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Abstract: With the increase in video surveillance data, techniques such as video synopsis are being
used to construct small videos for analysis, thereby saving storage resources. The video synopsis
framework applies in real-time environments, allowing for the creation of synopsis between multiple
and single-view cameras; the same framework encompasses optimization, extraction, and object
detection algorithms. Contemporary state-of-the-art synopsis frameworks are suitable only for partic-
ular scenarios. This paper aims to review the traditional state-of-the-art video synopsis techniques
and understand the different methods incorporated in the methodology. A comprehensive review
provides analysis of varying video synopsis frameworks and their components, along with insightful
evidence for classifying these techniques. We primarily investigate studies based on single-view
and multiview cameras, providing a synopsis and taxonomy based on their characteristics, then
identifying and briefly discussing the most commonly used datasets and evaluation metrics. At
each stage of the synopsis framework, we present new trends and open challenges based on the
obtained insights. Finally, we evaluate the different components such as object detection, tracking,
optimization, and stitching techniques on a publicly available dataset and identify the lacuna among
the different algorithms based on experimental results.

Keywords: object detection; object tracking; optimization; synopsis stitching; video surveillance;
video synopsis

1. Introduction

With technological advancement and internet connectivity, a massive amount of multi-
media data are trafficked today via thew World Wide Web. Complex frameworks have been
proposed to deal with the analysis and management of these data. Such frameworks repre-
sent the amalgamation of different techniques that can ensure data quality and security.
Today, video surveillance technology is an intelligent information technology that monitors
public space. Recently, there has been massive development and demand for smart video
surveillance technology to record daily life activities. With the speedy development of
artificial intelligence (AI) technologies, various subsidiary methods are being incorpo-
rated into many worldwide applications. Most of the current surveillance technologies
are highly dependent on an AI techniques to ensure better efficiency and effectiveness.
With each passing day, the amount of generated video content doubles, leading to scarcity
in terms of storage requirement. The International Data Corporation (IDC) has issued a
statistical report showing that global data throughput is expected to increase significantly,
to approximately 175 zettabytes by 2025 [1], with video surveillance data providing the
largest contribution. In a traditional video surveillance system [2], a single human operator
is responsible for analyzing the video content, which is a tedious, time-consuming, and
error-prone job [3]. As the operator is responsible for viewing the content of multiple video
cameras simultaneously, many relevant or anomalous activities are skipped. Furthermore,
the content gathered in most video surveillance scenarios is redundant, while the essential
activity is very limited.
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Numerous video condensation methods have been proposed to deal with the above-
mentioned issues, such as video summarization and video synopsis. Video summarization
deals with creating a summary of video content, thereby creating a condensed video in a
timeline. Video summarization can be stated as extracting the key scenes (i.e., keyframes
or custom frames) from the original footage in a time sequence [4,5]. The most prominent
video condensation technology is video synopsis, first presented in 2006. In video synopsis,
the video is abstracted in both the time and space domains. Thus, video synopsis is
defined as the time and space domain shifting of extracted foreground objects on a common
background. Video synopsis is more effective than video summarization approaches, as
it provides a more detailed and smaller video for analysis. Video synopsis projects more
than one object in the same space at a given interval of time, preserving the essential
activity in the original video. Activity that occurs at different time sequences in the video
is shifted in the time domain, and these shifted activities are projected simultaneously
in the space domain. Therefore, the object of interest is accessed quickly as the synopsis
dramatically decreases the video’s length and storage space. Video synopsis has long
been an attractive research area in the field of computer vision. Several diverse publicly
available datasets incorporating different challenging scenarios have been published, such
as KTH [6], WEIZMAN [7], CAVIAR [8], PETS 2009 [9], Hall Monitor [10], Daytime [11],
and F-building [12]. New methods have been proposed to adhere to outstanding synopsis
challenges such as object detection, energy optimization, tube generation, and stitching.

In the past few decades, video surveillance data processing has seen a tremendous
amount of research, mainly in video synopsis and summarization. The increase in surveil-
lance camera connectivity via cheap internet and corresponding advanced technologies
such as artificial intelligence, cloud storage, machine learning (ML), and deep learning (DL)
have been beneficial to the overall growth in this research field due to the need to deal
with the massive amount of surveillance data. Using these methods, more complex video
synopsis frameworks have been proposed for generating condensed video for analysis.
Several previous survey papers have been published on video synopsis [13–15].

Our motivation for this literature review is to analyze the different methodologies
and discover insights based on experimental evaluation. We tried to answer the following
questions. How is the proposed study different from existing survey papers? All of the existing
survey papers highlight a comprehensive review of the synopsis method and its usage;
however, they have not evaluated the performance of these methods on a standard dataset
in order to clearly define the strengths and weaknesses of different studies. What are the
different techniques on which the performance of a synopsis method is dependent? The synop-
sis framework is composed of different steps, such as detection, optimization, collision,
and stitching; the generated synopsis is directly affected by these methods. What are the
different frameworks used in video synopsis, and how do different studies evaluate these frameworks
through common evaluation metrics and datasets? We present the most common synopsis
frameworks, then discuss and evaluate each component using popular datasets and eval-
uation metrics. We then classify and evaluate existing studies based on their application
usage and research impact.

In this article, we are interested in following the various trends and challenges involved
on different synopsis scenarios. As a result, this survey provides researchers with a detailed
performance review of all the video synopsis framework components and their respective
strengths and weaknesses. Furthermore, we conduct quantitative and qualitative analyses
of studies from the initial years of research until 2022. The main contributions presented in
this study can be summarized as follows:

• Based on video synopsis usage scenarios, we put forward three different synopsis
frameworks, then present a taxonomy of video synopsis techniques along with their
respective steps.

• We clearly define the lacuna and complexity of the existing studies based on a com-
prehensive comparison of various current techniques (i.e., object detection, object
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tracking, stitching algorithms), then perform an evaluation through experimentation
on publicly available datasets.

• This is the first survey paper to study video synopsis in the context of distinguishing
different performance methodologies. Compared with the existing reviews, in the
article we focus on determining the most effective video synopsis methods, rather
than on describing all types of methods.

The remainder of this paper is organized as follows: Section 2 provides a detailed
classification of different synopsis techniques; Section 3 explains the existing synopsis
frameworks and their methods; Section 4 provides a brief experimental analysis and
comparison of these various methods along with a description of the dataset and evaluation
metrics; Section 5 focuses on the new trends and their challenges; finally, Section 6 concludes
the paper.

2. Classification of Video Synopsis Techniques

In general, video synopsis techniques have a number of standardized properties
in common, which can be quantified as follows: (a) the video synopsis should contain
the maximum activity with the least redundancy; (b) the chronological order and spatial
consistency of objects in space and time must be preserved; (c) in the resultant synopsis
video, there must be minimal collision; and (d) the synopsis video must be smooth and
able to permit viewing without losing the region of interest. As depicted in Figure 1, we
classify the different video synopsis techniques as follows: keyframe-based, object-based,
action-based, collision graph-based, and abnormal content-based.

Figure 1. A taxonomy of video synopsis techniques and their properties.

2.1. Keyframe-Based Synopsis

In keyframe-based techniques, frames play an essential role in constructing a video
synopsis. These techniques can be classified into two corresponding methods: frame-based
approaches and video skimming. In frame-based techniques, a video is built from the
necessary keyframes [16]. For example, Choudhary et al. [17] built an offline stroboscopic
synopsis. A background can be constructed for stitching the extracted foreground, then
aligned using a clustering tracking algorithm [18]; every single frame is used in this process.
Pritch et al. [19] proposed an approach in which similar activities are clustered using a k-
nearest neighbor (KNN) method. Wang et al. [20] proposed a method for storing and browsing
the synopses using flags by incorporating a detail-based algorithm to map different frames.
Standardized datasets such as F-Buildings, Hall-Monitor, and Daytime were used to evaluate
the proposed detail-based synopsis, showing satisfactory results on a static background. In
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addition, a fast-forward method [21] has been developed to minimize the loss when dropping
frame activities. Dealing with each frame is a tedious task; instead of extracting each frame,
Smith et al. [22] developed a video skimming method that extracted smaller essential video
clips from the source video in order to construct a shorter video, ignoring the less critical
video clips. The frame-based approach is simpler compared to the video skimming approach;
however, this method’s computational cost is very high, and there can be significant loss of
activity in the resulting video, leading to footage that is unrealistic.

Table 1 summarizes the studies referred to in Section 2.1. We provide a comparison
of the properties associated with single-camera and multiview camera approaches to
video synopsis, on the basis of which we highlight their insightful pros and cons. We
evaluated the parameters based on these classification and insights. The first parameter
indicates the deployment type, the second provides the viewpoints, the third determines
the summary generation type and visualization (i.e., static or dynamic) concerning the best
view, The fourth and fifth dictate the corresponding lacuna and the traditional method’s
time complexity, respectively, and finally the sixth parameter states the application.

Table 1. Comparison of keyframe-based synopsis techniques.

Existing Studies

Deployment Viewpoint Analysis

Methods Lacuna Time
Complexity Application
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Choudhary
et al., 2008 [17] X X 1 S Stroboscopic,

Background Subtraction

Unable to deal with
illumination and
clutter effects.

O((NKD)3) Video Indexing

Pritch et al.,
2009 [19] X X 1 S X K-Nearest Neighbors,

Temporal Shifting

Substantial number of
frames get dropped
causing flickering effect.

O(d ∗ n ∗ log(n)) Non-
Chronological

Wang et al.,
2011 [20] X X 1 S Simulated Annealing

(SA)

Method suffers from
occlusion and
memory inefficient.

O(n4) Video Browsing

2.2. Object-Based Synopsis

In object-based techniques, moving objects are extracted in spatiotemporal space.
Single view camera platforms: Initially, Pal et al. [23–25] proposed a novel approach that
draws out only essential activities from discrete-time sequences instead of selecting entire
video frames. In another study, Kang et al. [26] implemented object extraction in space
and time; for alignment of this object sequencing, they used a graph cut algorithm and
energy optimization. This method’s major problem is that unwanted seams emerge in the
resulting video, leading to misinterpretation of the content. These techniques can be further
classified based on whether they follow local chronology or are non-chronological. In 2006,
based on this concept, Rav-Acha et al. [27] pioneered the idea and first coined the term
“video synopsis”. In their study, they used a low-level optimization concept based on 3D
Markov Random Fields (MRF) [27]. First, they detected actions and tracked movements
for storage in a queue; after alignment of these activities, they applied the concepts of
background generation and stitching, whereby the objects were moved in space and time
using simulated annealing (SA). In object-based synopsis, the solution is to predetermine
the video’s synopsis length in order to feasibly minimize energy usage problems. When
rearranging objects were without maintaining the local chronology, collision costs can
be very high. Thus, the constraint of this approach is that it creates a video synopsis
only for a specified period. To overcome this constraint, Pritch et al. [28] constructed a
synopsis for an endless video stream. In their methodology, a min-cut [28] algorithm is
used to extract objects in the form of a tube, and the local chronology is distributed as the
tubes are moved temporally. Though the aforementioned authors pioneered this field of
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study, they experienced multiple serious limitations, such as colossal memory consumption
and issues with activity density. To deal with the problem of memory consumption, non-
chronological synopsis has been proposed.

Xu et al. [29] solved the optimization problem by implementing set theory to maximize
visual content in synopsis videos. Their proposed method outperformed previous methods.
In another study, Pritch et al. [30] employed non-chronological synopsis to combine activities
from different time zones. Only moving objects were considered when generating the synopsis.
In a comprehensive study, Wang et al. [31] applied region of interest (ROI) information
for faster browsing of surveillance video. Based on intraframe coding, they labeled each
region of interest, significantly boosting the scale browsing in video synopsis. They tested
their methodology on the F-Building, Daytime, and Hall Monitor, showing slightly better
performance on the latter. A similar strategy was used by Sun et al. [32]; they obtained
background modeling and tracking of the event of interest, then used the maximum motion
power to generate a summary. Zhu et al. [33] contributed by improving the selection criteria
for generating a tube. The resulting video synopsis method obtained a higher compression
ratio compared to previous methods. Random surveillance videos from the PETS dataset
were used to test their methodology on both single-camera and multi-camera networks.
Unlike traditional temporal shifting, Nie et al. [34] shifted the temporal and spatial axis of the
activity when constructing a video synopsis. They expanded the background in order to avoid
collision and fit the objects. As the object is pulled along both the temporal and spatial axes,
these approach involves several other challenges, such as changes in the background that
make understanding of the view more difficult and the resulting synopsis being too dense for
analysis. Thus, this method is only applicable in limited-view scenarios.

Yao et al. [35] proposed an object-based video synopsis method to tackle collision prob-
lems using a multi-target tracking approach. They tested their method on an indoor video
surveillance dataset, where they faced errors such as moving object detection and track-
ing. Olivera et al. [36] published an open-source library for constructing video synopses.
Their study contributed by providing a tool for creating video summaries by automatically
extracting the objects through background subtraction and segmentation. Their method
is simple, and is applicable for simple video synopsis generation; however, it shows poor
performance in crowded video sequences. Tian et al. [37] implemented a similar temporal
shift approach, with the difference that they broke down long-term moving objects into
segments. Ahmed et al. [38] were able to overcome the problem of multiple trajectories
while creating the synopsis. Their study used two publicly available datasets, namely,
VIRAT [39] and in-house KIST; using these datasets, their method was able to construct a
meaningful synopsis. Due to unchronological tube shifting, however, this approach can
cause chaotic collisions. To overcome this, Yi et al. [40] suggested spatiotemporal event
rearrangement of objects. They tested this idea on a minimal video sequence. However,
the results continued to showed collision events in more extensive video sequences. To
address this problem, Li et al. [41] applied comprehensive video synopsis based on differ-
ent scenarios. They extracted whole video clips containing large crowds, and were able
to obtained synopses with fewer collisions and less overlapping. In solving the energy
minimization problem, simulated annealing plays a vital role; however, it suffers from high
computational costs. To solve this issue, Ghatak et al. [42] proposed a hybrid of simulated
annealing and teaching–learning-based optimization (TLBO). However, their study mostly
focused on improving energy optimization. They evaluated their study on the PETS, MIT,
and UMN datasets, on which they achieved significantly better performance than previous
studies. Their model used the traditional Kalman filter for multi-object tracking, which
is a significant drawback of this study due to the high pre-processing time it requires.
A method for accurately detecting and extracting objects to create a video synopsis using
deep learning was implemented by Mona et al. [43]. Their study used a convolution neural
network (CNN) based on You Only Look Once (YOLOv3) [44] to detect and extract the
object. However, this approach suffers from high computational complexity and time con-
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sumption when creating the synopsis. Nevertheless, the authors found that it significantly
outperformed a genetic algorithm in comparative testing on the VIRAT dataset.

All the studies mentioned above used offline-based methodologies. To perform video
synopsis in real-time, Yildiz et al. [45] proposed pixel-based analysis instead of dealing with
the entire video frame. To this end, they extracted only those video clips with a high degree
activity. Similarly, Vural et al. [46] applied a pipeline-based framework for constructing real-
time video synopses with low memory consumption. An online approach for background
selection and synopsis generation was developed by Feng et al. [47]. Huang et al. [48]
proposed a method for making object detection and tracking possible in real-time using
a table-driven method. In another study [49], the same authors proposed using online
synopsis tables to maintain the chronology of the extracted tubes, and incorporated maxi-
mum posterior estimation to ensure the tubes’ alignment. However, when analyzing the
resulting synopses the video suffered from low visual quality, especially in dense activity
scenarios, due to the approach they used being pixel-based. Sun et al. [50] formulated a
map-based online synopsis generation technique to improve the visual quality of the gener-
ated synopses. Using a complex tree algorithm, Hsia et al. [51] implemented video retrieval,
which they found to be an efficient method for constructing synopses. In both studies, there
was a significant drop in the number of object frames. Fu et al. [52] considered activity
relationships and optimization while proposing a real-time video synopsis framework
(RTVS). In another study, Ghatak et al. [53] showcased a hybridization of the SA and JAYA
algorithm to improve energy minimization. Chen et al. [54] incorporated a CNN-based
methodology to detect and extract the required object and integrate it with a collision algo-
rithm in order to handle local transparency and avoid collisions. For better visualization of
obtained synopsis video, Namitha et al. [55] suggested an interactive visualization model in
which the synopsis is constructed based on user requirements. Their study smartly formed
user queries using both temporal and spatial attributes. All of the studies mentioned above
only performed synopsis based on a single-view camera or single input video sequence.
Kostadinov et al. [56] implemented an ML model to extract the background, with objects
subsequently being localized and segmented based on timestamps to constructing the
video synopsis. They divided the entire process into two phases, namely, analysis and
generation. Li et al. [57] proposed an infrared video synopsis framework (IVSF) to construct
a video synopsis from an infrared video, mainly utilizing image similarity in the space and
time domain to minimize the space ratio in order to create a summary.

Multiview camera platforms: Most surveillance systems encompass multiple camera
inputs. Zhu et al. [58] proposed a multi-camera joint video synopsis in which objects are
selected based on the key timestamp. They performed object reidentification to maintain
the chronological order of items for both one camera and multiple cameras using the
key timestamp. Hoshen et al. [59] suggested a similar strategy to implement a master–
slave camera approach. Preprocessing was carried out for detection at the level of the
master camera, while the slave camera was responsible for extracting the tube sequence
for that period. Instead of focusing on master camera processing, Mahapatra et al. [60]
proposed a multiview video synopsis by combining the features of video summarization
and video abstraction. They applied each camera’s field of view (FoV) on a standard
background surface. They set the detection priorities based on seven items (e.g., running,
walking, waving, jumping). Their study was able to create a summary only for these
activities. Zhang et al. [61] implemented joint object stitching and camera view stitching to
provide a more compact and understandable synopsis in order to overcome issues with
overlapping FoV . First, they synchronized the input video by grouping similar activities,
then shifted the entire grouped activity along the time axis to obtain a multiview camera
synopsis. As this scenario involves a single object being viewed by multiple cameras,
the complexities involved in optimization are greatly increased. Xie et al. [62] considered
locating the camera’s position and the field of view, thereby helping to create an image
observability model responsible for obtaining a synopsis of a geographic scene. They
proposed a geospatial video synopsis framework (GSVSF) for multiple virtual viewpoints;
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however, their study applies only to quite specific scenarios. Priyadharshini et al. [63]
implemented a spherical video synopsis framework (SVSF) in which they considered a 360-
degree FoV. Instead of creating a synopsis for all the objects, they selected only crucial items
based on user requirements, which they achieved using an action recognition model. on the
whole, multi-camera synopsis approaches are widely accepted for real-world surveillance
systems. An insightful analysis of object-based synopsis techniques is presented in Table 2
for Section 2.2.

Table 2. Comparison of object-based synopsis techniques.

Existing Studies

Deployment Viewpoint Analysis

Methods Lacuna Time
Complexity Application
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Rav-Acha et al.,
2006 [27] X X 1 S Markov Random Field (MRF),

Graph Cut
For long time video synopsis,
occlusion of objects is observed.

O(mlog3n) Low level
Synopsis

Pritch et al.,
2007 [28] X X 1 S SA This framework fails to compute

synopsis for moving cameras.
O(n4) Query based Synopsis

Yildiz et al.,
2008 [28] X X 1 S Nonlinear Image,

Dynamic Programming (DP)
Computationally expensive (CE)
and space complexity is more.

O(VE) Real-time Synopsis

Xu et al.,
2008 [29] X X 1 S Mean Shift Algorithm Spatial dimension has not been

considered while designing
the framework.

O(Tn2) Video Synopsis

Pritch et al.,
2008 [30] X X 1 S/D ObjectDetection (OD),

Tube Generation (TG)
This technique is not applicable
to a video with dense activity.

O(ElogV + VlogV) Video Indexing

Vural et al.,
2009 [46] X X 1 S Frequency Background

Subtraction, DP
Information loss 3D to 2D projection,
mount eye-glaze camera challenging.

O(VE) Real-time Synopsis

Feng et al.,
2010 [47] X X n S Background Subtraction This study is not applicable for

crowded scenario and is CE.
O((NKD)3) Online Synopsis

Wang et al.,
2012 [31] X X 1 S/D Object Region Flag Method suffers from occlusion

and memory inefficient.
O(VE) Scalable Browsing

Sun et al.,
2011 [32] X X 1 S Maximum Motion Power Cannot work with motion cameras.

Also, illumination and
cluttering effect not minimized.

O(N) Video Synopsis

Huang et al.,
2012 [48] X X 1 S Object Tracking,

Table Driven Approach
Flickering effect and occlusion
can be majorly observed.

O(VE) Online Synopsis

Sun et al.,
2012 [50] X X 1 S Map-Based Optimization The obtained synopsis is densely

condensed creating confusion.
O(nlogn) Online Synopsis

Zhu et al.,
2012 [33] X X 1 S Key observation Problem of occlusion arises since

spatial dimension is neglected.
O(n4) Video Synopsis

Nie et al.,
2013 [34] X X n S X Alpha-Beta Graph Cut

(ABGC)
Incapable to work with
moving cameras.

O(b(d/2)) Compact Synopsis

Hsia et al.,
2013 [51] X X 1 S Low Complexity Range Tree

(LCRT)
Computationally expensive as
well as occlusion can be noticed.

O(logn + k) Retrieval

Huang et al.,
2014 [49] X X n S/D Maximum Posteriori

Estimation
Space complexity and
occlusion is highly noted.

O(n4) Real-time Synopsis

Yao et al.,
2014 [35] X X 1 S OD, Object Tracking,

Genetic Algorithm
Cannot detect and track continuously
moving object. Thus, frames droped.

O(gnm) Video Synopsis

Fu et al.,
2014 [52] X X n S Motion Structure,

Hierarchical optimization
CE and does not support
crowded videos.

O(VE) Real-Time Synopsis

Zhu et al.,
2015 [58] X X X n D X Joint Tube Generation Obtained video is confusing

and redundant.
O(ElogV + VlogV) Joint Synopsis

Olivera et al.,
2015 [36] X X 1 S Open source library The resultant output suffers from

jittering, flickering effects.
O(VE) Video Synopsis

Hoshen et al.,
2015 [59] X X X n D TG,SA Occlusion and jittering effect

is observed. Moreover, frame drop.
O(n4) Live Video Synopsis

Mahapatra et al.,
2015 [60] X X n D Clustered Track,

Collision Detection
CE and chronology of
objects is not maintained.

O(ElogV + VlogV) Multiview Synopsis

Tian et al.,
2016 [37] X X 1 S Genetic Algorithm Occurance of illumination

and cluttering effect and CS.
O(gnm) Video Synopsis

Ahmed et al.,
2017 [38] X X 1 S TG Computationally expensive and

the output is confussing.
O(n4) Video Synopsis
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Table 2. Cont.

Existing Studies

Deployment Viewpoint Analysis

Methods Lacuna Time
Complexity Application
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Yi et al.,
2018 [40] X X 1 S Spatio temporal Computationally expensive and

cannot handle illumination.
O(log2(n)) Video Synopsis

Li et al.,
2018 [41] X X 1 S X Group Partition,

Greedy Approach
CE and does not support
moving cameras.

O(ElogV + VlogV) Video Complex Synopsis

Ghatak et al.,
2019 [42] X X 1 S HSATLBO Framework dissents moving

cameras and several frames are lost.
O(VE) Video Synopsis

Zhang et al.,
2020 [61] X X n S/D Spatio-Temporal,

Dynamic Programming
Browsing is not scalable and
merging of objects can be seen.

O(VE) Multiview Synopsis

Mona et al.,
2020 [43] X X 1 S X Yolo3, Swarm Algorithm High memory consumption and

numerous frames are dropped.
O(nlogn) Video Synopsis

Ghatak et al.,
2020 [53] X X 1 S HSAJAYA Quality of the video is

compromised. O(nlogn) Video Synopsis

Chen et al.,
2020 [54] X X n S Attention-RetinaNet,

Local Transparency
Computationally expensive and
time consuming.

O(logn) Video Synopsis

Nanitha et al.,
2021 [55] X X n S/D X Joint Tube Generation High memory consumption and

occlusion of object is observed.
O(ElogV + VlogV) Video Synopsis

Kostadinov et al.,
2022 [56] X X n S X Object localization,

Object tracking,
reidentification

Resource intensive task thus
consume large memory, flickering.

O(n4) Video Synopsis

Xie et al.,
2022 [62] X X n S/D Video Spatialization,

Spatiotemporal pipeline
CS as it deals with locating
the camera position.

O(ElogV + VlogV) Geospatial Synopsis

Li et al.,
2022 [57] X X S/D Fourier Transform,

Object tracking
Occlusion and jittering
effect is observed.

O(nlogn) Infrared Video synopsis

Priyadharshini.
2022 [63] X X n S/D X Action recognition module,

Tracking
High memory consumption and
occlusion of object is observed.

O(VE) Spherical video Synopsis

2.3. Action-Based Synopsis

Action-based synopsis is a technique that focuses only on extracting an object of
interest in motion in order to construct a short video. In the object-based method, all of the
moving or non-moving features are considered in the summary, potentially leading to more
redundancy and higher computational cost. In action-based synopsis, action segregation
and alignment are first used to extract the object, thereby reducing the redundancy. Finally,
stitching and optimization are incorporated to overcome the high computational cost
while shifting the object in the domain space. Hao et al. [64] implemented a GrabCut
segmentation algorithm applied to a moving object matting sequence. Their study used
user interaction to select the desired object; after selecting the object, GrabCut segmentation
was used to create a synopsis of that object. The major drawback of this approach is that it
requires user interaction to create the summary.

User interaction can be reduced by techniques such as rotoscoping and matting [65].
Similarly, Nie et al. [66] decomposed objects into several segments, with each segment
corresponding to an action. Non-active elements were discarded during the process,
and the selected action segments were stitched together to create a shorter compact video.
In this approach, segmentation and action tracking take place with the help of hard and
soft segmentation [67,68]. After the user has selected the object by drawing a curve, the
object is rotoscoped using the timeline. After action segregation, the object is repaired to
address any holes with respect to the background. When combining the action segments,
the authors maintained a chronology of the action. The action parts were shifted using
the vector, with the linear combination representing the energy function. Stitching was
performed using a thinning algorithm applied to the pixel number and width. As a result,
shorter videos can be obtained as compared to the original video sequence. This study’s
major drawback is that it is not applicable to crowded scenarios with more than one action
object. A detailed analysis of action-based synopsis techniques is provided in Table 3 for
Section 2.3.
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Table 3. Comparison of action-based synopsis techniques.
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Hao et al.,
2013 [64] X X 1 S Grab Cut, Object Segmentation Does not support multi-camera

view and the quality is low.
o(nlogn) Video Synopsis

Nie et al.,
2014 [66] X X 1 S MRF Technique cannot be applied

on moving cameras.
O(mlog3n) Video Synopsis

2.4. Collision Graph-Based Synopsis

Differing from convention synopsis techniques, in this approach the tubes are shifted
in order to reduce computational complexity. One example is a study Lu et al. [69] in which
the authors proposed fluent tube generation by implementing two methods, namely, the
Gaussian mixture and texture-based methods. While creating the tubes, they removed the
shadows from the foreground, then used a filter to concatenate the tubes. The resulting
synopses had better visual effects. In another approach, Wang et al. [70] shifted the object
using background modeling and foreground segmentation. Their study provided scalable
browsing and efficient synopsis generation. Similarly, Zhong et al. [71] proposed fast
synopsis using compressed video; they abstracted tubes from the video using a graph-cut
algorithm to perform parallel minimization on the energy function [72,73]. Their test
result on the F-Building, Hall Monitor, and Daytime datasets showed better tube extraction
with this approach. He et al. [74] mentioned a tube rearrangement technique to reduce
potential collisions. Collision of tubes takes place when tubes occur at the same time
and in the same space. They identified tube collisions by incorporating the collision
relationship probability [75,76] to help determine the tube position [77–79]. However, while
these techniques can reduce the computation cost and collision artifacts [80,81], they are
challenging to implement on dynamic backgrounds. Nie et al. [82] incorporated attributes
such as object size and speed in order to avoid collisions in the resultant synopsis, for
which they used three variable optimization methods. An in-depth analysis of collision
graph-based synopsis techniques is provided in Table 4 for Section 2.4.

Table 4. Comparison of collision graph-based synopsis techniques.

Existing Studies

Deployment Viewpoint Analysis

Methods Lacuna Time
Complexity Application
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Lu et al.,
2013 [69] X X 1 S Gaussian Mixture

Model (GMM), TG

Synchronization and
alignment of the tube

is not seen.
O((NKD)3) Video Synopsis

Wang et al.,
2013 [70] X X 1 S Flag-Based , SA Computationally expensive

and loss of pixels. O(n4) Video Indexing

Zhong et al.,
2014 [71] X X 1 S X Graph Cut, SA

Cannot work with regular
vidoes, movie and

TV video.
O(mlog3n) Fast Analysis

Li et al.,
2016 [80] X X 1 S TG, Greedy

Approach

Chronology is not
maintained and performance

drop can be observed.

O(ElogV +
VlogV)

Effective Synopsis
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Table 4. Cont.
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Li et al.,
2016 [83] X X 1 S Temporal

Domain,SA

Spatial domain is
compromised giving rise

to occlusion and
frames are dropped.

O(n4) Video Synopsis

Jin et al.,
2016 [81] X X 1 S X Projection Matrix Quality is not up to mark

and time consuming. o(nlogn) Real-Time
Synopsis

He et al.,
2017 [74] X X 1 S Collision Graph Computationally expensive

and loss of frames. O(V + E) Online Video
Synopsis

He et al.,
2017 [75] X X 1 S Graph Coloring

Chronological order, motion
structure, activity preserving

are compromised.
O(mV ) Video Synopsis

Liao et al.,
2017 [76] X X 1 S 3D Graph Cut Computationally expensive

and data lost can be seen. O(mlog3n) Synopsis
Browsing

Ra et al.,
2018 [77] X X 1 S Fast Fourier

Transform (FFT)
Computationally

expensive and slow. o(nlogn) Real-Time
Synopsis

Pappalardo et al.,
2019 [78] X X 1 S Graph Coloring Object tracking and

detection are not considered. O(mV )
Video Synopsis

Dataset

Ruan et al.,
2019 [79] X X 1 S/D Dynamic Graph

Coloring
Computationally expensive

and time consuming. O(mV )
Online Video

Synopsis

2.5. Abnormal Content-Based Synopsis

The abnormal content-based synopsis strategy is an application-specific method in
which the abnormal case for constructing the synopsis is predefined. It only deals with
shifting all abnormal foreground objects in the time and domain space to create a con-
densed video. Cho et al. [84] proposed an event-based video synopsis application, using a
template-matching scheme to group similar activities. In their approach, they predefined
the positions of cameras with entry and exit points. Then, they applied the template-
matching scheme to the camera view, using cluster trajectories to detect the abnormal
activities. Any event beyond the predefined trajectories is considered an abnormal event.
A similar strategy was mentioned by Lin et al. [85]; they detected anomalies by first learning
the local patch of object occurrence. Their study used blob sequence optimization to make
it easier for the synopsis to display activity. Ahmed et al. [86] trained a CNN model to
detect cars, bikes, and pedestrians in order to create a synopsis based on the requirements
of user-specific queries. For background and foreground segmentation, they used an im-
proved Gaussian mixture model (GMM) in which multiple object tracking was achieved
using a sticky algorithm. Differently, Ingle et al. [87,88] used the LiDAR point cloud and
image data to create a synopsis from drone video. Their study was highly reliant on the
customized object detection model used to extract the objects; additionally, they used early
fusion to perform stitching. Using pre-trained scenarios, these studies contribute a new
approach to specific-event synopsis generation. Table 5 summarizes the studies referred to
in Section 2.5 along with their characteristics.
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Table 5. Comparison of abnormal content-based synopsis techniques.

Existing Studies
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Chou et al.,
2015 [84] X X n D OD, Object tracking Loss of frame. Object detection

and tracking are left out. o(nlogn) Event
Synopsis

Lin et al.,
2015 [85] X X 1 S X

Local Patch Learning Based
Abnormality Detection

Is not applicable to
moving cameras and

output is not accurate.
o(nlogn) Activity

Synopsis

Ahmed et al.,
2019 [86] X X N S/D X TG Does not support crowded

data and moving cameras.
O(ElogV +

VlogV)
Intelligent

Traffic

Based on our analysis of existing synopsis applications, Figure 2 showcases a chrono-
logical overview categorized as follows: (off-line + single camera view + keyframe-based);
(off-line + single camera view + object-based); (off-line + multiple camera view + object-
based); (offline + single camera view + collision graph-based); (offline + single camera view
+ object-based); (on-line + single camera view + object-based); (offline + single camera view
+ abnormal content-based).

Here, off-line means that the obtained live video feed is first stored on a storage device,
then the synopsis process is carried out on the stored data to obtain the condensed video.
In the on-line phase, the synopsis process is initiated directly on the obtained live video to
construct the synopsis, which avoids the use of local storage space.

Figure 2. Chronological overview of the most relevant video synopsis studies. The chronology
represents the names of the author and the respective timeline of their study.

3. Video Synopsis Framework

This section briefly describes video synopsis methodology components based on
analysis and classification. These can mostly be distinguished based on camera view, that
is, single-camera or multiple, as well as on anomaly detection pretraining in abnormal
synopsis methodology. In the single-camera video synopsis framework, a shorter video is
constructed for a single view in which the object is detected, and the extracted foreground
is stored based on user query. Optimization and the visualization are carried out to obtain
an optimal shorter video. In the multiple-camera video synopsis framework, there are
multiple views from which the synopsis is created, and detection and extraction of the
object are carried out for every single frame, thereby generating a tube for each object.
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These object tubes are shifted in time and domain space, then stitched together with the
corresponding background based on the alignment of the video sequence. Finally, blending
is performed in the visualization phase to enhance the tube quality of the segmented objects
to construct a better video synopsis. In the abnormal content video synopsis framework,
a pre-trained CNN model is incorporated to detect the abnormal object only, for which
the foreground is then extracted based on the criteria used for the synopsis. Optimization
of this abnormal object is carried out along with corresponding background stitching to
construct an abnormal video synopsis. A systematic illustration of different methods and
their component is depicted in Figure 3.

A detailed explanation of the corresponding components and their methods is de-
scribed below. Video synopsis generation begins with object detection and tracking to
extract activity from the video sequence. In the single camera methodology, object detection
and tracking occur only for a single video sequence, whereas in a multi-camera strategy
there are multiple video sequences. In the abnormal method, the parameter to be detected
is pretrained using a CNN detection model. This characteristic represents a significant
difference from other practices. Suppose there is a user query-based interaction; in this case,
a synopsis is generated for that object following the optimization process (i.e., rearranging
or shifting the items) obtained from the object tracking database. This approach is able to
deal with collisions between activities before they are stitched together. The visualization
process blends the generated video for better video synopsis visual quality in single-camera
methods; on the other hand, in the non-query-based approach a synopsis is created for the
entire object.

Figure 3. An illustration of different synopsis methodologies and their components: (a) single-camera
video synopsis framework; (b) multi-camera video synopsis framework; (c) abnormal content video
synopsis framework.
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Object detection is an initial preprocessing stage used in obtaining a synopsis; to
minimize preprocessing time, the preferred method used for detection is motion detection.
Motion detection is a simple method that is initiated when there is a difference between the
foreground and the background pixels; different methods of motion detection include the
pixel difference [27], background cut [19], GMM [89], Gradient [43], PBAS [90], LOBSTER-
BGS [91], and others. The lacuna in this method is their performance in cases with dynamic
backgrounds or large crowds, as they cannot detect all of the objects in such scenarios.

As an alternative to motion detection, human detection methods can be used to
detect different objects and humans against complex backgrounds. Such methods include
CNN [92], Quadtree [93], Min-cut [94], and SILTP [95]. An abnormal activity detection
method is applied to detect the anomalies in the video sequence. The pretrained template
matching approach is regulated for abnormal activity detection. Object parallel tracking is
initiated with detection, and is a critical stage for creating trajectories of frames. Based on
these trajectories, objects are aligned in the resultant synopsis. Mathematical approaches
such as Euclidean distance [96], Kalman filtering [97], and chi-square distance [98] can be
applied in the frame-based tracking method to find the distance between two consecutive
frames, ensuring that the frame of interest is tracked accordingly. The clustered track
extraction process is initiated to group and track similar activity; on the other hand, entire
objects can be tracked the form of a tube sequence method using Fourier transform [99],
graph coloring [65], or key timestamp [100] approaches, among others. These methods are
used in object-based tracking approaches. Alternatively, an action-based tracking approach
can be used to track different actions using neural networks and multiple pedestrian
tracking methods. Object tracking directly impacts the generated synopsis results, as any
broken trajectories in tracking or collisions involving a track can decrease the performance
of the entire methodology.

Optimization/energy minimization is vital for rearranging an object into a sequence
with a minimum collision rate. When rearranging objects, it is important to perform object
segmentation, which provides the desired object’s closed region boundaries, in order to
determine the object’s position. Among the methods used to perform segmentation are edge
segmentation [101], clustering segmentation [102], and region-based segmentation [103].
After determining the position of the activity of interest, it is shifted in the time domain
to create a smaller merged video. When shifting the activity, it is necessary to determine
certain parameters, such as the consistency and collision. When shifting an object, several
different optimization methods can applied; these can be classified into clustering-based
(e.g., packing cost [19], film map generation [96], mean shift [28], table-driven [60], etc.),
tube-driven (e.g., TLBO [104], SA [105], etc.), tree-based (e.g., greedy approach [30], alpha–
beta swap [106], genetic algorithms [107]), and dynamic programming [44] approaches.
A detailed performance evaluation is provided below in Section 4. In a multiple-camera
framework, two different tubes are extracted and arranged jointly in a common sequence,
unlike the single-camera approach. In an abnormal synopsis framework, optimization and
stitching are the same as in the single-camera approach.

The next stage in the synopsis process is background generation, followed by stitching,
in which the obtained object is stitched with the time-lapse background. Here, it is crucial
to generate a smooth background in order to ensure better visual quality of the resulting
synopsis. In most of the existing literature, pixel-based rather than feature-based stitching
is used. Stitching and background generation does not affect the performance of the final
synopsis; rather, these steps are carried out to improve the visual quality. Unlike the
single-camera approach, in multi-camera scenarios a common background must be selected
before stitching.

We provide a comparison between various stitching algorithms in Table 6; the computa-
tional cost is dependent on the stitching method. Additionally, different blending algorithms
can be used to improve the viewing quality during the visualization stage.
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Table 6. Stitching algorithms used in video synopsis.

M
et

ho
d Synopsis

Name and
Reference Technique

View Point Distinguished Computational Cost

Class Type Single
Camera

Multiple
Camera Pros Cons L M H

Pi
xe

lB
as

ed

Frame

O
ff

-l
in

e

Peleg et al. [108] Optical flow X Fast Low
accuracy

X

Object
/

Action

Zhi Q et al. [109] Depth and color X Degree of depth Complicated
calculation

X

Uyttendale et al. [110] Graph structutre X X Eliminate ghosting Complicated
calculation

X

Fe
at

ur
e

B
as

ed

Frame

Brown et al. [111] Sparse
matching

X Automated Limited
plane

X

Lin et al. [112] Varying affine X Address parallax Single
affine

X

Liu et al. [113] Insertion view X
Degree of
parallax

Complicated
calculation

X

Chang et al. [114] Tranformation X X Overlapping Region Limited to
parallel

X

Object
/

Action

Li et al. [115] Homography X X
Reduce

distortion
Limited to

parallel
X

Chen et al. [116] Coarse fine X
Rotation

correction
Local

distortion
X

Zhang et al. [117] Prior
constraints

X
Wide

baseline
Complicated
calculation

X

Xiang et al. [118] Level Feature X X
Degree of

texture
Local

distortion
X

Object
/

Action
/

Collision

O
n-

li
ne

Rav-Ach et al. [119] Embed the object X
Accurate

alignment
Limited to

camera
X

Su et al. [120] Optimization
function

X
Balance

stabilization
Complicated
calculation

X

Nie et al. [121] Background
foreground

X X
Improved
matching

Complicated
calculation

X X

Lin et al. [122] Estimate
parameter

X 3D path Limited to
depth

X

L-Low, M-Moderate, H-High.

In this section, we have explained the video synopsis framework components and
classified the various methods involved. Additionally, we have provided a qualitatively
analysis of different stitching algorithms and mentioned their respective pros and cons
with respect to computational cost. The next section evaluates object detection, extraction,
and optimization techniques used in state-of-the-art video synopsis methods.

4. Results and Discussion

We conducted exhaustive experiments using a standard dataset to evaluate state-of-
the-art synopsis methodologies. An AMD Ryzen 5 3500X equipped with 16 GB RAM and an
Nvidia Gigabyte GeForce RTX 2060 graphic card was used for experimentation. In testing,
as a front-end we used Python programming language for most of the studies, while for
others we used MATLAB version 2019a with C++. As the synopsis framework is composed
of different components, each one of them was evaluated on the respective dataset with a
standard metric. We analyzed and evaluated the state-of-the-art object detection, tracking,
and optimization methods used in video synopsis, as discussed in Section 3. We tested
this method on the five videos from the Hall Monitor dataset; the evaluation metric is
mentioned in Section 4.1.2. We carried out this analysis in order to draw an outline of
these methods. In all the videos, several humans are walking randomly from left to right.
The video contains a single view and a static background with multiple objects. Finally, we
provide a separate discussion of the experimental outcomes.
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4.1. Datasets and Metrics

This section summarizes the different publicly available datasets for video synopsis,
their respective challenges, and their evaluation methods.

4.1.1. Datasets

A diverse number of video surveillance datasets are available publicly. However, most
video synopsis techniques are evaluated on a local dataset, which is typically not publicly
available. Table 7 shows the list of datasets used for object detection and object tracking
and segmentation in this study.

Table 7. A summary of existing datasets used for object detection and tracking, segmentation, and
creation of video synopses.

Dataset Year View Type Scenes No. of Views Application

PETS 2000 Single/multi In/Outdoor 1, 2 activity monitoring, tracking, segmentation
WEIZMANN 2001 Single-view Outdoor 1 detection, temporal segmentation

KTH 2004 Single-view In/Outdoor 1 feature extraction, synopsis
CAVIAR 2007 Multi-view In/Outdoor 1, 2 activity monitoring, tracking, segmentation, clustering

Hall Monitor 2014 Single-view Indoor 1 object detection, tracking, segmentation, synopsis
Day-Time 2014 Single-view Indoor 1 object detection, tracking, segmentation, synopsis
F-Building 2014 Single-view In/Outdoor 1 object detection, tracking, segmentation, synopsis

PETS is a performance evaluation tracking and surveillance dataset, created in 2000 to
evaluate tracking algorithms. All the video sequences in the PETS dataset are manually
labeled using the bounding box to locate the objects. WEIZMANN is an event-based
dataset created in 2001, and is specifically designed for evaluating different clustering and
segmentation algorithms using a statistical measure; the dataset mainly contains video
sequences with 6000 frames. It includes actions such as waving, running, and walking.

The KTH dataset was created in 2004; at that time, it was the most extensive human
action dataset. The dataset contains indoor and outdoor video sequences, and includes
walking, waving, jogging, running, boxing, and clapping actions. The CAVIAR dataset,
created in 2007, consists of 80 indoor videos representing various gestures and positions,
such as fighting, walking, shopping, etc. The Hall Monitor, Daytime, and F-Building
datasets were created in 2014, and all contain indoor/outdoor video events that mainly
include a static background with limited movement activities such as walking across the
street or walking in an office building corridor.

4.1.2. Evaluation Metrics

Video synopsis performance is evaluated based on the different synopsis methodology
stages, such as object detection and tracking, energy minimization, and computational
cost. The metrics are precision, recall, F1 measure, similarity, frame condensation ratio
(FCR), collision cost (CC), temporal consistency cost, chronological disorder ratio (CDR),
and time of execution [123]. The precision metric is used to determine the accuracy of object
prediction. In contrast, recall indicates the accuracy of detection based on the total number
of objects, and the F1-score measures the test accuracy.

The similarity measure quantifies the similarity between two objects. FCR determines
the total number of frames in the synopsis to that in the source video; the higher the
frame reduction, the lower the FCR. CDR represents the total number of chronological
disorder frame activities compared to the total number of activities. The smaller the CDR
value, the better the chronological order in the synopsis video. The time of execution is
determined based on the type, online or offline; it indicates the time required to create the
synopsis video, which depends on the type.



Systems 2023, 11, 108 16 of 26

Very few studies have evaluated their methods based on the video quality or camera
usage (i.e., single-camera or multi-camera). Evaluation metrics for these can be formulated
as follows:

FCR = TS|T1 (1)

where TS and T1 are the length of the synopsis video and the input video, respectively.
Frame compact rate (CR): the CR metric is used to determine whether the foreground is
rearranged accurately in the synopsis, and is stated as follows:

CR =
1

w.h.TS

TS

∑
t=1

w

∑
x=1

h

∑
y=1
{1|i f p (x, y, t) ∈ f oreground in Vs} (2)

where p(x, y, t) indicates a pixel at the t-th frame such that w and h are the width and height
of the synopsis frame. Frame overlapping ratio (FOR): the FOR defines the overlapping ratio
between the collision degree of the foreground tubes:

FOR =
1

w.h.TS

TS

∑
t=1

w

∑
x=1

h

∑
y=1
{1|i f p (x, y, t) ∈ collision f oreground in Vs} (3)

The CDR is defined as follows:

CDR =
the number o f chronological diordered o f key time stamp pairs

the total number o f key time stamp pairs
(4)

The precision, recall, and F1 measures determined as follows:

precision =
True positives

True positives + False positives
(5)

recall =
True positives

True positives + False Negative
(6)

F1 measure = 2× precision× recall
precision + recall

(7)

4.2. Analysis 1: Evaluation of Object Detection and Tracking

The object detection method solicited prior to the optimization phase directly impacts
the features of the constructed synopsis video. Many object detection methods have been
recently proposed and promised precise detection; thus, transforming their use in the syn-
opsis framework can drastically change the quality of the synopsis video. A false negative
prediction of an object can increase the computational cost; thus, adapting an appropri-
ate detection method is crucial for the overall performance of the synopsis framework.
An efficient object tracking method can significantly increase precision. We analyzed the
effectiveness and efficiency of several algorithms: GMM [124], MAP-based algorithms [44],
LCRT [51], LOBSTERBGS [91], Object Flag [20], SuBSENSE [125], 3D Graph-Cut and Pixel
Domain [27], Graph-Cut with GMC and VQ [71], and MLBSA [126].

The analysis clearly shows that few algorithms suffered from noise. However, the ob-
servation signifies that in video1, video3, video4, and video5, the detected foreground
mask achieved by MLBSA is slightly better than the others. In Video2, the 3D Graph-Cut
and Pixel Domain approach achieves a better result. A visual assessment is provided for
the GMM (T1), LOBSTERBGS (T2), MLBSA (T3), and 3D Graph-Cut Pixel Domain (T4)
approaches, and is shown in Figure 4.
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Figure 4. Illustration of different synopsis methodologies for generating foreground segmentation.

MLBSA performed better compared to others, as it leverages extraction of the binary
pattern from the features, and as such is able to smoothly deal with illumination from
moving objects. However, the synopsis generation time was seen lower when using 3D
Graph-Cut and Pixel Domain, as this method converts the 3D Graph to a 2D Graph in order
to determine the spatial location of the nodes. In the figure, Video1 and Video2 show the
original input video frames, while T1, T2, T3, and T4 in each column depict the results for
the respective input frame. Additionally, a quantitative analysis using the standard metrics
of precision, recall, and F1-score is shown in Table 8.
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Table 8. Quantitative analysis of different detection and tracking methods.

Dataset Methods Precision Recall F1 Time of Execution (s)

Hall Monitor
Video-1

GMM 0.55 0.60 0.59 356.12
MAP Based 0.66 0.69 0.71 214.89

LCRT Algorithm 0.46 0.52 0.61 180.79
LOBSTERBGS 0.54 0.66 0.60 269.01

Object Flag 0.59 0.62 0.65 174.41
SuBSENSE 0.69 0.75 0.61 266.32

3D Graph Cut and Pixel Domain 0.67 0.72 0.69 140.25
Graph Cut Algorithm 0.57 0.63 0.64 251.45

GMC and VQ 0.60 0.64 0.61 154.38
MLBSA 0.75 0.76 0.72 284.03

Hall Monitor
Video-2

GMM 0.48 0.55 0.47 557.12
MAP Based 0.61 0.66 0.52 348.25

LCRT Algorithm 0.54 0.64 0.59 373.89
LOBSTERBGS 0.64 0.66 0.60 545.43

Object Flag 0.57 0.58 0.51 398.93
SuBSENSE 0.59 0.60 0.55 436.25

3D Graph Cut and Pixel Domain 0.69 0.75 0.72 311.71
Graph Cut Algorithm 0.61 0.67 0.52 342.55

GMC and VQ 0.59 0.60 0.54 243.32
MLBSA 0.62 0.63 0.56 634.01

Hall Monitor
Video-3

GMM 0.67 0.74 0.65 388.26
MAP Based 0.78 0.83 0.77 247.03

LCRT Algorithm 0.58 0.66 0.67 212.93
LOBSTERBGS 0.66 0.80 0.66 301.15

Object Flag 0.71 0.76 0.71 206.55
SuBSENSE 0.81 0.89 0.67 298.46

3D Graph Cut and Pixel Domain 0.79 0.86 0.75 172.39
Graph Cut Algorithm 0.69 0.77 0.7 283.59

GMC and VQ 0.72 0.78 0.67 186.52
MLBSA 0.87 0.90 0.78 316.17

Hall Monitor
Video-4

GMM 0.64 0.70 0.67 398.59
MAP Based 0.75 0.79 0.79 257.36

LCRT Algorithm 0.55 0.62 0.69 223.26
LOBSTERBGS 0.63 0.76 0.68 311.48

Object Flag 0.68 0.72 0.73 216.88
SuBSENSE 0.78 0.85 0.69 308.79

3D Graph Cut and Pixel Domain 0.76 0.82 0.77 182.72
Graph Cut Algorithm 0.66 0.73 0.72 293.92

GMC and VQ 0.69 0.74 0.69 196.85
MLBSA 0.84 0.86 0.80 326.50

Hall Monitor
Video-5

GMM 0.58 0.66 0.60 369.98
MAP Based 0.69 0.75 0.72 228.75

LCRT Algorithm 0.49 0.58 0.62 194.65
LOBSTERBGS 0.57 0.72 0.61 282.87

Object Flag 0.62 0.68 0.66 188.27
SuBSENSE 0.72 0.81 0.62 280.18

3D Graph Cut and Pixel Domain 0.70 0.78 0.70 154.11
Graph Cut Algorithm 0.60 0.69 0.65 265.31

GMC and VQ 0.63 0.70 0.62 168.24
MLBSA 0.78 0.82 0.73 297.89

4.3. Analysis 2: Evaluation of Various Optimization Techniques

The runtime performance of a synopsis framework is inversely dependent on the
condensation ratio. Offline optimization methods are more applicable to real-world prob-
lems, showing better performance. Efficient offline optimization methods can perform
object rearrangement in the time and space domains on crowded videos. In contrast, online
techniques can be more appropriate for less crowded videos. To demonstrate this difference,
we compared the results of various optimization techniques: SA [105], TLBO [104], Graph
Coloring [75], a greedy approach [59], Elitist-Jaya [127], ABSGCut [106], NSGA-II [128],
Table-driven [60], GWO [129], and HSTLBO [42]. We considered the length of the generated
video synopsis as equal to the generated tube length in order to condense the activities; thus,
the activity cost is zero [83,130]. We first carried out a statistical analysis of the performance
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in order to determine the superior algorithm, considering three parameters: collision cost,
temporal cost, and time of execution. Table 9 depicts the performance comparison between
the optimization methods. After this evaluation, it can be observed that the HSTLBO and
TLBO algorithms perform better when considering the convergence parameters. NSGA-II
mitigates non-elitism, computational complexity, and parameter sharing; thus, the opti-
mization achieved was comparatively less. HSATLBO is a hybrid approach that rigorously
searches for optimum solutions by minimizing the collision and activity costs.

Table 9. Performance comparison of various optimization techniques.

Optimization
Technique

Activity
Cost

Collision
Cost (×103)

Temporal
Consistency Cost

Time of Execution
(s)

Video-1

SA 0 16.21 11.2 356.12
TLBO 0 16.01 11.5 214.89

Graph Coloring 0 20.28 15.7 180.79
Greedy Approach 0 18.05 13.1 269.01

Elitist-JAYA 0 15.78 11.6 174.41
ABSGCut 0 18.01 14.7 266.32
NSGA-II 0 15.65 11.4 140.25

Table-driven 0 17.47 12.3 251.45
GWO 0 16.23 12.4 154.38

HSTLBO 0 14.03 10.8 284.03

Video-2

SA 0 145.36 55.8 557.12
TLBO 0 137.32 49.4 348.25

Graph Coloring 0 190.01 70.3 373.89
Greedy Approach 0 158.74 65.5 545.43

Elitist-JAYA 0 150.21 61.7 398.93
ABSGCut 0 159.65 72.3 436.25
NSGA-II 0 148.47 54.4 311.71

Table-driven 0 162.55 70.6 342.55
GWO 0 151.17 67.8 243.32

HSTLBO 0 146.87 58.7 634.01

Video-3

SA 0 18.34 12.6 388.26
TLBO 0 18.14 12.9 247.03

Graph Coloring 0 22.41 17.1 212.93
Greedy Approach 0 20.18 14.5 301.15

Elitist-JAYA 0 17.91 13.1 206.55
ABSGCut 0 20.14 16.1 298.46
NSGA-II 0 17.78 12.8 172.39

Table-driven 0 19.60 13.7 283.59
GWO 0 18.36 13.8 186.52

HSTLBO 0 16.16 12.2 316.17

Video-4

SA 0 20.47 13.9 398.59
TLBO 0 20.27 14.2 257.36

Graph Coloring 0 24.54 18.4 223.26
Greedy Approach 0 22.31 15.8 311.48

Elitist-JAYA 0 20.04 14.3 216.88
ABSGCut 0 22.27 17.4 308.79
NSGA-II 0 19.91 14.1 182.72

Table-driven 0 21.73 15.1 293.92
GWO 0 20.49 15.1 196.85

HSTLBO 0 18.29 13.5 326.50
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Table 9. Cont.

Optimization
Technique

Activity
Cost

Collision
Cost (×103)

Temporal
Consistency Cost

Time of Execution
(s)

Video-5

SA 0 17.35 20.3 369.98
TLBO 0 17.15 20.6 228.75

Graph Coloring 0 21.42 24.8 194.65
Greedy Approach 0 19.19 22.2 282.87

Elitist-JAYA 0 16.92 20.7 188.27
ABSGCut 0 19.15 23.8 280.18
NSGA-II 0 16.79 20.5 154.11

Table-driven 0 18.61 21.4 265.31
GWO 0 17.37 21.5 168.24

HSTLBO 0 15.17 19.9 297.89

Video synopsis is a complex problem consisting of several components working
together to accomplish a single task. In this article, we have primarily focused on exper-
imentally evaluating different detection, tracking, and optimization methods. However,
several other parameters, such as the segmentation mask and the blending process, can be
further assessed to determine a broader insight view. Most of the existing synopsis studies
are application-oriented, and were designed to deal with a specific scenario; thus evaluating
each study proved to be complicated and time-consuming, as each required particular
types of video inputs and experimental setup. Certain studies required high-definition
(HD) videos to minimize a significant drop in the detected object. In real-time synopsis, we
used steady HD camera footage, which was computationally expensive when generating a
tube. Our experiments were conducted in a controlled environment, and used a publicly
available dataset to clearly define the cavity and component integration.

5. Challenges in Video Synopsis

Today, surveillance systems typically encompass multiple cameras aligned together
using networking devices for surveillance. Therefore, intelligent surveillance systems are
highly complex systems. These systems are responsible for monitoring daily activities
24/7 by using multiple cameras to extract a considerable amount of high-definition real-
time video data. Mainly, these surveillance cameras have low computational capacity,
and a set of cameras is connected to a common server for video data storage. Thus,
extracting meaningful video data from different viewpoints to construct a video synopsis
is tedious, contributing to many challenges. A number of challenges faced by researchers
are listed below.

1. Edge-based synopsis: as next-generation surveillance cameras have slightly better
computing, the summary can be accomplished on the edge device itself using technolo-
gies such as fog/cloud computing. However, state-of-the-art synopsis frameworks
lack the required capabilities to create edge-based solutions.

2. Multi-view video synopsis: creating a synopsis for every single camera occupies a
great deal of space and time; a better real-world solution is multi-view video synopsis,
as it can create a single synopsis for multiple videos. However, a major problem that
occurs is selecting a common background, as the acquired videos have different view
angles and locations. Thus, the resulting synopsis view is complex and challenging to
understand, as the tubes are shifted against a very different background.

3. Visual constituent redundancy: there have been many methods proposed for creating
single-view camera summaries in past years. When a similar strategy is applied
in the case of multi-view camera systems, the inter-video relations between visual
content are ignored, leading to redundant content. Therefore, it is better to use a
synopsis of each video and then stitch the frames to create a single summary for
multi-view cameras.
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4. Relationship association: as there are numerous objects present the constructed video
synopses, it is difficult for a video analyzer to associate summary objects with the
original video objects. A better option is to create a single-camera synopsis, which is
not feasible in real-world surveillance system with multiple cameras. Thus, there is a
need to find a mechanism that can link the desired synopsis object with the original
video cameras.

5. Multi-model: as there are several components in the video synopsis framework,
a multi-model learning approach can be used for better inclusion of these compo-
nents. A single multitask learning model can perform segmentation, depth analysis,
and background generation.

6. Interactive: as synopsis generation is predefined or application based, incorporation
of an interactive user mode can help to generate user-defined parameters such as type
of object, duration and speed of synopsis, etc.

6. Conclusions

In this article, we have provided a comprehensive survey and experimental analysis
of different video synopsis methods. We cover all of the state-of-the-art synopsis method-
ologies, from the initial studies in the field until 2022. Based on their characteristics, we
have classified the procedure into multiple techniques, namely, frame-based, object-based,
action-based, collision graph-based, and abnormal content-based. Additionally, we have
used various scenarios to discuss different synopsis frameworks while providing a taxon-
omy, and classified the methods applied in various video synopsis components. Focusing
on each stage of the video synopsis process, we have provided a systematic comparison
among the methods used in the detection, tracking, optimization, and stitching stages.
Our analysis indicates that the MLSBA and 3D Graph-cut Pixel Domain procedures per-
form significantly better on object detection and tracking. At the same time, NSGA-II
and GWO represent better optimization techniques for avoiding collisions, whereas the
method proposed by Nie et al. is well-situated for multi-camera view synopsis stitching
with minimum computational capacity. The benefits and drawbacks of each technique
are associated with several other insights to provide a detailed understanding of synopsis
methods for real-world application. Prominently, the many open challenges currently faced
by researchers when dealing with synopsis have been brought to the forefront.

Author Contributions: The authors contributed to this paper as follows: P.Y.I. wrote this article,
reviewed and designed the system framework, and conducted experimental evaluation; Y.-G.K.
supervised and coordinated the investigation. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by an Institute of Information and Communications Technology
Planning and Evaluation (IITP) grant funded by the Korean Government (MSIT) (No.2019-0-00231,
Development of artificial intelligence-based video security technology and systems for public infras-
tructure safety).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
ABGC Alpha–Beta Graph Cut
CNN Convolutional Neural Networks
DP Dynamic Programming
FFT Fast Fourier Transform
GMM Gaussian Mixture Model
GSVSF Geospatial video synopsis framework
SVSF Spherical video synopsis framework
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IVSF Infrared video synopsis framework
KNN k-nearest neighbor
LCRT Low Complexity Range Tree
MRF Markov Random Field
OD Object Detection
RTVS Real-time video synopsis framework
SA Simulated Annealing
TA Tube Generation
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