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Abstract: Non-ferrous metals, as one of the representative commodities with large international
circulation, are of great significance to social and economic development. The time series of its prices
are highly volatile and nonlinear, which makes metal price forecasting still a tough and challenging
task. However, the existing research focus on the application of the individual advanced model,
neglecting the in-depth analysis and mining of a certain type of model. In addition, most studies
overlook the importance of sub-model selection and ensemble mode in metal price forecasting, which
can lead to poor forecasting results under some circumstances. To bridge these research gaps, a
novel forecasting system including data pretreatment module, sub-model forecasting module, model
selection module, and ensemble module, which successfully introduces a nonlinear ensemble mode
and combines the optimal sub-model selection method, is developed for the non-ferrous metal prices
futures market management. More specifically, data pretreatment is carried out to capture the main
features of metal prices to effectively mitigate those challenges caused by noise. Then, the extreme
learning machine series models are employed as the sub-model library and employed to predict
the decomposed sub-sequences. Moreover, an optimal sub-model selection strategy is implemented
according to the newly proposed comprehensive index to select the best model for each sub-sequence.
Then, by proposing a nonlinear ensemble forecasting mode, the final point forecasting and uncertainty
interval forecasting results are obtained based on the forecasting results of the optimal sub-model.
Experimental simulations are carried out using the datasets copper and zinc, which show that the
present system is superior to other benchmarks. Therefore, the system can be used not only as an
effective technique for non-ferrous metal prices futures market management but also as an alternative
for other forecasting applications.

Keywords: non-ferrous metal price; point forecasting; interval forecasting; ensemble forecasting;
machine learning

1. Introduction

In this section, the background, the literature review, as well as primary works, and
contributions of our research are formulated.

1.1. Background

With the development of the world economy, non-ferrous metals occupy an increas-
ingly significant position in various aspects [1]. On the one hand, in the rapid advancement
of infrastructure and modern high-end manufacturing, non-ferrous metals have been the
non-substitutable raw materials [2,3]. On the other hand, non-ferrous metals belong to one
of the non-renewable mineral resources, which are distributed unevenly on the earth [4].
For developing countries rich in mineral resources, metal exports become their main source
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of foreign exchange [5,6]. Therefore, non-ferrous metal price fluctuation not only has an
essential impact on the advancement of the industry but also relates to the country’s foreign
trade [7]. Nevertheless, metal price fluctuation is easy to be affected by war, regional
conflict, international political situations, and other factors, which makes the price shows
the characteristics of uncertainty and nonlinearity [8]. Therefore, it is a meaningful but
challenging task to effectively predict the future non-ferrous metals price.

1.2. Main Works

In this study, we propose a novel point and interval forecasting system based on opti-
mal sub-model selection strategy and ensemble mode for non-ferrous metal futures market
management with the purpose of dealing with the futures market uncertain price predic-
tion. The proposed forecasting system combines data pretreatment module, sub-model
forecasting module, model selection module, ensemble module. Firstly, the metal price
data is decomposed into some sub-series adaptively based on the successive variational
mode decomposition (SVMD) method in the data pretreatment module, where the Datasets
Copper and Zinc are adaptively decomposed into three layers. Specifically, the original data
are decomposed into several modes based on SVMD data pretreatment algorithm, each
of which shows better data volatility and less uncertainty than the original data, making
the decomposed modes easier for prediction [9]. Besides, to minimize the limitations of
the subjective selection of predictors for sub-series, a comprehensive evaluation indicator
(MRMIT) is proposed by covering five indicators. Then, the best predictor was selected
for each subsequence by the proposed evaluation criteria. For Dataset Copper, the best
predictors from Mode No1 to Mode No3 are ORELM, WRELM, and ORELM. For other
Dataset Zinc, the optimal sub-predictors from Mode No1 to Mode No3 are ELM, WRELM,
and ELM. Finally, the nonlinear ensemble mode based on the ORELM model is proposed to
integrate the prediction results of each sub-model to obtain the point prediction results and
the interval forecasting results of different significance levels. To verify the developed sys-
tem’s performance, two datasets including copper and zinc that display different features
are employed in this study. For Dataset Copper, the proposed forecasting system point
forecasting indexes values of MAE, RMSE, MAPE, IA, and TIC are 11.332665, 14.359648,
0.118469%, 0.996536 and 0.000751. Meanwhile, for interval forecasting, the PICP is always
100.00 at the confidence level of 99%, 95%, and 90%, respectively, and the relevant PIAW
is 190.713983, 955.486526 and 1912.229981, the PINAW is 0.300101, 1.503519 and 3.009016,
Score is −3.814280, −95.548653 and −573.668994.

1.3. Novelty of This Study

A prediction system based on model selection strategy and ensemble mode is estab-
lished in this paper to realize more effective point and interval prediction of non-ferrous
metals, which can bridge some research gaps in current non-ferrous metals price prediction
studies. The main research gaps can be summarized into four points: (1) Most researchers
focus on the application of the individual advanced model, neglecting the in-depth analysis
and mining of a certain type of model; (2) Researchers overlook the application of model
selection in nonferrous metal price prediction; (3) The ensemble mode does not play a
better role in the field of non-ferrous price prediction; (4) In data pretreatment, the determi-
nation of decomposition layers is an important problem, which may affect the performance
of model prediction. The contribution and innovation of this study are summarized as
follows:

(1) A novel prediction system is developed based on optimal sub-model selection
strategy and ensemble mode for point and interval forecasting in the non-ferrous
metals price forecasting field. The developed system is composed of data pretreat-
ment module, sub-model forecasting module, model selection module, ensemble
module. Different from most previous studies, this study can realize point and inter-
val non-ferrous metals price prediction by mining and giving full play to the role of a
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certain type of model. The developed ensemble prediction system works well in the
datasets copper and zinc.

(2) Data pretreatment module is established on the ground on SVMD techniques,
which can improve the forecasting results of different models. The latest SVMD
data pretreatment technique is used for the first time to decompose metal price time se-
ries, which can solve the drawbacks that most scholars’ research on data pretreatment
methods focuses on the direct application of single data pretreatment method. More-
over, the SVMD algorithm can adaptively determine the number of subsequences
decomposition and perform effective decomposition according to data features.

(3) A novel sub-model selection strategy based on the proposed MRMIT index is de-
signed in this study. This can effectively obtain the optimal model of each subseries
from the sub-model library based on the ELM series models. Moreover, the proposed
sub-model selection strategy can avoid the disadvantage that most model selection
strategies adopt a single model or simple mixed model. Besides, the proposed model
selection index MRMIT can not only consider the accuracy and stability consistency of
the system but also enhance the computational efficiency of the system to some extent.

(4) The novel ensemble mode for non-ferrous metals price fills the research gap in the
field of non-ferrous metals price prediction. Different from the current ensemble
methods that simply add the results of sub-models or determine the weight of sub-
models based on optimization algorithms, this study established a nonlinear ensemble
mode based on the ORELM model, and the experimental results demonstrate that the
proposed ensemble mode performs better than other models and can prominently
enhance the precision and stability of prediction.

(5) The novel non-ferrous metal price forecasting system proposed in this paper can
not only achieve high precision point prediction but also achieve reliable interval
prediction. This method does not need to set the interval distribution, but can still
achieve ideal results, and greatly increases the efficiency of prediction, which can
provide stakeholders with future risks in the management of the non-ferrous metal
price futures market.

The rest chapters are: Section 2 lists the design of the novel non-ferrous metal prices
forecasting system and involved methods, including an introduction to data pretreatment
algorithm, ELM series forecasting models, model selection module, and ensemble mod-
ules. Section 3 introduces the detailed experiments. Section 4 makes a further discussion.
Section 5 summarizes the whole study.

2. The Literature Review

Although it is difficult to predict non-ferrous metal prices accurately, researchers have
made great efforts to develop more advanced forecasting models. These achievements
can be summarized into the following categories: (I) statistical approaches; (II) artificial
intelligence approaches; (III) hybrid approaches.

Familiarly used statistical approaches include autoregressive moving average
(ARMA) [10], autoregressive integrated moving average (ARIMA) [11], Kalman filter-
ing [12], and so on. Kriechbaumer et al. [13] proposed a wavelet-ARIMA method to solve
the problem of financial data forecasting, and the prediction performance is effectively im-
proved. Gangopadhyay et al. [14] introduce a vector error-correction approach to forecast
the gold price, and the experimental results show that the forecasting effect is prominently
improved. Chen et al. [15] establish a novel gray wave model for predicting the futures
prices of aluminum and nickel and enhancing the prediction performance to a certain
degree. As indicated above, statistical models have a wide practical application in the
forecasting field. However, these models have a defect in the linear assumptions about the
data [16,17], while the mental prices have strong volatility and uncertainty. Thus, applying
individual statistical approaches to capture the nonlinear stochastic pattern of non-ferrous
metal price time series is difficult.
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For the past few years, the application of computers has been increasingly extensive,
thus, the use of artificial intelligence algorithms to predict non-ferrous metal prices have
become more popular. S’anchez Lasheras et al. [7] implement the neural network model
and ARIMA model, respectively, and take copper spot price as an example to conduct
a comparative study. The results indicate that the performance of neural networks is
better than the ARIMA method. Zhang et al. [18] make use of eight datasets, such as
gold, iron ore, and silver, and then apply different kinds of machine learning prediction
methods for comparative research. The empirical results demonstrate that Multilayer
Perception (MLP) neural network outperforms other machine learning models in copper
price prediction. Fan et al. [19] utilize the volatility of chaotic coal prices to apply the
MLP network model for prediction. Mustaffa and Yusof [20] implement the least squares
support vector machine to forecast gold as well as palladium prices. As artificial intelligence
technology continues to mature, researchers are using deep neural networks to solve
prediction problems. Liu et al. [21] establish a long short-term memory (LSTM) model to
forecast the price change of non-ferrous metals and prove that the LSTM model is one of
the effective methods to deal with non-ferrous metal prices time series. Although the single
artificial intelligence method has a strong nonlinear processing ability, it is susceptible to
overfitting and falling into local optima, which may lead to poor results [22].

To eliminate the negative effects inherent in individual methods, hybrid methods [23]
are becoming the main research direction in the future, aiming to further enhance the
performance of metal price prediction and other prediction fields. Specifically, the current
hybrid models are universally developed based on the respective advantages of various
algorithms to further improve the prediction performance, such as the data pretreatment
technique [24,25], feature selection methods [26–28], optimization algorithms [29,30], and
other advanced technologies. For example, Cheng et al. [24] develop a hybrid prediction
system based on ICEEMDAN-R to forecast energy prices. The results indicated that the
system could improve forecasting performance including accuracy and stability, which is
appropriate for online ultra-short-term and short-term non-ferrous metal price forecast-
ing. Similarly, Jiang et al. [26] propose the square root fused LASSO, which is a novel
feature selection approach and performs better than other algorithms. Data pretreatment
algorithms such as VMD, empirical mode decomposition (EMD), and ensemble EMD
(EEMD) are employed to forecast non-ferrous metal prices in existing studies, and the
forecasting model based on the VMD algorithm has achieved good prediction results. For
example, Liu et al. [21] developed a hybrid model based on VMD with LSTM, and Du
et al. [9] apply an improved ELM model for metal price forecasting, and it turns out that
VMD outperforms EMD and EEMD. Liu et al. [31] employ LSTM with particle swarm
optimization (PSO), complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN), and variational mode decomposition (VMD) to forecast zinc, aluminum,
and copper price, which verify the proposed model is effective and robust. Du et al. [32]
employ a time-varying filter based on empirical mode decomposition (TVF-EMD) with
an optimized extreme learning machine (ELM) by marine predators algorithm to predict
the non-ferrous metal prices. Guo et al. [33] propose a novel ensemble forecasting system
based on an innovative combined kernel extreme learning machine and chaos theory in
copper and aluminum price prediction. Wang et al. [34] simultaneously use price volatility
network (PVN) and ELM to predict copper prices. Liu et al. [35] and Hussein et al. [36] em-
ploy an artificial neural network model combined with a decision tree learning technique
to forecast metal prices. Li [37] construct an approach, that combines a wavelet neural
network (WNN) and artificial bee colony (ABC) optimization method for gold futures
prediction. Liu et al. [38] establish a hybrid neural network model based on Bayesian
optimization and wavelet transformation to predict future changes in copper price and
obtain great performance. Besides, hybrid methods have been also widely and successfully
employed in other fields, such as haze pollution [29], wind speed forecasting [39], crude oil
forecasting [40], and so on. For example, Hao et al. [41] propose a new forecasting system
based on decomposition-ensemble mode and multi-objective optimization in air pollutant
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concentration forecasting. In other similar fields, the XGBoost–NSGA-II–SHAP approach
is established by Deng et al. [42] to address hyperparameters and overfitting puzzles and
the conclusion is drawn that the developed model can effectively predict the stock crash
risk according to the financial indicators. Lorenzo-Espejo et al. [43] combine PSO with
simulated annealing for the optimization of the multiproduct omnichannel replenishment
trouble. Prediction and visualization of the System of Management of Agreements and
Transfer Contracts are realized by Andrade et al. [44] using machine learning, which can
help evaluate new and ongoing project profiles. Zhao et al. [45] establish BP Neural Net-
work Model for achieving early warning of systemic financial risk of local government
implicit debt. Zhang et al. [46] design a loan default forecasting system to achieve higher
profits and reduce loan risk. Lee et al. [47] through the continuous construction of structural
equations, product sales forecasting can be achieved. Cheng et al. [48] employ long short-
term memory (LSTM) and gated recurrent units (GRU) to forecast stock prices and the
experimental results demonstrate that the developed model has a significant improvement
in predicting stock prices, which can provide predictive decision support for government
leaders and market investors. Gerardo L. Febres & Carlos Gershenson [49] implement
a deterministic–statistical hybrid forecast model to achieve the future of the COVID-19
contagious process in several regions of Mexico. However, in practical applications, the
characteristics of different time series datasets vary greatly, so it is impossible to have a
simple hybrid model which can be effective for all data sets at the same time. To relieve
the limitations of subjective model selection and improve the precision and consistency,
the optimal sub-model selection method is developed in our research, which can objec-
tively determine the predictor for each sub-series and significantly enhance the prediction
performance of the model in metal price prediction.

As mentioned above, the review of the literature on price series forecasting makes clear
that although non-ferrous metal prices prediction has made a lot of progress in improving
the accuracy of point forecasting, there are a few research gaps as follows:

(1) However, the VMD algorithm has the defect that it is troublesome to effectively
confirm the number of decomposition layers, which may play a crucial role in the final
prediction accuracy. To solve this problem, some researchers use other algorithms
that can automatically determine the number of modes to determine the predefined
parameters. Although this problem can be solved to some extent, the parameters
determined by another algorithm may not be optimal.

(2) The existing researchers ignore the in-depth analysis and mining of some types of
models, mostly pay more attention to the application of individual advanced models,
and rarely involve the significance of model selection in decomposition ensemble
prediction. Thus, further improvement is necessary from the point of view of the in-
depth study of similar models and employing a valid optimal sub-predictor selection
approach.

(3) Due to its outstanding performance in the field of prediction, the ELM model has
attracted quite a lot of attention from researchers. However, researchers of ELM-based
models are more inclined to use the improved version of ELM, and few studies explore
the applicability of different ELM models in prediction.

(4) In non-ferrous metal price forecasting, the ensemble approach is less innovative,
which the current ensemble methods that simply add the results of sub-models or
determine the weight of sub-models based on optimization algorithms.

(5) Compared with point forecasting, interval forecasting is a significant link in the
research of prediction problems, and its results contain more information. And the
effective interval forecast results can quantify the uncertainty of the financial market,
to provide more reliable forecasting results for enterprises and investors. Wang
et al. [50] have conducted in-depth research on the application of interval prediction
in wind energy, which can guarantee the stable operation of the power grid to a certain
extent. However, in non-ferrous metal prices forecasting, the majority of previous
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research paid attention to the deterministic prediction, while ignoring the uncertainty
of metal prices.

3. Modular Design of the Non-Ferrous Metal Prices Forecasting System

In this section, four modules, covering the data pretreatment module, sub-model
forecasting modules, model selection module, and ensemble modules, are introduced. The
details are as follows:

3.1. Data Pretreatment Module

In this subsection, the data pretreatment module is designed to provide effective
decomposition according to data features.

3.1.1. Variational Mode Decomposition

VMD technology is a completely non-recursive signal variational and signal processing
method developed by K. Dragomiretskiy and D. Zosso [50], which provides a practical
method to deal with non-stationary signals.

When VMD performs K-order decomposition, the constrained variational model is:

min
{

K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
uk(t)

]
e−jωkt

∥∥∥2

2

}
s.t.

K
∑

k=1
uk = f(t)

(1)

where {uk} = {uk(t)}K
k=1 represents the set of decomposed model signals; {ωk} =

{ωk}K
k=1 represents the set of central frequencies.

Afterward, the augmented Lagrange function is constructed first, and the above-
constrained problem is changed into an unconstrained problem, as shown in Equation (2):

L2({uk}, {ωk}, λ) =

α
K
∑

k=1

∥∥∂t[(δ(t) + j/(πt))uk(t)]e−jωkt
∥∥2

2+∥∥∥∥y(t)−
K
∑

k=1
uk(t)

∥∥∥∥2

2
+

〈
λ(t), y(t)−

K
∑

k=1
uk(t)

〉 (2)

where α > 0; 〈·, ·〉 is the inner product operator, α is the quadratic penalty function and λ
is the Lagrange multiplier.

The alternating direction multiplier algorithm is used to update {uk}. Then, the
Fourier transform uk(t) is first updated, as shown in Equation (3):

ûk(ω) :=

ŷ(ω)− ∑
i 6=k

ûi(ω) + λ̂(ω)/2

1 + 2α(ω−ωk)
2 (3)

Then, update the center frequency:

ωk :=

∫ +∞
0 ω|ûk(ω)|2dω∫ +∞

0 |ûk(ω)|2dω
(4)

In the end, update the Fourier transform of the Lagrange multiplier:

λ̂(ω) := λ̂(ω) + τ

(
ŷ(ω)−

K

∑
k=1

ûk(ω)

)
(5)
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By iterating repeatedly until meeting the convergence condition defined as:

∑
k

∥∥∥ûn+1
k − ûn

k

∥∥∥/‖ûn
k‖ < ε (6)

3.1.2. Successive Variational Mode Decomposition

To overcome the setting of the number of decomposition modes in the VMD decompo-
sition algorithm, the SVMD data preprocessing technology is introduced into non-ferrous
metal forecasting. SVMD can adaptively realize the mode decomposition by adding some
criteria to the VMD optimization problem [51].

For the input data f(t), it is decomposed into the Kth pattern uk(t) and the residual
signal fr(t), then its expression is as follows:

f(t) = uk(t) + fr(t) (7)

The following constraints should be established:

(1) Each mode should be closely around its central frequency. Therefore, it can be
achieved by minimizing the following constraints. uk(t) satisfies the following criteria:

J1 =

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
uk(t)

]
e−jωkt

∥∥∥∥2

2
(8)

(2) The spectral overlap between fr(t) and uk(t) modes should be minimum. To en-
sure that this constraint can be implemented stably, the filter βk(ω) with frequency
response is used, and its frequency response is as follows:

β̂k(ω) =
1

α(ω−ωk)
2 (9)

Meanwhile, the penalty function is defined as Equation (10) and employed.

J2 = ‖βk(t)fr(t)‖2
2 (10)

where βk(ω) is the impulse response of the filter β̂k(ω).
(3) By minimizing J1 and J2 constraints, the Kth order mode and the first K − 1 order

mode may not be effectively distinguished. Therefore, based on the establishment
idea of constraint J2, the frequency response of the filter used is:

β̂i(ω) =
1

α(ω−ωi)
2 , i = 1, 2, · · · , K− 1 (11)

Thus, the established constraint is:

J3 =
K−1

∑
i=1
‖βi(t)uk(t)‖

2

2

(12)

(4) During decomposition, the following constraints are established to ensure that signals
can be completely reconstructed:

f(t) = uk(t) + fu(t) + ∑
i=1:K−1

ui(t) (13)
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Thus, the problem of extracting modal components can be formulated as a constrained
minimization problem as follows:

min
uk,ωk,fr

{αJ1 + J2 + J3}

s.t. uk(t) + fr(t) = f(t)
(14)

where α is a parameter of j1, j2 and J3.

3.2. Forecasting Module

The ELM model has shown good predictive performance in many fields, and various
improved ELM models have emerged. In this paper, four improved ELM models are
selected as candidate models, and the specific methods are as follows:

3.2.1. Extreme Learning Machine

The biggest advantage of ELM is that the connection weight β between the hidden
layer and the output layer is the only solution determined by solving equations.

Given N groups of training sample datasets
{

xj, tj
}

, the network input-output rela-
tionship can be expressed as:

L

∑
i=1
βig
(
Wi · xj + bi

)
= oj, j = 1, 2, . . . , N. (15)

where, g(·) is the activation function, Wi = [ωi1,ωi2, . . . ,ωin]
T and βi for the input layer

and hidden layer and hidden layer and output layer weight, respectively.
The aim of network learning is defined as minimizing the output error of neural

networks:
N

∑
j=1

∥∥oj − tj
∥∥→ 0 (16)

That is, it exists so that

L

∑
i=1
βig
(
Wi · xj + bi

)
= tj, j = 1, 2, . . . , N (17)

The matrix is denoted as:
Hβ = T (18)

where H is the hidden layer output, β is the output weight, and T is the desired output,

H =


g(W1 · x1 + b1) g(W2 · x1 + b2) · · · g(WL · x1 + bL)
g(W1 · x2 + b1) g(W2 · x2 + b2) · · · g(WL · x2 + bL)

...
...

. . .
...

g(W1 · xN + b1) g(W2 · xL + b2) · · · g(WL · xN + bL)


N×L

β =


βT

1
βT

2
...
βT

N


L×m

, T =


TT

1
TT

2
...

TT
N


N×m

(19)

A set of optima w∗i , b∗i and β∗i is obtained by training a network,

‖H(W∗i , b∗i )β
∗
i − T‖ = min

W,b,β
‖H(Wi, bi)βi − T‖ (20)
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where, i = 1, 2, · · · , L, Equation (20) is equal to minimize Equation (21).

E =
N

∑
j=1

(
L

∑
i=1
βig
(
Wi · xj + bj

)
− tj

)2

(21)

The output weight β can be determined by the following equation.

β∗ = H+T (22)

where, H+ is the Moore-Penrose generalized inverse of a matrix.

3.2.2. Regularized Extreme Learning Machine

To solve the overfitting problem and enhance the generalization ability of the ELM
network, Huang et al. [52] introduced regularization parameters into ELM. The main steps
are as follows:

(1) Set the target function:

minE = min
β

{
λ
2 ‖ε‖

2 + 1
2‖β‖

2
}

ε= Hβ−T
(23)

where λ is the regularization coefficient; β is the connection weight matrix between
neurons in the output layer and hidden emerging neuron.

(2) Construct the Lagrange equation.

L(α, ε,β) =
λ

2
‖ε‖2 +

1
2
‖β‖2 − α(Hβ− T− ε) (24)

where α is the Lagrangian operator.
(3) The partial derivatives of variables α, β and ε are obtained to obtain the output

weight matrix. 
∂L
∂β → βT = αH
∂L
∂ε → λεT + α = 0
∂L
∂α → Hβ−T−ε = 0

(25)

β̂ =

(
HTH +

I
λ

)−1
HTT (26)

where I is the unit matrix.
(4) Finally, the RELM prediction model is:

y =
K

∑
i=1
β̂ig(ωix + bi) =

K

∑
i=1

(
HTH +

I
λ

)−1

HTTg(ωix + bi) (27)

where y is the non-ferrous metal price prediction matrix.

3.2.3. Weighted Regularized Extreme Learning Machine

To enhance the generalization ability of RELM, weight factors are introduced based
on RELM. The specific construction process is as follows:

(1) Set the target function:

minE = min
β

{
λ

2
‖wε‖2 +

1
2
‖β‖2

}
(28)

where w = diag(ω1,ω2, · · · ,ωN); λ is regular coefficient.
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(2) Construct the Lagrange equation.

L(α, ε,β) =
λ

2
‖wε‖2 +

1
2
‖β‖2 − α(Hβ− Z− ε) (29)

where α is the Lagrangian operator; H is the output matrix of the hidden layer.
(3) The partial derivatives of variables are obtained to obtain the output weight matrix.

∂L
∂β → βT = αH
∂L
∂ε → λεTw2 + α = 0
∂L
∂α → Hβ−Z−ε = 0

(30)

β̂ =

(
HTw2H +

I
λ

)−1
HTw2T (31)

where I is the unit matrix.
(4) Finally, the WRELM prediction model is:

y =
L

∑
i=1
β̂ig(ωix + bi) (32)

where y is the non-ferrous metal price prediction matrix.

3.2.4. Outlier Robust Extreme Learning Machine

To eliminate the influence of outliers on the prediction performance of the model,
Zhang and Luo [53] proposed the ORELM model. The specific construction steps are as
follows:

(1) The objective function is defined as:{
min
β
‖e‖1 +

1
c‖β‖

2
2

e = y−Hβ
(33)

where, c represents the regularization parameter and e represents the prediction error
of N training data.

(2) Construct the Lagrange equation:

Lµ(e,β, λ) = ‖e‖1 +
1
c
‖β‖2

2 + λT(y−Hβ− e) +
µ

2
‖y−Hβ− e‖2

2 (34)

The Lagrange function can be solved by:
βk+1 = argmin

β
Lµ(et,β, λk)

ek+1 = argmin
e

Lµ(et,βk+1, λk)

λk+1 = λk + µ(y−Hβk+1 − ek+1)

(35)

βk+1 and ek+1 can be solved by: βk+1 =
(

HTH + 2
CµI

)−1
HT
(

Y− ek +
λk
µ

)
ek+1 = shrink

(
y−Hβk+1 +

λk
µ , 1
µ

) (36)

3.3. Optimal Sub-Model Selection Module

Although many improved models based on the ELM model have been developed,
how to search for the optimal model for non-ferrous metal price prediction in practical
applications is a difficult problem, which is an important capability for all metal market
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participants. Therefore, this paper proposes a novel optimal sub-model selection mode
to establish a set of optimal sub-model, which can create a satisfying prediction system
and guarantee the precision and consistency of the final prediction results and provide
participants with more promising future information in the metal sector as well as the
market. The five indicators, including the mean absolute error (MAE), root mean square
error (RMSE), mean absolute percentage error (MAPE), index of agreement (IA), Theil
inequality coefficient (TIC), are employed to establish MRMIT index evaluation system.
Specifically, a comprehensive assessment is carried out based on these indicators. The
process of the optimal sub-model selection method is detailed as follows:

(1) The five metric values are calculated for all candidate sub-predictors.
(2) The obtained five values of evaluation criteria are normalized by Equation (37).

Indicator∗i =
Indicatori − min

1≤i≤N
(Indicator)

max
1≤i≤N

(Indicator)− min
1≤i≤N

(Indicator)
(37)

(3) The i-th sub-predictor MRMIT value is computed as follows:

MRMITj =
(

0.2 ∗MAE∗j + 0.2 ∗ RMSE∗j + 0.2 ∗MAPE∗j + 0.2 ∗
(

1− IA∗j
)
+ 0.2 ∗ TIC∗j

)
(38)

(4) For the developed forecasting system, the sub-predictor with the minimum MRMIT
value is chosen as the optimal sub-predictor.

3.4. Ensemble Modules

In the previous papers, simple ensemble and optimization algorithm ensemble are the
two main methods to study forecasting problems. Respectively, they are to sum and average
the prediction results of the optimal sub-predictors and assign weights to each sub-predictor,
then simply add them to get the optimal solution. In this paper, unlike most previous
research, considering the superiority of the ELM model in solving forecasting problems,
this study tries to develop a novel nonlinear ensemble forecasting system based on ELM
series models as the forecasting engine and nonlinear ensemble as the basic strategy, which
consists of nonlinear ensemble point forecasting and interval forecasting. The system not
only takes ELM series models as the sub-model base but also employs a modified version
of ELM called ORELM as the prediction engine in the system for nonlinear ensemble
forecasting, which maintains the strengths of ELM and effectively deals with outliers in
non-ferrous metal prices data. The main idea is that the optimal sub-model is selected
based on the MRMIT index, and the forecasting results of each optimal sub-model are input
into the newly developed ensemble system to acquire the eventual non-ferrous metal price
forecasting results, to improve the final prediction performance. On top of that, to ensure
the practical value of the developed system, uncertainty interval prediction is also achieved
based on the prediction results of the optimal sub-predictor in the ensemble module.

4. Framework of the Developed Ensemble Non-Ferrous Metal Prices
Forecasting System

The main framework of the developed ensemble system for non-ferrous metal prices
futures market management is presented in Figure 1. Detailed forecasting process includes
four phases as follows:
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Phase I: Data Pretreatment
Due to the inherent nonlinearity and instability of original non-ferrous metal price

data, the forecasting performance of price time series is restricted. To abate the noise of
the original negative impact of non-ferrous metal prices data and further improve the
predictive performance, the SVMD method is used to perform multi-subsequence adaptive
decomposition of the original data, which can catch the primary characteristics of the metal
and mining time series and make an important contribution to enhance the performance of
the system.

Phase II: The model base construction and forecasting
To fully analyze and mine ELM series models, this paper takes ELM and three im-

proved versions of ELM-RELM, WRELM, and ORELM as the sub-model library to avoid
the disadvantages of the randomness of a single model or a simple combination model.
The sub-sequences decomposed by SVMD are input to each sub-model of the sub-model
library to realize the deterministic point prediction.

Phase III: Optimal Sub-Model Selection
Based on the point prediction results obtained in phase II, the sub-model with the

minimum MRMIT index value in each layer was selected as the sub-model predictor.
Phase IV: Ensemble Forecasting
According to the optimal sub-models selected in phase III, the prediction values of

the optimal sub-predictors are input into the proposed nonlinear ensemble forecasting
system based on the ORELM model, and the final point prediction results are obtained.
Moreover, to ensure that the forecasting results contain more information and ensure
forecasting accuracy and stability, interval forecasting is finally carried out according to the
best sub-predictor forecasting results under different confidence levels.

5. Experiments and Analysis

In this section, the studied data and the performance metrics are presented detailedly.
After that, four experiments and corresponding analyses are displayed to prove the superi-
ority of our developed point and interval forecasting system.
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5.1. Studied Data

In this study, two datasets of non-ferrous metal price futures are collected at https:
//cn.investing.com (accessed on 1 July 2022). Four experiments are conducted using
diurnal data and the two datasets are collected from 14 June 2018 to 31 December 2021
with a total of 800 trading days. More specifically, 720 days data are used to train the
individual models. Then, the four models are used to predict non-ferrous metals prices in
the following 135 days. After comparing the prediction results of each model, the proposed
optimal sub-model selection strategy based on the developed evaluation index is used to
select the optimal predictor for different sub-series. Then, the novel nonlinear ensemble
model is used to integrate the prediction results of the optimal sub-model, and finally, the
prediction results of non-ferrous metal prices are obtained. The data of the last 45 days
are used to evaluate the prediction results of the model, and several compared models are
employed to verify the superiority of the proposed system. In addition, Table 1 shows the
statistical values of two experimental datasets.

Table 1. Statistical values of each experimental dataset.

Dataset Number Mean Std Min Max Kurtosis Skewness

Copper
Training 720 6376.111111 913.093217 4630.000000 9412.500000 2.010163 1.461172

Validation 135 9601.925926 365.311641 8894.000000 10,460.000000 −0.409698 0.586835
Testing 45 9555.422222 122.390023 9199.500000 9835.000000 0.547678 −0.032925

All Samples 900 7018.948889 1529.610952 4630.000000 10,460.000000 −0.824881 0.825347
Zinc

Training 720 2467.443056 271.680217 1815.500000 3178.000000 −0.443849 −0.374203
Validation 135 3031.100000 163.270136 2814.000000 3794.500000 6.714848 2.434975

Testing 45 3311.277778 110.050792 3146.000000 3534.000000 −0.245023 0.679581
All Samples 900 2594.183333 361.556747 1815.500000 3794.500000 −0.131702 0.190299

5.2. Performance Metrics

The performance appraisal criteria are employed in this research including MAE,
RMSE, MAPE, IA, TIC, prediction interval coverage probability (PICP), prediction interval
average width (PIAW), prediction interval normalized, average width (PINAW), and Score.
Specifically, MAE, RMSE, MAPE, IA, and TIC are employed to measure point forecasting
performance. MAE, RMSE, and MAPE evaluate the prediction accuracy, IA reflects the
model’s generalization ability, and TIC measures the prediction capability of the prediction
model. In addition, PICP, PINAW, PIAW, and Score are employed to evaluate interval
prediction performance. PICP assesses the reliability of a prediction by evaluating the
accuracy of the prediction using the coverage that the established forecasting interval can
cover the actual observation, PINAW measures the effectiveness of interval prediction and
CWC is a comprehensive metric to evaluate the quality of prediction intervals. A detailed
mathematical description of these indicators is presented in Table 2.

https://cn.investing.com
https://cn.investing.com
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Table 2. Performance metric rules.

Metric Equation

MAE MAE = 1
N

N
∑

i=1
|Fi − Ai|

RMSE RMSE =

√
1
N ×

N
∑

i=1

(
Fi − Ai)

2

MAPE MAPE = 1
N

N
∑

i=1

∣∣∣Ai−Fi
Ai

∣∣∣× 100%

IA IA = 1−
N
∑

i=1

(
Fi − Ai)

2 /
N
∑

i=1

(∣∣Fi −A
∣∣ +∣∣Ai + A

∣∣)2

TIC TIC =

√
1
N ×

N
∑

i=1

(
Fi − Ai)

2 /

(√
1
N ×

N
∑

i=1
Ai

2 +

√
1
N ×

N
∑

i=1
Fi

2

)
PICP PICP = 1

N

N
∑

i=1
Ci

PINAW PINAW = 1
NR

N
∑

i=1
(UBi − LBi)

PIAW PIAW = 1
N

N
∑

i=1
(UBi − LBi)

Score S = 1
N

N
∑

i=1
Si

Note: Ai and Fi are the actual and predicted non-ferrous metal price values, respectively, N is the number of data,

and Ci =

{
1, Ai ∈ [Li, Ui]
0, otherwise , Si =

 −2αθi − 4(Li −Ai), Ai < Li
−2αθi, Ai ∈ [Ui, Li]
−2αθi − 4(Ai −Ui), Ai > Ui

where Li and Ui are the interval lower

and upper bounds, respectively, and α is the significance level.

5.3. Experiment I: Sub-Model Selection Based on MRMIT

In this subsection, based on the MRMIT index value, the best sub-models are deter-
mined from four candidate models for each decomposed mode. To eliminate the influence
of parameter setting on the performance of the forecasting models, four candidate models
of the same type are set with the same parameter values. Non-ferrous metals are a large
group of alloys that behave very differently in terms of price changes. The optimal sub-
predictor for the decomposition modes is shown in Table 3. From Table 3, it is effortless to
conclude that the optimal sub-model chosen has different options for different non-ferrous
metals alloys at the same time which indicates that the selection of the best predictor is
indispensable on account of only one prediction model that cannot describe the charac-
teristics of variable data. For the first decomposition mode, the datasets of Copper and
Zinc have different optimal sub-models, among which the sub-model of copper selection is
ORELM model, and the sub-model of copper selection is the ELM model. For the second
decomposition mode, the datasets of Copper and Zinc have the same optimal sub-models,
both of which are the WRELM model. For the last decomposition mode selection, the
datasets of Copper and Zinc have different optimal sub-models, the sub-model of copper
selection is the ORELM model, and the sub-model of zinc selection is the ELM model. To
sum up, as to forecasting Dataset Copper, the best predictors from Mode No1 to Mode No3
are ORELM, WRELM, and ORELM. As to the prediction of other Dataset Zinc, the optimal
sub-predictors from Mode No1 to Mode No3 are ELM, WRELM, and ELM.

Table 3. Optimal sub-model for each mode.

Mode Copper Zinc Yes or No?

Mode No1 ORELM ELM No
Mode No2 WRELM WRELM Yes
Mode No3 ORELM ELM No

Note: Yes, means that the best sub-models of datasets copper and zinc are the same; No, means that the best
sub-models of datasets copper and zinc are not the same.
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Remark 1. Based on the MRMIT index value, the best sub-models are determined. For Dataset
Copper, the best predictors from Mode No1 to Mode No3 are ORELM, WRELM, and ORELM. For
other Dataset Zinc, the optimal sub-predictors from Mode No1 to Mode No3 are ELM, WRELM,
and ELM.

5.4. Experiment II: Comparison of the Developed System with Some Typical Benchmarks

In this section, the point forecasting comparison results among the proposed forecast-
ing system and some typical benchmark models are shown in Table 4 and Figures 2 and 3,
where the boldly marked value means the corresponding model achieves the best results in
the specific evaluation index, showing that the developed forecasting system performs best
among all models.

Table 4. Results of two datasets point forecasting.

Dataset Model MAE RMSE MAPE(%) IA TIC

Copper ELM 112.334560 135.637098 1.172072 0.662147 0.007129
RELM 111.333267 134.997478 1.161670 0.665282 0.007095

WRELM 106.203165 130.771381 1.108749 0.678176 0.006869
ORELM 110.438731 135.872875 1.152984 0.675115 0.007139

SVMD-ELM-SE 32.060023 35.557911 0.334526 0.977442 0.001864
SVMD-RELM-SE 37.106249 39.805757 0.387352 0.971950 0.002087

SVMD-WRELM-SE 39.118255 41.766036 0.408252 0.968886 0.002190
SVMD-ORELM-SE 29.982821 33.566644 0.312725 0.979759 0.001759

The Developed System 11.332665 14.359648 0.118469 0.996536 0.000751

Zinc ELM 94.530373 108.820780 2.814554 0.725792 0.016660
RELM 100.782507 114.889654 3.001630 0.702154 0.017607

WRELM 96.771240 111.029926 2.881543 0.717259 0.017004
ORELM 111.434073 126.324646 3.318488 0.653617 0.019392

SVMD-ELM-SE 35.986381 40.118159 1.072213 0.961745 0.006088
SVMD-RELM-SE 37.135380 41.369084 1.106171 0.959088 0.006279

SVMD-WRELM-SE 57.910982 62.859317 1.728839 0.906204 0.009571
SVMD-ORELM-SE 44.020481 48.100182 1.313996 0.945457 0.007308

The Developed System 6.757693 8.351136 0.203406 0.998478 0.001260

Figure 4 shows the graphical forecasting results for dataset copper and zinc, respec-
tively, both of which demonstrate that the forecasting lines of the developed forecasting
system are closer to the observation lines than any other comparison. On top of that, the
system developed in this study obtains the best MAPE value among all comparison models.
The comparative analysis results are as follows:
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(a) The comparison of point prediction accuracy among the simple ensemble mod-
els with some single models. In this sub-session, several independent forecast-
ing models are selected, mainly including ELM and three improved versions of
ELM, i.e., RELM, WRELM, and ORELM. From Table 4, it is obvious to see that
the forecasting accuracy of the simple ensemble models is stronger than that of
the individual models. Taking dataset copper as an example, the WRELM obtains
the most satisfying prediction prevision in individual models with the MAPE in-
dex value of 1.108749%. For the single model WRELM, other index values are
MAECopper

WRELM = 106.203165, RMSECopper
WRELM = 130.771381, MAPECopper

WRELM = 1.108749%,
IACopper

WRELM = 0.678176, TICCopper
WRELM = 0.006869. Concerning simple ensemble models

in Experiment II, the SVMD-ORELM-SE has the best forecasting performance both
in simple ensemble models and individual models, whose corresponding values are
MAECopper

SVMD−ORELM−SE = 29.982821, RMSECopper
SVMD−ORELM−SE = 33.566644,

MAPECopper
SVMD−ORELM−SE = 0.312725%, IACopper

SVMD−ORELM−SE = 0.979759,

TICCopper
SVMD−ORELM−SE = 0.001759.

(b) The comparison of point prediction accuracy between the designed system and sin-
gle models. According to Table 4, it is obvious that the forecasting prevision of
the designed system is stronger than those single models. For dataset copper, the
model which has the highest accuracy in individual models is WRELM, and the corre-
sponding index values are mentioned above in part (a). Compared to an individual
model, the developed forecasting system has a great improvement, such as the MAPE
value of 1.108479% and 0.118460% for WRELM and the proposed system, respec-
tively. In addition to this, the other corresponding index values for the developed
system are MAECopper

the Developed System = 11.332665, RMSECopper
the Developed System = 14.359648,

MAPECopper
the Developed System = 0.118469%, IACopper

the Developed System = 0.996536,

TICCopper
the Developed System = 0.000751.

(c) The comparison of point prediction accuracy between the proposed system and
simple ensemble models. According to Table 4, taking dataset zinc as an exam-
ple, the SVMD-ELM-SE achieves the most satisfying results in simple ensemble
models with the corresponding index values of MAEZinc

SVMD−ELM−SE = 35.986381,
RMSEZinc

SVMD−ELM−SE = 40.118159, MAPEZinc
SVMD−ELM−SE = 1.072213%,

IAZinc
SVMD−ELM−SE = 0.961745, TICZinc

SVMD−ELM−SE = 0.006088. Meanwhile, the Devel-
oped System index values are MAEZinc

the Developed System = 6.757693,

RMSEZinc
the Developed System = 8.351136, MAPEZinc

the Developed System = 0.203406%,

IAZinc
the Developed System = 0.998478, TICZinc

the Developed System = 0.001260. Through the
experimental results, there is no doubt that the prediction precision of the developed
system is much better than those simple ensemble models.

Remark 2. The most suitable prediction sub-predictor for each mode is selected with the lowest
MRMIT index value to establish the developed forecasting system. Results of the developed system,
the single models, and the simple ensemble models are compared, it is easy to conclude that simple
ensemble methods are better than single models, the nonlinear ensemble mode is better than simple
ensemble methods, and the system proposed in this study obtains the best results.
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5.5. Experiment III: Ensemble Point Forecasting Based on the Optimal Model Selection Strategy

Experiment III is implemented to demonstrate the prediction precision of the proposed
system and other hybrid models based on different ensemble strategies, such as simple
ensemble (SE), ELM-nonlinear ensemble (NE1), RELM-nonlinear ensemble (NE2), WRELM-
nonlinear ensemble (NE3) and ORELM-nonlinear ensemble. For the ensemble methods of
the proposed system, we substituted the ORELM-nonlinear ensemble for using the simple
ensemble, ELM-nonlinear ensemble, RELM-nonlinear ensemble, and WRELM-nonlinear
ensemble to forecast the non-ferrous metal prices, in the meantime, the other involved
approaches and parameters in the experiment maintain the identical with the system
proposed in this study. The comparison results of each model are listed in Table 5, where
SVMD meaning of SVMD decomposition, OMSELM represents the optimal model selection
in the ELM series model for each decomposed mode, SE, and Nes are mentioned above,
and the results are also presented in Figure 5 for providing a clear contrast.

Table 5. Point forecasting results of two datasets based on the model selection strategy.

Dataset Model MAE RMSE MAPE(%) IA TIC

Copper SVMD-OMSELM-SE 29.794091 33.391426 0.310760 0.979977 0.001750
SVMD-OMSELM-NE1 11.523120 14.584133 0.120518 0.996438 0.000763
SVMD-OMSELM-NE2 11.921647 15.262713 0.124665 0.996111 0.000798
SVMD-OMSELM-NE3 11.903481 15.065372 0.124446 0.996195 0.000788
The Developed System 11.332665 14.359648 0.118469 0.996536 0.000751

Zinc SVMD-OMSELM-SE 35.945599 40.060919 1.071027 0.961865 0.006079
SVMD-OMSELM-NE1 7.822494 9.649678 0.236055 0.997973 0.001455
SVMD-OMSELM-NE2 8.166177 10.071516 0.247068 0.997776 0.001519
SVMD-OMSELM-NE3 7.881242 9.427713 0.237614 0.998025 0.001422
The Developed System 6.757693 8.351136 0.203406 0.998478 0.001260

(a) The developed system is compared with the SVMD-OMSELM-SE model Table 5
displays that in the case of dataset copper, the developed system has a lower MAPE
value than SVMD-OMSELM-SE, with values of 0.118469% and 0.310760%, which
indicates that the developed system has better prediction precision. Moreover, for
the developed system, the other evaluation criteria are mentioned above in Exper-
iment II: (b). Corresponding to this is SVMD-OMSELM-SE, the corresponding in-
dexes are MAECopper

SVMD−OMSELM−SE = 29.794091, RMSECopper
SVMD−OMSELM−SE = 33.391426,

IACopper
SVMD−OMSELM−SE = 0.979977, TICCopper

SVMD−OMSELM−SE = 0.001750, respectively. From
this, it is believed that the developed system is prominently superior to the SVMD-
OMSELM-SE based on the five comprehensive evaluation indicators and it can be
further concluded that ORELM nonlinear ensemble is better than the simple ensemble.

(b) The developed system is compared with SVMD-OMSELM based on different nonlin-
ear ensemble methods, such as RELM-nonlinear ensemble, WRELM-nonlinear ensem-
ble, and ORELM-nonlinear ensemble. From Table 5, taking the dataset copper as an
example, we can see that the best forecasting model among the SVMD-OMSELM based
on three different nonlinear ensemble is SVMD-OMSELM-NE1, whose assessment in-
dexes are MAECopper

SVMD−OMSELM−NE1 = 11.523120, RMSECopper
SVMD−OMSELM−NE1 = 14.584133,

MAPECopper
SVMD−OMSELM−NE1 = 0.120518%, IACopper

SVMD−OMSELM−NE1 = 0.996438,

TICCopper
SVMD−OMSELM−NE1 = 0.000763, respectively. And the indexes of the proposed sys-

tem are mentioned above specifically. By contrast, the developed system forecasting
results surpass SVMD-OMSELM-NE1, that’s to say, the proposed system has the best
forecasting prevision.
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Remark 3. According to the prediction evaluation indexes of the dataset copper and zinc, it is
obvious that the nonlinear ensemble achieves better results compared to the simple ensemble, and the
ORELM nonlinear ensemble has the best prediction performance compared to the ELM nonlinear
ensemble, RELM nonlinear ensemble, and WRELM nonlinear ensemble.

5.6. Experiment IV: Interval Forecasting

Uncertainty prediction of non-ferrous metals prices is highly correlated with the non-
ferrous metals industry which can provide more information. The forecasting interval
can quantify the uncertainty and potential risk of the non-ferrous metal market. Based
on the point prediction of each sub-series, interval prediction is carried out to achieve the
interval consisting of upper and lower bounds, and the result can be a better indicator of
the market. As is known to all, ELM and RELM can double output the experimental results
and get the upper and lower sections of the interval prediction, but WRELM and ORELM
are difficult to achieve this, so the developed forecasting system can only independently
predict the interval’s upper and lower bounds. The interval forecasting results of the
developed system are displayed in Table 6 and Figure 6. Taking Copper as an example, the
PICP is always 100.00 at the confidence level of 99%, 95%, and 90%, respectively, and the
relevant PIAW is 190.713983, 955.486526 and 1912.229981, the PINAW is 0.300101, 1.503519
and 3.009016, Score is −3.814280, −95.548653 and −573.668994. Results of Dataset Zinc are
also presented in Table 6. All the PICPs are 100.00, meaning that the interval prediction
results are desirable.

Table 6. Interval prediction results for Copper and Zinc price.

Dataset Alpha PICP PIAW PINAW SCORE

Copper 0.010000 100.000000 190.713983 0.300101 −3.814280
0.050000 100.000000 955.486526 1.503519 −95.548653
0.100000 100.000000 1912.229981 3.009016 −573.668994

Zinc 0.010000 100.000000 65.090031 0.167758 −1.301801
0.050000 100.000000 331.094291 0.853336 −33.109429
0.100000 100.000000 663.347551 1.709659 −132.66951
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Remark 4. For the dataset copper and zinc, the developed system has a wonderful forecasting
performance, with the interval forecasting index PICP equal to 100 at a confidence level of 0.01. As
a result, the system developed in this study can perform desirable interval forecasting.

6. Discussion

In this part, five discussions are performed to deeper investigate the proposed system,
including the forecasting stability, effectiveness, and significance, and the superiority of
each module in the developed system. The following subsections cover these discussions.

6.1. Forecasting Stability

In this research, the novel point and interval forecasting system based on the optimal
sub-predictor selection strategy discussed is successfully developed based on the ORELM
nonlinear ensemble method. The above experiments mainly focus on the discussion of
prediction accuracy and cannot demonstrate the effect of the developed system in terms
of stability. Therefore, it is necessary to discuss forecasting stability to further verify its
superiority. In comparative studies, variance is a common method to evaluate prediction
consistency. Therefore, this study adopts the method of model prediction error to measure
its prediction stability. The value of variance indicates the performance effect of model
stability. The model prediction error variances involved in this paper are listed in Table A1.
The proposed system obtains the minimum variance with the VAR value is 188.906506 and
70.112261 for datasets Copper and Zinc, respectively. Based on the results in Table A1, the
designed system has the best predictive stability, followed by the simple ensemble model,
and the single model has the worst stability. Furthermore, the ensemble mode not only
improves the prediction accuracy of the model, but also enhances the prediction stability of
the model.

6.2. Forecasting Effectiveness

To further demonstrate the superiority of the prediction system, FE is conducted to
measure the prediction effectiveness. And the higher the FE value, the more accurate the
predicted performance of the model is. The FE values in Table A2 reveal that: (a) for copper
and zinc datasets, the FE1 values of the proposed system are 0.998815 and 0.997916, and the
FE2 values are 0.997887 and 0.996500, respectively; (b) In all instances, the FE values of the
system proposed in this study is higher than that of the benchmark model. Therefore, the
proposed prediction system surpasses all the comparison models; (c) Looking at the results
in Table A2, the designed system is superior to the simple ensemble models, and the simple
ensemble model is superior to the single models. In addition, the simple ensemble model
based on model selection is better than a simple ensemble model without model selection.
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6.3. Statistical Significance

Significance tests are designed to indicate whether the differences between the de-
veloped system and the comparison models in experiments are significant. There are
many methods to test the validity of models, among which Diebold-Mariano (DM) statistic
is a general index to measure the model’s statistical significance. For the convenience
of testing, the developed system is used as a standard, and the correlation model is
used as a compared model. Overall, the null hypothesis indicates that the prediction
performance of the developed system is as valid as the prediction performance of the
comparison model. On the contrary, the alternative hypothesis implies that the predictive
power of the developed system is significantly different from the benchmarks. But as
the forecast data sets grow, their test results can be wildly inflated. To overcome this
shortcoming, Modified DM (MDM) hypothesis test is proposed. The first correction relies

on DM∗ =
[(

T+1− 2h + T−1h(h− 1)
)

/T
]1/2

DM, where stands for the multi-period ad-
vance forecast. Another improvement is to compare the DM with the critical value of the
t-distribution from the test number -1degree. The DM and MDM test results between the
developed system and other comparisons are presented in Table A3.

(a) For dataset Copper, except DMCopper
SVMD−OMSELM−NE1 = 1.313350, all the comparative

models passed the test under α = 0.01. The residual model DM values are greater than
Z0.01/2 = 2.576, with the minimum DM value is 2.811426. This means the developed
system has 99% probability to reject H0, that is to say, under 99% confidence interval,
the developed system has excellent prediction accuracy. For degrees of freedom 44, tak-
ing dataset copper as an example, except MDM−PCopper

SVMD−OMSELM−NE1 = 2.008207 ×
10−1, other P values are lower than the significance level α = 0.01. Of the remaining
MDM-P values, the largest is MDM−PCopper

SVMD−OMSELM−NE3 = 7.967935 × 10−3, which
indicates that the developed system has 99% probability to reject H0. However, at the
significance level of α = 0.05, all the comparative models reject H0.

(b) As for the comparative models of Zinc, 100% of the results passed the significance
test of α = 0.01. Under different ensemble strategies, DMZinc

SVMD−ELM−SE = 6.478134,
DMZinc

SVMD−RELM−SE = 6.462337, DMZinc
SVMD−WRELM−SE = 7.373639,

DMZinc
SVMD−ORELM−SE = 7.190442, DMZinc

SVMD−OMSELM−SE = 6.481959,
DMZinc

SVMD−OMSELM−NE1 = 2.581770, DMZinc
SVMD−OMSELM−NE2 = 3.217786,

DMZinc
SVMD−OMSELM−NE3 = 3.424765, it shows that the proposed forecasting system

has the best prediction ability. The results of the MDM hypothesis test show that be-
sides the performance of SVMD-OMSELM-NE1 are MDM− PZinc

SVMD−OMSELM−NE1 =
1.422681 × 10−2, all the results are lower than α = 0.01, which demonstrates that the
proposed forecasting has 99% probability to reject H0.

6.4. The Superiority of Each Module in the Developed System

To fully demonstrate the advantages of the developed system, the improvement degree
between the developed system and the comparison models needs to be discussed. How
each component works in the developed system should be quantified and analyzed. As
a result, in this subsection, five metrics(PMAE, PRMSE, PMAPE, PIA and PTIC defined as
Equation (39) represents the percentage improvement in terms of MAE, RMSE, MAPE,
IA, and TIC, respectively), were used to demonstrate the precision and validity of the
developed system detailedly. On this basis, the detailed error improvement percentage
of 15 pairs of models is calculated. As shown in Table A4, the percentage improvement
value of each pair of models is greater than 0, and the forecasting prevision of the proposed
strategy is also improved compared with the benchmark method.
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PIndicator = |Indicator1 − Indicator2|/|Indicator1| × 100% (39)

Moreover, we can draw the following conclusions:

(a) By comparing SVMD-OMSELM-SE and SVMD-ELM-SE, SVMD-OMSELM-SE and
SVMD-RELM-SE, SVMD-OMSELM-SE and SVMD-WRELM-SE, SVMD-OMSELM-SE
and SVMD-ORELM-SE, can prove the superiority of the newly introduced optimal
model selection mode. And in the comparison between SVMD-OMSELM-SE and
SVMD-WRELN-SE, model selection shows the best superiority, the PMAE, PRMSE,
PMAPE, PIA and PTIC index values on average are 30.8827%, 28.1601%, 30.9649%,
3.6435%, and 28.2820%, respectively. At the same time, by comparing SVMD-OMSELM-
NE1 and SVMD-ELM-SE, SVMD-OMSELM-NE2 and SVMD-RELM-SE, SVMD-OMSELM-
NE3 and SVMD-WRELM-SE, SVMD-OMSELM-NE4 and SVMD-ORELM-SE, can
further prove that model selection is effective in improving the prediction system
with nonlinear strategies. There is no doubt from Table A4 that under the nonlinear
ensemble method, the comparison of SVMD-OMSELM-NE3 and SVMD-WRELM-SE,
the optimal sub-predictor, has the best effect on point forecasting accuracy. On average
the PMAE, PRMSE, PMAPE, PIA and PTIC metrics are 77.9806%, 74.4655%, 77.8866%,
6.4755% and 74.5771%, respectively. In addition, it is reasonable to demonstrate the
superiority of the nonlinear ensemble mode.

(b) According to the improvement rates of the developed system with the SVMD-OMSELM-
SE, SVMD-OMSELM-NE1, SVMD-OMSELM-NE2, and SVMD-OMSELM-NE3 mod-
els, the effectiveness of the ORELM nonlinear ensemble approach in the developed
system is verified. On top of that, the ORELM nonlinear ensemble approach is a great
improvement over a simple ensemble and on average the PMAE, PRMSE, PMAPE, PIA
and PTIC metrics are 71.5818%, 68.0750%, 71.4459%, 2.7481%, and 68.1724%.

(c) The comparison of the developed system with SVMD-ELM-SE, SVMD-RELM-SE, and
SVMD-ORELM-SE, respectively, not only validates the effectiveness of model selection
but also clearly explains the prospective of the ORELM nonlinear ensemble mode.

In summary, all the metric values are positive, meaning that the system presented in
this study outperforms the comparative methods in non-ferrous metal prediction due to
the superiority of each module.

6.5. Comparison with Existing Models

In this section, we select four metal price prediction models from a recently published
study for 2019 to 2022 as comparison models. These models include Du et al. [9], Guo
et al. [33], Luo et al. [54], and Drachal et al. [55]. As can be seen from Table A5, the developed
forecasting system in this paper is superior to the comparison models in prediction accuracy,
prediction ability and generalization ability, in which the developed system obtains the
lowest MAE, RMSE, MAPE, and TIC values and the largest IA values on non-ferrous
metal price forecasting. On the other hand, from the theoretical point of view, the optimal
sub-model selection strategy and nonlinear ensemble mode are proposed in the developed
system, which can improve the prediction performance of the model. However, the model
proposed by Du et al. [9], Guo et al. [33], Luo et al. [54], and Drachal et al. [55] ignores
the significance of model selection and ensemble mode in metal price prediction and has
certain limitations. In general, the developed forecasting system provides a new theoretical
framework for metal price forecasting methods, which can obtain better prediction results
by enjoying the optimal sub-model and nonlinear ensemble and can provide a reference
for metal price forecasting and prediction research in related fields.
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7. Conclusions

A reliable non-ferrous metal price prediction system can help decision makers to
rationally manage metal mining, refining, and foreign trade, and effectively ensure the
reliable operation of national industrial production. However, the existing research focus
on the application of individual advanced models and neglect the in-depth analysis and
mining of a certain type of model. In addition, as relatively advanced forecasting methods,
sub-model selection strategy and ensemble mode are rarely involved in non-ferrous metals
price forecasting, leading to poor forecasting results under some circumstances. Besides,
the previous data pretreatment algorithms have the disadvantage of being difficult to
determine the number of decomposition layers, which may play a crucial role in the final
prediction precision. To bridge these research gaps, considering the inherent instability of
the data and achieving accurate metal price prediction results, a novel point and interval
non-ferrous metal prices forecasting system based on optimal sub-model selection strategy
and nonlinear ensemble mode is proposed for non-ferrous metal prices futures market
management in this study. The main conclusions of this study include:

(1) Compared with other comparative models, the developed system can achieve better
metal price forecasting performance due to the combination of different components,
such as data decomposition techniques, sub-model selection strategy, and nonlinear
ensemble methods. In addition, in this paper, the ELM, RELM, WRELM, and ORELM
model are considered and analyzed, and the prediction result is better than the
comparison models. Therefore, the in-depth analysis and mining of a certain type of
model can be paid more attention to in the future;

(2) The successive variational mode decomposition (SVMD) algorithm is introduced
to determine the number of decomposed sub-sequences according to the intrinsic
characteristics of the data, which can effectively reduce the occurrence of errors.
Specifically, the SVMD data pretreatment algorithm can reduce the volatility and non-
linearity of non-ferrous metal data by decomposing the original data into multiple
sub-sequences, and improve the prediction performance;

(3) Based on the proposed MRMIT index, the optimal predictor is selected for each
decomposed sub-sequence, which enhances the prediction accuracy as well as expands
the application scope of the forecasting system. The experimental results show that
the model selection introduced into the non-ferrous metal price forecasting field is
effective;

(4) Compared with the single model, simple ensemble method, ELM, RELM, and WRELM
nonlinear ensemble method, the proposed ORELM nonlinear ensemble mode has
better forecasting precision and consistency, which verifies the validity of the novel
nonlinear ensemble mode;

(5) The developed system is superior to the comparative models in the non-ferrous metal
trading market. For the dataset copper and zinc, the mean MAPE values of the
developed system are 0.118469 and 0.203406, respectively. The interval forecasting
results show that at the significance level of 0.01, PICP values are 100.000000 and
100.000000; PIAW values are 190.713983 and 65.090031, respectively; PINAW values
are 0.300101 and 0.167758; SCORE values are −3.814280 and −1.301801, respectively.
Therefore, the developed system in this paper is an effective complement to the
existing non-ferrous metal price forecasting research framework, which is conducive
to the operation and management of the non-ferrous metal market.

In addition, this study also has some policy implications and industrial applications,
because the developed system can provide valuable information for non-ferrous metal
producers, investors, regulators, and other participants, and can be used to estimate future
short-term metal price forecasts, design bidding strategies and purchasing plans, conduct
risk management, conduct financial analysis, and adjust relevant policies. First of all, a
more effective metal price forecasting model can not only help the government and relevant
departments to formulate better deregulation policies and pricing, but also improve market
price transparency, help producers and investors adjust bidding strategies and change
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production and consumption schedules. Secondly, understanding the non-ferrous metal
price model can not only help enterprise managers improve their pricing strategies, but also
effectively adjust the future strategic plans of enterprises, deal with cooperation agreements
with customers, and finally realize the sustained and stable operation of metal mining and
improve the profitability of the company. Thirdly, the findings of this study provide a new
experience to prove that model selection is of great significance in accurately predicting the
price of nonferrous metals. On the one hand, it can improve the efficiency and accuracy of
metal price forecasting and provide more information advantages for decision-makers; On
the other hand, it can help public decision makers to formulate better laws and regulations
to improve market rules.

Although the proposed system is a promising, applicable, and effective technique
for the non-ferrous metal market, the proposed system also has some limitations that
require further study. Specifically, this study only focuses on the problem of univariate
prediction and does not take into account other factors affecting non-ferrous metals. Other
factors, such as the black swan event, changes in the economic environment, supply and
demand relations, international situation, and technological progress, among others, will
also affect future price changes, which can be considered in future studies. Moreover,
non-ferrous metals price forecasting under extreme volatility is still a challenging but
meaningful task, which can be considered another future research direction. Besides, on
account of the finite research scope, four candidate prediction sub-predictors of the ELM
series are selected in this paper, while other prediction sub-models can be further discussed
in future studies. In addition, the forecasting system and its ideas proposed in this paper
can also be applied to wind speed forecasting [56], intermittent demand forecasting [57],
tourism demand forecasting [58], stock prices forecasting [48], bioenergy power generation
structure forecasting [59] and other fields.
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Appendix A

Table A1. Results of prediction stability.

Dataset Model VAR

Copper ELM 11,286.993097
RELM 11,336.186827

WRELM 11,968.801480
ORELM 12,181.008417

SVMD-ELM-SE 252.066521
SVMD-RELM-SE 212.343312

SVMD-WRELM-SE 219.031314
SVMD-ORELM-SE 243.856001

SVMD-OMSELM-SE 244.223998
SVMD-OMSELM-NE1 191.637117
SVMD-OMSELM-NE2 197.689493
SVMD-OMSELM-NE3 197.740229
The Developed System 188.906506

Zinc ELM 3215.968100
RELM 3329.516374

WRELM 3251.063837
ORELM 3779.192421

SVMD-ELM-SE 321.593545
SVMD-RELM-SE 339.918353

SVMD-WRELM-SE 611.193976
SVMD-ORELM-SE 384.366274

SVMD-OMSELM-SE 319.900086
SVMD-OMSELM-NE1 77.863428
SVMD-OMSELM-NE2 79.968606
SVMD-OMSELM-NE3 83.227507
The Developed System 70.112261

Table A2. Results for the Forecasting effectiveness.

Dataset Model FE1 FE2

Copper ELM 0.988279 0.980377
RELM 0.988383 0.980444

WRELM 0.988913 0.980959
ORELM 0.988470 0.980227

SVMD-ELM-SE 0.996655 0.995058
SVMD-RELM-SE 0.996126 0.994635

SVMD-WRELM-SE 0.995917 0.994408
SVMD-ORELM-SE 0.996873 0.995308

SVMD-OMSELM-SE 0.996892 0.995328
SVMD-OMSELM-NE1 0.998795 0.997853
SVMD-OMSELM-NE2 0.998753 0.997750
SVMD-OMSELM-NE3 0.998756 0.997783
The Developed System 0.998815 0.997887
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Table A2. Cont.

Dataset Model FE1 FE2

Zinc ELM 0.971854 0.956776
RELM 0.969984 0.954638

WRELM 0.971185 0.955986
ORELM 0.966815 0.950374

SVMD-ELM-SE 0.989278 0.984363
SVMD-RELM-SE 0.988938 0.983902

SVMD-WRELM-SE 0.982712 0.976083
SVMD-ORELM-SE 0.986860 0.981534

SVMD-OMSELM-SE 0.989290 0.984390
SVMD-OMSELM-NE1 0.997639 0.995927
SVMD-OMSELM-NE2 0.997529 0.995736
SVMD-OMSELM-NE3 0.997624 0.996060
The Developed System 0.997966 0.996500

Table A3. Results for the DM and MDM test.

Dataset Model DM MDM MDM-P

Copper ELM 5.461142 5.400121 2.546700 × 10−6

RELM 5.372157 5.312131 3.418049 × 10−6

WRELM 5.001746 4.945858 1.152746 × 10−5

ORELM 4.994495 4.938688 1.180302 × 10−5

SVMD-ELM-SE 5.866314 5.800767 6.617725 × 10−7

SVMD-RELM-SE 7.544789 7.460487 2.430326 × 10−9

SVMD-WRELM-SE 7.917927 7.829456 7.098852× 10−10

SVMD-ORELM-SE 5.466845 5.405761 2.499056 × 10−6

SVMD-OMSELM-SE 5.450666 5.389763 2.636570 × 10−6

SVMD-OMSELM-NE1 1.313350 1.298675 2.008207 × 10−1

SVMD-OMSELM-NE2 2.969721 2.936539 5.262398 × 10−3

SVMD-OMSELM-NE3 2.811426 2.780013 7.967935 × 10−3

The Developed System

Zinc ELM 6.307776 6.237296 1.510907 × 10−7

RELM 6.553817 6.480588 6.624987 × 10−8

WRELM 6.392678 6.321249 1.136804 × 10−7

ORELM 6.757235 6.681733 3.352119 × 10−8

SVMD-ELM-SE 6.478134 6.405751 8.537268 × 10−8

SVMD-RELM-SE 6.462337 6.390130 9.001363 × 10−8

SVMD-WRELM-SE 7.373679 7.291289 4.286835 × 10−9

SVMD-ORELM-SE 7.190442 7.110099 7.886491 × 10−9

SVMD-OMSELM-SE 6.481959 6.409533 8.428536 × 10−8

SVMD-OMSELM-NE1 2.581770 2.552922 1.422681 × 10−2

SVMD-OMSELM-NE2 3.217786 3.181831 2.683958 × 10−3

SVMD-OMSELM-NE3 3.424765 3.386498 1.500084 × 10−3

The Developed System - - -
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Table A4. Results of the improvement percentage.

Copper Zinc Average Copper Zinc Average Copper Zinc Average Copper Zinc Average Copper Zinc Average

SVMD-OMSELM-SE vs. SVMD-OMSELM-SE vs. SVMD-OMSELM-NE3 vs. The Developed System vs. The Developed System vs.
SVMD-ELM-SE SVMD-ORELM-SE SVMD-WRELM-SE SVMD-OMSELM-NE1 SVMD-ELM-SE

MAE 7.0678 0.1133 3.5906 0.6295 18.3435 9.4865 69.5705 86.3908 77.9806 1.6528 13.612 7.6324 64.6517 81.2215 72.9366
RMSE 6.0928 0.1427 3.1178 0.522 16.7136 8.6178 63.9291 85.0019 74.4655 1.5392 13.4568 7.498 59.6162 79.1837 69.3999
MAPE 7.1045 0.1107 3.6076 0.6286 18.4909 9.5597 69.5174 86.2559 77.8866 1.6997 13.8313 7.7655 64.5859 81.0294 72.8076

IA 0.2594 0.0125 0.136 0.0223 1.7355 0.8789 2.8186 10.1325 6.4755 9.78 × 10−7 0.0506 0.0302 1.9535 3.8195 2.8865
TIC 6.1041 0.1433 3.1237 0.5231 16.816 8.6695 64.0141 85.1402 74.5771 1.5372 13.4172 7.4772 59.6936 79.3012 69.4974

SVMD-OMSELM-SE vs. SVMD-OMSELM-NE1 vs. The Developed System vs. The Developed System vs. The Developed System vs.
SVMD-RELM-SE SVMD-ELM-SE SVMD-ORELM-SE SVMD-OMSELM-NE2 SVMD-RELM-SE

MAE 19.706 3.2039 11.455 64.0577 78.2626 71.1601 62.2028 84.6488 73.4258 4.9404 17.2478 11.0941 69.4589 81.8025 75.6307
RMSE 16.1141 3.1622 9.6381 58.9848 75.9469 67.4659 57.2205 82.638 69.9293 5.9168 17.0816 11.4992 63.9257 79.8131 71.8694
MAPE 19.7734 3.1771 11.4753 63.9736 77.9843 70.9789 62.1171 84.5201 73.3186 4.9698 17.672 11.3209 69.4156 81.6117 75.5137

IA 0.8259 0.2896 0.5577 1.9435 3.767 2.8552 1.7123 5.608 3.6601 0.0426 0.0704 0.0565 2.5295 4.1071 3.3183
TIC 16.147 3.1800 9.6635 59.0643 76.0937 67.579 57.2978 82.7572 70.0275 5.9086 17.0352 11.4719 64.0047 79.9307 71.9677

SVMD-OMSELM-SE vs. SVMD-OMSELM-NE2 vs. The Developed System vs. The Developed System vs. The Developed System vs.
SVMD-WRELM-SE SVMD-RELM-SE SVMD-OMSELM-SE SVMD-OMSELM-NE3 SVMD-WRELM-SE

MAE 23.8358 37.9296 30.8827 67.8716 78.0097 72.9407 61.9634 81.2002 71.5818 4.7954 14.256 9.5257 71.0297 88.3309 79.6803
RMSE 20.0512 36.2689 28.1601 61.657 75.6545 68.6558 56.996 79.1539 68.0750 4.6844 11.4193 8.0518 65.6188 86.7146 76.1667
MAPE 23.8805 38.0494 30.9649 67.8161 77.6646 72.7404 61.8775 81.0083 71.4429 4.8025 14.3966 9.5996 70.9813 88.2345 79.6079

IA 1.1447 6.1422 3.6435 2.4858 4.0338 3.2598 1.6896 3.8065 2.7481 0.0342 0.0454 0.0398 2.8537 10.1825 6.5181
TIC 20.0912 36.4829 28.2870 61.7443 75.8099 68.7771 57.0733 79.2715 68.1724 4.6786 11.3981 8.0383 65.6978 86.8339 76.2658
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Table A5. Comparison with existing models.

Dataset Model MAE RMSE MAPE(%) IA TIC

Copper Model proposed by [54] 344.220000 421.454000 5.292000 X 0.032000
Model proposed by [33] 49.650600 74.677200 0.943100 0.988200 X
The Developed system 11.332665 14.359648 0.118469 0.996536 0.000751

Zinc Model proposed by [9] 11.691300 14.611400 0.435800 0.999600 X
Model proposed by [55] 85.700000 112.000000 X X X
The Developed system 6.757693 8.351136 0.203406 0.998478 0.001260

Note: X indicates that the author did not use such an indicator.
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