far from simple; both the 

hourly water demand of consumers and electricity tariffs can vary greatly during the 

scheduling period. Minimum and maximum levels of tanks are hard constraints that must 

be satisfied to guarantee the reliability of the supply, and the desired pressures should be 

maintained for consumers. In addition to these factors, the hydraulic formulas of WDSs 
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are highly nonlinear and complex, making computer modelling a difficult and very time-

consuming process. 

Various optimisation methods have been applied to pump scheduling problems. De-

terministic methods are used initially, including linear [11], nonlinear [12–14], dynamic 

[15,16], and mixed-integer programming [17,18]. Most of these methods simplify the com-

plexities and interdependencies of WDSs by assumptions, discretisation, or heuristic rules 

[1,13,19]. Although these simplifications can make it easier to address the problem, they 

may introduce bias and exclude potentially good solutions. In the mid-1990s, stochastic 

optimisation methods (metaheuristics) were introduced to pump scheduling optimisation 

problems [20], such as the genetic algorithm (GA) [21–24], particle swarm optimisation 

(PSO) [25,26], and differential evolution (DE) [27]. These metaheuristics do not require 

simplification of the hydraulic models and have proven to be robust, even for highly non-

linear and nondifferentiable problems. However, metaheuristics require a large number 

of evaluations to achieve convergence, which requires too much time for real-time pro-

cessing. 

In recent years, the development of machine learning has introduced opportunities 

for the scientific management of water utilities. Various machine learning methods are 

used in a wide variety of applications, from anomaly detection [28,29] through system 

prediction [30–32] to system condition assessment [33] and system operation [34–36]. 

In scheduling problems, machine learning techniques are usually used as surrogate 

models of WDSs in metaheuristic optimisation to save computational load. Broad et al. 

[37] used an artificial neural network (ANN) as a metamodel, which can approximate the 

nonlinear functions of a WDS and provide good approximation for simulation models. 

However, how to reduce the error of surrogate models and ensure that the solution is still 

optimal compared with a full complex network simulator remains unknown. 

Deep reinforcement learning (DRL) is a promising method for nonlinear and non-

convex optimisation problems. The essence of DRL is the combination of reinforcement 

learning (RL) and deep learning. It has been explored widely in recent years with the ap-

pearance of AlphaGo [38]. However, its application in pump scheduling problems is still 

very limited. In 2020, Hajgató et al. [39] applied DRL to the single-step pump scheduling 

problem and took the results of the Nelder–Mead method as the reward standard. An 

essential contribution of Hajgató et al. is that the method models the single-step real-time 

pump scheduling problem as a Markov decision process (MDP) and considers multiple 

objectives, including satisfaction of consumers, efficiency of the pumps, and the feed ratio 

of the water network. However, the method sacrifices the regulation and storage capacity 

of the tanks and takes the pump speeds obtained by the Nelder–Mead method as the op-

timal setting, which makes the DRL results depend largely on the Nelder–Mead method. 

Based on the above literature review of pump scheduling optimisation in WDSs, 

there are three main limitations for real-time pump scheduling problems: heavy compu-

tational loads, a lack of accuracy for surrogate models, and a lack of proper usage of the 

storage capacity of tanks. Real-time pump scheduling based on reinforcement learning is 

presented in this paper. The main contributions of this paper are as follows: 

First, an RL environment of the pump scheduling problem was constructed using a 

full network simulator, and the computation-intensive task was transferred from online 

to offline to save application time. 

Second, by constructing a reward function, the penalty form of the tank level was 

explored to reduce the energy cost and maintain the tank level in the long term. 

Finally, an exploration-enhanced reinforcement learning framework was proposed, 

adding an entropy bonus to the policy objective. The results demonstrate that compared 

with metaheuristics, the proposed method can obtain suboptimal scheduling policies un-

der various demand distributions within one second. 

The rest of the paper is organised as follows. In Section 2, we introduce the details of 

DRL, proximal policy optimisation (PPO), the exploration enhancement method, and the 

designs of important factors for applying DRL in pump scheduling problems. In Section 
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3, the reinforcement learning method is applied to a WDS case, the results are presented, 

and key findings are analysed. Section 4 concludes this paper. 

2. Methods 

2.1. Reinforcement Learning (RL) 

The RL algorithm is used to solve the sequence decision problem and can mathemat-

ically be formulated as a Markov decision process (MDP). The training process of RL is 

carried out through the interaction between the agent and environment. At time step 𝑡, 

the agent executes an action (𝑎𝑡) according to the current state (𝑠𝑡) and the policy function, 

obtaining an immediate reward (𝑟𝑡); then, the environment transfers to the next time step 

state (𝑠𝑡+1). The agent adjusts its policy through the experience collected in the interaction 

process. After a large number of interactions with the environment, an agent with an op-

timal policy is obtained. Then, the trained policy neural network can be used for pump 

scheduling. Compared with other optimisation methods such as GA, the RL method di-

vides the optimisation process into training and application, which can transfer the com-

putationally intensive training process from online to offline to achieve real-time sched-

uling applications. The learned policy of RL is also able to handle the uncertainty of the 

environment, such as the uncertainty of demand, as the learned policy neural network is 

obtained by interactions with the environment under a large number different states with 

uncertainty. 

The MDP can be represented by a tuple, <S, A, P, R, γ >, where: 

 S is the state space, which is a set of states; 

 A is the action space, which is a set of executable actions for the agent; 

 P is the transition distribution, which describes the probability distribution of the 

next time step state under different 𝑠𝑡 and 𝑎𝑡; 

 R is the reward function, 𝑟𝑡 is the step reward after the agent takes an 𝑎𝑡 under state 

𝑠𝑡; and 

 𝛾 is the discount factor used to calculate the cumulative reward (𝑅𝑡), which is defined 

as: 

𝑅𝑡 =  𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯ + 𝛾𝑇−𝑡𝑟𝑇  (1) 

where 𝑇 is the step of the episode, which corresponds to 24 h in this context, and 𝛾 ∈
[0, 1] is set to 0.9 in this study. 

2.2. Design of Significant Factors for RL Application to Pump Scheduling 

In the following, the most significant factors in RL, namely S, A, and R, are discussed 

in detail for application to optimal real-time pump scheduling in WDSs. 

2.2.1. State Space 

State space is a set of all possible states in the environment. The state consists of rel-

evant information for the agent to learn the optimal policy. This means that the state 

should contain enough effective information of the current environment. However, excess 

information may lead to confusion for the agent during the process of assigning rewards 

to the state. Therefore, it is important to properly select the state space in the RL applica-

tion. For this work, the pump scheduling information in the WDS was divided into two 

categories: the water demand of consumers and the status information of the tank levels. 

To make the built environment approach the actual WDS, the uncertainty of water 

demand in the real world was considered. The randomisation of water demand in the 

environment was carried out in two steps to mimic the time and space effects. Firstly, the 

general default demand pattern (as shown in Figure 1b) was multiplied by hourly random 

multipliers to simulate the random fluctuation of hourly water demand. Secondly, the 

base demand was obtained by the product of the nodal random multiplier and the default 

base demand. The demand with uncertainty was generated in every general node as the 
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product of the pattern and base demand constructed above. Both random multipliers of 

time and space follow the truncated normal distribution. The truncated normal distribu-

tion has its domain (the random multiplier) restricted to a certain range of values, such as 
(1 − ∆, 1 + ∆). To simplify, the random multipliers of time and space are limited to the 

same range, and the water demand distribution of which the space and time random mul-

tiplier ranges are (1 − ∆, 1 + ∆) is called demand (∆) hereafter. The probability density 

distributions of the truncated normal distribution of the random multiplier for demand 

0.3, demand 0.6, and demand 0.9 are shown as examples in Figure 1a. For a large con-

sumer, we consider it a node with less uncertainty compared to the general consumer and 

do not apply a randomisation method to it. 

The initial water levels of the tanks follow a uniform distribution of (0, 1). Then, the 

following tank levels are calculated according to the state and action. 

 

Figure 1. Probability density distributions of the time and space random multiplier (a) and general 

default demand pattern (b). 

2.2.2. Action Space 

Action is defined as the relative pump speed, which is the ratio of the pump speed 

compared to the nominal pump speed. The pumps in a WDS are considered variable-

speed pumps. The trained agent selects the optimal pump speed from all combinations of 

pump speeds for every time interval of the scheduling period under the guidance of the 

learned strategy. Each relative pump speed is considered a discrete variable ranging from 

0.7 to 1.0, with an increase of 0.05 due to mechanical limitation. The size of the action space 

grows exponentially with an increase in the number of pumps. 

2.2.3. Reward Function 

The reward function is defined to motivate the agent to achieve its goal. The value of 

the reward represents the quality of the action. For this work, the reward function consists 

of three important parts: the energy cost of pumps (𝐸𝑝𝑢𝑚𝑝), the penalty for hydraulic con-

straints (𝑃ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐), and the penalty for tank-level variation (𝑃𝑡𝑎𝑛𝑘). The reward value is 

calculated according to Algorithm 1. 

(1) Energy cost of pumps 

The essential goal of the real-time pump scheduling optimisation method proposed 

in this work is to minimize the energy cost of pumps while fulfilling system constraints. 

The reward design of energy cost should consider two key points. First, the lower the 

energy cost of pumps, the higher the designed reward. Second, avoid obtaining all posi-

tive or negative rewards in the learning process, as such a strategy is not conducive to 

agent training. According to the above requirements, the reward of energy cost is defined 

as the difference between the benchmark of energy cost (𝑟𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘) and the actual energy 

cost (𝐸𝑝𝑢𝑚𝑝). The benchmark is to balance the positive and negative distribution of energy 

cost rewards. When the energy cost is lower than the benchmark, the reward is positive; 

otherwise, the reward is negative. The lower the energy cost, the larger the reward. The 
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benchmark is the average energy cost obtained by the agent interacting with the environ-

ment for 20,000 episodes, making random actions. 

(2) Hydraulic constraint 

When the hydraulic constraint (such as the pressure of nodes) cannot be fulfilled un-

der the current action, a penalty is added to the reward function. After receiving the pen-

alty, the agent learns that this is a bad action and adjusts the corresponding policy. 

(3) Tank-level variation 

Tank-level variation (mainly refers to tank-level reduction in a day) should be as 

small as possible to avoid the agent learning to reduce the energy cost by overconsuming 

water in the tanks. This may lead to water shortages and extra costs of complementing 

water in the tanks. For these reasons, when the water volume in the tank at the end of the 

scheduling period (𝑉𝑡=24) is less than the initial volume (𝑉𝑡=0), a negative reward is added 

to the reward function. Compared with the strict limit of the tank level in a day, we at-

tempted to find a way to make full use of the storage and regulation capacity of the tanks 

to reduce energy cost and maintain the tank level in the long term. The form of the nega-

tive reward (𝑃𝑡𝑎𝑛𝑘) has a great impact on the learned policy, as explored in Section 3.1. 

Algorithm 1 Reward function 

1: for 𝑡 ∈ {0, … ,23} do 

2: 
  Take action 𝑎𝑡 for state 𝑠𝑡, collecting energy cost of pumps 𝐸𝑝𝑢𝑚𝑝𝑡

, initial wa-

ter volume in tanks 𝑉𝑡=0, final water volume in tanks 𝑉𝑡=24. 

3:   if hydraulic punishment = False then 

4:     if 𝑡 < 23 then 

5:  𝑟𝑡 = 𝑟𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘/24 − 𝐸𝑝𝑢𝑚𝑝𝑡
 

6:     else 

7:       if 𝑉𝑡=24 < 𝑉𝑡=0 then 

8: 
𝑟𝑡 =

𝑟𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘

24
− 𝐸𝑝𝑢𝑚𝑝𝑡

+ 𝑃𝑡𝑎𝑛𝑘  

(𝑃𝑡𝑎𝑛𝑘 = 𝑘
(𝑉𝑡=24−𝑉𝑡=0)

𝑉𝑡=0
𝑟𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑜𝑟 𝑃𝑡𝑎𝑛𝑘 =  𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

9: else 

10:                   𝑟𝑡 = 𝑟𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘/24 − 𝐸𝑝𝑢𝑚𝑝𝑡
 

11:       end if 

12:     end if 

13:  else 

14:      𝑟𝑡 =  𝑃ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 

15:     break 

16:   end if 

17: end for 

2.3. Reinforcement Learning Model 

2.3.1. Proximal Policy Optimisation (PPO) 

In this study, we applied the PPO algorithm [40] to determine the optimal real-time 

pump schedule. PPO is an on-policy RL method that updates policy with a new batch of 

experiences collected over time. The policy gradient method estimates the policy gradient 

and inputs it into gradient ascent optimisation to improve the policy. The original policy 

estimation has the following form: 

𝐿𝑃𝐺(𝜃) = 𝐸𝑡𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴𝑡̂ (2) 

where 𝜋𝜃  is the policy, and 𝐴𝑡̂ is the estimation of advantage at timestep 𝑡 This is a 

process alternating between sampling and updating. To reuse the sampled data and make 

the largest improvement to the policy, the probability ratio 𝑟𝑡(𝜃) is used in PPO to sup-
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port several off-policy steps. The definition of 𝑟𝑡(𝜃) is expressed as Formula (3). Moreo-

ver, to avoid excessively large policy updates, the PPO algorithm has a clipping mecha-

nism in the objective function, as shown in Formulas (4) and (5). 

𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

 (3) 

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡̂ , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)𝐴𝑡̂)] (4) 

𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀) =  {

1 + 𝜀,                 𝑖𝑓 𝑟𝑡(𝜃) > 1 + 𝜀 

 𝑟𝑡(𝜃), 𝑖𝑓 1 − 𝜀 < 𝑟𝑡(𝜃) < 1 + 𝜀 

 1 − 𝜀,              𝑖𝑓 𝑟𝑡(𝜃) < 1 − 𝜀 

  (5) 

where 𝜀 is a hyperparameter. When the new policy 𝜋𝜃(𝑎𝑡|𝑠𝑡) is far from the old policy, 

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡), clipping removes the incentives for moving 𝑟𝑡(𝜃) outside of the interval 

[1 − 𝜀, 1 + 𝜀]. The PPO training process is expressed as Algorithm 2. 

Algorithm 2 PPO 

1: Initial the policy parameters 𝜃0, initial the value function parameters 𝜙0, 

2: for k = 0, 1, 2, …, do 

3:   Collect set of trajectories 𝐷𝑘 = {𝜏𝑖} by running policy 𝜋𝜃𝑘
 in the environment. 

4:   Compute reward-to-go 𝑅𝑡 based on the collected trajectories. 

5: Compute advantage estimation 𝐴𝑡̂ based on the current value function 𝑉𝜙𝑘
. 

6:   Update the policy by maximising the PPO objective: 

 𝜃𝑘+1 = 𝑎𝑟𝑔 max
𝜃

1

|𝐷𝑘|𝑇
∑ ∑ 𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡̂ , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)𝐴𝑡̂)

𝑇

𝑡=0𝜏𝜖𝐷𝑘

 

7: 
  Update the value function parameters 𝜙0 by regression on mean-squared er-

ror: 

 𝜙𝑘+1 = 𝑎𝑟𝑔 min
𝜙

1

|𝐷𝑘|𝑇
∑ ∑ 𝑚𝑖𝑛(𝑉𝜙(𝑠𝑡) − 𝑅𝑡)

2
𝑇

𝑡=0𝜏𝜖𝐷𝑘

 

8: end for 

2.3.2. Exploration Enhancement 

The PPO algorithm suggests adding an entropy bonus to the objective to ensure suf-

ficient exploration when using a neural network architecture that shares parameters be-

tween the policy and value function [40]. The objective is obtained as follows: 

𝐿𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆(𝜃) = 𝐸𝑡[𝐿𝐶𝐿𝐼𝑃(𝜃) − 𝑐1𝐿𝑉𝐹(𝜃) + 𝑐2𝑆[𝜋𝜃](𝑠𝑡)] (6) 

where 𝐿𝑉𝐹 is the square-error loss between the target value and the estimated value, 𝑆 

is the entropy bonus, and 𝑐1 and 𝑐2 are coefficients. 

In this paper, an exploration-enhanced PPO (E-PPO) based on an entropy bonus is 

proposed. The idea of the entropy bonus is extended to the PPO model, which does not 

share parameters between the policy and value function. The policy objective is obtained 

as Formula (7). The objective of the value function remains unchanged. Moreover, as the 

initial entropy is expected to be as large as possible to reduce the probability of learning 

failures [41,42], all the dimensions of state were normalised to maximise the initial en-

tropy. We found that the idea of normalisation is a simple but efficient method for max-

imising the initial entropy. 

𝐿𝐶𝐿𝐼𝑃+𝑆(𝜃) = 𝐸𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡̂ , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)𝐴𝑡̂) + 𝜎 𝑆[𝜋𝜃](𝑠𝑡)] (7) 

3. Case Study: EPANet Net3 
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The EPANet Net3 water network was chosen as the test case to illustrate the applica-

bility of the proposed method. This network is one of the most commonly used bench-

mark networks, owing to its data availability and flexibility to be modified for different 

optimisation problems [2]. The numerical model of the EPANet Net3 water network is 

accessible online in an EPANET-compatible format from the web page of the Kentucky 

Hydraulic Model Database for applied water distribution systems research [43]. 

The EPANet Net3 water network is based on the North Marin Water District in No-

vato, CA. The network has 2 raw water sources, 2 pump stations, 3 elevated storage tanks, 

92 nodes, and 117 pipes. The topology of the EPANet Net3 water network is depicted in 

Figure 2. The time horizon is 24 h divided into 1 h intervals for the case study. 

 

Figure 2. Topology of the EPANet Net3 water network. 

In this study, the wire-to-water efficiency of pumps 10 and 330 was 0.75. It is worth 

noting that the efficiency of pumps depends on water capacity and rotation speed. In this 

paper, it is simplified as a fixed value. The electricity tariffs and intervals of peak and off-

peak are shown in Figure 3. The peak tariff is USD 0.1194/kWh, and the off-peak tariff is 

USD 0.0244/kWh [44]. 

 

Figure 3. Peak and off-peak tariffs and intervals. 

Some modifications were made as follows: 

(1) All the control rules for the lake source, pipe 330 and pump 335, were removed. In 

addition, pipe 330 was kept closed. This means that these two raw sources only sup-

ply water through pumps 10 and 335, which are controlled by the agent, rather than 

supply water under specific control rules; 

(2) To simulate the stochastic water demand in a real-world WDS, the randomisation 

method described above was used. 

The epoch of metaheuristics is 100. The values of the crossover probability and mu-

tation probability of the GA are 0.95 and 0.1, respectively. The value of the local coefficient 
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of PSO is 1.2. For DE, the weighting factor and crossover rate are 0.1 and 0.9, respectively. 

The detailed settings of PPO and E-PPO in the experiments are listed in Table 1. 

Table 1. Detailed settings of the agent. 

Symbol Hyperparameter Value 

𝑁𝑙𝑎𝑦𝑒𝑟𝐴
 

Structure and number of neurons in layers of 

the actor network 
[256, 128, 64] 

𝑁𝑙𝑎𝑦𝑒𝑟𝐶
 

Structure and number of neurons in layers of 

the critic network 
[256, 128, 1] 

𝛼𝐴 Learning rate of the actor network  1 × 10−4 

𝛼𝐶 Learning rate of the critic network      1 × 10−3 

𝑀 Maximum episode length 24 

𝛾 Discounter factor 0.9 

𝜀 Clip range 0.2 

𝐾 Epochs 10 

𝑟𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 Benchmark reward of energy cost 406.54 
𝑃ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 Negative reward for the hydraulic constraint −200 

3.1. Effects of the Penalty Form of Tank-Level Variation 

In pump scheduling problems with tanks in WDSs, the penalty form of tank-level 

variation must be reasonably designed to make full use of the regulation and storage ca-

pacity of the tanks to minimize the energy cost of pumps. According to Algorithm 1 de-

scribed above, to achieve the goal of the agent, the penalty can be a large constant or a 

value that is proportional to the reduction rate of the tank level. To study the effects of 

penalty forms of tank-level variation on energy cost, 6 agents with different penalty forms 

were trained and tested on 100 random test sets. The results are shown in Figure 4. The 

uncertainty setting of water demand in the environment is demand 0.3, and the agent 

used is the PPO algorithm. 

 

Figure 4. The volume variation ratio of water in tanks (a) and the energy cost of pumps (b) under 

different penalty forms. We set 𝑝𝑒𝑛𝑎𝑙𝑡𝑦1 = −1000 , 𝑝𝑒𝑛𝑎𝑙𝑡𝑦2 = −500 , 𝑝𝑒𝑛𝑎𝑙𝑡𝑦3 = 1 ×
(𝑉𝑡=24−𝑉𝑡=0)

𝑉𝑡=0
𝑟𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 ,  𝑝𝑒𝑛𝑎𝑙𝑡𝑦4 = 2 ×

(𝑉𝑡=24−𝑉𝑡=0)

𝑉𝑡=0
𝑟𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 , 𝑝𝑒𝑛𝑎𝑙𝑡𝑦5 = 3 ×

(𝑉𝑡=24−𝑉𝑡=0)

𝑉𝑡=0
𝑟𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 ,, 

and 𝑝𝑒𝑛𝑎𝑙𝑡𝑦6 = 4 ×
(𝑉𝑡=24−𝑉𝑡=0)

𝑉𝑡=0
𝑟𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘  in the experiments. 

For the penalty terms of large constants, such as penalty 1 and penalty 2 in Figure 4a, 

almost all the cases had not lost the water in tanks at all at the end of the scheduling pe-

riod. The larger the penalty value, the more conservative the agent is; that is, the agent 

tends to add water to the tanks as much as possible to avoid default. However, this ten-

dency generates a high energy cost, as shown in Figure 4b. The average energy costs of 
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penalty 1 and penalty 2 are USD 241.96/day and USD 242.45/day, respectively. For penalty 

forms (penalty 3 to penalty 6) that are proportional to the reduction rate of the tank level, 

the greater the coefficient of the penalty, the higher the energy cost, but the corresponding 

level of the tanks only increases slightly. 

As presented in Figure 4b, penalty 3 performs best, with an average energy cost of 

USD 215.45/day, representing savings of 6.08% and 11.14% energy cost relative to penalty 

4 and penalty 2, respectively. For penalty 3, the volume variation ratios in the tanks in 

most cases (Figure 4a) are positive, and the negative ratios of the few other cases are con-

centrated in a small area not exceeding −9.56%. However, the positive variation ratio 

reaches 184.93%. Suppose the 100 test cases are the states of the water distribution system 

for 100 different days. On most of the 100 days, the tank level rises at the end of the day. 

On only a few days, the level drops slightly. However, this reduction in water volume is 

replenished on other days when the water level rises. It can be inferred that the form of 

penalty 3 can reduce energy costs by up to 11.14% compared to the other five penalties 

without sacrificing the water level in the long term. Hence, penalty 3 was used in subse-

quent studies in this work for tank-level variation. 

3.2. Effects of Cross Entropy 

Due to the effects of sampling limitation in the experiments, the exploration range 

expressed by the coefficient of cross entropy (𝜎) has a significant impact on the training 

process. In this study, we compared and verified the various settings of the coefficient of 

cross entropy (𝜎) under different water demand distributions. Figure 5 shows the experi-

mental results, which contain the PPO model and E-PPO model with different values of 

𝜎. The same experiment was conducted three times for each model. The solid line shows 

the average cumulative reward to eliminate the contingency of results, and the shaded 

part represents the reward variance for three times. 

The best performance in Figure 5a reached approximately 178. Meanwhile, optimal 

𝜎 value is 0.2. The PPO model achieved the worst performance, which may be due to the 

smaller exploration scope of the agent, leading to premature convergence to the subopti-

mal solution. When the uncertainty coefficient of water demand increases, the optimal 

performance of the agent decreases. The 𝜎 setting of 0.2 is the best, with a reward of ap-

proximately 170 for a demand uncertainty of 0.6 (Figure 5b), and the 𝜎 setting of 0.3 is 

the best with a reward of approximately 160 for a demand uncertainty of 0.9 (Figure 5c). 

That is because when the environment has great uncertainty, it is difficult to learn an op-

timal strategy network, as the state transition becomes blurred. The selection of the agent 

tends to be conservative. When the coefficient exceeds the optimal setting, the perfor-

mance decreases as the coefficient increases (Figure 5a–c). A 𝜎 setting of 0.5 for the de-

mand uncertainty of 0.6 (Figure 5b) and 0.9 (Figure 5c) shows poor performance. It may 

be that an entropy coefficient that is too large leads to policy degradation, which takes too 

much time or even cannot be optimised. Exploration ability often affects the convergence 

rate and final performance. Considering that tasks are often sensitive to exploration abil-

ity, it is necessary to adjust this parameter for specific tasks. 
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Figure 5. Episode reward during the training with a demand of 0.3 (a), 0.6 (b), 0.9 (c). 

3.3. Comparison of Models 

To better verify the performance and robustness of the exploration-enhanced PPO, 

15 optimisation test cases were conducted under three different demand distributions in 

the environment. Each test case simulates 24 h of pump scheduling with a 1 h interval. 

The agent receives the current state of the WDN at the beginning of each hour, then exe-

cutes the action of that hour online until the end of the day. The simulation period of 24 h 

guarantees the tank-level variation in a day, as shown in Sections 2.2.3 and 3.1. The results 

were compared with metaheuristics, including GA, PSO, and DE, as shown in Tables 2 

and 3. Table 2 shows the energy cost during the scheduling period. Table 3 shows the 

training time and test time of the models. The PPO and E-PPO methods are trained in 

advance by interacting with the environment. In the application process, operators just 

need to call the trained model. However, the metaheuristic methods need to train the 

model for every single scheduling case. Simulations were carried out on a computer with 

an NVIDIA GeForce RTX 3070 GPU and an Intel Core i7-11700K CPU. The RL models 

were built by Keras, and the WDS environment was built by WNTR, which is compatible 

with EPANET. All the models were written in Python version 3.9. 
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Table 2. Comparison of E-PPO, PPO, and metaheuristics performance for the test cases. 

Uncertainty Parameter of 

Demand 
Test Case 

Energy Cost (USD/day) 

GA PSO DE PPO E-PPO 

0.30 

Case 1 190.251 231.889 205.586 213.210 207.941 

Case 2 193.700 256.125 231.793 215.387 209.001 

Case 3 206.623 283.127 239.610 218.477 215.993 

Case 4 198.713 242.322 229.684 218.099 211.868 

Case 5 190.328 223.991 212.200 237.575 215.848 

0.60 

Case 1 194.435 279.038 223.849 214.965 206.268 

Case 2 204.636 279.256 229.777 214.099 208.265 

Case 3 194.163 255.669 226.321 229.907 204.839 

Case 4 190.837 245.699 221.987 232.683 203.932 

Case 5 200.929 268.320 224.463 216.151 209.488 

0.90 

Case 1 187.169 238.844 214.211 230.172 208.123 

Case 2 185.796 232.904 219.973 211.734 196.397 

Case 3 201.102 259.644 216.285 209.971 186.099 

Case 4 201.855 257.274 219.415 218.811 202.868 

Case 5 217.869 253.887 238.714 227.810 220.299 

GA converges after 100 epochs of training; therefore, the results of GA are considered 

as optimal solutions and benchmarks for test cases in this paper. As shown in Table 2, E-

PPO exhibited optimal performance besides GA, followed by PPO, DE, and PSO, with av-

erage costs of USD 207.15/day, USD 220.60/day, USD 223.59/day, and USD 253.87/day, re-

spectively. Compared with the optimal solution of GA, E-PPO only consumes 5.03% more 

energy cost on average but saves approximately 6.10% of the energy cost compared with 

PPO, 7.35% compared with DE, and 18.40% compared with PSO. This may be due to the 

fact that metaheuristics had limited performance with limited training time and parameter 

tuning. 

Table 3. Computation time of the models. 

Uncertainty 

Parameter 

of Demand 

Time (s) 

GA PSO DE 
PPO 

Training 

E-PPO 

Training 

PPO 

Application 

E-PPO 

Application 

0.3 1699.32 1291.18 1448.63 5479.30 5573.58 0.42 0.41 

0.6 1640.72 1214.62 1475.45 5333.92 5407.01 0.44 0.42 

0.9 1586.19 1181.03 1408.05 5833.19 5506.07 0.42 0.42 

Although the average training time of the E-PPO algorithm is 5495.55 s, which is 

longer than that of metaheuristics, it only needs 0.42 s in the scheduling process, as shown 

in Table 3. This is an almost negligible time consumption for hourly scheduling. However, 

the computation time of the GA is nearly half an hour, which is impractical for hourly 

scheduling. The performance of the E-PPO is only slightly worse than that of GA, but the 

application time cost of the E-PPO is only less than a second. As time is a very important 

factor in industrial production, E-PPO is a potential real-time scheduling method to obtain 

suboptimal solutions. 

4. Conclusions 

In this paper, the real-time scheduling of pumps in water distribution systems based 

on exploration-enhanced deep reinforcement learning is proposed. By constructing a re-

ward function, the penalty form of the tank level was explored. We found a form that can 

make full use of the storage and regulation capacity of the tanks that also saves up to 
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11.14% energy cost compared to the other five penalty forms with almost no water-level 

sacrifice in the long term. In addition, cross entropy was introduced into the policy objec-

tive of PPO to enhance exploration. The results show that E-PPO can learn suboptimal 

scheduling policies for various demand distributions. The application time is almost neg-

ligible, which is a great advantage for practical real-time scheduling applications. 

However, the proposed method still has some limitations. In this paper, we did not 

consider the attention mechanism. The dimension of state is high, as there is a large num-

ber of demand nodes in practical WDSs. Utilizing the most relevant parts of the input 

sequence in a flexible manner will be considered in future work. 
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