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Abstract: With the economic development in China, haze risks are frequent. It is important to study 
the urban haze risk assessment to manage the haze disaster. The haze risk assessment indexes of 11 
cities in Fenwei Plain were selected from three aspects: the sensitivity of disaster-inducing environ-
ments, haze component hazards and the vulnerability of disaster-bearing bodies, combined with 
regional disaster system theory. The haze hazard risk levels of 11 cities in Fenwei Plain were evalu-
ated using the matter-element extension (MEE) model, and the indicator weights were determined 
by improving the principal component analysis (PCA) method using the entropy weight method, 
and finally, five haze hazard risk assessment models were established by improving the particle 
swarm optimization (IPSO) light gradient boosting machine (LightGBM) algorithm. It is used to 
assess the risk of affected populations, transportation damage risk, crop damage area risk, direct 
economic loss risk and comprehensive disaster risk before a disaster event occurs. The experimental 
comparison shows that the haze risk index of Xi’an city is the highest, and the full index can improve 
the evaluation accuracy by 4–16% compared with only the causative factor index, which indicates 
that the proposed PCA-MEE-ISPO-LightGBM model evaluation results are more realistic and relia-
ble.  

Keywords: haze hazard; principal component analysis; entropy weight method; matter-element ex-
tension model; risk assessment; ISPO-LightGBM 
 

1. Introduction 
Air pollution in 2017 was estimated to have caused about 4.9 million deaths globally, 

while PM2.5 alone was responsible for 2.94 million deaths [1]. In China, the WHO’s annual 
median PM2.5 concentration model shows that only parts of Tibet meet the organization’s 
air quality guidelines [2]. The severely hazardous haze also causes between 1.2 and 1.6 
million premature deaths per year [3]. The excessive consumption of fossil fuels, such as 
coal, has been shown in previous studies to be responsible for significant deteriorations 
in air quality [4,5]. The contribution of the secondary aerosol formation of VOCs to haze 
formation is significant [6,7]. VOCs are a key precursor for the formation of O3 and sec-
ondary organic aerosols (SOA) [8]. SOA are an important component of fine particulate 
matter and a major contributor to haze pollution [9,10]. Studies have shown that haze 
pollution in China is mainly driven by SOA [11]. Severe haze pollution leads to poor air 
quality and an estimated 2.6 to 4.8 million premature deaths worldwide each year [12–
14]. There is direct evidence of the human health effects of haze air pollution exposure 
related to respiratory VOC biomarkers, such as propanol and isoprene, in haze pollution 
[15]. 

How to prevent and control urban haze disasters has become one of the major issues 
facing China’s sustainable economic development and harmonious urban development. 
The formation of urban haze has many causal factors, a wide impact, and a social and 
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complex nature. The risk components of urban haze vary from place to place, and the 
study of urban haze risk assessment is important for proposing countermeasures for ur-
ban haze management from the perspective of risk prevention and control. This paper is 
expected to provide decision-making references for the development of targeted urban 
disaster prevention and mitigation systems, energy conservation and environmental pro-
tection, and haze management. 

Haze events are frequent in China’s highly industrialized, economically developed 
and densely populated urban areas with a long duration and record air pollutant concen-
trations [16]. Urbanization has provided inexhaustible impetus for China’s economic de-
velopment, which raises the question of the relationship between the advancement of ur-
banization and haze pollution. Some scholars have used the development of urbanization 
as the main research variable through the construction of mathematical models to show 
that the development of urbanization exacerbates haze pollution [17,18]. Singh et al. also 
showed that for most PM2.5 haze-causing studies in South Asia, vehicle emissions emerged 
as the dominant source [19]. Latif et al. found that local vehicle emissions and industrial 
activities are significant contributors to haze pollutants in Malaysia [20].  

Researchers have studied the atmospheric haze causality of haze systems using a va-
riety of methods, such as Zhang et al. who combined causal analysis and stochastic non-
linear features to construct a haze hazard prediction model for Beijing and simulated haze 
hazard trends under different governance and control policies [21]. Several researchers 
have studied mathematical models for haze prediction, including nonparametric regres-
sion models [22,23], deep recurrent neural networks [24,25], inverse matrix-free machine 
learning models [26], the nonlinear gray model [27] and graphical networks [28,29]. These 
methods avoid the analysis of the complex details and mechanisms of haze hazards. Clar-
ifying the causal relationships among the factors influencing haze hazards is a prerequi-
site for building haze prediction models. To explore the atmospheric haze causality of 
haze systems, some other methods have been applied including Granger causality analy-
sis [30,31], convergent cross mapping [32] and machine learning [33,34]. Factors influenc-
ing the haze hazard include oceanic transport at the marine level [35,36], local and global 
pollution emissions [37,38] and the interaction of industrial emissions with atmospheric 
dispersion [39,40].  

Unfortunately, these studies were unable to describe the dynamic formation and evo-
lutionary mechanisms of cross-regional haze hazards. The above methods have improved 
the efficiency of the assessment to a certain extent, but there are still obvious shortcom-
ings, mainly because it is not easy to explain the role of each model parameter, which is 
similar to a “black box” operation and cannot explain the role of different indicators in the 
disaster risk assessment. Meanwhile, the original risk assessment model of urban haze 
pollution loss is slow in conducting risk assessments and has the problem of poor accu-
racy of the assessment results. In this paper, we selected the haze disaster cases in Fenwei 
Plain of China as training samples, collected 13 indicators that may affect the haze disaster 
risk at a county level and established a haze disaster risk assessment process model based 
on the PCA-MEE-ISPO-LightGBM algorithm. 

2. Data Sources and Methods 
2.1. Data Sources 

Economic density and population density are from the Data Center for Resource and 
Environmental Sciences, Chinese Academy of Sciences, 2016–2021 
(https://www.resdc.cn/Default.aspx) (accessed on 17 November 2022). The annual average 
concentrations of PM10, PM2.5, SO2, VOCs and NO2 for 2016–2021 were calculated from the 
daily data downloaded from the National Real-Time Urban Air Quality Release Platform 
(http://106.37.208.233:20035/) (accessed on 17 November 2022). Other data are mainly from 
the Shaanxi Provincial Statistical Yearbook 2016–2021, the Henan Provincial Statistical Yearbook 
2016–2021, the Shanxi Provincial Statistical Yearbook 2016–2021 and the statistical yearbooks 
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of prefecture-level cities. As shown in Figure 1, this paper selects the Fenwei Plain as the 
study area including 11 cities in Shaanxi, Shanxi and Henan. Red dots indicate 129 coun-
ties’ data. 

 
Figure 1. Location of study area. 

According to the regional hazard system theory [41], in the formation of a disaster, 
the risk of disastrous factors, environmental sensitivity of the disaster and the disaster-
bearing body are indispensable. The environmental sensitivity of the disaster refers to the 
earth’s surface environment, including the natural and man-made environment, where 
the disaster-causing factors are formed in the disaster-causing environment and directly 
lead to the occurrence of the disaster. The disaster-bearing body refers to the object that 
suffers from the disaster and is adversely affected. The risk of disastrous factors, environ-
mental sensitivity of the disaster and disaster-bearing body jointly determine the magni-
tude of the haze disaster risk. Research shows that the main material components of urban 
haze are toxic gases and respirable particulate matter, which mainly come from human 
production and life; the formation of urban haze is influenced by human factors. In terms 
of the anthropogenic factors, the more developed the economy, the more motor vehicles 
owned by urban residents, the more exhaust emissions from motor vehicles and the in-
creased risk of haze disasters. The development of the secondary industry is often accom-
panied by pollution and damage to the environment. The more a region relies on the sec-
ondary industry for its economic development, the more serious the pollution and dam-
age to the environment and the greater the sensitivity to haze disasters. The greater the 
consumption of coal in a region, the more industrial emissions and the greater the risk of 
haze disaster. In addition, building construction is also a major source of respirable par-
ticulate matter; the larger the area of building construction in a region, the higher the con-
centration of respirable particulate matter and the greater the risk of haze disaster. 

The regional hazard system is an earth surface heterogeneous system composed of 
the three aforementioned factors, and the disaster risk is influenced by the combined effect 
of the three aforementioned factors. In this paper, five indicators are selected from anthro-
pogenic factors to quantitatively evaluate the sensitivity of the environmental sensitivity 
of disaster in the Fenwei Plain, including economic density, which represents the degree 
of economic development in a city; the number of motor vehicles, which represents the 
amount of motor vehicle emissions; the share of secondary industry, which represents the 
dependence of a region’s economy on the secondary industry; the share of coal consump-
tion, which represents the industrial pollution emissions of a city; and the area of housing 
construction, which represents the housing construction projects of a region. The harm-
fulness of haze components refers to the damage of various components of haze to urban 
economy and residents’ health. As shown in Table 1, five indicators, including the annual 
average concentration of VOCs, PM10, PM2.5, SO2 and NO2 were selected as the evaluation 
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indicators of haze component vulnerability in Fenwei Plain. The population density, the 
number of health institutions and green areas in built-up areas are selected as the evalua-
tion indicators of the vulnerability of urban haze. In hazy weather, the concentration of 
aerosols in the air rises, the atmospheric layer is relatively stable and unfavorable for the 
convective diffusion of air, the humidity and visibility of the atmosphere change dramat-
ically, and people’s lives and health are greatly adversely affected. The greater the popu-
lation density of a city, the greater the number of people suffering from haze and the 
greater the vulnerability of the disaster-bearing body. The greater the number of health 
institutions, the more developed the medical care, and the higher the carrying capacity of 
the medical system in the area, the more people can be treated and cured from the haze, 
reducing the risk of the haze and the vulnerability of the city to haze. Urban greening can 
absorb harmful gases and dust, reduce air pollution and reduce the vulnerability of the 
disaster-bearing body. Therefore, the population density, number of health institutions 
and green areas in built-up areas are selected as the evaluation indexes of urban haze 
vulnerability. 

Table 1. Fenwei Plain haze disaster risk assessment index system. 

First-Grade Indexes Second-Grade Indexes Unit Abbreviations 
Positive/Negative Indica-

tors 

Risk of disastrous fac-
tors (RD) 

Economic density CNY Billion/km2 ED Positive indicators 
Number of motor vehi-

cles Num. NMV Positive indicators 

Percentage of secondary 
industry % SSVP Positive indicators 

House construction area m2 HCA Positive indicators 
Share of coal consump-

tion % COC Positive indicators 

Environmental sensi-
tivity of disaster (ESD) 

VOCs μg/m3 - Positive indicators 
PM10  μg/m3 - Positive indicators 
PM2.5 μg/m3 - Positive indicators 
SO2 μg/m3 - Positive indicators 
NO2 μg/m3 - Positive indicators 

Disaster-bearing body 
(DBB) 

Population density Persons/km2 PD Positive indicators 
Number of health insti-

tutions Num. NHI Negative indicators 

Greening area of built-
up area hm2 ACB Negative indicators 

2.2. Methods 
2.2.1. Matter-Element Extension Model 

The basic idea of the matter-element extension model is to first delineate the catego-
ries of objects to be evaluated and delineate the different categories according to the rele-
vant research results. Extension is a subject based on extension mathematics and matter 
element theory; matter element is the logical cell of extension [42]. Assuming that the 
name of the thing is N, the response thing feature is C, and the value range of C is V, the 
ordered triple R = {N, C, V} can be used as the basic matter element to describe the thing. 
The risk of haze disaster caused by VOCs is defined as the basic matter element R, then N 
represents the risk of haze disaster, C represents the risk characteristics, and V is the char-
acteristic value. If N has n features C1, C2, ..., Cn, then 
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(1) Determine the classical domain 
According to the risk of haze disaster caused by VOCs, the risk assessment of haze 

disaster caused by VOCs is divided into e classification levels (e = 1, 2, ..., s). The risk level 
of haze disaster is set, and jC  is the evaluation index of emergency management ability 
(j = 1,2..., n). The value range of jC  is 0ejV , and its classical domain can be expressed as 
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0eR  is the classical domain matter element. 

(2) Determine the nodal domain 
The matter-element of VOC-induced haze disaster risk assessment is essentially the 

atmosphere corresponding to each evaluation index (the range from the lowest value to 
the highest value). The eigenvalues of the object unit Np (p = 1, 2, ..., m) can be evaluated 
according to the actual situation and scored according to the classification criteria, estab-
lishing the matter-element to be evaluated. The matter-element to be evaluated can be 
expressed as: 
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pR is a nodal matter element; np is the individual to be tested for VOC-induced haze dis-
aster risk assessment; and ,pj pn pnV a b=< >  is the magnitude range of the node domain 
matter element with respect to the characteristic jC , where 0 0,ej eja b< >  ... ,pj pja b< > , (j 
= 1,2..., n).  
(3) Establish evaluation index correlation function 

Calculating the correlation coefficient of evaluation index, the correlation function is: 
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(4) Define the entropy of evaluation indicators 
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kir  denotes the element of the k th row and i th column of the normalized matrix. Let 

kif  denote the element of the k th row and i th column of the evaluation index after 
standardization. 

Then, the entropy iH  of the evaluation index is 
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Determine the entropy weight of each evaluation index iw . Calculate the entropy 
weight of the evaluation index using the following formula: 
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(5) Calculate the comprehensive correlation degree of each evaluation index 
The comprehensive correlation degree of each evaluation index, also known as multi-

factor comprehensive correlation degree, refers to the degree of belonging of the evalua-
tion index to each evaluation grade, which can be expressed as: 

1
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m
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In the formula, iw  is the weight vector of each evaluation index and satisfies 

1
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m

i
i
w

=
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(6) Calculate the VOCs’ haze disaster risk assessment level 
The general matter-element extension model criterion adopts the principle of maxi-

mum membership degree; that is, { }0 1,2, ,( ) max ( )ie ti e sk N k N ==  . Then, the risk level N of 

VOCs haze disaster to be evaluated belongs to level e. This method sometimes cannot 
contain complete evaluation information. The use of asymmetric closeness principle can 
better solve the problem of maximum membership principle failure. The asymmetric 
proximity method [43] is: 

1

1

1( , ) 1 ( ) ( )
n tq q

A t B t
t

N A B
n

μ μ μ μ
=

= − −  (10)

In the formula, ( )A tμ μ  and ( )B tμ μ  are the membership degrees of objects corre-
sponding to A and B, respectively, which belong to tμ . Among them, q  plays a regula-
tory role in the calculation results and compensates with the role of 1/ t , which can help 
make the calculation results more conducive to classification. 0q>  can be used, and the 
value should not be too large as this is not conducive to grading, and 3q=  is taken in this 
application study. If ( , ) max ( , )( 1,2, , )iN A B N A B i n= =  , the emergency management ca-
pability level is e. 
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2.2.2. Index Weight Determination Method 
Traditional Principal Component Analysis 

Principal component analysis is a mathematical method to reduce the dimension of 
a variety of sample data through certain mathematical means to improve the concentra-
tion of sample information [44]. The specific steps of principal component analysis are as 
follows:  ① Calculate the covariance matrix. The covariance of normalized sample data is 

1

1 ( )( ) ( , 1,2, , )
n

k jkj ik ij
i

s X X X X k j p
n =

= − − =      (11)

In the formula, kjs is the covariance value of the k evaluation index and the j evalu-

ation index; and kX  is the normalized sample mean of the k evaluation index. ② Calculate the eigenvalues and unit eigenvectors of the covariance matrix. Under 
the condition of data sample normalization, the covariance matrix is the correlation coef-
ficient matrix. The eigenvalues jλ  ( 1,2,j p=  ) and eigenvectors of the j th evaluation 
index of the correlation coefficient matrix are obtained using the Jacobian determinant 
method. The eigenvalues are sorted from large to small ( 1 2 ... 0pλ λ λ≥ ≥ ≥ >       ). The 
variance contribution rate is the proportion of a certain eigenvalue to the total number of 
eigenvalues: 

1

( ) ( , 1,2, , )j
j p

k
k

G j k p
λ

λ
λ

=

= =


   (12)

( )jG λ  is the variance contribution rate of jλ . 
③ Select the principal component. The cumulative variance contribution rate of the 

principal component is 

1 1
( ) / ( , , 1, 2, , )

pm

j k
j k

G m m j k pλ λ
= =

= =     (13)

In the formula, ( )G m  is the cumulative variance contribution rate of the first m  ei-
genvalues. When ( )G m  > 85%, m  is called the principal component. 

④ Calculate principal component load: 

( 1,2, , ; 1,2, , )cj c cjl a c m j pλ= = =    (14)

In the formula, cF  is the c  principal component score, and pX  is the p  evalua-
tion index of the normalized sample matrix. ⑤ Calculation of principal component scores: 

1 1 2 2 ( 1, 2, , )c c c cp pF a X a X a X c m= + + + =      (15)

where cF  is the c th principal component score, and pX  is the p th evaluation indica-
tor of the normalized sample matrix. 

 Calculate the composite principal component score: 

1

1

( 1, 2, , )
m

c
cm

c
d

d

F F c mλ

λ=

=

= × =


    
(16)

F  is the comprehensive principal component score of traditional principal component 
analysis. 

The Improvement of Principal Component Analysis using Entropy Weight Method 
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The entropy weight method is an objective weighting method to describe the irre-
versible phenomenon of molecules. The greater the difference between the parameters of 
a system, the more information it contains and the smaller the entropy value; in contrast, 
the greater the entropy value, to evaluate the contribution of a weight index to the system. 
The entropy weight method has the advantages of highlighting the local information of 
the system and being less affected by subjective factors and has been widely used in many 
engineering fields [45]. When the first principal component of the traditional principal 
component analysis method does not meet the requirement that the cumulative variance 
contribution rate is greater than 85%, multiple principal components need to be fused, 
and the weight distribution among the principal components is the main factor affecting 
the lithology stratification effect. The traditional principal component analysis method is 
to calculate the variance contribution rate of each principal component by weighting the 
principal components, but the principal components are independent of each other, and 
the information content of the calculation results may not rise but fall. In this paper, the 
entropy weight method is used to improve the traditional principal component analysis 
method. According to the variation degree of each principal component of the traditional 
principal component analysis method, the entropy weight method is used to recalculate 
the weight of each principal component. Finally, the comprehensive value of the entropy 
weight principal component is used as the index parameter of the haze risk division. The 
steps are as follows： ① Normalization calculation of each principal component: 

(min)*

(max) (min)

1, 2, , ; 1, 2, ,ic c
ic

c c

F F
F i n c m

F F
−

= = =
−

    （ ）  (17)

In the formula, *
icF  is the normalized score of the c  principal component of the 

first sample, icF  is the score of the c  principal component of the i  sample, (max)cF  is 
the maximum score of the c  principal component, and (min)cF  is the minimum score of 
the c  principal component. 

② Calculate the proportion of each principal component sample: 

1

1 ln 1,2, , ; 1,2, ,
ln

n

c ic ic
i

E p p i n c m
n =

= − × = =    （ ）  (18)

cE  is the entropy of the c  principal component. 
③ Calculate the weight of each principal component: 

1
(1 ) / (1 ) ( , 1,2, , )

m

c c f
f

E E c f mω
=

= − − =     (19)

where cω  is the weight of the c  th principal component. 
④ Calculate the entropy principal component composite score: 

'

1
( 1,2, , ; 1,2, , )

m

c ic
c

F p i n c mω
=

= × = =       (20)

2.3. Calculate the Weight of Each Evaluation Index 
As shown in Table 2, the KMO sampling fitness number for this principal component 

analysis is 0.684, which is greater than its threshold value of 0.5, indicating that there is 
correlation between the variables, which meets the requirements. The Sig value is 0.000, 
which is less than 0.05, which indicates that this data can be subjected to principal com-
ponent analysis and is scientific and informative. The eigenvalues and contribution rates 
of each principal component are shown in Table 3. According to the principle that the 
eigenvalue is greater than 1, the first three items are selected as the main components, and 
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the variance contribution of these three items are 39.76, 22.74 and 15.39%, respectively, 
and the cumulative contribution of the three items is 77.9%, which can basically reflect the 
information of the original indexes. The first 3 items are used as principal component fac-
tors and denoted by F1, F2 and F3, so that the original 13 indicators are replaced by the 
first 3 principal components, and the loading status of each factor on the original indica-
tors can be calculated at the same time.  

Table 2. KMO test and Bartlett’s test. 

Bartlett’s Sphericity Test 
KMO  0.684 

Approximate cardinality 720.527 
Df 66.000 
P 0.000 *** 

Note: ***, ** and * represent 1, 5 and 10% significance levels, respectively. 

Table 3. Principal component loading matrix. 

Ingredients 
Characteristic Root 

Characteristic Value Percentage of Variance Accumulation 
1 5.169 39.76% 39.76% 
2 2.957 22.74% 62.50% 
3 2.001 15.39% 77.90% 
4 0.886 6.82% 84.71% 
5 0.638 4.91% 89.62% 
6 0.431 3.31% 92.94% 
7 0.326 2.51% 95.44% 
8 0.242 1.86% 97.30% 
9 0.167 1.28% 98.59% 

10 0.111 0.85% 99.44% 
11 0.044 0.34% 99.78% 
12 0.023 0.18% 99.96% 
13 0.006 0.04% 100.00% 

As seen in Table 3, the F1 eigenvalue is 5.169, with a contribution rate of 39.76%. As 
seen in Table 4, tops the three principal components and is the primary driver of haze risk 
formation in Fenwei Plain cities. Analysis of the principal component F1 loadings reveals 
that the 1st principal component F1 has large values above 0.66 for indicators X1 (eco-
nomic density), X4 (share of coal consumption), X11 (population density) and X12 (num-
ber of health institutions), which indicates that economic development density, coal con-
sumption, population density and health institutions are the first constituents of haze risk. 
The top 3 loadings of principal component F2 are X3 (number of motor vehicles), X5 (hous-
ing construction areas), X6 (annual average concentration of VOCs) and X8 (annual aver-
age concentration of SO2), which shows that the haze hazard in Fenwei Plain cities is 
mainly dominated by the toxic gases VOCs and SO2. The indicator with the highest prin-
cipal component F3 loading value is X7 (annual average PM10 concentration), followed by 
PM2.5 and the share of secondary industry, reflecting that PM2.5, PM10 and secondary in-
dustry are also important environmental factors in the formation of haze risk. 

Table 4. Principal component loading matrix. 

 Indicators F1 F2 F3 
X1 Economic density 0.872 0.227 −0.339 
X2 Percentage of secondary −0.327 −0.445 0.482 
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sector of economy 
X3 Number of motor vehicles −0.476 0.755 −0.23 
X4 Share of coal consumption 0.662 −0.552 0.216 
X5 Area of housing construction −0.541 0.674 −0.04 
X6 Annual average VOCs concentration 0.625 0.681 −0.065 
X7 Annual average PM10 concentration 0.473 0.25 0.759 
X8 Annual average SO2 concentration −0.414 0.63 0.425 
X9 Annual average NO2 concentration 0.644 0.119 0.365 

X10 Annual average PM2.5 concentration 0.246 0.511 0.666 
X11 Population density 0.929 0.21 −0.153 
X12 Number of health establishments 0.773 −0.218 0.141 
X13 Area of greenery coverage 0.788 0.297 −0.416 

2.4. Haze Hazard Risk Principal Component Composite Score and Ranking 
The loadings in the principal component loadings matrix reflect the extent to which 

the indicators play a role in the formation of haze risk, so the indicator weights can be 
expressed in terms of the indicator loadings. Using the weighted model, the scores of the 
evaluation units on the 3 principal components and the haze risk indices on the different 
principal components can be calculated as: 

i
iy j jF WX=   (21)

where iyF  is the haze risk index of the i th evaluation unit on different principal compo-
nents, e.g., in the 1st principal component, it is the haze risk index of evaluation unit ion 
F1. jW  is the loading value of the j th indicator on the corresponding principal compo-

nent, and i
jX  is the standardized value of the j th indicator of the i th evaluation unit. 

According to the principle of principal component analysis, the proportion of each 
principal component to the cumulative contribution reflects the importance of each prin-
cipal component. The weight can be determined by analyzing the contribution of the prin-
cipal components, and the weighting model can be used to calculate the comprehensive 
score of the evaluation unit, which is the comprehensive haze risk index F. It is calculated 
as: 

1 1 2 2 3 3

1 2 3

( )FP F P F P
F

P P P
+ +

=
+ +

  (22)

where 1F , 2F  and 3F  represent the scores of the first, second and third principal com-
ponents, respectively, whereas 1P , 2P  and 3P  represent their corresponding contribu-
tion rates. 

2.5. LightGBM 
The light gradient lifter is a decision tree algorithm proposed based on gradient one-

sided sampling and unique feature bundling with optimization in the negative gradient 
direction of the loss function [46]. The LightGBM algorithm is more efficient in processing 
high-dimensional big data due to the unique feature bundling (EFB) algorithm and gra-
dient-based one-sided sampling (GOSS) algorithm in LightGBM. Suppose a training set 
Q , { } 1( , ) Ni i iQ x y

=
= , consisting of N samples, where { }1 2, , ,i kx X x x x∈ =   represents the 

data, X  denotes the k -dimensional vector space, { }0,1iy Y∈ =  represents the category 
labels, and 1iy =  denotes the faulty samples. The objective of the LightGBM algorithm is 
to find a mapping relation ( )G x  to approximate the function ( )G x , such that the loss 
function ( , ( ))y G xφ  is minimized. The objective function can be expressed as: 
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1
1
( , ( ) ( )) ( )

m

t i t i t i k
i k

L L y f x h x J fγ−
=

= + + + Ω    (23)

where 1( , ( ) ( ))i t i t iL y f x h x− +  is the loss function, and ( )kfΩ  denotes the regular term un-
like the fast descent method of GBDT.  

LightGBM uses Newton method to quickly approximate the objective function. 
Equation can be derived as: 

2

1

( )( ( ) ) ( )
2

m
i t i

t i t i k
i k

h f xL g f x f
=

≅ + + Ω    (24)

ig  represents the first-order loss function, and ih  represents the second-order loss func-
tion. The equation is as follows: 

1( ) 1( , ( ))
t ii F x i t ig L y f xσ
− −=   (25)

1( ) 1( , ( ))
t ii F x i t ig L y f xσ
− −=   (26)

The information gains in LightGBM are as follows: 
2 2 2( ) ( ) ( )

1
2

L R

L R

i i i
i I i I i I

i i i
i I i I i I

g g g
H

h h hλ λ λ
∈ ∈ ∈

∈ ∈ ∈

 
 = + + + + +  

  
     (27)

2.6. Improved PSO Algorithm 
As a swarm intelligence algorithm, particle swarm optimization (PSO) has been 

widely used in various industries to solve practical problems in recent years. The tradi-
tional PSO algorithm is easily falls into local optimum and has poor convergence speed 
and accuracy in the iterative process. It is difficult to ensure the efficiency of the algorithm 
in practical engineering tasks. After using the topology, the optimization process of par-
ticle swarm is carried out as follows: ① All particles in the particle swarm are arranged from large to small according to 
the fitness value of the particles at the initial time. The first N particles are selected as the 
main particles, N is a positive integer, and all particles in the particle swarm except the 
main particles are used as the slave particles. ② The K-means clustering method is used to classify the subordinate particles by 
using each main particle as the clustering center. ③ Each master particle from the particle group and its corresponding cluster center 
is used as an improved particle group to obtain N improved particle groups. ④ Using Formulas (28) and (29) to update the velocity of the main particle and the 
slave particle in the improved particle group and multiple slave particle groups, each 
slave particle group has the same number of slave particles. 

( 1) ( ) 1 1 ( ) ( ) 2 2 ( ) ( )( ) ( )best best
mi t mi t i t mi t t mi tv k v mp x mg xϕ γ ϕ γ+  = + − + −    (28)

( 1) ( ) 1 1 ( ) ( ) 2 2 ( ) ( )( ) ( )best best
sij t sij t ij t sij t i t sij tv k v sp x sg xϕ γ ϕ γ+  = + − + −    (29)

In the formula, ( )mi tx  represents the position record of the main particle in the i th 
improved particle group at the current time t. ( )sij tx  denotes the position record of the j th 
slave particle in the i th improved particle group at the current time t. ( )mi tv  denotes the 
velocity of the main particle in the i th improved particle group at the current time t. ( )sij tv  
represents the velocity value of the j th slave particle in the i th improved particle group 
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at the current time t. k is the convergence factor and a constant. 1ϕ  and 2ϕ  are learning 

factors. ( )
best
i tmp  represents the historical optimal position record of the main particle in the 

ith improved particle group at time t (taking the optimal position value of the main parti-

cle in the i th improved particle group). ( )
best
ij tsp  represents the historical optimal position 

record of the j th slave particle in the i th improved particle group at time t. 1γ  and 2γ  

are constants greater than 0 and less than 1. ( )
best
tmg  represents the optimal historical posi-

tion record of the primary particles in all improved particle groups at the current time t. 

( )
best
i tsg  denotes the optimal record of the historical position of the particle in the i th im-

proved particle group at the current time t. ⑤ The positions of master and slave particles are updated using Formulas (27) and 
(28) according to the updated velocity value: 

( 1) ( ) ( 1)mi t mi t mi tx x v+ += +   (30)

( 1) ( ) ( 1)sij t sij t sij tx x v+ += +   (31)

 According to the updated position parameters of the master-slave particles, the 
fitness value is recalculated, and iterative optimization is performed. Through the above 
process, it can be concluded that when the proposed improved particle swarm relation-
ship topology is adopted, other main particle swarms can also jump out of the local extre-
mum as much as possible to search for the global optimum and improve the accuracy of 
parameter optimization when the slave particle group in a certain region falls into the 
local optimum. On the other hand, in the traditional particle swarm optimization algo-
rithm, 1ϕ  and 2ϕ  are fixed values, generally taking a constant between 0 and 2, which 
limits the global and local search ability of particles to a certain extent. Therefore, linear 
increasing and decreasing functions are introduced to improve this part. The improved 
formula is as follows: 

1 01( ) 1 tt
G

ϕ ϕ  = × − 
 

  (32)

2 02( ) tt
G

ϕ ϕ= ×   (33)

In the formula, 01ϕ and 02ϕ  are the initial values of the learning factor. t  and G  
are the current and maximum number of iterations, respectively. The improved master–
slave particle velocity update formula is as follows: 

( 1) ( ) 1 1 ( ) ( ) 2 2 ( ) ( )( ) ( ) ( ) ( )best best
mi t mi t i t mi t t mi tv k v t mp x t mg xϕ γ ϕ γ+  = + − + −    (34)

( 1) ( ) 1 1 ( ) ( ) 2 2 ( ) ( )( ) ( ) ( ) ( )best best
sij t sij t ij t sij t i t sij tv k v t sp x t sg xϕ γ ϕ γ+  = + − + −    (35)

In summary, the IPSO-LightGBM model construction process is shown in Figure 2. 
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Figure 2. IPSO-LightGBM model construction process. 

2.7. Model Establishment and Performance Evaluation Index 
Based on the ISPO-LightGBM algorithm, this paper establishes five risk assessment 

models, including population, transportation, crop and economic disaster risks and inte-
grated risk. All models take the three types of indicators of disaster-causing factors, dis-
aster-pregnant environments and disaster-affected bodies as input vectors, and different 
loss risk levels as output vectors. The specific model establishment process is shown in 
Figure 3. 

The LightGBM model optimized using IPSO has higher fitness values during the it-
erative process and converges faster than the PSO algorithm. In the iterative search 



Systems 2022, 10, 263 14 of 24 
 

 

process, the search stability of IPSO algorithm is high, and the optimal hyperparameter 
combination of LightGBM model has been searched for around 300 iterations. In contrast, 
the PSO algorithm is more volatile in the iterative search process, and the convergence 
does not appear at 600 iterations, and the gap between the adaptation degree and IPSO 
algorithm is further widened, and the final convergence adaptation degree of the experi-
ment is lower than that of the IPSO algorithm. Under the given termination iteration con-
dition, the model parameters obtained using IPSO optimization are Learing_rate = 0.25, 
gamma = 0.13, max_depth = 7, min_child_weight = 3, and lambda = 1. 

 
Figure 3. Haze disaster risk assessment model building process. 

Among them, the model tuning parameters were optimized using 10-fold cross-test, 
and the grid search was performed for the main three parameters of the XGBoost model, 
which are the number of weak classifiers, the maximum depth of the decision tree and the 
learning rate. The six model optimal parameters and the accuracy of the training set are 
shown in Table 5.  
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Table 5. Assessment results of different risk levels of the validation set. 

Evaluation Model 
Number of Weak 

Classifiers 
Maximum 

Depth 
Learning 

Rate 
Training Set 

Accuracy 
Disaster population risk 900 4 0.1 0.977 
Transportation disaster 

risk 800 2 0.2 0.95 

Crop disaster risk 1000 3 0.1 0.987 
Economic disaster risk 900 4 0.2 0.948 

Integrated risk 900 4 0.1 0.937 

To evaluate the model accuracy, four evaluation indicators were selected, including 
accuracy (ACC), detection rate (P), recall (R) and F-value (F): 

P N

P N P N

T T
Accuracy

T T F F
+

+ + +
=   (36)

P

P P

TPrecision
T E+

=   (37)

P

P N

TRecall
T F

=
+

  (38)

2
Measure

Precision RecallF
Precision Recall

×=
+

  (39)

where TP means true positive, which is itself a positive sample, and the prediction is also 
a positive sample. TN means true negative, which is itself a negative sample, and the pre-
diction is also a negative sample. FP means false positive, which is itself is a positive sam-
ple, and the prediction is a negative sample. FN denotes false negative, which is itself a 
negative sample, and the prediction is a positive sample. In the above evaluation index, 
the accuracy rate indicates the proportion of all correctly predicted samples to the total 
sample. Accuracy indicates the proportion of samples with positive predictions that are 
true positive samples. Recall indicates the proportion of positive cases in the actual sample 
that are correctly predicted. The F-value is an indicator that balances the accuracy and 
recall rates and is the summed average of the two. 

3. Results and Discussion 
3.1. Analysis of Evaluation Results 

As seen from Table 6, F1, F2 and F3 represent the scores of the three principal com-
ponent analyses, respectively, which are calculated by Equation (21). F is the composite 
haze risk index, which is calculated by Equation (22). The haze risk index is high in the 
Fenwei Plain urban agglomeration, especially in Xi’an, which is as high as 9.773. The anal-
ysis of the three principal component scores of the Fenwei Plain urban agglomeration re-
veals that the scores in F1 are much larger than those in F2 and F3, indicating that the main 
drivers are economic density, the number of motor vehicles, housing construction areas 
and the number of health institutions. Xi’an has been the center of economic development 
in Northwest China and is rich in industrial and mineral-rich resources, and urbanization 
is also rapid, resulting in increased environmental pressures, serious air pollution, the 
proximity of cities and the influence of the spatial spillover effects of pollutants, making 
it an extremely high-risk area for haze. To effectively control the risk of haze, the Fenwei 
Plain urban agglomeration should actively transform its economic development, improve 
traffic laws and regulations and regulate motor vehicles, thus reducing motor vehicle ex-
haust pollution and relieving the pressure on traffic. City governments should strengthen 
joint control and prevention mechanisms to control the construction area of an area within 
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a certain period of time through macro regulation so that it does not gather too much, 
make good isolation measures to reduce respirable particulates brought about by con-
struction work, control the source of haze components and accelerate the improvement of 
urban greening. Urban greening can, to a certain extent, absorb harmful gases and dust 
generated by the city, reduce air pollution, purify the air and help reduce the vulnerability 
of disaster-bearing bodies. Xi’an, Sanmenxia, Lvliang and Luoyang belong to the high-
risk area of haze. Analyzing the scores of their three principal components revealed that 
Xi’an, Sanmenxia and Luoyang are in the first principal component, indicating that the 
haze risk drivers in these two cities have the first principal component of economic den-
sity, the number of motor vehicles and housing construction areas. First, to carry out haze 
risk prevention and control, we must adjust the energy structure and promote clean en-
ergy. We must replace coal with other clean energy sources to reduce coal consumption, 
thus reducing the material components of haze formation and the risk of haze. Second, in 
the case of irreplaceable coal, we must improve the desulfurization of coal, denitrification 
and dust removal technology to reduce the emissions of sulfide and other emissions due 
to burning coal and achieve the purpose of reducing the risk of haze. Third, relevant en-
terprises should increase investment in research and development and actively develop 
new technologies to improve energy utilization, reduce energy consumption and achieve 
energy conservation, emission reduction and green development. The middle-risk areas 
are Lvliang, Luoyang, Linfen, Yuncheng and Baoji. Both Tongchuan and Jinzhong have 
high scores with the second principal component, while the SO2 concentration, PM10 con-
centration and coal consumption share of the second principal component also play an 
important role in the formation of haze risk. Weinan, Xianyang, Tongchuan and Jinzhong 
are four cities with relatively high scores for the third principal component; with rich for-
est vegetation, the strong self-cleaning ability of the atmosphere and a high rate of good 
air, their haze pollution is small and low risk. Therefore, small enterprises with low ca-
pacity and high emissions should be eliminated by strengthening the regulation of pollu-
tant emissions from factories. The approval system of enterprise project engineering 
should be established, improved and strictly enforced, raising the threshold of enterprise 
access and controlling the emission of haze material components from the source. 

Table 6. Results of haze disaster risk evaluation in Fenwei Plain cities. 

 F1 F2 F3 F Rank 
Xi’an 9.49 1.161 0.284 9.773159 1 

Sanmenxia 8.94 1.585 0.272 9.371132 2 
Lvliang 8.585 1.927 0.38 9.199759 3 

Luoyang 8.946 1.087 0.593 9.189809 4 
Linfen 8.384 1.65 0.716 8.874841 5 

Yuncheng 8.354 1.637 0.668 8.839851 6 
Baoji 8.152 1.596 0.786 8.631265 7 

Weinan 7.716 2.012 0.972 8.44993 8 
Xianyang 6.998 2.296 1.442 8.389519 9 

Tongchuan 6.658 2.751 1.143 8.359984 10 
Jinzhong 6.059 3.044 0.781 7.914102 11 

3.2. Case Verification 
In this paper, we use the large-scale haze pollution in Fenwei Plain from November 

1, 2021 to December 31, 2021 as a case study to validate the application of the major haze 
hazard assessment model based on the ISPO-LightGBM algorithm. This haze process 
caused a massive haze disaster in 11 prefecture-level cities in the Fenwei Plain, affecting 
a total of 52 million people. The established models were used to evaluate the affected 
population, transportation, crop and economic disaster risks and integrated risk, and were 
then compared with the actual disaster loss levels at the county level, and the results are 
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shown in Table 7. The five types of disaster risks in the Fenwei Plain are shown in Figure 
4. 

Table 7. Assessment results of different risk levels of the validation set. 

Evaluation Model Accuracy Precision Recall F  
Disaster population risk 0.85 0.88 0.82 0.85 

Transportation disaster risk 0.95 0.94 0.93 0.92 
Crop disaster risk 0.84 0.89 0.85 0.87 

Economic disaster risk 0.65 0.64  0.65 0.63  
Integrated risk 0.86  0.91  0.93 0.92 

 
Figure 4. Five disaster risks in Fenwei Plain. 

3.3. Importance of Indicators 
To understand the various factors that influence the assessment results, it is neces-

sary to calculate the specific contribution of each assessment indicator. The LightGBM 
algorithm calculates the importance of an indicator based on the principle that the more 
times an input indicator is selected as a branching feature when the decision tree branches, 
the more important the feature is. In this paper, the importance of indicators was calcu-
lated for each of the five types of risk assessment objectives, and the results are shown in 
Figure 5. 
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Figure 5. Importance of indicators for different risk assessment types. 

Among them, the most important indicators affecting the risk assessment of the af-
fected population are NO2, economic density and coal consumption, indicating that the 
risk of disastrous factors, environmental sensitivity of disaster and disaster-bearing body 
all contribute to the assessment results. The transportation disaster risk has a greater rela-
tionship with NO2 and VOCs in green areas in built-up areas, indicating that transporta-
tion risk has a greater correlation and impact with pregnant environments. The crop dis-
aster risk has a great relationship with SO2, the proportion of secondary industry, housing 
construction areas and population density; in particular, the impact of SO2 is prominent, 
indicating that the disaster of crops is closely related to the disaster environment. The 
main influencing factors of economic disaster risk are VOCs, population density and the 
number of motor vehicles. The economic disaster risk is closely related to disaster-causing 
factors and disaster-pregnant environments. The main influencing factors of integrated 
risk are population and GDP densities. The possible reason is that GDP itself is a compre-
hensive index. GDP cannot only reflect the comprehensive exposure of the disaster-bear-
ing body in the region but also the vulnerability of the disaster-bearing body in the region 
to a certain extent. In other words, it can be considered that the comprehensive disaster 
prevention and mitigation capacity of a region with high GDP is stronger than that of the 
region with low GDP. Overall, the contribution of different indicators to different risk 
assessment results is not the same, and none of the indicators can contribute to a negligible 
extent, with the contribution of each indicator ranging from 5 to 12%. 
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3.4. Impact of Indicator Size on Assessment Results 
As shown in Table 8, RD denotes the risk of disastrous factors, ESD denotes the en-

vironmental sensitivity of disaster, and DBB denotes the disaster-bearing body. To exam-
ine the influence of the number of indicators on the accuracy of the assessment model, this 
paper combined the input indicators of different dimensions and compared the accuracy 
in the haze risk assessment results using only the causative factor, the combination of the 
risk of disastrous factors, the environmental sensitivity of disaster, the disaster-bearing 
body and the use of all indicators. By comparison, it was found that the change in the 
number of indicators had less impact on the assessment results of the two models of pop-
ulation and transportation disaster risks. However, the number of indicators has a large 
impact on the accuracy of the assessment of the three models of crop and economic disas-
ter risks and integrated risk, and the accuracy is the lowest if the model input is only the 
causative factor, which is 4–16% lower than the full indicator. In addition to the disaster-
causing factors, the addition of both the environmental sensitivity of disaster and disaster-
bearing body indicators will improve the accuracy, and the disaster-bearing body indica-
tors will improve more than the environmental sensitivity of the disaster indicators be-
cause the disaster-bearing body indicators have more subcomponents. The highest accu-
racy rate was achieved by using all indicators together as input, indicating that the amount 
of indicators has a significant impact on the assessment results. 

Table 8. Accuracy of risk assessment for different indicator quantities. 

Index RD RD + ESS RD + DBB RD + EES + DBB 
Disaster population risk assessment accuracy/% 79 81 81 85 

Transportation disaster risk assessment accuracy/% 91 92 94 95 
Crop disaster risk assessment accuracy/% 73 78  80  84 

Economic disaster risk assessment accuracy/% 48 52 57 65 
Integrated risk assessment accuracy/% 72 75 80 86  

3.5. Impact of Environmental Factor Variables on Assessment Results 
We added the meteorological conditions as well as the terrain as a factor for compar-

ison. Pearson analysis was performed for topographic and meteorological factors, as 
shown in Table 9. Altitude, temperature and wind speed were found to be moderately 
positively correlated with haze risk. Other factors such as woodland, grassland, relative 
humidity and precipitation showed weak negative correlations. 

As shown in Table 10, we added topographic and meteorological factors to each of 
the five integrated models, and we found that the topographic factor enhances the model 
less, and the meteorological factor enhances the model significantly relative to the topo-
graphic factor. The combined input of topographic and meteorological factors improves 
the models more significantly. Compared with the model before input, the accuracy of the 
five risk models was improved by 6.12% on average. 

Table 9. Analysis and description of environmental factor variables. 

Environmental Factors Variable Name Unit Variable Description Pearson Correlation 

Topographical factors 
(TF) 

Altitude M Monitoring station altitude −0.559 
for_X % Forest −0.379 
gra_X % Grass −0.299 

Meteorological factors 
(MF) 

SSD H Sunshine hours 0.018 
WD - Wind direction 0.202 
TEM °C Temperatures 0.523 
RHU % Relative humidity −0.215 
PRE mm Precipitation −0.346 
WIN m·s−1 Wind speed 0.415 
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Table 10. Accuracy of risk assessment for different indicator quantities. 

Index 
Topographical 

Factors 
Meteorological 

Factors 
Comprehensive Factors 

(TF + MF) 
Disaster population risk assessment accuracy/% 86 88 90 

Transportation disaster risk assessment accuracy/% 95.7 95 96 
Crop disaster risk assessment accuracy/% 84.6 86  88 

Economic disaster risk assessment accuracy/% 67 69 72 
Integrated risk assessment accuracy/% 88  89 93  

3.6. Comparison with other Studies 
A comparison of the risk assessment model proposed in this study with models pro-

posed in other similar studies can better elucidate the differences between this study and 
other studies, as shown in Table 11. Currently, there are few detailed studies on haze risk 
assessment. Second, in terms of feature selection methods, this paper uses the new gradi-
ent enhancement algorithm LightGBM to filter the features. To the best of our knowledge, 
there are few studies using the LightGBM algorithm to filter features. Compared with 
other mainstream integration algorithms in the boosting family, optimizing the LightGBM 
model using ISPO requires less parameter tuning, shows faster adaptation to the model 
and is more scalable. In conclusion, compared with the models proposed in other studies, 
the model proposed in this paper can effectively solve the haze risk assessment problem 
and has good prediction performance, especially with a precision of 0.91. 

Table 11. Comparison with other studies. 

Algorithm City Accuracy Precision Recall F 
PSO-SVM [47] Beijing 0.82 0.91 0.75 0.82 

Efficient weighted naive bayes classifiers [48] Delhi 0.836 0.87 0.82 0.873 
MCS-RF [49] Beijing 0.828 0.875 0.872 0.871 
APNet [50] Beijing-Tianjin-Hebei 0.848 0.846 0.789 0.817 
CNN [51] Taipei - 0.87 0.84 - 

PCA-MEE-ISPO-LightGBM Fenwei Plain 0.86 0.91 0.93 0.92 

4. Conclusions 
In this paper, based on nearly 300,000 indicators of haze cases in 11 cities in Fenwei 

Plain in China, a haze disaster assessment model is established using the PCA-MEE-ISPO-
LightGBM algorithm, and the model is validated with data from the haze pollution pro-
cess in Fenwei Plain region in mid-November 2021. The results show that the model can 
be used for the assessment of the affected population, transportation, crop and economic 
disaster risks and integrated risk before major haze disaster events, which is important for 
disaster risk management operations. 

(1) Through the matter-element analysis, we construct the classical domain, deter-
mine the matter-element to be evaluated and calculate the correlation degree of the eval-
uation index and the haze disaster assessment level. Introducing the asymmetric closeness 
degree criterion, the index weight is improved using the entropy weight method to the 
principal component analysis method, and the haze disaster evaluation method based on 
the matter-element extension model of the improved principal component analysis is pro-
posed. The IPSO optimization algorithm which divides the topological relationship be-
tween master and slave particles and dynamically adjusts the iterative learning factor is 
proposed to solve the problem that the particle swarm easily falls into the local optimal 
region in the iterative process. The IPSO is integrated into the parameter optimization 
process of the LightGBM model, and the hyperparameters of the LightGBM prediction 
model are optimized. The disaster risk assessment models based on the PCA-MEE-ISPO-
LightGBM algorithm show good applicability. The performance indexes of the five 
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models in the risk assessment, such as accuracy, detection rates, recall rates and F-values, 
are above 80%, indicating that the models show good generalization performance and can 
be used in actual disaster risk assessment work. 

(2) The average annual concentration of VOCs, economic density, number of motor 
vehicles, housing construction areas, average annual concentration of SO2 and PM2.5, and 
the share of secondary industry and coal consumption have a strong influence on the risk 
of urban haze disaster. The higher the level of economic development in a city, the more 
motor vehicles, the higher the dependence of economic development on the secondary 
industry, the higher the coal consumption and the higher the risk of urban haze. Xi’an has 
the highest risk of haze disaster, and Jinzhong has the lowest risk of haze. The haze hazard 
risk degree of Fenwei Plain has obvious geographical differences, and the haze risk of 
Xi’an urban agglomeration is extremely high and centers on it, gradually decreasing 
roughly in the west, south and north directions. 

(3) The model can calculate the contribution of importance evaluation indicators to 
the risk assessment results. In addition to the influence of VOC indicators on most of the 
assessment targets, different risk assessment targets have different influencing factors. 
Economic disaster risk is influenced by the factors of the disaster-bearing body. The af-
fected population, crop and economic disaster risks are mainly influenced by the environ-
mental sensitivity of disaster, whereas the main influencing factors of integrated disaster 
risk are population and GDP densities. The importance of indicators increases the inter-
pretability of the risk assessment models, improves the understanding of the relationship 
between indicators and assessment results, and helps improve the understanding of the 
“black box” model of machine-learning algorithms. 

(4) The amount of indicators and sample size play an important role for data-driven 
assessment models. Integrated learning algorithms in disaster risk assessment downplay 
hazard mechanisms such as hazards and vulnerabilities and purely use disaster system-
related data for learning and simpler modeling, which also requires the sufficient accu-
mulation of assessment indicators and sample size. On the one hand, hazard-causing fac-
tor indicators, hazard-inducing environment indicators and hazard-bearing body indica-
tors all have an important impact on the results of hazard risk assessment, and the use of 
the full indicator volume can improve the accuracy of assessment by 10–15% compared 
with only the hazard-causing factor indicators. On the other hand, increasing the sample 
size by one to two orders of magnitude can improve the assessment accuracy by 5–13%. 
This indicates that disaster big data can be of great help to improve the performance of 
disaster risk assessment models. 

A disaster risk assessment model for the haze process in the Fenwei Plain is estab-
lished using disaster big data. With rapid socio-economic development, the regional dis-
aster-bearing body and environmental sensitivity of disaster will undergo many changes. 
In future research, it is necessary to continuously introduce the latest data, update and 
accumulate big data, and improve the reliability of the model. To summarize the next step, 
the focus is on two directions. The first is to continue to improve the indicator system and 
sample distribution, update the indicators using the first national comprehensive natural 
disaster risk census data and further improve the model. The second is to collect cases of 
major haze disaster processes Y.R.: editing, revision. in other regions and verify whether 
the model is generalizable in the Beijing-Tianjin-Hebei and Yangtze River Delta regions. 
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