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Abstract: The World Health Organization estimates that 5 to 15% of amputees in any given population
have access to a prosthesis. This figure is likely to worsen as the amputee population is expected to
double by 2050, straining the limited capacity of prosthetics services. Without proper and timely
prosthetic interventions, amputees with major lower-limb loss experience adverse mobility outcomes,
including the loss of independence, lowered quality of life, and decreased life expectancy. Presently,
the use of digital technology in prosthetics (e.g., 3D imaging, digital processing, and 3D printed
sockets) is contended as a viable solution to this problem. This paper uses system dynamics modeling
to assess the impact of digital prosthetics service provision. Our simulation model represents the
patient-care continuum and digital prosthetics market system, providing a feedback-rich causal
theory of how digital prosthetics impacts amputee mobility and the corollary socio-health-economic
outcomes over time. With sufficient resources for market formation and capacity expansion for
digital prosthetics services, our work suggests an increased proportion of prosthesis usage and
improved associated health-economic outcomes. Accordingly, our findings could provide decision
support for health policy to better mitigate the accessibility problem and bolster the social impact of
prosthesis usage.

Keywords: prosthetics; major lower-limb amputations; prosthesis usage; amputee mobility; system
dynamics; simulation model; health care system; health policy

1. Introduction

The World Health Organization (WHO) estimates that around 0.5% of any given
population require prosthetics and orthotics services [1]. This figure is expected to double
by 2050 as a result of ageing populations and rising rates of medical conditions, such as
diabetes mellitus, peripheral arterial disease (PAD), and sepsis [1,2]. Particularly for major
lower-limb amputations (i.e., above ankle), over 90% of cases in industrialized countries
are attributed to PAD (either primary or secondary to diabetes); whereas traumatic injuries
make up most cases in developing countries [3–5]. PAD is a progressive vascular disease
that commonly causes arterial obstruction in the lower extremities. Known PAD risk
factors include cigarette smoking, diabetes mellitus, hypertension, and dyslipidemia, with
incidence sharply rising for populations above age 50 [6,7]. PAD progresses to the more
severe critical limb ischemia, if not effectively managed at an earlier stage, which could
lead to amputation [8].

Major lower-limb amputation, without timely prosthetic intervention, leads to a loss
of mobility, which has several ripple effects at both the individual and societal level. It
worsens individual health and psychosocial outcomes, including the loss of independence,
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increased depression and self-esteem issues, lowered quality of life, and increased risk
of comorbidities and mortality [9–11]. There is also high economic burden on patients,
families (increased caregiving), health and welfare systems, as well as the workforce (lower
rates of return to work) [1,12,13]. Such negative externalities can be alleviated with the
use of prostheses to regain mobility and functional independence [14]. However, WHO
estimates that only 5 to 15% of amputees have access to prosthetics services [1]. Even
then, approximately 50% of amputees in prosthetics care abandon the process or their
prosthetic devices [15,16]. Barriers include high financial costs for treatment, poor health
care coverage, prosthetics service capacity constraints, limits in prosthetics technology and
fitting, lack of proximity to services, and inadequate continuity of care [14–17].

The recent introduction of digital technology in prosthetics is seen as a viable solution
to the accessibility problem [16,18,19]. Digital solutions to prosthesis fitting (henceforth,
digital prosthetics) involve a streamlined process of scanning the limb and using a digital
software to create a model of the socket for three-dimensional printing. Digital technology
reduces the delays, patient time and travel burden, and labor involved in traditional
prosthetics. Using traditional methods, the prosthetist must handcraft the socket using
plaster casts and test the fittings several times before a definitive socket is manufactured
and assembled [19]. With digital prosthetics, this manufacturing delay can be more than
halved. In turn, this reduces the chances of the patient’s limb and/or weight having
changed before receiving the prosthesis device—the main cause of discomfort and pain [16].
The fit challenges are a primary cause for the 50% abandonment [15,16]. Hence, digital
prosthetics could lead to higher success rates since the digital design is more accurate,
precise, and enables direct translation of a prosthetist’s skill-level over a minimum baseline
in place; has a much shorter timeframe such that there is little time for limb changes; and
results in a more comfortable fit for patients [16].

Moreover, digital prosthetics could improve accessibility by expanding service capacity.
With a more streamlined and effective fitting process, each prosthetist can fit more patients
in their schedule than it otherwise would have been possible with conventional techniques
and processes. Digital technology also frees the prosthetist from their clinic and gives
them the flexibility to bring the service to patients through distributed care networks [20].
Accordingly, proponents of digital prosthetics anticipate several positive externalities for
amputees, their families, and the economy more broadly. This paper seeks to assess this
impact of digital prosthetics service provision on total amputee mobility. Mobility, here, is
measured by the proportion of medically eligible amputees who are fitted with a prosthesis
and have regained functional mobility. The benefit of digital prosthetics can be further
measured by the health-related socio-economic consequences of such mobility; namely, the
surplus economic productivity from returning to work and the net economic costs incurred
or avoided (health care, family opportunity cost, social and welfare payments).

The purpose of this study is to explore how the adoption of digital prosthetics impact
amputee mobility and associated outcomes over time. To assess such changes, we model
the key causal mechanisms found in the health care system, including the patient-care
continuum and prosthetic service provision. For this purpose, we build and analyze a
dynamic simulation model to identify high-leverage points that can enhance the effects
of digital prosthetics service provision on mobility outcomes. This paper describes the
structure, empirical foundation, illustrative results, and strategic insights from the proto-
type prosthetic service provision model, as well as how it might be further refined. The
results reported in this paper result from two activities: First, we use an in-depth review of
the existing knowledge (from literature and expert interviews) coupled with causal loop
diagramming [21] to identify core feedback mechanisms driving prosthetic service provi-
sion. Second, we developed a formal system dynamics simulation model to characterize
the range of outcomes that these processes generate, even in a data-poor context. The end
result is an internally consistent theory that provides insights into the determinants of
success and failure of digital prosthetics service provision.
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2. Materials and Methods

This study employs the system dynamics (SD) method, using compartment models,
for conducting model-based hypothesis testing. SD models seek to simulate and explain
problem behaviors by modeling the underlying system structure [21]. Importantly, they
offer an “endogenous or feedback perspective” to structural problems [22] (p. 1) that can
aid “theory building, policy analysis, and strategic decision support” [23] (p. 11). This
endogenous perspective relates to two fundamental methodological tenets: (1) problem
behaviors arise from the complex interaction of interrelated components within a closed
boundary of a system, and (2) the system components are connected in feedback loops
(circular chains of causal relationships), which endogenously generate the observed system
behavior [24,25]. In this sense, the SD method “helps construct a causal-loop theory of
system behavior in terms of feedback linkages” [26] (p. 400).

SD modeling is well-suited to domains in public health and medicine, with over
300 applications to date – for a review, see [27,28]. The “dynamic complexity in public
health” (particularly due to nonlinear effects of multiple interacting variables within the
system that affect health outcomes) makes it “difficult to know how, where, and when to
intervene” [29] (p. 452). SD simulation modelling can effectively address this challenge
and “elucidate the counterintuitive behavior of complex healthcare problems” [28] (p. 1).
Particularly for prosthetics provision and related health care policy, SD modelling can
support decision-making under uncertainty. The domain of prosthetics services is mired by
the lack of robust data collection, contributing to a high level of uncertainty surrounding
policy planning [1,16]. SD models, however, can “admit more variables on the basis of
logic or expert opinion and for which solid statistical estimates may not be available” [29]
(p. 453) and still generate useful insights under such uncertainty.

2.1. Literature Review

To our knowledge, apart from the two preliminary versions of this work [30,31],
there has been no other application of SD to prosthetic service provision or major lower
limb amputations in the academic literature. However, this work builds on existing SD
literature on emerging medical technologies and innovation diffusion more generally.
Paich, Peck and Valant present a model on pharmaceutical product strategy that integrates
patient flows, product diffusion and adoption by physicians, and treatment attractiveness to
patients [32]. Homer developed a model for medical technology adoption based on demand-
side (user dispositions to accept or abandon based on social exposure and evaluation of
product performance) and supply-side (R&D for product performance improvement and
investment in promotional activities) dynamics [33]. These models are extensions of the
Bass Diffusion generic structure that includes a word-of-mouth diffusion process (social
exposure and imitation) and external adoption from advertising, which enhance the realism
of innovation diffusion [21].

In their systematic review of SD models on innovation systems, Uriona and Grobbelaar
point to a “promising stream of research” based on Technological Innovation Systems (TIS)
theory, that departs from the innovator-imitator structure of Bass Diffusion [34] (p. 34).
TIS theory posits that the formation of a new technological innovation system requires
seven key interacting elements: (1) entrepreneurial activities, (2) knowledge development,
(3) knowledge diffusion, (4) guidance of search, (5) market formation, (6) mobilization
of resources, and (7) creation of legitimacy [35–37]. The complex interactions of these
elements determine the growth prospects of a new technology. Subsequently, Walrave
and Raven operationalized the theory into a conceptual SD simulation model [36,38]. The
main advantage of the TIS framework is its explanatory power for the market formation of
new technologies—a “complex non-linear interactive process” that involves several actors
and institutions [34] (p. 28). Indeed, market formation requires collective market-oriented
action to develop “shared market infrastructure” for “supporting the functioning of a stable
market” [39] (p. 244).
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Our work contributes to existing knowledge by synthesizing the TIS model with
medical technology adoption models. Similar to Paich, Peck and Valant, we represent the
patient flow of the health care and prosthetics care system for amputees. Like Homer, we
represent the demand-side dispositions of amputees to adopt or abandon the emerging
digital prosthetic device based on performance evaluation and word-of-mouth diffusion.
We then captured the supply-side conditions of digital prosthetics using the TIS framework.
In doing so, we present a feedback perspective to digital prosthetics market formation
prospects and the corollary effects on product adoption as well as on the socio-economic
and health indicators for the amputee population.

2.2. Data Collection

The iterative model building process, from conceptualization, quantification, to valida-
tion, was conducted in collaboration with Toyota Mobility Foundation—expert in system
dynamics and human centered design for promoting mobility (second author) and ProsFit
Technologies—digital prosthetics service provider (third author). It is tradition in SD to
include problem owners and experts in the model building process who possess impor-
tant domain expertise, experiential knowledge, and mental models of the system under
investigation [40–42]. During this process, several iterations of the model were presented
to the collaborators for validation. In terms of model parameterization, ProsFit provided
numerical estimates for some parameter values where existing data was not available. In
such instances, ProsFit relied on its network of prosthetists and other experts in the field
to corroborate their assumptions and understanding. Estimates and comments from these
domain experts were anonymized and shared via email correspondence. Such estimates
represent the best available data and expert judgement at the time of the model development.

Apart from expert opinion, existing peer-reviewed literature was utilized extensively
for model conceptualization—especially so for the conceptual market formation subsystem
in the model. As for quantification, parameter values were obtained either from epidemio-
logical data reported in the literature or from secondary datasets (Table 1). The model is
calibrated to data from the United Kingdom (UK), since expert knowledge and literature
pertaining to the country is more readily available, but it can nevertheless be calibrated to
other contexts.

Table 1. Data sources used for model parameterization.

Data Source Description

UK Office for National Statistics [43–48] UK population estimates for fertility rate and mortality rate

Healthcare Quality Improvement Partnership [49–54] UK National Vascular Registry statistics on PAD-related major lower limb
amputations and clinical outcomes

Global Burden of Disease Collaborative Network [55] UK estimates for yearly prevalence and incidence estimates on PAD as well as
lower limb amputations from injuries as a cause between 2010 and 2019

ProsFit Technologies [56] UK health economics data for estimating economic costs and net benefit of
prosthetic service provision

2.3. Model Description

In this section, we present a simplified stock-and-flow representation of the model.
The simplified structure is split into the top-level Health Care System (Figure 1) and the
Market Subsystem (Figure 2). We then briefly describe the key feedback processes involved
(see Appendix A for a more detailed description of each feedback loop).
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2.3.1. Health Care System

The health care system for amputees is represented as an aging chain that captures the
flow of people across different stages or compartments. This structure is further arrayed to
better capture and represent the characteristics and choices of different population groups
(e.g., age and prosthesis type). Aging chains, commonly used in SD health models, can help
identify accumulations and key bottle-necks in patient flows [27]. Figure 1 captures the flow
of people from the general population and the PAD population stocks to acute care for either
trauma-related or PAD-related amputation. At this stage, the Prevention Pressure loop (B1)
works to reduce the PAD incidence rate over the long-term as the PAD-related amputations
increase over time. This balancing feedback loop represents the prevention pressure faced
by public health agencies to address the prevalence of PAD by stepping up efforts towards
primary prevention, including early screening, smoking cessation, nutritional and activity
programs [57,58]. A decline in PAD incidence would lead to a reduction of the PAD
prevalence over time, which would eventually decrease major lower-limb amputations
from PAD.

Amputees then flow into the prosthetic care stage, either into traditional prosthetics or
digital prosthetics depending on the respective market share, from the primary care stage.
They may achieve full mobility if successfully fitted with a prosthesis. However, both
prosthesis types need to be replaced every three years on average [59]. As more amputees
enter the prosthetics care stage, prosthesis degradation over time increases the number of
amputees awaiting replacement of their devices before re-entering the prosthetic fitting
process again. In this regard, the Prosthesis Lifecycle loop (R1) could result in a growing
pressure for prosthetics demand, emanating from our best efforts to successfully fit new
amputees with a prosthesis. Alternatively, amputees may dropout from the prosthesis
fitting process altogether or abandon the device due to an unsuccessful fit [16,60]. These
individuals flow into the limited mobility stock. However, amputees with limited mobility
may later decide to readopt a prosthesis and therefore re-enter the prosthetic care stage
again. This process is captured in the Prosthetics Re-entry loop (R2). Both loops engender a
reinforcing mechanism that moves amputees through different stages of prosthetics care.
They do not independently multiply the number of amputees in the loop beyond those
already within the closed aging chain.

With the introduction of a digital prosthetics market, amputees are probabilistically
referred to a digital prosthetist dependent on the market share. The perceived success
of digital prosthetics is then conceptualized as the ratio of the rate of successful digital
fitting relative to traditional fitting. When the rate of digital fittings surpass the incumbent
traditional technology, we can expect a stronger favorable word-of-mouth diffusion about
the success or reputation of digital prosthesis [61,62]. Over time, we expect the reputation
of digital technology to reinforce the growth of the digital market size and thus the market
share of the digital prosthetics through the Digital Growth loops (R3 and R4). With a higher
market share, even more amputees are more likely to be referred to a digital prosthetist
or may seek out one themselves if they are re-adoptees. Concurrently, the Prosthesis
Attractiveness loops (R8 and R9) encourage stronger uptake of digital prosthesis devices.
Word-of-mouth diffusion about the relative success of digital technology could motivate
individuals to stick to the process and thus translate to a lower drop-out rate. It could
also motivate those who have previously abandoned the process to re-enter the fitting the
process, consequently increasing the re-adoption rate. Here, the diffusion processes are
driven by evaluations of the relative performance of digital prosthetics (successful digital
fitting rates vs. traditional), similar to the adoption structure in Homer’s model [33].

While the digital growth and prosthesis attractiveness loops drive the accumulation
of amputees in the digital prosthetics care sector, the Access Constraint loops (B2, B3 and B4)
counteract their reinforcing effects. Amputees’ access to the prosthetics care stage is limited
by the capacity of the sector (number of fittings that can be accommodated by available
prosthetists). Fitting demand is driven by new amputees, those seeking to replace their
degraded device, and re-adoptees who previously abandoned the fitting process. When
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the fitting demand outweighs the fitting capacity, prosthetic accessibility reduces and thus
limits amputees from entering the stage even if so desired. Over the longer term, however,
the Market Access loops (R5, R6 and R7) work to improve accessibility for digital prosthetics
by expanding capacity. A higher market share of digital technology would lead to an
expansion of digital prosthetic clinics, which enables the sector to accommodate a larger
number of patients. This effect, however, is delayed as it takes time to assess the market
and set up new clinics.

As for the incumbent traditional prosthetics, they compete with the growing digital
prosthetics market for referrals from the primary care stage. This is captured in the patient
flow between the two stages, where entry to traditional prosthetics is determined by the
inverse of the digital market share (i.e., 1–“Digital Market Share”). However, in the model,
traditional prosthetics is assumed to be unaffected by the diffusion processes of digital
technology. Should digital technology gain dominance, one might expect the incumbent’s
reputation to diminish and, as a result, more amputees might dropout and fewer might
re-adopt a traditional prosthesis. Moreover, traditional prosthetics sector might also face a
capacity contraction. Yet, these effects were not modeled for a more conservative estimate of
digital prosthetics’ impact since, without concrete data, this could add to further uncertainty
of the model. Instead, the patient flows within the traditional prosthetics care sector were
held at constant fractional rates, apart from new amputee referrals.

2.3.2. Market Subsystem

In the top-level health care system, we sought to explain the effects of digital pros-
thetics market growth on the prosthetics care sector. The complexity involved in market
formation within the market subsystem is represented in Figure 2.

The process of technological knowledge development is described by the synergistic
interaction of the Technology Development loop (R10) and Knowledge Diffusion loop (R11).
Innovation development and diffusion of knowledge is required for any TIS to grow, and
this is dependent on the level of resources available for R&D [35,63]. As innovation is
developed and diffused through the exchange of knowledge between various actors in the
system, the guidance of search for the new technology increases. Guidance of search refers
to the “visibility and clarity” of the state of the art [35] (p. 423) that reflects the “promises
and expectations of the emerging technology” [63] (p. 56). This helps in the priority-setting
of that technology and directing more resources for further R&D, which would enable even
more technological knowledge development and diffusion.

This process, in turn, attracts new entrepreneurs into the emerging market through the
Innovation Attractiveness loop (R12) and Knowledge Attractiveness loop (R13). Entrepreneurs
are central to any TIS for carrying out market-oriented action [63]. As more innovation
is developed and diffused, the technological legitimacy of the technology increases and
accumulates the perceived legitimacy of innovation system. [36]. This encourages more
entrants to enter the market and grow the level of market-oriented entrepreneurial activity.
Since entrepreneurial activities indicate the health and sustainability of an innovation
system [35], this would bring in more external funding/resource stream into the system
from private or public actors [36,63]. External funding further reinforces the growth of
entrepreneurial activities through the External Engine loop (R14). External backing reduces
the perceived entrepreneurial risks involved, and consequently is better able to attract
further entry into the market [36,63]. Moreover, the external funding stream increases the
total resources available in the system, which spurs more development of innovation that
increases the legitimacy of the technology even further.

While the external engine stimulates entrepreneurial activity initially, the System Legit-
imacy loop (R17) endogenously generates internal (“financial, material, human capital”)
resources over the longer term for market sustainability [63] (p. 57). This loop comprises
the two smaller Internal Engine loop (R15) and the System Building loop (R16), and is capable
of driving the entire system [37]. Entrepreneurs contribute to the “development of formal
market rules, establishment of intermediary networks, the building of infrastructure, or the
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development of formal regulations” [36] (p. 1837). The developed market infrastructure
generates market legitimacy for the TIS, which reduces market formation uncertainty and
the perceived cost to participation [39]. Hence, more entrepreneurs are willing to overcome
perceived risks and enter the market, contributing to further infrastructure development
(R16). Moreover, these established market structures, mediated by entrepreneurial activi-
ties, “contribute to the creation of a demand for the emerging technology” [63] (p. 56). This
increases the market size for the technology that generates internal resources from the mar-
ket (R15). The synergy of the loops, reflected in R17, thus drives the self-reinforcing growth
of entrepreneurial activities, market infrastructure, market legitimacy, and market size.

The formation of a niche market for the emerging technology, however, precipitates
“resistance from actors with interests in the incumbent” regime [63] (p. 57). For instance,
“when regime actors try to influence public discourses, or lobby against favourable sup-
port” [36] (p. 1837). This process is captured in the Resistance loop (R18). Regime resistance
decreases the market legitimacy of the emerging technology, which disincentivizes entrants
due to higher perceived risks. In turn, there will be less market infrastructure develop-
ment to counter the regime resistance. As the niche market grows and competes with
the incumbent regime, resistance could also come in the form of innovation. Given the
new threat, regime actors would “increase their efforts to improve the performance of the
existing regime through innovation” [36] (p. 1838). This is referred to as the sailing ship
effect [64,65] and is represented in the Sailing Ship loop (B7). It contributes to a stronger
regime resistance and counteracts the effects of the System Legitimacy loop.

Finally, the top-level health care system is connected to market subsystem through
the Digital Growth loops and Market Access loops. As the reputation of digital fittings grow,
we expect it to bolster the technological legitimacy of digital prosthetics. This would lend
strength to the System Legitimacy loop, which ultimately increases the market size. With a
larger market size, the market share of digital prosthetics rises relative to the incumbent
traditional prosthetics. Importantly, the number of digital prosthetic clinics also increases
to expand the fitting capacity. This improves the digital prosthetics accessibility, which
enables more amputees to be fitted with a prosthesis and achieve mobility.

2.4. Model Validation

The described feedback structure was operationalized into a SD simulation model. The
model was built in Stella Architect version 3.0 (SD modelling software from isee systems)
using Euler Integration with a time-step of 1/16 of a month, or about 2 days, which is less
than half of the smallest time constant of 7 days (0.23 months) for the pre-operation hospital
stay in the primary care sector. The model is simulated over a time horizon of 480 months,
representing January 2010 to January 2050. Simulation modelling facilitates the visualiza-
tion of the impact of digital prosthetics on the health care system and, more importantly,
experimentations to better understand the dynamic complexity of the system [21,29]. Here,
we summarize the results of the model validation procedure as proposed by Forrester and
Senge [66] and Barlas [67] to build confidence in the simulation results. A more detailed
validation report is available in a previous iteration of this work [30].

The model structure is supported by relevant literature and input from stakeholders.
As a digital prosthetics service provider (ProsFit) and a double lower-limb amputee, the
third author of this paper was heavily consulted during the iterative process of model
building to validate the structures in the health care system. Parameterization of the
health care system was based on empirical data sources (Table 1). In instances where
data was not available, the values were estimated from expert opinion. This pertains to
the fractional dropout and readoption rates, which are estimates from ProsFit and their
network of prosthetists. Parameter verification for the market subsystem, however, was
challenging given the conceptual nature of the model. Thus, the parameter values set in
the original model [38] was kept and subject to further sensitivity tests. All parameters and
variables in the model were assigned units of measurement that are both mathematically
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and conceptually consistent. The model documentation provided in the Supplementary
Materials details the above for each variable in the model.

Moreover, direct- and indirect-extreme conditions tests were performed to ensure
robustness of structural formulations. There were no computational errors detected in the
model and the results conform to values that are within bounds. We further conducted
sensitivity analysis for all parameters in the model. Each parameter was varied over
100 sensitivity runs. The variation is based on a uniform distribution random draw using
Sobol Sequence sampling method [68]. The results of the sensitivity analysis are summa-
rized in Table 2. Expectedly, the model was mostly sensitive to parameters in the conceptual
market subsystem. As a result, it introduces uncertainty to the relatively empirical top-level
model. This means that this model cannot produce accurate numerical estimations. Never-
theless, it was deemed more useful to represent the complexity of market formation than
the alternative: a simplistic table function with high levels of sensitivity. Understanding
how digital prosthetic market formation may plausibly occur from a feedback perspective
could be useful to decision-makers seeking to improve mobility outcomes and maximize
the impact of limited resources.

Table 2. Parameters resulting in model sensitivity.

Model Sector Parameter Range Sensitivity

Prosthetic Care

Reference Dropout Fraction (Eligible for Prosthesis) 0.01–0.50 Numerical
Reference Dropout Fraction (Initial Device) 0.01–0.50 Numerical

Reference Dropout Fraction (Matured Limb) 0.01–0.50 Numerical
Reference Readoption Fraction 0.01–0.50 Numerical

Market Formation

Market Size Threshold 0.025–0.075 Behavioral *
Relative External Resources Size 0–9 Behavioral *

Sensitivity of Clinics to Market Size 0.25–0.75 Numerical
Sensitivity of Resources to Market Size 0.5–1.5 Behavioral *

Steepness Effect of Total Resources on EA 1.25–3.75 Numerical
Steepness Effect of EA on Market Infrastructure 0.2–0.6 Numerical

Steepness Effect of Legitimacy on EA 0.2–0.6 Numerical
Steepness Effect of Total Resources on Infrastructure 1.25–3.75 Numerical

Time to Adjust Clinics 12–36 Numerical
Time to Adjust Entrepreneurial Activity 6–18 Numerical

Time to Adjust Market Infrastructure 30–90 Numerical
Time to Adjust Market Size 12–36 Numerical
Time to Perceive Legitimacy 6–18 Numerical

Weight of Entrepreneurial Activity 0.25–0.75 Behavioral *
Weight of Perceived Legitimacy 0.25–0.75 Numerical

Innovation Diffusion Time to Decay 30–90 Numerical

* Refer to Appendix B for the confidence plots of the model’s sensitivity.

3. Simulation Results
3.1. Baseline Setup

The model was initialized in equilibrium to produce the baseline simulation results.
In a previous iteration, we attempted to initialize the stocks at the obtained or calculated
initial values [30]. However, there are virtually no numerical estimates for individuals in
the various transitory stages of the primary care continuum and prosthetic care continuum.
Consequently, we opted to initialize the stocks in their long-term equilibrium values to
prevent transient stock adjustments. Moreover, initializing the model in equilibrium enables
us to observe the full effects of any shocks exogenously introduced to the model—in our
case, the formation of a niche digital prosthetics market.

To set the model in equilibrium, we held the total population of the UK constant at
about 61.1 million individuals over the time horizon and initialized the population stocks
in their long-term equilibrium values. The equilibrium switch in the market subsystems
initializes the innovation diffusion stocks at zero and cuts off the exogenous input of relative



Systems 2023, 11, 22 10 of 27

resources. This ensures there are no dynamics in the market subsystem, thus representing
a scenario wherein the prosthetics sector is solely serviced by the traditional prosthetics
service providers at their existing capacity.

3.2. Baseline Results

The baseline results provide the estimated equilibrium values of the respective key
indicators for the system (see Table 3). With a constant population size of 61.1 M people,
we estimate a total of 84.8 K major lower-limb amputees, with about 85% of them being
deemed medically eligible for a prosthetic device (71.9 K people). Of those eligible, only
5.5 K amputees are estimated to be fitted with a (traditional) prosthesis, thus resulting
in a mobility proportion of over 7%. The amputee mobility proportion represents the
proportion of eligible amputees who have achieved full mobility through a successful
prosthesis fitting, which is determined by three factors. First, the accessibility of prosthetics
services, which represents the percentage of demand that is met by the existing service
capacity. The model estimates this to be just under 12%, indicating a bottleneck in the
prosthetic care system. This is also within range of the WHO global estimate—that only
5 to 15% of amputees have access to prostheses [1]. Second, individual dispositions to drop
out from the fitting process (estimated by experts to be about 10% for each stage of the
process prior to the final device) and to readopt it (about 20%) at a later time. Third, the
probability of final device fit success, which is about 50% for traditional devices [15,16].

Table 3. Baseline results of key indicators.

Indicator Result Units

Total Amputee Population 84.8 K People
Medically Eligible Amputee Population 71.9 K People

Amputees fitted with Prosthesis 5.5 K People
Amputee Mobility Proportion 0.07 Dimensionless

Prosthetics Accessibility 0.12 Dimensionless
Economic Productivity 14 M USD/Month

Economic Cost 210 M USD/Month
Prosthesis Reimbursement 1.94 M USD/Month

Furthermore, health-related economic indicators were calculated based on the inputs
from the endogenous processes in the health and prosthetics care systems. The monthly
economic productivity of amputees is estimated to be about USD14 M per month. This
indicator represents the economic participation of amputees from returning to work and
reintegrating into the workforce. It is conceptualized as the product of the estimated number
of employed amputees with the gross domestic product per capita. Amputees not fitted
with prostheses are excluded from workforce participation given their limited mobility.
This is a gross simplification that does not completely reflect the economic contribution of
amputees from other measures such as individual consumption. The total economic cost
incurred, on the other hand, is estimated to be USD210 M per month. This includes the
differentiated health care costs, unemployment and social payments, and the opportunity
costs borne by families for caretaking. Lastly, the estimated total cost of prosthesis provision
is about USD1.94 M per month, which includes both successful and failed prosthesis fittings.
Reimbursements for prosthesis costs are assumed to be fully covered by national insurance
mechanisms, which would otherwise be borne as out-of-pocket payments.

3.3. Experimental Setup

To simulate and investigate the impact of digital prosthetics on the baseline behavior,
we introduced dynamics in the market subsystem module. This was done by setting the
parameter value of Relative External Resources (RER) Size above 0 from month 96 for an
assumed duration of 180 months (year 2018 to 2033) to exogenously kick start the dynamics.
This simulates the deployment of external funding streams to support initial market growth
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prior to self-sufficiency. Moreover, the Innovation Developed and Knowledge Diffused
stocks were initialized at 0.01 to push them out of unstable equilibrium.

As mentioned, given the conceptual nature of the market subsystem, we have in-
troduced several assumptions in the parameter values that would result in estimation
errors. Therefore, we ran a global sensitivity analysis with combined variations in all the
parameters that the model is sensitive to (as identified in Table 2). The experimental results,
in turn, show the confidence intervals (up to 95%) of the key indicators from 1000 runs
based on Sobol Sequence sampling method [68]. A total of 1000 runs was sufficient to fully
explore the state space of the stocks in the market subsystems. This experiment gives us
the full range of possibilities for digital prosthetics market growth and thus enables us to
observe the corollary effects on the more empirical prosthetics care system.

3.4. Experimental Results

Given its known sensitivity, the model produces a range of market growth for digital
prosthetics, from 0.03% to 96% market share by 2050 with a mean of 43.6% (Figure 3).
In general, with a RER size of more than 0, the External Engine loop (R14) powers the
endogenous market formation processes that allows the Digital Market Share to start
growing. However, as R14 loop is cut off by year 2033, we observe three behavioral
patterns: (1) steady decline, (2) a much slower albeit continued growth, or (3) sustained
growth. The sustainability of market growth is ultimately dependent on the strength of the
Internal Engine (R15) and the System Legitimacy (R17) loops in endogenously generating
sufficient internal market resources.
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Nevertheless, we can observe the impact of digital prosthetics market growth on
the amputee population and mobility outcomes. As digital prostheses are introduced
to the prosthetics care system, Figure 4a shows an increase in the mobility proportion
from the baseline of 7% to a mean of 23% by 2050 (range: 6.2–50%). The introduction of
digital prosthetics not only increases the existing service capacity, but also results in more
successful fittings—a synergistic product of the Digital Growth (R3 and R4) and Prosthetics
Attractiveness (R8 and R9) loops. The Digital Growth loops enable more amputees to
enter the prosthetics care system either as a new entrant or a re-adoptee, whereas the
Prosthetics Attractiveness loops discourages amputees in the fitting process from dropping
out and encourages previous dropouts to re-adopt a device. In turn, more amputees achieve
mobility. The increased mobility further leads to improved health outcomes, including
a lower mortality risk. In this sense, the expansion of digital prosthetics prevents more
deaths, which accounts for the increase in the amputee population from the baseline of
84.8 K to an average of 87.6 K individuals by 2050 (range: 83.2 K–94 K) as seen in Figure 4b.
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Additionally, we observe that the mobility proportion develops similarly to the digital
market share; if the market share were to decline after year 2033, so would the mobility
proportion. However, the mobility proportion develops at slower pace and changes to
a smaller extent. This is due to (1) the multiple delays involved in the aging chains
of the fitting process and (2) the effect of the Access Constraint loops (B2, B3 and B4)
from prosthetics accessibility that limits the number of amputees according to available
service capacity.

As for the prosthetics accessibility, it increases for the first of half the simulation
duration before declining again, which consequently limits the growth of the mobility
proportion. With reference to Figure 5, the peak of the mean accessibility is about 44%
some time in 2028 (range: 13.6% to 100%), which eventually declines to 20% by 2050 (range:
2.8% to 93.6%). In general, the accessibility ratio increases as the digital market grows
and adds additional service capacity to the existing level. In conditions where there is
limited market growth, we observe that the accessibility declines around the time when the
exogenous funding is cut-off in year 2033. However, under more optimistic market growth
conditions, we observe that the accessibility peaks prior to the cut-off time and declines
thereafter. This is due to the higher volume of demand for replacing degraded prostheses
generated by the Prosthesis Lifecycle loop (R1). Prostheses have a lifecycle of 3 years on
average, and hence there is a captive consumer base that will continue to shore up fitting
demand—more so when the proportion of fitted amputees is high. As seen in Figure 5,
the total accessibility may increase to the maximum (100%) in instances where parameters
enable a rapid and large expansion of digital clinics (e.g., Sensitivity of Clinics to Market
Size) to meet the demand for fittings. Even then, it declines by the tail end of the simulation
for the reasons described.

As a result of the developments in the prosthetics care system, we can further assess the
impact on the health-related economic indicators. The economic productivity of amputees
follows a similar development to the mobility proportion since employed amputees make
up a fraction of those who are mobile. Figure 6a shows and increase in the monthly
productivity of amputees from an average of USD14 M to USD43 M by year 2050 (range:
USD11.5 M to USD97.7 M). Again, these figures are underestimates that only partially
captures the true economic contribution of amputees. Whereas Figure 6b shows a reduction
in the monthly economic cost incurred, decreasing from USD210 M to USD202 M on
average (range: USD289 M to USD211 M). The economic cost per capita reduces as the
mobility proportion increases because mobile amputees incur smaller health care costs,
social payments, and opportunity costs for their families. However, note that effect from
the per capita cost reduction has been counteracted by the overall increase in amputee
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population size from improved health outcomes (less deaths). In this sense, the reduction
in total economic cost is not as pronounced as the per capita reduction in economic cost.
Based on these figures, we can further anticipate the net benefit of digital prosthetics service
provision: the sum of the additional economic productivity and the amount of reduction in
economic cost. The average net social benefit is then calculated to be a mean of USD37 M
per month.
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Figure 6. (a) Confidence plot of the undiscounted monthly economic productivity rate in terms of
GDP per capita from amputees returning to work; (b) Confidence plot of the undiscounted monthly
economic cost incurred for the total amputee population.

3.5. Scenario Setup

The experimental results have shown that there are three fundamental behavior
modes within the range of possibilities for digital market growth. To better visualize the
differentiated impact on the prosthetics care system, we developed three hypothetical
scenarios for digital market growth. First, a pessimistic scenario to represent the growth
and steady decline. Second, a realistic scenario wherein the digital market experiences a
much slower rate of growth after external funding is cut off. Third, an optimistic scenario
to represent the sustained market growth throughout the simulation duration.

To this end, we conducted a sensitivity analysis with only the parameters that the
model is behaviorally sensitive to (see Table 2) for a total of 50 runs. From these runs, we
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selected the set of parameter values that produced the appropriate behavior mode for each
of the scenarios. These values are reported in Table 4.

Table 4. Behaviorally sensitive parameters and corresponding values for each scenario.

Parameter Pessimistic Realistic Optimistic Remarks

Relative External
Resources Size 1.27 4.78 8.02 The higher the figure, the larger the size of the external resources

brought in from entrepreneurial activity relative to a certain normal size.

Market Size Threshold 0.04 0.05 0.05

The threshold is the base value of the Relative Market Size, which
determines how much the internal resources generated by market grows
beyond the normal amount. A higher threshold means that the nascent

market must grow to a larger extent before becoming profitable.

Sensitivity of Resources to
Market Size 1.20 0.72 0.95

A sensitivity of less than 1 results in a less than proportional change in
the Relative Internal Resources to changes in the Relative Market.

Conversely, a sensitivity of more than 1 results in a more than
proportional relative change.

Weight of Entrepreneurial
Activity 0.65 0.32 0.27

The smaller the value, the more weight is placed on the effect of total
resources available for market development on market infrastructure

than on the effect of entrepreneurial activities, vice versa.

The set of parameter values for the pessimistic scenario results in a condition where
there is a low level of resources flowing in the market subsystem. With a relatively lower
RER size, the External Engine loop (R14) has a weaker reinforcing effect in the pessimistic
scenario as compared to the other two. The weight of entrepreneurial activity modulates
the level of market infrastructure development. A higher weight implies that infrastructure
development is more dependent on the level of entrepreneurial activity in the system than
the volume of resources available for market formation. Not only is there a low level of
resources to begin with, but the market infrastructure development is also not as reactive
to those resources in the pessimistic scenario. On the other end, in the optimistic scenario
there are ample of resources in the system for market formation. A relatively lower weight
on entrepreneurial activity further implies that market development is stimulated by the
resources available. The realistic scenario represents a more likely median between the
two extremes.

3.6. Scenario Results

We reproduced the three behavior patterns representing the varied conditions for digi-
tal prosthetics market growth (see Figure 7a). Under pessimistic market growth conditions,
the market share of digital prosthetics growths to a maximum of about 5% before declining
to 0.5% by 2050. Under the realistic scenario, the digital market share increases to 36%
in 2033 and thereafter increases gradually to 43% by 2050. Whereas digital prosthetics
experiences sustained growth in the optimistic scenario, capturing 80% of the market share
by 2050.

Based on these three hypothetical market growth scenarios, we can observe the relative
impact on the amputee mobility outcome in Figure 7b. In general, the mobility proportion
follows the same behavioral pattern as the digital market share. The proportion increases
as market share increases and vice versa. The gap between the realistic and optimistic
scenarios for amputee mobility is disproportionately smaller than the gap for the digital
prosthetics market share. This is due to the dampening effect of the Access Constraint loops
(B2, B3 and B4) as explained before. Amputee mobility is being constrained by the fitting
capacity that is unable to meet the demand. By further expanding digital fitting capacity,
we can strengthen the effect of the Market Access loops (R5 and R6) to better counteract the
constraint loops. In this sense, we can anticipate an even higher mobility proportion in the
optimistic scenario than the 32% mobility observed in Figure 7b.
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As for the health-related economic indicators, we can now graphically represent the net
benefit of digital prosthetics service provision compared to the baseline behavior (Figure 8a).
In all three scenarios, the introduction of digital prosthetics results in a positive net benefit.
A 0.5% digital market share in 2050 still yields a net benefit of USD5 M per month in the
pessimistic scenario. This figure is USD41 M and USD53 M for the realistic and optimistic
scenario, respectively. Moreover, we can compare the scale of the net benefit to that of
the additional prosthesis reimbursement (Figure 8b). The additional reimbursement is the
difference between the total costs for prosthesis services and the baseline costs. In contexts
where prosthetics services are covered by national health care systems, digital market
growth increases the total costs borne by the state in terms of insurance reimbursements
as the volume fittings increases over time. Nevertheless, additional costs incurred in that
instance is far outweighed by the net benefit accrued—on average by a factor of 15 across
all scenarios.
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4. Discussion

In summary, our simulation model allows exploring the range of mobility outcomes
for the amputee population given different market growth conditions for digital prosthetics.
We observed in all experimental scenarios that an increase in digital prosthetics market
share was associated with improved mobility outcomes. Specifically, there was an increase
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in the mobility proportion, an increase in total economic productivity, a decrease in total
economic costs and an overall positive net benefit from digital prosthetics even under
pessimistic conditions. Our model could, thus, serve as a tool for health policy planners to
explore a shift in prosthetics service provision to better mitigate the accessibility problem
and bolster the social impact of prosthesis usage.

Furthermore, our model contributes to the growing body of public health modeling
literature within the system dynamics field. To the best of our knowledge, this model is the
first application of simulation modeling to the domain of amputee patient-care continuum
and prosthetics service provision. Our work builds on and integrates elements of existing
SD models on TIS and medical technologies diffusion and adoption [32,33,36], which we
have adapted to anticipate the growth of the emerging digital prosthetics. In doing so,
our model presents an internally consistent theory of the complex interactions between
the health care system and the market formation subsystem and provides a feedback-rich
explanation for the dynamics of prosthetics service provision and amputee mobility.

4.1. Strategic Insights

The main insights from our work can be summarized as follows:

• While the External Engine loop provides the initial fuel for the various endogenous
market formation processes, the System Legitimacy loop ultimately determines the
trajectory of market growth for digital prosthetics. This loop generates internal re-
sources from the market to sustain the growth in entrepreneurial activities, market
infrastructure, perceived legitimacy of digital prosthetics, and its market size.

• The Digital Growth loops and Prosthesis Attractive loops are the key drivers for improv-
ing prosthetic accessibility and enabling mobility. With a higher market share of digital
prosthetics, more amputees can receive prosthetics services and are incentivized to
remain in or re-adopt prosthetics care.

• The Market Access loops are particularly important for driving the expansion of pros-
thetics clinics and service capacity, thus improving prosthetics accessibility over time.
The strength of this loop determines the extent of the counteracting effect on the Access
Constraint loops, which limits the mobility proportion.

• To best ensure the sustainability of the digital prosthetics market over the longer
term, investment is needed in this emerging technological system to garner sufficient
resources and momentum for sustained market growth. As seen in the sensitivity
analyses, the model is behaviorally sensitive to parameters related to the internal and
external resources in the market subsystem. High-leverage policies would thus seek
to influence the resource flows in the system.

• Investments in digital prosthetics could improve accessibility and ameliorate the
underuse of prosthesis amongst amputees, which enables mobility. Importantly, this
results in a positive net benefit for society in terms of higher economic productivity
and reduced economic costs.

• Besides the economic value of individuals, improving mobility appears to improve
health, also preventing more amputee deaths over time.

• To maximize the impact on the mobility outcomes and net benefit of prosthetics
services, policy planning must ensure that service capacity is expanded to meet fitting
demand. The scenario analysis revealed that prosthetics accessibility is limited by
service capacity even under optimistic market growth conditions. Policy planners
should be cognizant of the effect of Prosthesis Lifecycle loop, which drives the pressure
on fitting demand as the mobility outcomes improve over time.

4.2. Limitations and Further Research

The main limitation of the top-level health care system pertains to modelling individual
predispositions or decision points. Specifically, the propensity to dropout from the fitting
process or readopt a prosthesis. They remain as simplifications (estimated average fractional
rates) that could benefit from further work. Such predispositions are not simply functions
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of attractiveness, but also dependent on a broad array of individual factors, including
mental health state, level of social support, and occurrence of limb pain [69]. In addition,
we have excluded individual factors related to quality of life for amputees [70]—which is
particularly difficult to operationalize without the involvement of amputees in the model
building process. Including groups of amputees, through Group Model Building [71], could
be a potent avenue for further research in this field. This could lead to a more robust model
boundary that includes individual predispositions as well as quality of life measures.

The partially conceptual nature of the model further precludes it from generating
numerically accurate estimates of indicators. Though numerical estimation is beyond
the scope of this paper, further modelling work could be carried out to improve the
model’s ability to do so. Here, a much larger research scope is required to empirically
study the digital prosthetics market growth that should involve robust data collection
for parameterization. Additionally, the boundary of the subsystem could be expanded to
include fitting capacity adjustment structures that are more responsive to market dynamics
(demand, supply, profits, etc.).

Nevertheless, our model in its current iteration provides a structural explanation
for digital prosthetics growth and reasonable projected developments under different
conditions. It further generates qualitatively and directionally indicative results of digital
prosthetics’ impact on key amputee mobility and health-related socio-economic outcomes.
The strategic insights from our findings could further provide decision support for health
policy planning. To that end, further work should expand on these insights in a more
accessible language for relevant decision makers.
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Appendix A. Feedback Loop Descriptions

Here, we present the detailed feedback loop descriptions extracted from an earlier
version of this work [30]. Each description includes the causal pathway of the feedback
loop. The arrow symbol (à) represents a causal link between two variables. (+) indicates
a positive polarity, while (–) indicates a negative polarity. Polarities simply indicate the
directionality of the correlation. For instance, “A à(–) B à(+) C” should be interpreted as
such: when A increases, B decreases, and in turn C decreases. Here, the positive polarity
between B and C indicates that both vary in the same direction.

Prevention Pressure (B1): PAD Amputation à(+) PAD Prevention Programs à(-) PAD Incidence à(+) PAD Population
à(+) PAD Amputation

https://www.mdpi.com/article/10.3390/systems11010022/s1
https://www.mdpi.com/article/10.3390/systems11010022/s1
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This balancing feedback loop represents the prevention pressure faced by public health
agencies to address the prevalence of PAD. As PAD-related amputation rates increases over
time, we expect reporting from medical professionals to raise the alarms for stepping up
efforts towards primary prevention. This is observed, for instance, in trend studies of PAD
incidence and risk factors, calling for better detection and prevention interventions [57,58].
With increased reporting, we can expect more resources directed towards prevention
interventions such as screening, smoking cessation, nutritional and activity programs [57].
In the long run, such interventions could lead to a decrease in PAD incidence rate. Indeed,
there is evidence that PAD incidence have declined in the UK, which have been attributed
to the uptake of prevention strategies [58]. A declining PAD incidence would lead to a
reduction of the PAD Population over time, which would eventually decrease the PAD
Amputation Rate. Since an initial increase in amputation rate ends up with an eventual
decrease in amputation rate, this feedback loop has a negative polarity overall and is thus
described as a balancing loop.

Prosthesis Lifecycle (R1): Amputees in Prosthetic Care à(+) Successful Fitting à(+) Full Mobility à(+) Prosthesis
Degradation à(+) Awaiting Replacement à(+) Prosthesis Replacement à(+) Amputees in Prosthetic Care

This loop describes the lifecycle that is part of the lifelong holistic care for amputees
successfully fitted with a prosthesis [59]. As more amputees enter the prosthetic care
continuum from the primary care sector, there will be more people who are successfully
fitted with a prosthesis thus increasing the number of amputees with full mobility. However,
the prosthesis device has an average lifespan of three years [16,59]. Hence, over time,
prosthesis degradation increases the number of amputees awaiting replacement of their
devices before re-entering the prosthetic care continuum to be fitted for a new device again.
In this regard, this loop represents a growing pressure emanating from our best efforts to
successfully fit individuals with a prosthesis. While this closed aging chain engenders a
reinforcing mechanism, that transitions amputees through different stages of prosthetic
care, it does not endogenously accumulate the stocks without an exogenous inflow to the
Amputees in Prosthetics Care stock. As more amputees enter the prosthetics fitting stage
from elsewhere, the more the other stocks in this aging chain get filled.

Prosthetics Re-entry (R2): Amputees in Prosthetic Care à(+) Abandon Prosthesis à(+) Limited Mobility à(+) Readopt
Prosthesis à(+) Amputees in Prosthetic Care

R2 represents the Prosthetic Care Re-entry process for amputees. Not all amputees
who enter the care continuum end up with a prosthesis; some individuals dropout from
the fitting process or some abandon the device due to an unsuccessful fit [16,60]. Hence,
with more people in the continuum abandoning prosthesis, there will be more people
who are left with limited mobility due to the lack of a prosthesis device. However, more
amputees might later decide to readopt a prosthesis, thus re-entering the prosthesis fitting
process. Similarly, the reinforcing effect of this loop is dependent on an exogenous inflow
of amputees entering the closed aging chain.

Digital Growth (R3): Amputees in Digital Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of
Digital Fitting à(+) Digital Market Size à(+) Digital Market Share à(+) Digital Prosthesis Referral à(+) Amputees in

Digital Prosthetic Care

R3 is a reinforcing loop that represents the hypothesis for the market growth of digital
prosthetics. As more amputees get referred to a digital prosthetic clinic and more people
become successfully fitted with a prosthesis with better outcomes, we expect favorable
word-of-mouth diffusion about the success of digital prosthesis [61]. This is captured with
the Perceived Relative Success of Digital Fitting, which represents the mental perceptions
of people’s comparison of success between the digitally fitted prosthesis and traditional
plaster-casted device. Over time, we expect the attractiveness of digital fitting to grow the
digital market size and thus the market share of the digital prosthetics relative to traditional.
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With a higher market share, more amputees are probabilistically to be referred to a digital
prosthetist and thus driving up the number of amputees in the digital prosthetic care
continuum as opposed to the traditional one.

Digital Growth (R4): Amputees in Digital Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of
Digital Fitting à(+) Digital Market Size à(+) Digital Market Share à(+) Digital Prosthesis Readoption à(+) Amputees

in Digital Prosthetic Care

Similarly, the R4 loop drives up the number of amputees in Digital Prosthetic Care by
way of readoption. As the digital market share increases, potential re-adoptees looking to
restart their prosthetic fitting journey are more likely to seek out a digital prosthetist. The
assumption here is that as digital fittings experience more success, people are more likely
to be motivated to try the digital process and experience a similar success as others [61,62].
Thus, more re-adoptees enter the digital prosthetic care continuum as opposed to the
traditional one.

Access Constraint—B2, B3 and B4 Loops

Access Constraint (B2): Amputees in Prosthetic Care à(+) Fitting Demand à(-) Prosthetic Accessibility à(+) Prosthesis
Referral à(+) Amputees in Prosthetic Care

The balancing feedback loop B2 counteracts the reinforcing Digital Growth loops. As
more Amputees in Prosthetic Care are attracted to the digital prosthesis fitting process, the
Fitting Demand for digital prosthesis increases. In turn, this limits availability of resources
and limits Prosthetic Accessibility if demand outweighs the fitting capacity, which then
reduces the amount of people who can enter the prosthesis fitting process. Hence, the
Amputees in Prosthetic Care declines to a level lower than it otherwise would have been.
Through this balancing feedback, B2 dampens the strength of the R3 and R4 loops.

Access Constraint (B3): Prosthesis Readoption à(+) Subtotal Re-adoptees à(+) Fitting Demand à(-) Prosthetic
Accessibility à(+) Prosthesis Readoption

Access Constraint (B4): Amputees Awaiting Replacement à(+) Fitting Demand à(-) Prosthetic Accessibility à(+)
Prosthesis Replacement à(+) Amputees Awaiting Replacement

Fitting Demand is not solely determined by the number of Amputees in Prosthetic
Care. Amputees who have previously abandoned the fitting process and those seeking to
replace their degraded prosthesis device also make up the demand. Hence, B3 captures
a similar mechanism whereby more Prosthesis Readoption brings up the demand and
consequently reduces the Prosthetic Accessibility. B4, on the other hand, reduces the
Accessibility through the Prosthesis Replacement process. All three balancing loops work
in concert to counteract the reinforcing loops seeking to increase the demand for digital
prosthesis fitting.

Market Access (R5): Amputees in Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of Digital
Fitting à(+) Digital Market Size à(+) Fitting Capacity à(+) Prosthetic Accessibility à(+) Prosthesis Referral à(+)

Amputees in Prosthetic Care

The Market Access loops, however, interplay with the balancing Access Constraint
loops described above. In the longer term, these loops work to increase the Fitting Capacity
so as to improve the Prosthetic Accessibility that was driven down by increased demand.
With reference to R5 loop, when more Amputees in Prosthetic Care get successfully fitted
with the prosthesis and the perceived success of digital prosthesis relative to traditional
increases, the digital market share grows. The growth in market share is likely to lead to
the expansion of digital prosthetic clinics, which in turn drives up the Fitting Capacity.
Hence, with more capacity, more people have access to prosthetic services, and thus the
care continuum can accommodate a larger number of new amputees seeking a prosthesis.
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Market Access (R6): Amputees in Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of Digital
Fitting à(+) Digital Market Size à(+) Fitting Capacity à(+) Prosthetic Accessibility à(+) Readopt Prosthesis à(+)

Amputees in Prosthetic Care

Market Access (R7): Amputees in Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of Digital
Fitting à(+) Digital Market Size à(+) Fitting Capacity à(+) Prosthetic Accessibility à(+) Prosthesis Replacement à(+)

Amputees in Prosthetic Care

Likewise, R6 enables a larger number of people seeking to readopt the prosthesis fitting
process to enter the Prosthetic Care, whereas R7 enables more people waiting to replace
their old prosthesis to re-enter the care continuum at any one point in time. However, it
must be noted that increasing capacity involves a delay as it takes time to assess the market
and set up new clinics. Hence, the effects of Market Access loops are delayed.

Prosthesis Attractiveness (R8): Amputees in Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of
Digital Fitting à(-) Dropout Rate à(+) Abandon Prosthesis à(-) Amputees in Prosthetic Care

Prosthesis Attractiveness (R9): Amputees in Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of
Digital Fitting à(+) Re-adoption Rate à(+) Readopt Prosthesis à(+) Amputees in Prosthetic Care

As previously described, when people perceive digital prosthesis to be more successful
than traditional ones, the attractiveness of digital prosthesis is expected to increase through
word-of-mouth diffusion. However, a negative experience with the new technology would
reduce the consideration and available market. [61]. Hence, R8 captures the process by
which a higher attractiveness translates to a lower dropout rate as individuals might be
more motivated to see through the process and experience a similar success as others.
This could lead to fewer people abandoning the prosthesis fitting process and therefore
increasing the number of Amputees in Prosthetic Care to a level higher than it otherwise
would have been. Concurrently, R9, works to increase the re-adoption rate amongst those
who have previously abandoned the process. The higher attractiveness of digital fitting
would then increase the number of people readopting a prosthesis and thus re-entering the
prosthetic care continuum.

Prosthesis Abandonment (B5): Amputees in Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of
Digital Fitting à(-) Dropout Rate à(+) Abandon Prosthesis à(+) Limited Mobility à(+) Readopt Prosthesis à(+)

Amputees in Prosthetic Care

This balancing feedback loop counteracts the effects of R2 and R9, by draining the
number of people available for entering readoption process. When more amputees enter
the digital prosthetics care stage, more individuals are fitted with a digital prosthesis. As a
result, the perceived attractiveness of digital prosthetics increases. Amputees are therefore
less likely to dropout from digital prosthetics fitting. In turn, the Limited Mobility stock
does not accumulate as much as it otherwise would have. This takes away the effect of R2
and R9 since fewer amputees are available for the re-adoption process. Regardless, this is a
constructive effect that reduces rates of prosthesis abandonment and yields better overall
mobility outcomes.

Technology Development (R10): Innovation Developed à(+) Guidance of Search à(+) Resources to R&D à(+) Innovation
Development à(+) Innovation Developed

This feedback loop represents the process of technological knowledge development,
typical of research and development (R&D), required for any TIS to grow [35,63]. As more
innovation is developed, the Guidance of Search for the technology increases. Guidance
of search refers to the “visibility and clarity” of the state of the art [35] (p. 423) that
reflects the “promises and expectations of the emerging technology” [63] (p. 56). It helps
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in the priority-setting process for R&D resource allocation and “thus the direction of
technological change” [35] (p. 423). Hence, in this context, increased Guidance of Search for
the digital solutions in prosthetic fittings, would help increase the Resources to R&D, which
would enable further Innovation Development that increases the Innovation Developed
even more [62].

Knowledge Diffusion (R11): Knowledge Diffused à(+) Guidance of Search à(+) Resources to R&D à(+) Knowledge
Diffusion à(+) Knowledge Diffused

Knowledge Diffusion, R11 loop, refers to process by which various actors in the TIS
interact and exchange knowledge and thus establish “a mutual understanding” that enables
institutions to gradually adjust to new technologies [63] (p. 55). Since Guidance of Search is
also “an interactive and cumulative process of exchanging ideas” [35] (p. 423), it increases
with more Knowledge Diffused [36]. In turn, this works to increase the Resources to R&D,
which further enables more Knowledge Diffusion.

Knowledge Erosion (B6): Knowledge Diffused à(+) Guidance of Search à(+) Resources to R&D à(+) Innovation
Development à(+) Knowledge Decay à(-) Knowledge Diffused

B6 loop represents the process of Knowledge Erosion, which counteracts R11. Knowl-
edge Diffused can become “obsolete over time (due to new technological developments,
etc.)” [38] (p. 4). When knowledge diffusion increases guidance of search, and thus secures
more resources for R&D to further develop innovation, previously diffused knowledge
become outdated, and thus increases the Knowledge Decay. In turn, this drains the body of
Knowledge Diffused.

Innovation Attractiveness (R12): Innovation Developed à(+) Perceived Legitimacy à(+) Entrepreneurial Activity à(+)
External Funding à(+) Total Resources à(+) Resources to R&D à(+) Innovation Development à(+)

Innovation Developed

According to Hekkert et al. [35] and Surrs [63], entrepreneurs are central to any TIS.
Entrepreneurs refer to actors within the system whose “actions are directed at conducting
market-oriented experiments with an emerging technology” [63] (p. 54). The Innovation
Attractiveness loop represents the process of attracting new entrepreneurs to the system
through innovation. When the Innovation Developed increases, technological legitimacy
of the innovation system increases [36]. As potential entrants perceive the legitimacy
of the emerging technology positively, they are more willing to enter the market, thus
increasing the Entrepreneurial Activity. Entrepreneurial activities indicate the health and
sustainability of an innovation system [35]. Higher levels of Entrepreneurial Activity thus
increase the Total Resources in the system by way of attracting more External Funding or
resources from private or public actors [36,63]. In turn, more resources become available
for R & D, which spurs further development of innovation that increases the attractiveness
to entrepreneurs even more.

Knowledge Attractiveness (R13): Knowledge Diffused à(+) Perceived Legitimacy à(+) Entrepreneurial Activity à(+)
External Funding à(+) Total Resources à(+) Resources to R&D à(+) Knowledge Diffusion à(+) Knowledge Diffused

R13 loop works in a similar mechanism in attracting entrepreneurs. Technological
legitimacy is a function of both Innovation Developed and Knowledge Diffused. The more
knowledge about the technological innovation diffused in various networks, the higher the
perceived legitimacy of the technology. Loops R12 and R13, thus, work concurrently and in
concert to shore up the attractiveness of the emerging technology to potential market actors.

External Engine (R14): Entrepreneurial Activity à(+) External Funding à(+) Total Resources à(+) Resources to Market
Development à(+) Entrepreneurial Activity
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The External Engine loop represents the effect of external funding in reinforcing the
growth of entrepreneurial activity within the emerging market. As explained previously,
Entrepreneurial Activity can build confidence in the prospect of investment, thus increasing
funding and resources from external actors, either private funders or governmental bodies.
This increases the Total Resources available for market development. External backing
reduces the perceived entrepreneurial risks involved, and consequently is better able to
attract further entry into the market to spur even more Entrepreneurial Activity [36,63].

Internal Engine (R15): Entrepreneurial Activity à(+) Market Infrastructure à(+) Market Size à(+) Internal Resources
from Market à(+) Total Resources à(+) Resources to Market Development à(+) Entrepreneurial Activity

While the external engine stimulates entrepreneurial activity temporarily, the Internal
Engine endogenously generates internal (“financial, material, human capital”) resources
over the longer term through market formation to become self-sufficient [63] (p. 57). With
reference to R15, increased Entrepreneurial Activity leads to the development of Market
Infrastructure [39]. Entrepreneurs contribute to the “development of formal market rules,
establishment of intermediary networks, the building of infrastructure, or the development
of formal regulations” [38] (p. 1837). Through establishing the Market Infrastructure for
market formation, entrepreneurial activity “contribute to the creation of a demand for
the emerging technology” [63] (p. 56). This increases the Market Size for the technology
that generates Internal Resources from the Market. In turn, with more Total Resources in
the innovation system, Entrepreneurial Activity can further flourish by attracting more
entrants to the system.

System Building (R16): Perceived Legitimacy à(+) Entrepreneurial Activity à(+) Market Infrastructure à(+) Perceived
Legitimacy

Previously, we discussed how innovation diffusion increases the technological legiti-
macy of the emerging technology. Here, we consider market legitimacy, which stems from
established market structures [36]. When market infrastructure is developed, it reduces
market formation uncertainty and the perceived cost to participation [39]. With reference to
R16, as the Perceived Legitimacy of the emerging technology increases, more entrepreneurs
are willing to overcome perceived risks and enter the market. Consequently, the develop-
ment of Market Infrastructure increases with the growth of Entrepreneurial Activity. This
feeds back into increasing the market legitimacy of the emerging technology.

System Legitimacy (R17): Entrepreneurial Activity à(+) Market Size à(+) Internal Resources from Market à(+) Total
Resources à(+) Resources to Market Development à(+) Market Infrastructure à(+)

Perceived Legitimacy à(+) Entrepreneurial Activity

The System Legitimacy loop, R17, encompasses the aforementioned smaller loops
R15 and R16, and “constitutes the most powerful self-reinforcing loop, potentially able
to drive the whole system” [36] (p. 1838). Following the previous explanations provided
for the individual links between variables, we observe that when Entrepreneurial Activity
increases Market Size through market formation, Internal Resources from the Market
burgeon and increase the Total Resources. This translates to more Resources for Market
Development, which enables further development of Market Infrastructure. Consequently,
the market legitimacy of the technological innovation flourishes, and thus begets even
more Entrepreneurial Activity.

Resistance (R18): Regime Resistance à(-) Perceived Legitimacy à(+) Entrepreneurial Activity à(+) Market
Infrastructure à(-) Regime Resistance

Market formation of a new technology is bound to precipitate “resistance from actors
with interests in the incumbent” regime [63] (p. 57). This Resistance is captured in R18.
Regime Resistance decreases the market legitimacy of the emerging technology, for instance
“when regime actors try to influence public discourses, or lobby against favourablefavorable
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support” [36] (p. 1837). In turn, entrepreneurs might be less willing to enter the market
due to higher perceived risks, thus reducing the Entrepreneurial Activity to a lower level
than it otherwise would have been. In turn, there will be less Market Infrastructure
development to counter Regime Resistance, which further emboldens resistance given the
inverse relationship. The underlying mechanism for the negative link is supported by the
fact that market infrastructure enables the system “to become less dependent on external
dynamics and counter-balance regime-resistance” [36] (p. 1838). Importantly, R18 could
work in a virtuous or vicious manner, depending on whosever perspective, either working
to reinforce more resistance or reduce it.

Sailing Ship (B7): Perceived Legitimacy à(+) Entrepreneurial Activity à(+) Market Infrastructure à(+) Market Size à(+)
à(+) Regime Resistance à(-) Perceived Legitimacy

As the emerging market grows and competes with the incumbent regime, resistance
could also come in the form of innovation. Given the new threat, regime actors would
“increase their efforts to improve the performance of the existing regime through inno-
vation” [36] (p.1838). This “response aimed at improving the incumbent technology”
is referred to as the sailing-ship effect [64,65] (p. 593). The Sailing Ship effect is thus
represented in the balancing loop, B7. When the Perceived Legitimacy of the emerging
technology increases, which attracts more entrepreneurial activity and thus market forma-
tion, the Sailing Ship Effect increases. This contributes to a stronger Regime Resistance,
which consequently reduces the Perceived Legitimacy of the emerging technology. This
loop thus seeks to counteract the effect of the System Legitimacy loop, R17.

In the top-level health care system, we assumed that the Perceived Relative Success of
Digital Fitting will lead to an increase in Digital Market Size, thus masking the underlying
structure between that link. Here, we consider the conceptual model in the Market Forma-
tion subsystem that could possibly explain how exactly the two variables are linked. Since
R3 and R4 share a similar pathway in the subsystem, we only comment on R3.

Digital Growth (R3): Amputees in Digital Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of
Digital Fitting à(+) Digital Fitting Reputation à(+) Perceived Legitimacy à(+) Entrepreneurial Activity à(+) Market
Infrastructure à(+) Digital Market Size à(+) Digital Market Share à(+) Digital Prosthesis Referral à(+) Amputees in

Digital Prosthetic Care

When the perceived relative success of digital fittings increases, we expect the emerg-
ing digital technology for prosthesis fitting to start amassing a reputation. This formed
reputation improves technological legitimacy, which would attract more Entrepreneurial
Activity to the emerging technological innovation system. Hence, the System Legitimacy
loop works to increase the Market Infrastructure as well as Market Size for digital prosthet-
ics. Consequently, the Digital Market Share rises to compete with the traditional prosthetics
industry. The Digital Growth loops and the System Legitimacy loop thus work in tandem
to increase the number of Amputees in Digital Prosthetic Care.

Market Access (R5): Amputees in Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of Digital
Fitting à(+) Digital Fitting Reputation à(+) Perceived Legitimacy à(+) Entrepreneurial Activity à(+) Market

Infrastructure à(+) Digital Market Size à(+) Prosthetic Clinics à(+) Fitting Capacity à(+) Prosthetic Accessibility à(+)
Prosthesis Referral à(+) Amputees in Prosthetic Care

Similarly, we expect the interaction of the Market Access loops and the System Legiti-
macy loop. As Digital Fitting Reputation forms over time and builds the Digital Market
Size, through the same pathway described above, we expect the expansion of digital pros-
thetic clinics that increases the Fitting Capacity. This improves the Market Access in the
digital prosthetic continuum, which enables more people to be fitted with a prosthesis and
improves the overall mobility outcomes.
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