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Abstract: After different consecutive waves, the pandemic phase of Coronavirus disease 2019 does
not look to be ending soon for most countries across the world. To slow the spread of the COVID-19
virus, several measures have been adopted since the start of the outbreak, including wearing face
masks and maintaining social distancing. Ensuring safety in public areas of smart cities requires
modern technologies, such as deep learning and deep transfer learning, and computer vision for
automatic face mask detection and accurate control of whether people wear masks correctly. This
paper reviews the progress in face mask detection research, emphasizing deep learning and deep
transfer learning techniques. Existing face mask detection datasets are first described and discussed
before presenting recent advances to all the related processing stages using a well-defined taxonomy,
the nature of object detectors and Convolutional Neural Network architectures employed and their
complexity, and the different deep learning techniques that have been applied so far. Moving on,
benchmarking results are summarized, and discussions regarding the limitations of datasets and
methodologies are provided. Last but not least, future research directions are discussed in detail.

Keywords: face mask detection; deep learning; deep transfer learning; deep domain adaptation;
YOLO; MobileNet

1. Introduction
1.1. Preliminary

In early 2020, the world health organization (WHO) considered Coronavirus disease
(COVID-19) as a spreading epidemic [1]. It has seriously threatened the life of individuals
worldwide since its outbreak. Moving on, different variants and mutations of COVID-19
have worsened the situation nowadays [2]. To that end, the focus of the global scientific
community has been on proposing adequate mechanisms to handle this calamity, and
a significant research effort has been made. This includes developing different kinds of
vaccines, introducing timely treatment approaches for severely infected patients, etc. Many
studies, e.g., [3–5] show that COVID-19 spreads by droplet and aerosol transmission,
mainly occurring during social interactions with infected persons. Thus, pushing individu-
als to wear protective face masks properly has been established as a pressing and scientific
solution to slow down the spread of COVID-19. Typically, face masks help filter and block
virus particles in the air [6]. This approach has been recommended by WHO and adopted
by most governments across the globe. However, ensuring an efficient adoption of the
masks wearing strategy and compliance of people with the requested norms requires de-
veloping automatic face mask detection (FMD) techniques. The latter helps check whether
individuals are wearing masks or not and whether they are wearing them correctly or not
in public areas. In doing so, intelligent control and prevention of the COVID-19 epidemic
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are facilitated. This comes in addition to insisting people respect social distancing norms
and take routine temperature screenings [3].

FMD and masked face recognition (MFR) has become a key challenge due to the
growing numbers of people wearing masks to prevent the infection of the COVID-19
virus [7,8]. However, the lack of efficient technological solutions to detect face masks
and non-adherence to COVID-19 policy measures leave the door open for new infection
waves [9]. Additionally, the detection of face masks with the use of image processing
techniques is challenging due to (i) the diversity and forms of masks, (ii) the camera pixel
variation, (iii) the variation of obstruction degrees (e.g., illumination, rotation, resolution,
angle of view, etc.), and (iv) the computational complexity of AI-based video analytics.
In addition to the above, maintaining people’s privacy during the mask detection task is
another critical issue [10]. To that end, various studies have been proposed to develop face
detection systems using AI-based video analytics, ensuring that only the proper wearing
of masks is detected and individual privacy is not exposed [11]. The success of artificial
intelligence (AI) and machine learning (ML) models in object detection and face recognition
makes this technology suitable for developing face mask detection techniques [12].

Monitoring, managing and preventing the COVID-19 pandemic and other infectious
disease outbreaks require path-breaking tools and innovative solutions. To that end, AI
and ML have played a crucial role in our fight against the Corona pandemic [13]. For
instance, computer vision (CV) has significantly contributed to teaching computers to
comprehend and analyze visual scenes thanks to ML and deep learning (DL) models [14].
Specifically, intelligent machines can be deployed for (i) identifying and tracking objects,
(ii) measuring the distance between them, and (iii) responding to ascertained scenes using
smartphones, cameras, and other sensory devices [15]. In this regard, CV augmented with
DL has considerably contributed to monitoring human crowds, capturing human activity,
monitoring social distancing behaviors, and detecting the violation of face mask wearing
in public, such as Paris Metro system’s surveillance cameras [15].

1.2. Contributions

This survey aims to shed light on the scientific community’s progress since the start
of the pandemic on the development of DL and Deep Transfer Learning (DTL) tools for
FMD. More specifically, a well-designed taxonomy of frameworks is created to organize
existing approaches better and guide future researchers in the correct branch of work. The
taxonomy covers two principal AI tasks related to controlling COVID-19 spreading: social
distancing analysis and face-mask-wearing detection. The comparative study of existing AI
solutions used to perform the aforementioned tasks, emphasizing state-of-the-art DL mod-
els, provides a sturdy basis for future research and applications. Additionally, insightful
observations are made to identify both solved challenges and those that remain unresolved,
such as the lack of publicly available and annotated real-world datasets, computational
cost requirements and the demand for real-time solutions, lack of storage space on edge
devices to manage image/video datasets, etc. Accordingly, the main contributions of this
paper can be summarized as follows:

• Identifying and systematically reviewing existing DL and TL models used to monitor
social distancing in indoor and outdoor environments.

• Describing the state-of-the-art ML- and DL-based methods applied to detect mask-
covered faces in the wild.

• Analyzing and discussing the performance of ML and DL models in detecting social
distancing respect and face mask usage and identifying their pros and cons.

• Highlighting the open issues for the ongoing research in the field and providing
insights about the research directions and applications that can attract considerable
interest in the near future.
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1.3. Review Methodology

The bibliometric research is performed in the context of a narrative review. The recent
works related to the FMD based on DL and DTL have been searched. We searched the
relevant keywords, like, “face mask detection”, “deep learning”, “transfer learning”, “deep
transfer learning”, “domain adaptation”, and with different combinations on different
databases (including IEEEXplore, Elsevier, ACM Digital Library, Scopus, etc.) in titles,
abstracts, and keywords. The adopted search procedure is explained in Figures 1 and 2.

A total of 196 articles have been returned in response to the relevant queries, out of
which 179 are non-duplicates. These articles are further investigated for their relevancy to
the theme of the present study, as explained in Figure 2. Finally, 130 papers are considered
for this study.

Double-Stage 

Searching 

Procedure

Stage I

Stage II

Search in Databases and Academic 
Search Engines

Screening Manually in Journals 
& Proceedings

Reference scanning

Figure 1. Adopted search procedure for review.
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Figure 2. Selection criteria of the research article for the presented review.

2. Background
2.1. FMD Related Tasks

The detection of face masks in the related literature has evolved into a multi-faceted
problem that defines different tasks for each aspect. In the following, we examine each
task separately, explain the differences from other tasks and the challenges it raises, and
highlight the leading works in the field.

2.1.1. Mask Occlusion Detection

The occluded mask detection task refers to the automatic inference that a person has
covered his/her face entirely or partially. It is a binary classification task in which the main
concepts of face detection are employed but in reverse principle. The main aim of the ML
algorithms is to detect whether the face is covered by a mask, glasses, or any other object.
Such applications are used for security [16] (e.g., of automated teller machines (ATMs)),
authentication [17] (e.g., for fraud prevention), and public surveillance.

2.1.2. Incorrect Face Mask Wearing Detection

Detecting whether a face mask is worn correctly is of utmost importance since incorrect
wearing can remarkably drop the mask’s efficiency. This is strengthened by the fact that
many individuals still refuse to wear protective masks correctly. To that end, numerous
studies have been proposed to investigate this issue by detecting the placement of masks in
the faces [18–20]. In [21], the authors propose a dataset for evaluating incorrect face mask-
wearing detection techniques. The dataset includes images of incorrectly and correctly
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masked faces (CMFD), which are artificially created by applying a mask on many different
faces with different levels of face coverage. Also, the authors in [18] introduce a real-
time CNN-based approach to identify incorrect utilization of face masks. Authors in [19]
combined super-resolution (SR) networks with simpler neural networks trained on the
Medical Masks Dataset (MedMasks) for classifying faces as correctly covered by a mask,
improperly covered or not wearing a mask in images with multiple persons and achieved
an accuracy of 98%.

2.1.3. Masked Face Recognition (MFR)

Wearing a mask obstructs conventional face recognition methods, which focus on
detecting facial components such as the eye, nose, mouth, and ears to identify individuals.
In this detection task [22], which falls under the generic task of occluded face detection, the
focus is on whether the detected mask covers the mouth and nose. The recognition task
focuses on matching masked faces with either unmasked or masked faces. This challenge
has gained increasing interest since the Corona pandemic, when mask-wearing has become
part of people’s daily life to slow down the spread of the virus.

Three main issues differentiate the task from the conventional occlusion face recogni-
tion and make it much harder to solve: (i) the lack of large-scale face datasets with masks,
(ii) the fact that the characteristics of the nose and mouth are seriously damaged, and the
number of pertinent features is considerably decreased; and (iii) the community interest
for detecting and recognizing faces with masks, especially in the case of pandemics. In
the same direction, re-using existing DL models can face a significant challenge related to
the discrepancy between the source data (SD) and target data (TD). For instance, when
unmasked faces are used for training, masked faces are considered in the test or the oppo-
site. Also, when different types of masks are applied, apart from the medical masks, the
standard face recognition systems may fail to adapt to new tasks (i.e., new mask types),
and further training is needed to efficiently and effectively recognize masked faces [23].

2.1.4. Partial Face Recognition

Another task related to FMD is handling distortion that may occur in unconstrained
environments, when the photo shoot may have an angle or other objects and faces may
partially cover the target face [24]. The resulting faces are of different sizes; some of their
features are hidden or out of view, and consequently, conventional algorithms will fail. DL
techniques can automatically learn visual features that can be used for face recognition [25]
and can thus be beneficial for this task. When the task has to be combined with mask
detection, the difficulty increases exponentially. The detection of masks can then be based
on advanced DL techniques that combine low-level features with attention mechanisms to
use all the visible face features and the potential mask features if a mask is employed [26].

2.2. Datasets

Since the pandemic’s start, a great effort has been devoted to launching different
FMD datasets. However, many of these repositories are either artificially created, so they
don’t appropriately represent real-world scenarios, or they have noisy samples and wrong
annotations, further hindering the detection task. Choosing the suitable dataset for training
a mask detection model requires effort.

The SSDMNv2 model [27] was trained using a dataset that included a variety of
open-source datasets and images, such as the Medical Mask Dataset from Kaggle (KMMD),
the PyImageSearch dataset (PBD), and the masked face recognition dataset (MFRD) [28].
The KMMD dataset contains 678 pictures of people wearing medical masks, along with
XML files that describe the masks and provide other details. The PBD dataset includes
1,376 images divided into two classes: people wearing masks (690 images) and people not
wearing masks (686 images). This dataset was created using standard images of faces with
facial landmarks applied. The use of facial landmarks in the training dataset allowed for
the artificial creation of mask-wearing images by positioning masks on faces based on the
location of specific facial features, such as the eyes, eyebrows, nose, mouth, and jawline.
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To prevent introducing bias into the task, the artificially masked images were not used as
non-masked samples. Instead, a larger dataset called the Face Mask Dataset (FMD) was
created by combining images from the Wider Face dataset [29] and the MAsked FAces
(MAFA) dataset [30]. The resulting FMD dataset includes 7959 images from two classes
labeled as “with a mask” and “without a mask”. The MAFA dataset, created before the
COVID-19 pandemic in 2017, includes a total of 30,811 internet images and 35,806 images of
masked faces, some of which are masked using hands or other objects rather than physical
masks. The Wider Face dataset is much larger, containing 393,703 faces annotated in 32,203
images and featuring a wide range of scales, poses, and occlusions. Moving on, A much
smaller dataset is the masked-faced dataset (MFDS) [31] that includes 200 images. This
small number does not allow the dataset to be used for training DL-based algorithms. In
addition, different objects have been used to mask faces, reducing the samples that can be
used for mask detection tasks. The Face Mask Dataset (FMDS) is designed and released
in [32], consisting of 853 images.

In [27], a real-time medical mask detection (RTMMD) is proposed, which includes
5521 images that have two classes annotated as “with_mask” and “without_mask”. It
is also well adapted to detect assailants covering their faces while performing unlawful
deeds. In [33], two FMD datasets are presented for masked face verification (MFV) and
masked face identification. The first one includes 800 images of 200 different persons
(identities), whereas the second comprises 4916 images of 669 identities. In [34], the medical
masks dataset (MMD) is launched by Mikolaj Witkowski in terms of a Kaggle data contest1.
The MMD dataset contains 682 images, including more than 3000 medical masked faces
wearing masks.

In [35], the face mask 12k images dataset (FMID-12k) is released, which includes 11,792
images gathered from various backgrounds. Moving forward, the face mask classification
(FMC) data is presented in [36], which has 440 images equally divided into two classes and
collected on noisy backgrounds.

In [37], the real-world masked face dataset (RMFD) has been proposed, which contains
90,000 normal faces and 5000 masked faces of 525 individuals. In [38], two face image
datasets (FIDS1 and FIDS2) have been proposed. The balanced FIDS1 consists of 3835
images that belong to two distinct categories, i.e., 1919 images of “without_mask” and 1916
images of “with_mask”. These images have been collected from different sources, such
as the RMFD, Kaggle datasets, and Bing search application programming interface (API).
FIDS2 comprises 1376 images divided into two classes (686 images of “without_mask”, and
690 images of “with_mask”). FIDS2 is designed using images from the simulated masked
face dataset (SMFD) [39]. Authors in [40] introduced the thermal mask dataset (TMD)
to cover the lack of masked-faced image datasets in the infrared or thermal spectrum.
The dataset contains 153,360 images in both visual and thermal spectra of people wearing
surgical masks. Finally, because of the lack of unified and diversified datasets for evaluating
both FMD and masked facial recognition (MFR), the authors in [41] develop a large-scale
mask detection to quantify the performance of algorithms for both tasks.

Table 1 lists the publicly accessible datasets used for face mask-wearing detection and
classification and summarizes their main features. As can be seen, most of these datasets are
small and can not be used to train DL models, so they have been augmented in most face
mask detection frameworks using standard data augmentation techniques. This approach
introduces a bias, which can make the comparative analysis of the results collected on the
augmented repositories unfair.
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Table 1. Summary of existing publicly accessible FMD datasets and their characteristics.

Dataset # Images/Faces # Classes # Masked/Unmasked Faces Environment Head Pose Description

MFDS [31] 200 1 200/0 Real Various • Real masked faces applied to track and
identify criminals or terrorists.

MAFA [30] 30,811/ 35,806 1 35,806 /0 Real Various
• Images collected from the Internet. Six
attributes are manually annotated for each
face region

Masked-LFW 13,097 1 13,097/0 Real Various • Faces from the original LFW dataset were
masked using software.

SMFD [39] 1570 2 785/785 Simulated Frontal to Profile • All the images are web scrapped.

RMFD [37] 95,000 2 5000/90,000 Real Various
• Part of the dataset is collected from other
research datasets and another part is crawled
from the Internet.

MMD [34] 6000 20 N/A Real Various • Images acquired from the public domain
with extreme attention to diversity.

MaskedFace-Net [21] 137,016 2 67,049/66,734 Real Frontal • Face images collected from FFHQ.

FMDS [32] 853 3 717/3232
(+123 incorrect) Real Various • Images collected from the Internet,

used to train two-class models.

MFV-MFI [33] 400 (verification)
4916 (identification) 10 200/200 (verification),

2458/2458 (identification) Real Various • A dataset for the MFR task.

MFDD [28] 24,771 1 24,771 Real Various • Images from the Internet and images of people
wearing COVID-19 masks.

SMFRD [28] 500,000 1 500,000/0 Simulated Various • Generated using mask-wearing software
based on the Dlib library.

Singh’s Dataset [42] 7500 2 N/A Real Various • Combination of MAFA, Wider Face and
captured images by surfing various sources.

FIDS1 [38] 3835 2 1916/ 1919 Real Frontal to profile • Combination of Kaggle datasets, RMFD
dataset and Bing search API.

FIDS2 [38] 1376 2 690/686 Simulated Frontal to profile • Created based on SMFD.

AIZOO-Tech 7971 2 12,620/4034 Real Various • Designed by modifying the wrong annotations
from datasets of Wider Face and MAFA.

FMLD [43] 41,934/ 63,072 3 29,532/ 32,012
(+1528 incorrect) Real Various • Combination of MAFA and

Wider Face datasets.

Moxa3K [44] 3000/12,176 2 9161/3015 Real Various
• Combination of Kaggle datasets recorded
from Russia, Italy, China and India
during the ongoing pandemic.

UFMD [45] 21,316 3 10,698/ 10,618 (+500
incorrect masked faces) Real Frontal to Profile • Combination of FFHQ, CelebA, LFW,

YouTube videos, and the Internet.

WMD [46] 7804/26,403 1 26,403/0 Real Various
• Collected from real scenarios of fighting
against CoVID-19 covering many
long-distance scenes.

PWMFD [47] 9205/18,532 3 10,471/7695 (+366
incorrect masked faces) Real Frontal to Profile • Combination of images from WIDER Face,

MAFA, RWMFD.

Thermal-mask [40] 75,908 2 42,460/33,448 Real Various
• The images are in both spectra
(visual+thermal) with 18 variations of
face mask patterns.

Bing dataset [48] 4039
(tr.:3232/test.:807) 2 N/A Simulated Various • The images are collected from Bing using the

bing-images library available in Python.

MedMasks [19] 3835 3 3030/671 (+134
incorrect masked faces) Real Various • Images in uncontrolled environments are

pre-processed.

2.3. Evaluation Metrics

Various metrics have been used to assess the performance of FMD techniques in the
literature. Each method’s performance is often evaluated using different criteria to ensure
its reliability under different scenarios. The metrics most frequently used for assessing FMD
solutions are based on the confusion matrix of the binary classification problem (i.e., mask,
no mask). Moreover, by using the True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) sample predictions, the researchers measure the prediction
accuracy, error rate, recall, precision, and F1 score as given in the following equations.

Researchers also examine the time performance of their solutions, measuring the times
needed for training their models and the inference times. They also measure the throughput
of their systems, which is critical for developing real-time face mask detection systems.
Table 2 summarizes current evaluation metrics widely used in FMD frameworks.
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Table 2. A summary of the common evaluation metrics used to evaluate FMD frameworks.

Metric Description Formula

Relative error (RE) The ratio of the absolute error of a variable to its value |(y− ŷ)/ŷ|
Mean absolute error/
difference (MAE or MAD)

Calculate the difference between the predicted
and actual values for a given phenomenon. (∑m

i=1|ŷi − yi|)/m

Validation loss (L1)
It is determined by evaluating the model on a validation
set, which is obtained by dividing the data into training,
validation, and test sets using cross-validation.

Kappa coefficient (K) Assess the model’s prediction accuracy on a test dataset
by comparing the predicted values to the true values. (total acc-random acc)/(1-random acc)

Mean squared error/difference
(MSE or MSD)

Calculate the average of the differences between the
predicted and actual values. (∑m

i=1(ŷi − yi)
2)/m

Root mean squared error/
difference (RMSE or RMSD)

The square root of the MSE is taken to express the error
in the same units as the original variable.

√
(∑m

i=1(ŷi − yi)2)/m

Root mean square percentage
error (RMSPE) Represents the RMSE expressed in percentage. RMSE× 100%

Normalized root mean squared
error (NRMSE)

A standardized version of the RMSD that allows for
comparison between variables that have different scales. RMSE/(ymax − ymin)

R-squared (R2)

The fitness of a regression model to the data. It
measures the proportion of variance in the dependent
variable that can be explained by the independent
variable(s).

1−
(
∑m

i=1(ŷi − yi)
2/ ∑m

i=1(ȳi − yi)
2)

Theil U1 index
Quantify the difference between the observed and
predicted values, with a higher value indicating
a better fit and more accurate predictions.

√
∑m

i=1(ŷi − yi)
2/ ∑m

i=1 y2
i

Theil U2 index Measures the quality of the predicted results.

√
∑m

i=1(ŷi − yi)
2/m√

(∑m
i=1 y2

i )/m +
√

∑m
i=1 ŷ2

i /m)

Accuracy (ACC) Measure how closely the predicted values match the
target values. (TP + TN)/(TP + TN + FP + FN)

Error rate (ERR) Calculate the percentage of incorrect predictions made
by the model out of the total number of predictions. (FP + FN)/(TP + TN + FP + FN)

Precision (PPV) The closeness of predicted results to the true values. TP/(TP + FP)

Recall or
True positive rate (TPR)

The ratio of true positive (TP) predictions
that are correctly identified. TP/(TP + FN)

False-positive rate (FPR) The ratio of false positive (FP) predictions among all
predictions in the true negative (TN) class. FP/(FP + TN)

True-negative rate (TNR)
Determine the percentage of true negative (TN)
predictions correctly identified among all
predictions in the true negative (TN) class.

TN/(TN + FP)

False-negative rate (FNR) Measures the proportion of false negative (FN)
predictions in the true positive class. FN/(TP + FN)

F1-score Calculate the percentage of false negative (FN) predictions
among all predictions in the true positive class. 2(PPV× TPR)/(PPV + TPR)

Matthews correlation
coefficient (MCC) Assess the quality of a binary classification.

TP× TN− FP× FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Average precision

Mean average precision (mAP) ∑k=n
k=1 AP/m

IoU Intersection over union area of overlap/area of union

Precision recall curve (PRC) Illustrate the balance between precision and recall
as the threshold for classification varies. -

Receiver operating
characteristic curve (ROC)

Illustrate the balance between FPR and TPR
as the threshold for classification is varied. -

Area under the ROC (AUROC) Determine the area under the ROC curve, where a higher
value indicates a better classification performance. -

Cross-validation (CV)
Evaluate the performance of an AI model on unseen
data by testing its ability to make predictions and
generalize based on a sample of training data.

-

Confusion matrix A summary of the classification results of an algorithm,
typically presented in a table format. -
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3. FMD Based on Conventional ML

The rapidly growing literature on Face Mask detection (FMD) [13] indicates that
FMD approaches are divided into several categories. In this section, we review the most
significant works done on FMD. As elucidated in the previous sections, even though the
research on the detection of masks that cover people’s faces has been going on for decades
before the onset and outbreak of the coronavirus pandemic, the methods and algorithms
earmarked for the FMD task still need to be improved. Existing FMD techniques can be
divided into two categories conventional ML- and DL-based models. This work focuses on
the latter group (i.e., deep FMD techniques), demonstrating better prediction performance
and more benefits than the ML alternative [49]. In the following paragraphs, we briefly
provide the main characteristics of ML-based methods.

As explained in Section 2, a main subtask of FMD is the detection of human faces
in the images or video streams. The related ML literature on face detection employs
Haar-like features and Haar classifiers to detect faces. This statistical approach builds
on the categorization of subsections of an image, which implicitly correspond to facial
characteristics (e.g., eyes, eyebrows, nose, nostrils, etc.) and their relative positions [50].
Works that build on face detection and then extract image features to perform FMD employ
decision tree classifiers. These give a speedy, simple, and efficient method for detecting
masks [51]. Similarly, other techniques build on conventional object detection approaches,
such as Haar Cascade [52] and Histogram Of Gradients [53] to detect valuable features,
which are then employed by an ML classifier to solve the FMD task. Such techniques have
proven to be prominent and influential. Still, they heavily depend on Feature Engineering
and demonstrate worse prediction accuracy performance when compared to modern deep
learning techniques.

A group of ML methods for detecting partially occluded faces has been presented
before 2010 and proposed the use of Support Vector Machines [54], neural networks [55],
Gappy PCA that fits around the wrong values [56], Adaboost and other classification
techniques on top of handcrafted features extracted from images. The occlusion could be
on any part of the face, caused by a mask, the hair, sunglasses, etc. [57]. Since the methods
take as input the features detected in each face image, they can be modified to be used
for detecting whether the face is clear or has any kind of occlusion, for performing face
detection and identification, or for any other face-related classification or regression task
(e.g., age estimation, sentiment analysis) [58]. Still, it would take more work to detect the
occluded parts and their effect on the accuracy of predictions.

As mentioned above, this work focuses on the DL-based face mask detection (deep
FMD) techniques, which are illustrated in Figure 3 using a comprehensive taxonomy.
The objective of the taxonomy is to provide a visual summary of the various face mask
detection frameworks focusing on (i) the detectors, (ii) the learning processes, and (iii)
the data collection alternatives.. In the following section, we survey existing deep FMD
methods and the main architectures and models proposed in the literature. We organize
their extended presentation according to different criteria, such as the model type, the
number of processing steps, and the complexity of the resulting models.
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Figure 3. A taxonomy of the approaches introduced for solving the Face Mask Detection problem
using deep learning.

4. DL-Based FMD

Even though the majority of research works on FMD that employ DL methods have
been published during the last three years, the related literature is much richer than that
of ML methods. In this section, we list the main approaches in the field, organized by the
general architecture employed, the number of processing stages, and the complexity. The
works detailed below and their main features and performance are summarized in Table 3.

4.1. Sorted by the Employed Architecture

The detection of face mask wearing is mainly performed on images; thus, image
analysis DL models are employed for the task. Although Convolutional Neural Networks
(CNNs) dominate the field, a few works still use different DL architectures to solve the task.

4.1.1. Convolutional Neural Networks (CNNs)

CNNs are the most popular architectures in object detection and recognition from
images and image classification. Several pre-trained CNN architectures, such as AlexNet,
VGG16, VGG19, Inceptionv3 (GoogLeNet), ResNet50, EfficientNet, etc., have been used in
a variety of image classification and detection tasks,including medical image detection [59],
sentiment analysis and face expression classification [60], etc. However, they have been
trained for entirely different tasks. Transfer learning is the primary ML technique that
allows these pre-trained models to adapt to new tasks and achieve state-of-the-art perfor-
mance quickly [61,62]. In [63], transfer learning has been applied to a face mask annotated
dataset using AlexNet and VGG16 models to detect if people are using face masks. The
authors also combined these architectures with Long short-term memory (LSTM) and
Bidirectional LSTM (BiLSTM) layers to further improve the classification process. The
dataset used for training comprised a total of 2,000 images organized into four classes:
“unmasked”, “masked”, “masked but under the chin”, and “masked but nose open”.
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The VGG-16 architecture has been used in [64] as a basis to train a CNN classifier for
FMD in real-time. The authors collected over 20,000 images from the web, and the trained
image classifier was used as a face mask-wearing alarm system. Authors report an accuracy
of 98% in test images and claim that the developed solution is computationally efficient for
real-time setups.

A two-stage CNN architecture for FMD is proposed in [65] for detecting instances
of improper face mask wearing. The proposed method was trained using 7855 images
divided into two classes in the main task. In a side task, authors tried to detect faces in
images with multiple persons, using a pre-trained RetinaFace model, and then classify the
persons as “mask-wearing”, or “no wearing a mask”. Finally, they employed a centroid
tracking technique to track the detected faces between consecutive images and proposed
architecture for video analysis.

4.1.2. Generative Adversarial Networks (GANs)

Different models of GANs have been utilized to develop reliable FMD solutions that
can preserve individuals’ identities. For instance, a GAN model that automatically removes
the masks covering the face areas and regenerates face images by building the missing holes
is proposed in [66]. The outcome of this framework is a full-face image looking realistic
and natural and realistic. A GAN-based method has been employed in [67] for generating
masked faces. A domain-constrained loss is used to train this architecture, bringing the
inpainted masked faces as close as possible to their corresponding identified complete
faces. Similarly, a GAN-based identity-preserved inpainting solution that alleviates the
problem of occluded face recognition is proposed in [68]. Besides, Ding et al. [33] attempted
to overcome the lack of large-scale annotated FMD datasets by creating two datasets of
synthetic masked face images designed for mask-face detection and recognition. Explicitly,
the former includes 400 pairs of 200 identities for verification, while the latter encompasses
4,916 images of 669 identities for identification.

4.2. Sorted by the Number of Processing Stages

DL-based object detection performs well because of its robustness and capability to
extract pertinent features. Two popular categories are found in the literature, one-stage, and
two-stage object detectors. Examples of one-stage detectors that process images in a single
step, are a single shot detector (SSD), you look only once (YOLO), and RetinaNet. Two-
stage detectors that select regions and then refine them comprise region-based CNN and
its variations and techniques that combine popular CNN architectures for object detection
with classifiers for filtering them.

4.2.1. One-Stage FMD

The simpler one-stage approaches divide the image into fixed-sized cells and then
apply an object locator to find objects in each cell. The YOLO family of architectures is
quite popular for the detection of objects. However, these approaches could perform better
in detecting objects of different sizes. A better alternative is to apply multi-scale detection
to a single-shot detector and then conduct detection on several feature maps to detect faces
of various sizes. Another problem to be handled is the class imbalance problem. Several
one-stage techniques include focal loss functions to reduce the loss for easy samples (i.e.,
cells) and focus on the hard ones.

Single-Shot Detector (SSD): It is based on a multi-scale detection to perform detection on
different feature maps and detect faces of distinct sizes [69]. In [27], the authors introduce a
real-time CNN-based FMD system using SSD and MobileNetV, namely SSDMNv2. In [70],
Anithadevi et al. introduce a single-shot multi-box FMD approach based on MobileNetv2 to
extract pertinent features and enhance object detection. After considering the significance
of developing an accurate model and the limitations of existing models, it proposes a
framework based on deep learning, which would automate and simplify the task of
monitoring social distancing and face masks through intelligent video analytics. In [19], Qin.
et al. combined super-resolution images and SRCNet to develop an FMD approach. They
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were able to classify three categories of facemask-wearing conditions (i.e., correct facemask-
wearing, incorrect facemask-wearing, and no facemask-wearing), and their proposed
method achieved 98.70% accuracy in the face detection phase.

YOLOv1: [71] presents a YOLOv1-based FMD, which has been combined with a stack-
based virtual machine (WebAssembly) and high-performance neural network inference
computing framework (NCNN) to improve performance. This approach enables the
privacy preservation of users’ data as it is implemented on an edge computing architecture.

YOLOv2: It is a single-stage real-time object detection model that has improved the
performance of YOLOv1 in different aspects, e.g., using (i) anchor boxes to predict bounding
boxes, (ii) a high-resolution classifier, (iii) batch normalization, and (iv) Darknet-19 as a
backbone. Despite these improvements, it did not attract significant attention in FMD
applications. In [72], YOLOv2 with ResNet50 has been used to develop a medical FMD
scheme. Typically, this approach is designed in two stages: (i) extracting deep features
using a ResNet50-based DTL architecture and (ii) detecting face masks using YOLOv2.

YOLOv3: It is an improved version of YOLOv2, which is built using a DarkNet53
backbone. It includes 107 layers in total, 53 of them being convolutional layers [73]. Ref. [74]
discusses the use of DL techniques for visual analytics of the spread of COVID-19 infection
in crowded urban environments. The authors describe a CNN model that they developed
for visual analytics of the spread of COVID-19 and demonstrate the effectiveness of their
model on a dataset of real-world video sequences from crowded urban environments.
They show that it is possible to detect individuals potentially infected with COVID-19
based on their physical behavior and interactions with others, with an average detection
precision of 69.41%. In [75], the authors use a YOLOv3 model for monitoring social distance
in the context of the COVID-19 pandemic. The model is trained to identify individuals
in video sequences and to estimate the distance between them, allowing it to identify
instances of social distancing violations. The authors evaluate their model on a dataset of
real-world video sequences and demonstrate that it can accurately estimate the distance
between individuals and identify social distancing violations with a high degree of accuracy.
They also discuss the potential applications of their model for real-time monitoring and
enforcement of social distancing measures in various settings.

In the same spirit, the authors in [76,77] calibrate videos into bird’s eye view before
feeding them as inputs to the pre-trained YOLOv3 model. However, both studies need to
provide more assessment results. Wu et al. [78] introduce FMD-YOLO, an FMD approach
based on Im-Res2Net-101. The latter relies on combining the Res2Net module with deep
residual networks (DRN), where non-local mechanisms, deformable convolution, and
hierarchical convolutional structure are applied to extract information from the input
thoroughly. It is worth noting that many more frameworks that are based on YOLOv3
architecture have been found in the literature [79–99], but they did not provide extensive
evaluation results.

The main objective in [100] was the analysis of the effectiveness of deep-learning-based
face detection algorithms when applied to thermal images, especially images that depict
faces covered by virus-protective face masks. As part of their work, the authors compiled
more than 7900 thermal images containing faces with and without masks. Selected raw data
pre-processing methods were also investigated, and their influence on the face detection
results has been evaluated. It was shown that the use of transfer learning based on features
learned from visible light images results in a mean average precision (mAP) greater than
82% for half of the investigated models. The best model was based on the YOLOv3 model
(mAP was at least 99.3%, while the precision was at least 66.1%).

YOLOv4: A significant number of FMD systems have been built upon
YOLOv4 [101–108], but still not all research works present satisfactory experimental results.
So in the following, we focus on the studies presenting significant contributions and empiri-
cal validations. While YOLOv4 uses the CSPDarknet53 as the original backbone with many
parameters with deep layers, the realistic scenes of real-time FMD are generally simple. To
detect whether people are wearing masks or not, two kinds of objects are detected: face with
a mask or face without a mask. Using the complex CSPDarknet53 as the backbone is inap-
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propriate in this case because the computational cost unnecessarily increases. To overcome
this issue, an improved CSPDarknet19, which combines the benefits of CSPDarknet53 and
Darknet19, has been proposed in [109]. Cao et al. [110] propose MaskHunter, a real-time
FMD based on an improved YOLOv4. MaskHunter uses an improved CSPDarkNet-19
backbone. Concretely, the improved YOLOv4 with CSPDarkNet-19 backbone, neck, and
prediction head is developed along with an enhanced mosaic data augmentation approach.
The neck architecture of MaskHunter comprises path aggregation network (PAN) [111],
FPN, and spatial pyramid pooling (SPP) modules [112]. Figure 4 portrays the flowchart
of MaskHunter, which includes the improved CSPDarknet19, the improved neck with
BiFPN, the double-head prediction heads, and the mask-guided module that is used to
discriminate between people wearing or not masks in night environments.

The authors in [113] propose a DL-based VSD detection scheme based on the YOLO
v4 model. A fixed and single motionless time of flight (ToF) camera is used to record
video data. After detecting people’s objects, the Euclidean distance is used to measure
the distance between the detected bounding boxes, which is consequently mapped to a
real-world distance. An empirical evaluation has shown a mean average precision (mAP)
score of 97.84% and a mean absolute error (MAE) between actual and measured social
distance values is 1.01 cm. In [114], a DL-based crowd-counting solution is developed for
monitoring and controlling the capacity of commercial buildings during the COVID-19
pandemic. It is based on YOLOv4 and has been validated on the COCO dataset. Using
route and direction information, the system can determine whether a person leaves or
enters the building and count the people still inside it. It can detect violations by comparing
the results with a pre-defined threshold. A limitation of this study is the lack of significant
assessment. Similarly, in [101], a YOLOv4-based FMD is presented but lacks a thorough
empirical evaluation. Authors in [115] developed a YOLOv4-based FMD and thermal
scanning kiosk to (i) ease the classification of individuals wearing or not wearing masks
and (ii) measure pedestrians’ body temperatures using a temperature sensing unit. In [116],
Gola et al. have shown the superiority of YOLOv4 versus MobileNetv2, SSD and YOLOv3
in terms of FMD accuracy, whereas in [117] the authors verified the superiority of YOLOv4
over other variations, with a mAP value of 71.69%, and proposed YOLOv4-tiny for limited
computational resources environments.

YOLOv5: It is a Python implementation of an improved version of YOLOv3 [118] for
PyTorch7. It includes changes to activation functions and data augmentation with post-
processing to the YOLO architecture, as in YOLOv4. It employs self-adversarial training
(SAT) and aggregates images in training, which results in accelerated inference [119]. It
has been released with five different models sizes: YOLOv5n (nano), YOLOv5s (small),
YOLOv5m (medium), YOLOv5l (large), YOLOv5x (extra large). In [120], Walia et al.
proposed an approach using YOLOv5, which involves taking input images from CCTV
Cameras. Once a face is detected, it is processed using Stacked ResNet50 to classify
between two mask-wearing conditions: correct or not. A robust dataset consisting of 1916
masked and 1930 unmasked images has been collected from various sources, then data
augmentation is applied. Experimental Evaluation has shown an accuracy score of 96%,
but the method robustness has not been tested with images from other collections and
datasets. A promising alternative could be to use cutting-edge facial detection algorithms
and transfer learning (hyper-parameter tuning) to detect whether the face has a mask.

YOLOR: It is a unified network that uses both implicit and explicit knowledge. The
former is used to identify features of the deep layers, while the latter can be attained from
annotated data. YOLOR has been employed in FMD tasks and applied in related datasets,
such as on VIDMASK [121] where it outperformed YOLOv4 and YOLOv5 with a maximum
mAP of 92.1%.

Others: the authors in [122] introduce a single-stage FMD approach called RetinaFace-
Mask, which relies on RetinaFace [123]. It has been built upon (i) using FPN for high-level
semantic information fusion and (ii) presenting a context attention module to enable Reti-
naFaceMask to focus on the characteristics of masks and faces. A cross-class removal
approach is also developed to remove the regions with low scores and high IoU values.
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These contributions have enabled RetinaFaceMask to outperform RetinaFace [123] in Recall
and Precision.
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Figure 4. The flowchart of MaskHunter, including the improved components.Adapted from: [110].

While most existing FMD methods are developed for simple scenes, monitoring face-
mask utilization is often challenging in dense crowds with different occlusions and scales.
Additionally, privacy preservation is another issue that impedes the use of public data
in centralized training. To overcome these challenges, a cascaded network is introduced
in [124] using the Dilation RetinaNet Face Location (DRFL) Network, which helps reduce
network parameters and identify faces at different scales. In [125], the authors introduced
a new human ear detection pipeline based on the YOLOv3 detector. A well-known face
detector named RetinaFace was also added to the detection system to narrow the regions
of interest and enhance accuracy. The proposed method has been evaluated on an uncon-
strained dataset, which shows its effectiveness. The authors in [126] also employed YOLOv3
and FMNMobile usingNASNet Mobile and Resnet_SSD300 algorithms. This achieved an
mAP of 91.7% on two datasets of 680 and 1400 images of masked and non-masked faces.

4.2.2. Two-Stage FMD

In the first stage, two-stage FMD techniques are based on generating region proposals,
while these proposals are then fine-tuned in the second stage. Overall, two-stage FMD meth-
ods can perform better than one-stage FMD solutions but at a higher computational cost.

R-CNN: In region-based CNN (R-CNN), candidate regions that may contain objects
of interest are proposed using selective search [127]. The proposals are then injected in a
CNN module to extract the characteristics, and an SVM is also deployed to recognize object
classes. Unfortunately, R-CNN’s second stage has a high computation load as the proposals
are detected one by one in addition to using an SVM algorithm for final classification.

In [128,129], the authors have chosen R-CNN, Fast R-CNN, and Faster R-CNN algo-
rithms for detecting Mask detection and Social distance. In [130], to address the problems
of large inter-class and small intra-class distances and the absence of real FMD datasets,
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Zhang et al. first proposed a practical dataset containing 8,635 faces with various mask
wear conditions. Next, a context-attention RCNN (CA-RCNN) was introduced to extract
distinguishing features and improve the discrimination ability when classifying face masks.

Fast R-CNN: This object detector has been used in a few FMD frameworks, mainly for
comparison purposes, because it has two main issues: (i) it performs many passes through
a single image to extract all the objects required, and (ii) since multiple modules work one
after one, the performance of a specific module depends on that of the previous modules.
For instance, in [129] Fast R-CNN is utilized along with R-CNN and Faster R-CNN to
detect face masks. Typically, face mask regions are identified with CNN based on pixel
prediction, mixing pictures, and specific enhancements. Similarly, in [121], Fast R-CNN
with a feature Pyramid Network (FPN) and an R101 backbone is deployed for FMD along
with other object detection (i.e., YOLOv4, YOLOv4-tiny, YOLOv5, and YOLOR).

Faster R-CNN: Sahraoui et al. [131] propose DeepDist, a DL framework for real-time
detection of objects and distance violation detection from video sequences, which is based
on a Faster R-CNN model. Evaluation of a dataset of real-world video sequences demon-
strates the framework’s ability to identify objects and estimate their distances accurately.
In [42], a transfer learning-based FMD is introduced, which also employs a Faster R-CNN
for detecting face masks and counting persons wearing them. Faster R-CNN is shown to
have better precision but is less efficient than YOLOv3.

Mask R-CNN: An expanded Mask R-CNN (Ex-Mask R-CNN) model, based on ROI
wrapping with Resnet-152, is proposed and used for developing an FMD solution in [132].
It is mainly used to reduce the computation complexity by (i) detecting whether a pedes-
trian is wearing a mask and (ii) using multi-CNN to forecast the suspicious conventional
abnormalities in video frames.

Other methods: More two-stage methods (also called multi-stage) are found in the FMD
literature. For instance, in [133], the authors introduce a DL-based FMD, which localizes
faces and detects masks in video frames using MTCNN and MobileNetv2, respectively.
However, this approach still needs further improvement and more experiments to evaluate
its performance. Loey et al. [134] present a hybrid FMD scheme that combines CNN and
conventional ML, which is based on developing two components that (i) extract features
using a pre-trained ResNet50 and (ii) classify facemasks using Support Vector Machines
(SVM), an ensemble algorithm and decision trees. In [135], the authors propose an ensemble
of one-stage and two-stage detectors to reach accurate and real-time results. Firstly, they
use a pre-trained ResNet50 as a baseline and then apply the transfer learning concept
to improve performance. In [136], a multi-stage FMD approach is proposed based on (i)
integrating FPN and ResNet50 (FPN-ResNet50) into a unique DL structure for detecting
pedestrians in video frames, (ii) utilizing an MTCNN model for detecting and extracting
human faces from these videos.

In [136], a multi-stage FMD approach is proposed based on (i) integrating ResNet50
and FPN into a unique DL structure for detecting pedestrians in video frames, (ii) utilizing
an MTCNN model for detecting and extracting human faces from these videos.

Most existing object detectors generally rely on designing CNN-based network archi-
tectures to extract discriminative characteristics. However, the difference between faces
(with and without masks) is essential when the training dataset size is small. To overcome
these issues, Yan et al. [137] propose an FMD scheme, namely CenterFace, which uses a
context attention module to activate the adequate attention of the feedforward CNN by
adjusting their attention maps’ feature refinement. Additionally, an anchor-free detection
scheme based on triplet-consistency representation learning is proposed. This helps to inte-
grate the triplet loss and consistency loss to overcome the data scarcity issue and reduce the
similarity between occlusions and masks. Figure 5 portrays the flowchart of the CenterFace
solution and the CBAM module.
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Figure 5. The architecture of CenterFace. Adapted from: [137].

In [138], a two-stage FMD, based on VGG-16 and CNN classifiers, is developed and
evaluated on public transportation systems (i.e., buses). The solution has been implemented
on a Raspberry Pi and employs an open-source data analytics toolkit. In [139], Bansal et al.
propose a CNN-based FMD approach based on (i) detecting face masks using an object
detection API, applying different face mask classifiers, including SSD-MobileNetv1, SSD-
MobileNetv2, and SSD-Resnet50v1, to classify masks into four classes, i.e., “bare”, “N95”,
“surgical”, and “homemade”.

4.2.3. Discussion

Overall, the YOLO series and Faster R-CNN attract increasing attention, especially
YOLOv3, YOLOv4, and YOLOv5. Moreover, light-weighted models, e.g., Tiny YOLO-based
detectors, are gaining special attention as they can play a crucial role in deploying real-time
FMD systems. Improved face detectors like RetinaFaceMask are also promising techniques.
By transfer learning strategy, existing object and face detectors can be applied for masked
facial detection.

4.3. Sorted by the Complexity of the Models

Researchers have handled the face mask detection task either as an offline or as an
online task. In the former case, more complex and resource-demanding architectures
are trained and evaluated on offline datasets that comprise unmasked and masked-faced
images, with the latter being either synthetically generated (masks are inpainted) or really
masked. In the case of FMD as an online task, the driving requirement is that of providing
predictions in almost real-time, and in this case, more lightweight and fast models are
employed, which can run on edge devices with limited resources.
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4.3.1. Complex Object Detectors

In [140], a deep color 2-D PCA (principal component analysis)—CNN (deep C2D
CNN) is used to detect face masks. Typically, the attributes of original pixels are mixed
with feature representations learned by CNN before performing decision fusion to improve
detection. Moving on, the classification of detected face masks is performed using AlexNet.
In [141], an MTCNN-based FMD approach is introduced, which is though not appropriate
for real-time monitoring due to its computational requirements. In [41], the authors propose
DeepmaskNet, a unified model that can be employed in FMD and masked facial recognition
(MFR) tasks. The respective framework relies on two CNN scaling techniques, i.e., scaling
network depth and input image resolution. The first helps improve the FMD accuracy, while
the second allows capturing pertinent fine-grained characteristics with higher-resolution
input images. In [142], a near real-time CNN-based FMD approach is proposed. The
proposed method first relies on detecting human posture to perform spatial reduction
and background filtering in video frames. Openpose [143] is exploited in the first stage to
recognize the human body’s skeletons and capture facial regions before spatially reducing
them. In the second stage, a CNN model that processes images detects the presence of
face masks.

4.3.2. Lightweight Object Detectors

Developing lightweight face mask detectors is of utmost importance to enable their
implementation on edge devices with limited computation resources, e.g., drones, mobile
cameras, etc. Therefore, various studies have focused on developing FMD solutions using
lightweight object detectors.

MobileNetv1: This lightweight detector is effective for mobile devices, and its per-
formance has been investigated in various studies, such as [144–146]. Typically, it has
been used for comparison purposes with other improved variants, e.g., MobileNetv2,
MobileNetv3, and MobileNetv4.

obileNetv2: everal works employ MobileNetv2 [144,147–151] and similar detectors
such as NASNetMobile [152]. In [153], an FMD technique that employs MobileNetv2 as a
basis and performs transfer learning has been proposed and tested on SMFD. In [154], a
MobilNetv2-based FMD solution is developed and compared with YOLOv3.

In the same direction of lightweight models, after investigating different DL models
for FMD, including EfficientNet, ResNet50, ResNet-101, Inceptionv3, VGG19, VGG16,
MobileNetv1, and MobileNetv2, Habib et al. [145] introduced a real-time FMD solution
which is appropriate for edge devices. This system relies on the MobileNetv2 architecture
to extract discriminative features from video frames, which are then fed to an auto-encoder
for feature representation abstraction and finally to the classification layer. In [155], an
FMD system is developed by employing a classification model based on the MobileNetv2
architecture and the OpenCv’s face detector to identify the location of the face and deter-
mine whether or not it is wearing a mask. Additionally, the FaceNet model is utilized as a
feature extractor and a feedforward multilayer perceptron to perform facial recognition.
The model was trained using a set of 13,359 images, including 52.9% with masks and 47.1%
without masks.

YOLOv1-tiny: YOLOv1-tiny is a real-time object detection model designed based on
YOLOv1, where it has been pre-trained on the VOC dataset with 20 classes. Very few FMD
studies have used YOLOv1-tiny, such as [156], where the performance of an FMD system
based on YOLOv1-tiny is assessed and compared with YOLOv1, YOLOv2, YOLOv2-tiny,
YOLOv3-tiny, and YOLOv4-tiny.

YOLOv2-tiny: It is the compressed version of YOLOv2, which has been pre-trained on
80 object classes from the COCO dataset. YOLOv2-tiny has been adopted in some studies
to develop real-time FMD systems. For example, in [157], a weight quantization scheme is
presented to design a compact CNN model that detects individuals with or without masks
based on YOLOv2-tiny.

YOLOv3-tiny: It is the real-time compressed version of YOLOv3; it has been pre-trained
on the COCO dataset with 80 object classes. Many studies have considered YOLOv3-tiny
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as the core of their FMD systems, including [158,159]. For instance, in [159], the accuracy
of 95% has been reached on a customized dataset of 135 images. Moving on, the FMD
approach proposed in [160] is based on YOLOv3-tiny, which has been improved accordingly
to solve the FMD task. In [161], the FMD problem is considered a multi-task object detection
problem to detect wrong and correct ways of wearing masks using a YOLOv3-Slim.

YOLOv4-tiny: It is the compressed version of YOLOv4 developed for training on low
computational resources. It has 16 megabytes of weight, which enables it to be trained
using 350 images in less than one hour using a Tesla P100 GPU. Many studies have utilized
YOLOv4-tiny to develop real-time DFM solutions, such as [162–165]. Typically, in [163]
where a lightweight network FMD approach based on YOLOv4-tiny, namely SAI-YOLO, is
proposed to detect drivers wearing masks. Moving on, in [164], the SMD-YOLO approach
for FMD is presented using an improved variant of YOLOv4-tiny. In [165], the superiority
of YOLOv4-tiny against YOLOv4 has been demonstrated regarding the recall and frame
per second (FPS) processing. In [166], ETL-YOLOv4, an improved version of YOLOv4-
tiny, is introduced for FMD tasks. In [167], the performance of YOLOv4-Tiny for FMD is
investigated and compared with YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. In [168],
a lightweight FMD approach is proposed based on an improved YOLOv4-tiny. Moving
on, an SPP structure, the backbone network of YOLOv4-tiny, is designed for pooling and
fusing the input features at multi-scale. This helps improve the receptive field of the
network before combining these multi-scale features with the path aggregation network to
repeatedly fuse and enhance them in two paths and then enhance the expressive ability
of feature representations. Lastly, label smoothing is utilized to optimize the loss function
and overcome over-fitting. In the end, it is worth noting that the YOLO series has been the
most widely used detector to build FMD systems. Figure 6 portrays the number of FMD
research studies conducted based on the different YOLO series detectors.

NasNetMobile: Chavda et al. [65] presented a deep learning-based model to detect
people who do not wear face masks properly. In their study, where NasNet-Mobile,
DenseNet-121, and MobileNetv2 architectures were used, the highest classification accuracy
was achieved via DenseNet-121 architecture, with 99.49%.
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Figure 6. Statistics on the number of FMD studies built upon the different YOLO detectors.

Other methods: In [169], a lightweight-based FMD scheme based on CNN is developed.
The proposed model consists of four convolutional, one fully connected, and one output
layer. The performance of this approach has been compared against that of MobileNet,
NasNetMobile, ResNet101, VGG19, VGG16, and AlexNet, where its superiority has been
shown in terms of better balance among accuracy, model size, and time complexity. In [170],
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inappropriate mask use is targeted by (i) collecting 2,075 face mask usage images, (ii)
labeling them as either “mask”, “no masked”, or “improper mask”, and (iii) studying three
scenarios, namely “scenario 1—mask versus no mask versus improper mask”, “scenario
2—mask versus no mask + improper mask”, and “scenario 3—mask versus no mask”. A
hybrid deep feature-based face mask detector is then trained and tested. The detector is
implemented in three steps: (i) using pre-trained DenseNet201 and ResNet101 as feature
generators, (ii) selecting the most discriminative characteristics using an improved RelieF
selector, and (iii) considering the selected characteristics for classification by an SVM.

Table 3. Summary of existing DL-based FMD techniques and their characteristics.

Work Model Description Dataset Best FMD
Performance Advantage/Limitation

[19] SRCNet
Distinguish face masks using
image super-resolution and
classification networks.

MedMasks Acc = 98.70%
Validation on the small test dataset. Not robust
to facemask-wearing variation (frontal
orientation, posture change, etc.)

[171] Inceptionv3 FMD using InceptionV3-based TL. SMFD Acc = 99%
Validation on a small masked face dataset.
FMD assessment in real-life video streaming is
missing.

[172] CNN Detection of masked, non-masked,
and properly-masked faces.

MFDD, RWFCD,
SMFRD. Acc = 98.6%

Validation on real-world masked face datasets.
FMD assessment in real-life video streaming is
missing.

[173] CNN 1,539 faced, and no-faced images
were used to train a CNN model. Private data Acc = 98.7%

Offline FMD using masked face and
non-masked face pictures collected using CCTV
cameras. No assessment of real-world masked
face datasets.

[126] FMY3, YOLov3,
ResNet-SSD300

Using a DTL to reduce
computational cost. Private data Acc = 98%

Offline FMD on a small face image dataset. No
assessment of popular real-world masked face
datasets.

[128] R-CNN

FMD using RCNN-based object
detection and comparison with
SSD-MobileNetv2 and
SSD-Inceptionv2 models.

COCO Acc = 68.72%
Have an overfitting problem and Validation on
datasets without assessment in real-world
scenarios.

[27] SSD, MobileNetv2 Real-time FMD using SSD and
MobileNetV

KMMD, PBD,
RTMMD Acc = 93% High computational cost.

[133] MTCNN,
MobileNetv2

FMD using (i) MTCNN-based face
detection and (ii)
MobileNetv2-based object in the
masked region.

Private video data. Acc = 81% Low accuracy performance and FMD mainly
relies on face detection.

[97] YOLOv3 FMD using YOLOv3 and
Google Colab.

Private image dataset
(600 images) Acc = 96% • Validation on a small dataset without

assessment in real-world scenarios.

[174]

Tiny-CNN
(SqueezeNet,
Modified
SqueezeNet)

Low computational medical FMD
and comparison of the
performance with SqueezeNet and
Modified SqueezeNet.

Combination of
FMID-12k, FMC, and
private image datasets.

Acc = 99.81% Validation on face image datasets without
assessment in real-world scenarios.

[71] YOLO-fastest,
NCNN

Edge-based FMD using
YOLO-fastest, NCNN and
WebAssembly.

Combination of Wider
Face, MAFA, RWMFD,
MMD and SMFD

mAP = 89%
(YOLOv3)

Scalable solution where other lightweight DL
models can be used. Requires internet
connectivity, which makes it
computationally expensive.

[44]

YOLOv3,
YOLOv3Tiny,
SSD,
Faster-R-CNN

FD using various CNN
architectures. Moxa3K and MMD mAP = 63.99%

(YOLOv3)
Low detection accuracy; further improvements
are required by using effective object detectors.

[142] CNN FMD using posture recognition
and DL.

Private real-world
data. Acc = 95.8% Validation on a limited dataset, although they

were collected from real-world environments.

[151] MobileNetv2 Low computational FMD using a
lightweight CNN. MMD, FMD Acc = 99.75% Validation on face image datasets without

assessment in real-world scenarios.

[12] CNN FMD without generating
over-fitting.

A balanced masked
face dataset of
3832 images.

N/A
The CNN architecture has been trained using
the balanced dataset and used in real-world
scenarios, though without evaluation.

[150] CNN
The CNN architecture has been
made similar to MobileNetv2 for
an efficient computational cost.

FMDD Acc = 99%

MobileNetv2 has been used to classify
pre-processed video frames using OpenCV.
There is no comparison with other methods on
the training/test splits of the FMDD dataset.

[129]
RCNN,
Fast-RCNN, and
Faster-RCNN

Real-time analysis of FMD and
SDM. Private dataset Acc = 93% Validation on a small dataset without

assessment in real-world scenarios.
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Table 3. Cont.

Work Model Description Dataset Best FMD
Performance Advantage/Limitation

[42] YOLOv3,
faster-RCNN Real-time automated FMD MAFA, Wider Face PR = 62%

Real-time implementation is supported with
YOLOv3, while its accuracy is lower than faster
R-CNN.

[130] Context-attention
RCNN

Detection of faces without masks,
with wrong masks, and with
correct masks.

A new MAFA-based
dataset is created mAP = 84.1%

Evaluation on a small dataset (4672 images),
and the performance needs further
improvement.

[63]

TL-AlexNet-
LSTM/BiLSTM,
TL-VGG16-
LSTM/BiLSTM

TL-based AlexNet and VGG16
were combined with LSTM and
BiLSTM to detect the manner
people use facemasks.

Private data
(2000 images) Acc = 95.66%

Face masks via real-time video recordings were
not supported, and the Validation was on a
small dataset.

[175] Improved
YOLOv4 FMD and standard wear detection

RMFD+,
MaskedFace-Net,
private data

mAP = 98.3%
Insufficient feature extraction for difficult
detection samples. FMD, when the light is
insufficient, was not treated.

[176] YOLOv3,
YOLOv4-tiny

The YOLO network using Darknet
applied is a state-of-the-art
real-time object detection system.

A novel publicly
annotated dataset mAP = 90.69% Applied only with surgical mask (helms or

shield masks)

[64] CNN (VGG-16) FMD in real-time with an alarm
system. A new web dataset. Acc = 98% The prevention by creating an alarm stipulation

these rules are not observed properly.

[170] ResNet101

Pre-trained ResNet101 and
DenseNet201 are used to generate
image features, a RelieF selector is
used to find discriminative
features, and an SVM for
classifying images.

MaskedFace-NET, a
private dataset with
three classes.

Acc = 99.75% Not compared with existing solutions on the
custom dataset.

[138] VGG-16 and CNN Automatic FMD system in public
transportation using Raspberry Pi. Private data Acc = 99.4%

Not validated on public datasets, which makes
it difficult to compare the performance with
existing solutions.

[72]
TL-based
ResNet50,
YOLOv2

Using TL-based ResNet50 for
feature extraction and YOLOv2
classifier to detect medical masks.

MMD, FMD Acc = 81% Do not discriminate between medical and
normal masks.

[110] YOLOv4
Real-time FMD using effective
structures of backbone, neck, and
prediction head based on YOLOv4

MAFA, WiderFace AP = 94% Achieve real-time FMD and suitable for
dark/night environments.

[121]

Mask RCNN,
YOLOv4,
YOLOv5, and
YOLOR

FMD using different lightweight
CNN models for detecting
mask-wearing in videos.

ViDMASK mAP = 97.1%
(YOLOR)

The dataset and code are publicly available.
Faces are shot from various angles.

[137] ResNet-18 FMD using triplet-consistency
representation learning. WiderFace, MAFA

L1 = 91.5%
(MAFA),
L1 = 54.1%
(Wider Face)

The performance drops under noisy
environments (i.e., the hard set of Wider Face),
and the privacy preservation are not addressed.

4.4. FMD Based on Deep Transfer Learning (DTL)

When developing FMD techniques, the authors have faced different challenges. For
instance, training DL models is challenging, considering the diversity of mask types, camera
angles in video frames, etc. Additionally, another issue is the unavailability of real large-
scale FMD datasets (data scarcity) to train DL models. To that end, DTL has recently been
adopted in many FMD solutions. DTL consists of two steps: (i) using the knowledge learned
on one domain/task and (ii) transferring it to a new, similar domain/task. For example, the
knowledge from detecting face masks in annotated datasets could be transferred to another
face mask dataset that does not have labels [177,178]. In the context of DL, one popular
way to apply transfer learning is by a series of steps that comprise: (i) taking layers from
a previously trained network, (ii) freezing them to preserve the information they contain
(during future training stages), (iii) adding some new and trainable layers on the top of the
frozen ones (this helps in turning the old features into predictions on the target dataset),
and (iv) training the new layers on the target dataset [179].

An FMD approach combining TL and DL is proposed in [180], which is based on (i)
introducing an Efficient-YOLOv3-based DTL, where EfficientNet is the feature extraction
backbone, (ii) using a loss function based on CIoU to improve the accuracy of face mask and
decrease the number of network parameters. Moreover, the masks have been categorized
into two unqualified masks (scarves, sponge masks, cotton masks, etc.) and qualified masks
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(disposable medical masks, N95 masks, etc.). Also, an FMD dataset has been created, and
the DTL approach has been combined with MobileNet to improve the overall solution’s
generalizability, solve the data scarcity problem and tackle the over-fitting problem. In [181],
the YOLOv3-based DTL scheme is proposed for creating a mask detection model, where
an improved FMD that includes 300 images has been created using data augmentation, i.e.,
image filtering. In [182], a DTL scheme based on PaddlePaddle-YOLOv3 (PP-YOLOv3)
combined with data augmentation and model compression is introduced to solve an FMD
task. This resulted in an mAP of 86.69% in public scenes with a speed processing time
of 11.84 ms per frame. Experimental results showed that compared with YOLOv3 and
FasterRCNN, the model has faster accuracy and detection speed. In [183], DTL has been
applied on YOLOv3 using public datasets and donation datasets for training. The resulting
models can recognize faces with a 98.7% accuracy rate and identify faces, including those
with face masks, with a 92.7% accuracy rate.

Fine-tuning: A last, optional, step in DTL is fine-tuning, which consists of unfreezing
the entire model (or part of it) and re-training it on the new data with a very low learning
rate. This can potentially achieve meaningful improvements by incrementally adapting
the pre-trained features to the new data. An increasing number of DTL studies have been
developed to tackle different FMD tasks. For instance, in [18], an approach for detecting
incorrect face mask-wearing using CNN and DTL is proposed. Accordingly, various CNN
models are fine-tuned, including MobileNetv2, Xception, Inceptionv3, ResNet50, NASNet,
and VGG19.

In a survey of deep learning models for the FMD task [184], the authors concluded
that deep learning models such as the Inceptionv3 CNN achieved almost perfect results
and stated the need for sharing real-world FMD images in order to fine-tune DL methods.

In [43], a DTL-based FMD system is proposed by initializing several CNN models
with parameters learned from ImageNet dataset. Then, they are fine-tuned on FMLD using
a standard cross-entropy loss. Jiang et al. [122] propose the RetinaFaceMask, a single-stage
FMD approach to assist in the monitoring of the COVID-19 pandemic. The approach helps
to resolve some of the problems already encountered by other studies by (i) establishing a
new annotated dataset that helps in fine-tuning the DL models to discriminate between
correct and incorrect mask-wearing scenarios, (ii) proposing a context attention framework
to earn discriminating characteristics corresponding to the states of wearing face masks,
(iii) transferring the knowledge from the face detection task to FMD, emulating humans’
ability to adapt to similar tasks quickly.

In [171], Chowdary et al. propose a DTL method on inceptionv3. They fine-tune the
pre-trained Inceptionv3 and test it on an SMFD task. In [185], the pre-trained MobileNet,
ResNet Classifier, and VGG are used to an FMD and SDM framework. A real-time DTL-
based FMD approach for mobile devices that employ MobileNetv2 is implemented in [144].
The pre-trained MobileNetv2 network has been utilized to extract discriminative features,
while a softmax classifier has been used to classify video frames into a mask or no mask.
Additionally, an image augmentation technique has been deployed to avoid overfitting
and improve the overall performance [186]. In [46], a hybrid TL and broad learning FMD
solution are proposed, where Faster R-CNN and Inceptionv2 are combined and fine-tuned
to detect face masks regions. Second, broad learning is used to verify real facial masks.

In [171], a DTL-based FMD framework is proposed by fine-tuning the pre-trained
Inceptionv3 model. Moreover, data augmentation is employed to overcome the data
shortage problem and improve training and testing performance. In [187], a DTL-based
FMD on the Spartan Face Detection and Facial Recognition System is proposed. The
approach is based on a stacking ensemble of deep learning models and covers four primary
tasks: mask detection, mask type classification, mask position classification, and identity
recognition. In [188], the pre-trained Faster R-CNN Inception ResNet v2 model is used
to implement a DTL-based FMD, where the pre-trained model weights on the COCO
datasets are used as the starting point for DTL on another FMD dataset, which includes
3300 images with different types of face masks. Besides, because the lower parts of human
faces are usually occluded and cannot be utilized in the face recognition learning process,
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the authors in [189] propose a framework that recognizes human faces using any available
facial components. Such components may vary depending on wearing or not wearing
masks and on the mask position. Typically, a DTL-based FMD approach based on an
improved FaceNet model, is proposed. With DTL, the initial weights have been transferred,
and the model has then been fine-tuned on the masked CASIA (M-CASIA) dataset [190].
Similarly, in [191], a Faster R-CNN model is fine-tuned and assessed for the FMD task
on the FMD dataset. In [192], a DTL-FMD is introduced by fine-tuning a MobileNetv2
base model with the imageNet weights and adding a new fully-connected head to process
input data for analysis. Finally, in [193], a real-time CNN-Based lightweight mobile FMD
system is proposed. Three different pre-trained models, including VGG16, MobileNet,
ResNet50 are fine-tuned to enhance the detection performance. For instance, the first 23
layers of the MobileNet architecture are frozen, then three more dense layers are added
before fine-tuning the new model.

Domain adaptation (DA): It refers to the process of adapting models across different
domains. This is because training and test data could have a discrepancy or fall from
other data distributions. For example, when an FMD model is trained only on unmasked
faces data, while it is tested on masked faces data, the performance significantly drops,
and DA can be called to solve this issue. DA aims at building ML tools that are able to
generalize well into a TD process and deal with the gap across domain distributions. In this
regard, some studies have attempted to investigate the roles of DA for better generalization
of developed models. For instance, in [135] and the FMD scheme aggregating both one-
stage and two-stage object detectors are proposed to achieve accurate and real-time mask
detection. Typically, ResNet50 is first adopted as a baseline before applying a DTL technique.
Figure 7 illustrates the architecture of the FMD system using ResNet50-based TL.
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Figure 7. A ResNet50-based TL architecture for FMD. Adapted from: [135].

In [194], Mandal et al. propose a supervised DA to boost the performance of a MFR
scheme. In doing so, faces without masks are considered in the source domain (SD), while
faces with masks have been reserved for the target domain (TD). Moving on, a ResNet50
model has been trained and validated under two case studies. The model has been trained
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only on the SD and the tested on the TD in the first scenario. In the second scenario, the
model is trained on the SD and a portion of TD before being tested on the remaining
part of TD. Table 4 summarizes most relevant DTL-based FMD frameworks and their
characteristics.

Table 4. Summary of existing DTL-based FMD frameworks and their characteristics.

Work DTL Model Description Dataset Best FMD
Performance Advantage/Limitation

[122]
TL-based
ResNet50 and
MobileNetv1

FMD using ResNet or MobileNet
as the backbone, FPN as the neck,
and context attention modules as
the heads.

MAFA + FMD Acc = 91.9%
(ResNet)

No assessment on real-world masked face
datasets.

[195] Transfer learning
Relies on adopting transfer
learning to detect face masks in
both images and video streams.

RMFD Acc = 98%

(i) Works on a variety of devices (e.g.,
smartphones, etc.) and is also able to process in
real-time images and video streams, (ii) the
approach is not well interpretable activation
since they do not use activation maps.

[171] Inceptionv3-based
DTL

FMD using Inceptionv3-based
DTL. SMFD Acc = 99%

Validation on a small masked face dataset.
FMD assessment in real-life video streaming
is missing.

[18]

MobileNetv2,
Xception,
Inceptionv3,
ResNet50,
NASNet, VGG19

Detection of incorrect face
mask-wearing using CNN
and DTL.

Private data Acc = 83%

(i) Implemented via Android app that works
with real scenarios, and the solution can
identify mask misuse, (ii) Unable to detect
incorrect lateral adjustment and glasses
underneath. Moreover, the system was applied
with surgical and FP2 masks. Not applied with
masks that have sequins and other drawings.

[196]
DTL based on
combining SVM
and MobileNetv2

MFD using deep feature selection
and award-winning pre-trained
DL models.

Collected data of 1376
images Acc = 97.1% Tested on a small-sized dataset. Not tested on

the challenging occluded face.

[197] YOLOv3 and
Darknet53

Data augmentation and DTL
for FMD.

data collected from
Kaggle. Prec = 99.8% The automated system detects masks using an

augmented dataset.

[198] VGG-19 transfer
learning DCNN

A software model that could be
used in existing surveillance
applications.

FMDC Acc = 98%

(i) Implemented via live feed footage in IP
cameras. (ii) Tested on the artificially created
dataset. Not suitable with a web server or
linkage of multiple IP cameras.

[189] Improved FaceNet FMD using residual
inception networks. M-CASIA Acc = 99.2%

Validated on a simulated dataset; however, any
unrealistic part in the simulated images might
cause some inaccuracies in the recognition.

[191] Faster-RCNN Automated real-time FMD using
Faster-RCNN-based DTL. FMD AvPrec = 81%,

AvRec = 84% The performance needs further improvement.

[192] MobileNetv2 Using DTL and fine-tuning to
detect face masks. Private data Acc = 98.2%

Validation of public dataset is required to
compare the performance with other existing
FMD solutions.

[193]
VGG16,
MobileNetv1,
ResNet50

Development of a real-time
CNN-based lightweight mobile
FMD system.

VGGFace2,
MaskedFace-Net Acc = 99.6% Less computational power and resources are

required using MobilNetv1.

[48]

VGG-16,
MobileNetv2,
Inceptionv3,
ResNet50, and
CNN

IoT- and DTL-based FMD scheme
for rapid screening.

MAFA, Masked
Face-Net, and Bing

Acc = 99.81%
(VGG-16)

Validated on public datasets that mostly have
artificially created and noisy face mask images.

[171] Inceptionv3 FMD using TL and image
augmentation. SMFD Acc = 100% Evaluation on large-scale real-world datasets is

required. The type of mask cannot be detected.

[194] ResNet50-based
DA MFR using DA. Private data

F1 = 89.7%
(unmasked),
F1 = 44.73%
(masked)

Have problems in detecting masked faces. The
dataset used is unbalanced.

Other approaches to domain adaptation for FMD include using adversarial training or
cycle consistency to align the feature distributions between the source and target domains
or using domain-invariant features that are less sensitive to domain shift.

5. Evaluation, Discussion and Findings
5.1. Comparative Analysis

Singh et al. [42] utilize two object detectors, e.g., YOLOv3 and Faster R-CNN FMD.
While Faster R-CNN has outperformed YOLOv3 in terms of accuracy, YOLOv3 has pre-
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sented can run faster, which makes it a good fit for real-time applications. Overall, selecting
the best model for a specific application is mainly related to environmental conditions.
Moving on, the work conducted by Alganci et al. [199] has resulted in similar conclusions.
Besides, SSD, Faster R-CNN, YOLOv3, and YOLOv3-Tiny are employed in [44] to address
the issues of FMD in medical environments. Based on the results derived from the Moxa3K
dataset, YOLOv3-Tiny outperforms the other models in terms of accuracy and inference
speed, which makes it the most appropriate for real-time applications. Table 5 compares
existing FMD frameworks in terms of their performance and characteristics.

Table 5. Comparison of existing FMD frameworks in terms of different characteristics, (i) adopted
method, (ii) support of real-time implementation, (iii) used dataset, (iv) sample size, (v) mask type,
(vi) recognition type, and (vii) validation accuracy.

Work Method Real-Time Dataset Sample Size Mask Type Recognition Type Validation
Accuracy

[200] PCA No ORL Face 400 Real Masked/Unmasked 95%

[33] Latent part
detection No CASIA-WebFace 4,916 Augmented Masked/Unmasked 97.94%

[65] CNN No Private data 7855 Mix Masked/Unmasked 99.45%
[19] CNN No KMMD 3835, 134, 3030 Real Correct/Incorrect/Unmasked 98.70%

[201] Mixture of
Gaussians Yes Private data N/A Real Masked/Unmasked 95%

[134] ResNet50-
based DTL No RMFD, SMFD, LFW 10,000, 1570, 13,000 Mix Masked/Unmasked 100%

[18] CNN No Private data 3200 Real Correct/Incorrect/Unmasked 83%
[20] MobileNet No Private data 770, 500 Augmented Correct/Incorrect/Unmasked 90%

[21] Haar feature
cascade No CMFD, IMFD 137,016 Mix Correct/Incorrect/Unmasked -

[171] Inceptionv3 No SMFD 1570 Augmented Masked/Unmasked 99.90%

[193] MobileNetv2-
based DTL Yes VGGFace, Tailored

dataset 1,022,811, 1849 Mix Correct/Incorrect/Unmasked 99.96%

In [170], pre-trained ResNet101 and DenseNet201 have been fine-tuned and aggregated
to form an efficient feature generation module tested on three different scenarios. In
Scenario 1, 2075 images are used to form a three-class classification task that is investigated
by considering three individual classes, i.e., mask, no mask, and improper mask. Moving
on, wrong mask and no mask classes are combined in Scenario 2 to form a two-class
classification task. Hence, a “non-compliance” set is formed using 2075 images. Similarly,
by excluding improper mask sets, another two-class classification problem is developed in
Scenario 3 while only 1546 are used. Figure 8a reports obtained results in terms of different
evaluation criteria, including the accuracy (ACC), average precision (AP), unweighted
average recall (UAR), Mathew correlation coefficient (MCC), F1 score, Cohen’s kappa (CK),
and geometric mean (GM) [71,72].

Besides, various pre-trained CNN models have been fin-tuned and applied as feature
generators to solve the problem of FMD under the first scenario. Figure 8b portrays the
accuracy performance of 12 pre-trained CNN models.

5.2. Critical Discussion

The detection of face masks is challenging due to the variations in the appearance of
faces with masks, including the types and degrees of obstruction, as well as the diverse
types of masks that are used. Face mask detection is essential for facilitating interactions
between humans and computers and managing image databases. Despite the successes of
existing face detectors, there is a need for more advanced models that can handle event
analysis and video surveillance tasks, which can be challenging due to a lack of suitable
datasets with correctly masked faces and facial recognition, as well as the presence of noise
on the face caused by the mask. While some research has addressed these issues, there is
still a need for a large dataset to develop an efficient face mask detection model. Overall,
there are several current challenges to the task of FMD:
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• Lack of suitable datasets: one major challenge is the Lack of datasets with a sufficient
number of images of faces with masks, as well as a diverse range of mask types and
wearing conditions. This can make it difficult to train and evaluate face mask detection
algorithms, as the performance of these algorithms is often dependent on the quality
and diversity of the training data.

• Small intra-class distance and significant inter-class distance: another challenge is
the small intra-class distance and large inter-class distance between masked and non-
masked faces, making it difficult to accurately distinguish between these two classes.
This may require specialized algorithms or techniques that can extract distinguishing
features and increase the separation between these classes.

• Noise caused by masks: the presence of masks on the face can also introduce noise
that can interfere with the performance of face mask detection algorithms. This may
be due to factors such as the mask’s texture, reflections or shadows, and the occlusion
of facial features.

• Variability in mask appearance: face masks come in a wide variety of shapes, sizes,
and colors, and they may also be worn in different ways (e.g., covering the nose and
mouth, covering only the nose, or hanging around the neck). This variability can make
it challenging for a model to detect masks accurately.

• Occlusions: face masks can occlude parts of the face, making it difficult for the model
to identify features such as the eyes, nose, and mouth.

• Lighting and background: the model may have difficulty detecting masks in low light
conditions or against cluttered or complex backgrounds.

• False positives and false negatives: the model needs to minimize false positives
(incorrectly identifying a mask when none is present) and false negatives (failing to
identify a mask when one is present).

• Real-time performance: there is also a need for face mask detection algorithms that
are able to perform in real time, as these algorithms may be used in applications such
as surveillance or event analysis, where speed is critical.

• Adversarial examples: an attacker can create "adversarial examples" (images specif-
ically designed to fool the model) that could cause the model to make incorrect
predictions.
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Typically, these challenges highlight the need for developing robust and efficient face
mask detection algorithms that can handle a wide range of conditions and variations in
the appearance of masked faces. Besides, the use of masks has been shown to reduce the
infection rate of COVID-19 by 40% effectively, but detecting the wearing of masks in the
real world can be challenging due to factors such as lighting conditions, occlusion, and
the presence of multiple objects. This can lead to poor detection performance, and using
non-medical masks such as cotton masks, sponge masks, and scarves may also reduce the
protective effect of mask-wearing.

6. Open Challenges

Over the past two years, researchers have proposed various deep learning-based
methods for face mask detection. However, many of these methods have struggled with
detecting small or poorly shot masks occluded by other objects, leading to low detection
accuracy.

6.1. Lack of Annotated Datasets

A major challenge for researchers is the Lack of properly annotated real datasets
containing images of faces with and without masks shot under various conditions (e.g.,
during the day or night, indoors or outdoors, from a distance or close, etc.). Most of
the datasets that were presented in Section 2.2 and summarized in Table 1 either contain
synthetic images of face masks, where masks have been painted over the faces or contain
properly shot and cropped face images, without distortion or noise, which is typical for
the images collected by surveillance cameras. The datasets that contain images from
such cameras mostly refer to the social distancing detection task, and it is hard to detect
mask-wearing on them.

Another issue that is not properly addressed yet is that face masks (including those
used for preventing COVID-19 diffusion) come in different shapes and colors. There are
still no properly annotated datasets that cover this. Most of the existing datasets assume the
typical white or teal medical masks only and ignore all other fabric-based or multi-colored
medical masks that became so popular in the last few years [137].

Ignoring all the above issues and creating synthetic datasets that reproduce the re-
searchers’ beliefs on how a face mask looks, is shaped or is worn, we introduce a bias to the
dataset, which may hinder the trained model’s performance in real conditions.

6.2. Computational Cost

There are many challenges to using computational platforms for face mask detection
(FMD). The hardware used for this purpose must be affordable, compact, and energy-
efficient, with enough memory and processing power to quickly analyze images using
convolutional neural networks (CNNs) or other models. To protect the privacy of the
people being monitored, all processing should be done on the device itself, without any
communication with cloud servers. One potential solution to these challenges is to use
low-power binary neural network classifiers to detect face masks’ presence and proper
positioning. These classifiers can be implemented on field-programmable gate arrays (FP-
GAs), capable of high-throughput binary operations, and can perform FMD classification
tasks on an edge device.

Low-power binary NN-based COVID-19 FMD, such as BinaryCoP [202], can be em-
ployed to identify correct facial mask wearing and positioning using edge computing and
mobile devices. Another solution is to use light-weight CNN models, such that in [203], for
performing multiple access control-related tasks, including the detection of face masks, the
monitoring of body temperature, and the counting of people entering a building or an area
(e.g., a concert hall). Such models can be trained offline and used for inference on single-
board computers (SBCs) such as Raspberry Pi, Jetson Nano, or others. The performance of
edge-based solutions in FMD tasks in indoor and outdoor environments has been proven
better than their cloud-based alternatives [204], with the respective time performance for
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image processing slightly worse. However, if we also consider the time needed to transfer
images to the cloud, edge-based solutions are almost 50% faster.

Cooperative edge computing [205], task offloading, and federated learning (FL) [124]
are a few of the techniques that are expected to gain the interest of researchers in the next
few years since they preserve data privacy transfer processing to the edge and minimize
transfer times.

6.3. Security and Privacy

Large-scale monitoring and FMD of individuals in public areas do not only need
well-performing AI tools but also require to include privacy preservation modules. This is
because any kind of surveillance can violate citizens and regulations, including the general
data protection regulation (GDPR), which sets strict regulations on the use and share of
personal [11]. Although FMD developers deny privacy problems that come with FMD
systems as they do not identify individuals in most cases, and detect the existence of face
masks, adding privacy protection mechanisms to them will increase the users’ trust and
acceptance of the FMD technology.

To cope with this challenge, the authors in [11], explain a privacy-protection FMD
system that might be developed, demonstrating various implementation and performance
evaluation options.

6.4. Difficulty in Recognizing People’s Emotions

Due to the obligation of wearing masks in public areas that have been set in various
countries, emotion recognition has become challenging. Despite the promising progress
achieved in tackling this problem, the new requirements to wear face masks compromise
what has been done in recent years. New studies have been explored to detect persons’
moods using DL and ML models when face masks are worn to close this gap. For instance,
ref. [206] validates a real-time CNN-based emotion recognition approach on a modified
version of the AffectNet dataset. Synthetic face masks have been added to each subject
from the AffectNet dataset. Additionally, the number of emotions has been reduced from
eight emotions (Happiness, Disgust, Anger, Fear, Surprise, Sadness, Contempt, Neutral) to
five (Anger-Disgust, Fear-Surprise, Happiness, Sadness, Neutral).

6.5. Masked Face Attacks

With the start of the COVID-19 pandemic, face masks have significantly flattened the
COVID-19 curve. However, this opens new challenges for face recognition as wearing a
mask hides multiple discriminative features of a face. On the other hand, face presentation
attack detection (PAD) is critical for ensuring the security of face recognition systems.
Although the increasing number of FMD frameworks, few studies have been proposed
to investigate the impact of the masked face on PAD. For instance, to reflect the actual
real-world situations, Fang et al. [207] investigate (i) attacks with subjects wearing masks
and (ii) attacks with real face masks placed on presentations. Moving on, in [208], a physical
universal adversarial perturbation (UAP), namely the adversarial mask, is proposed to
simulate attacks against face recognition systems, which are deployed on face masks using
carefully crafted patterns.

7. Future Directions
7.1. Interpretability and Explainability

Explainable Artificial Intelligence (XAI) refers to methods and techniques for creat-
ing AI systems that can provide understandable and interpretable explanations for their
predictions, decisions, and actions. XAI aims to build AI systems that can be trusted and
used safely and effectively by humans. This can be achieved through techniques such as
transparency, interpretability, and post-hoc explanations [209,210].

As it is made evident from this study, the accuracy of face mask detection algorithms is
the main concern of researchers, along with the complexity of the models and the respective
training and inference (time) performance. Although neural network architectures have



Systems 2023, 11, 107 27 of 38

significantly boosted the prediction/detection performance over their ML predecessors, the
research community still needs to understand deep learning architectures, break down the
structure of pre-trained models, and show how predictions are made. As a consequence,
the results of FMD models are expected to be interpretable, and explainable [211], and
this is in accordance with the general trend for interpretability and XAI. The works in
the field of face recognition aim to develop comprehensible facial depictions in which
different dimensions represent different face segments or features and propose end-to-
end learnable filters, which are locally activated using spatial loss functions, such as the
spatial activation diversity loss function in [212]. The generation of expression pattern-
maps and their association with expression features is another approach that improves the
interpretability of facial expression detection tasks [213]. Such approaches can be further
combined with ML or DL classifiers in a two-stage approach and provide interpretable
FMD and robustness in the cases of partial face occlusion.

In an attempt to explain the results of the facial matching process, authors in [214]
have defined a new evaluation protocol called the “inpainting game”, and introduced an
explainable face recognition (XFR) algorithm that explains which facial characteristics (e.g.,
nose, eyebrows, etc.) are matched in each case. The XFR algorithm generates network
attention maps for facial images consistent across the human participants and provides
insight into the features that make each face unique. In a similar line of research, saliency
maps can be employed to explain face matching by measuring the contribution of different
face parts [215]. Examining the effect of perturbation, occlusion, or noise on each of the
parts alone or in a combination of parts is a first step towards the explainability of face
recognition tasks. Such techniques can be combined with FMD algorithms to provide
explainable decisions that link the detection of a mask (or proper mask-wearing) with the
coverage of specific facial features (i.e., nose, mouth).

7.2. Further Generalization for FMD Techniques

The current study has revealed the large variety of techniques and models for FMD
and the plethora of datasets used for their training. Many studies are trained and validated
on custom and private datasets, whereas others employ more significant benchmarks. The
main characteristic of the datasets is the variety of images they contain (e.g., controlled
or uncontrolled poses, real or synthetic images, two or more classes, etc.), and this conse-
quently affects the models being trained and limits their ability to generalize to more, but
relevant, tasks.

Despite the many works, datasets, and models trained for the general image classi-
fication task, such as VGG-16, ResNet50, Inceptionv3, or EfficientNet, or the works that
focus on building generalized models for face detection, such as MTCNN or FaceNet [216]
there is still an open need for generalized pre-trained models that detect masked faces
and extract their features. Research in this direction will allow deep transfer learning
techniques to be applied to multiple FMD-related tasks and boost the performance of
lightweight models trained with only a few training samples [217–219]. The first works
that apply transfer learning of Inceptionv3 [171], RetinaFace [65], MobileNet [220], and
similar networks show the way for future researchers that want to build general models for
the Faced Mask Detection task.

Transformers can also be employed in the specific FMD task, following the successful
paradigms in the generic image classification task [221,222]. The resulting models can be
further trained using only a small number of images for the task and achieve state-of-the-art
performance [223].

7.3. Federated FMD

FL is an ML technique where multiple decentralized devices, such as smartphones
or edge devices, work together to improve a shared model without sharing their raw
data. The devices train a local version of the model on their data and then share the
updates with a central server, aggregating the updates to improve the global model. This
allows for training models on distributed data without the need to centralize and share
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the data [224]. The need to continuously monitor the proper use of masks, especially
in public areas, and more importantly, without breaching citizens’ privacy requests the
implementation of lightweight detection methods. The latter can process video streams on
edge in real-time without storing any information locally. Solutions, such as WearMask [71],
or BinaryCoP [202] apply transfer learning to very fast and lightweight models such
as YOLO-Fastest or adopt fast binarized NN inference frameworks such as Finn [225],
and operate as mask-wearing sensors. They can be deployed as mobile apps or run on
FPGA-powered hardware that allows high-speed face detection and classification in two
stages [226].

FL is another approach that can help protect user privacy by design and, simultane-
ously, by training DL or ML models locally using sensitive data, such as people’s faces.
By splitting the FMD task into two or more cascade stages, such as the location of faces
in images, the extraction of image features, and the classification of the detected faces as
masked and non-masked (and/or improperly masked), it would be easier to federate the
learning task [124] and take advantage of locally trained models. Similar architectures can
be employed for social distancing screening [227], detecting littered face masks [228], etc.
Besides, another way to implement FL for face mask detection is to have multiple parties
contribute to the model training by providing their datasets of images. Each party could
train a local model on their data and then send the model parameters to a central server,
aggregating the parameters and using them to update the global model. This process could
be repeated iteratively until the worldwide model has learned to detect masks accurately
from the combined datasets [229].

Moreover, there are many potential benefits to using FL for face mask detection. For
example, it can allow organizations to train a model without requiring access to sensitive
or personal data. It can also enable organizations to collaborate on ML projects without
sharing data [230]. Additionally, FL can be used to train models on data distributed across
multiple devices, such as smartphones or cameras, which can be useful for real-time face
mask detection in various settings [231].

Lastly, it is worth noting that all the aforementioned technologies constitute the future
of face detection and identification tasks and consequently find their application to face
mask detection. An in-depth knowledge of the existing literature as presented in the
current study and a careful examination of the open challenges and future solutions is the
first step for researchers that wish to contribute to this field. The next step involves the
collection of benchmark datasets that can be used for training and fine-tuning the new
state-of-the-art models.

8. Conclusions

The use of FMD systems has become increasingly important in recent times due to
the COVID-19 pandemic. Wearing a face mask is an effective way to reduce the spread
of the virus. Many businesses and organizations have implemented policies requiring
face masks in public spaces. Face mask detection systems can help enforce these policies
and ensure that people follow the guidelines to protect themselves and others from the
virus. This paper comprehensively reviewed FMD based on deep and transfer learning
models. It was clear that DL and TL have the potential to be practical tools for FMD, with
the ability to handle a wide range of variations in the appearance of masked faces and
achieve high accuracy rates in many cases. At the same time, it is essential to note that
any FMD algorithm’s performance is likely to depend on the quality and diversity of the
training data, as well as the specific design and implementation of the algorithm. As such,
further research is needed to fully understand the limitations and potential of deep learning
for face mask detection and to develop robust and efficient algorithms that can handle
real-world conditions and variations.

On the other hand, it was demonstrated that the FMD is a multi-faceted task that poses
various challenges to computer vision and ML engineers. The challenges related to the
proper definition of the task are detecting a covered face or a mask that has been properly
worn, which affects the model that has to be trained to handle the respective task properly.
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Another challenge relates to the scale of the face and face mask detection, which spans from
a single person in controlled conditions to the detection in the wild, usually in combination
with the detection of proper social distancing. Different algorithms apply to the massive
identification of persons in a video or image stream and the detection of mask-wearing than
in the case of face mask-wearing detection in controlled environments and single-person
images. However, the biggest challenge relies on the scalability of solutions, which must
handle video streams with dozens of persons in the case of public surveillance applications.
This, in turn, sets the need for distributed processing using lightweight models and for
federated training of the respective models.

The future of face mask detection in intelligent cities resides in using generic models
that will be fine-tuned on specific detection tasks, using fewer resources for training and
processing. The FL approach will take advantage of the resources available on edge devices
and allow lightweight models to better and faster adapt to the emerging needs of each task.
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