
����������
�������

Citation: Ma, J.-Y.; Li, Q.-L.; Xia, L.

Optimal Asynchronous Dynamic

Policies in Energy-Efficient Data

Centers. Systems 2022, 10, 27.

https://doi.org/10.3390/

systems10020027

Academic Editor: Khac Duc Do

Received: 24 January 2022

Accepted: 28 February 2022

Published: 2 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Optimal Asynchronous Dynamic Policies in Energy-Efficient
Data Centers
Jing-Yu Ma 1,* , Quan-Lin Li 2 and Li Xia 3

1 Business School, Xuzhou University of Technology, Xuzhou 221018, China
2 School of Economics and Management, Beijing University of Technology, Beijing 100124, China;

liquanlin@tsinghua.edu.cn
3 School of Business, Sun Yat-sen University, Guangzhou 510275, China; xiali5@sysu.edu.cn
* Correspondence: mjy0501@126.com

Abstract: In this paper, we apply a Markov decision process to find the optimal asynchronous
dynamic policy of an energy-efficient data center with two server groups. Servers in Group 1 always
work, while servers in Group 2 may either work or sleep, and a fast setup process occurs when the
server’s states are changed from sleep to work. The servers in Group 1 are faster and cheaper than
those of Group 2 so that Group 1 has a higher service priority. Putting each server in Group 2 to sleep
can reduce system costs and energy consumption, but it must bear setup costs and transfer costs.
For such a data center, an asynchronous dynamic policy is designed as two sub-policies: The setup
policy and the sleep policy, both of which determine the switch rule between the work and sleep
states for each server in Group 2. To find the optimal asynchronous dynamic policy, we apply the
sensitivity-based optimization to establish a block-structured policy-based Markov process and use a
block-structured policy-based Poisson equation to compute the unique solution of the performance
potential by means of the RG-factorization. Based on this, we can characterize the monotonicity and
optimality of the long-run average profit of the data center with respect to the asynchronous dynamic
policy under different service prices. Furthermore, we prove that a bang–bang control is always
optimal for this optimization problem. We hope that the methodology and results developed in this
paper can shed light on the study of more general energy-efficient data centers.

Keywords: asynchronous dynamic policy; energy-efficient data center; Markov decision process;
RG-factorization; sensitivity-based optimization

1. Introduction

Over the last two decades considerable attention has been given to studying energy- ef-
ficient data centers. On the one hand, as the number and size of data centers increase rapidly,
energy consumption becomes one main part of the operating costs of data centers. On the
other hand, data centers have become a fundamental part of the IT infrastructure in today’s
Internet services, in which a huge number of servers are deployed in each data center
such that the data centers can provide cloud computing environments. Therefore, finding
optimal energy-efficient policies and designing optimal energy-efficient mechanisms are
always interesting, difficult, and challenging in the energy-efficient management of data
centers. Readers may refer to recent excellent survey papers, such as Masanet et al. [1],
Zhang et al. [2], Nadjahi et al. [3], Koot and Wijnhoven [4], Shirmarz and Ghaffari [5],
Li et al. [6], and Harchol-Balter [7].

Barroso and Hölzle [8] demonstrated that many data centers were designed to handle
peak loads effectively, but this directly caused a significant number of servers (approxi-
mately 20%) in the data centers to be idle because no work was done in the off-peak period.
Although the idle servers do not provide any services, they still continue to consume a
notable amount of energy, which is approximately 70% of the servers working in the on-
peak period. Therefore, it is necessary and useful to design an energy-efficient mechanism

Systems 2022, 10, 27. https://doi.org/10.3390/systems10020027 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems10020027
https://doi.org/10.3390/systems10020027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0002-0396-1232
https://doi.org/10.3390/systems10020027
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems10020027?type=check_update&version=3

Systems 2022, 10, 27 2 of 48

for specifically dealing with idle servers. In this case, a key technique, the energy-efficient
states of “Sleep” or “Off” were introduced such that the idle servers can take the sleep or
off state, which always consumes less energy, in which the sleep state consumes very little
energy, while the energy consumption of the off state is zero. See Kuehn and Mashaly [9]
for more interpretation. To analyze the energy-efficient states, thus far, some queueing
systems either with server energy-efficient states (e.g., work, idle, sleep, and off) or with
server control policies (e.g., vacation, setup, and N-policy) have been developed in the
study of energy-efficient data centers. Important examples include the survey papers by
Gandhi [10] and Li et al. [6], and the research papers by Gandhi et al. [11–13], Maccio and
Down [14,15], Phung-Duc [16] and Phung-Duc and Kawanishi [17].

It is always necessary to design an optimal energy-efficient mechanism for data cen-
ters. To do this, several static optimization methods have been developed using two basic
approaches. The first is to construct a suitable utility function for a performance-energy
trade-off or a performance cost with respect to the synchronous optimization of different per-
formance measures, for example, reducing energy consumption, reducing system response
time, and improving quality of service. The second is to minimize the performance cost by
means of some optimal methods, including linear programming, nonlinear programming,
and integer programming. Gandhi et al. [12] provided two classes of the performance-
energy trade-offs: (a) ERWS, the weighted sum β1E[R] + β2E[E] of the mean response time
E[R] and the mean power cost E[E], where β1, β2 ≥ 0 are weighted coefficients; (b) ERP,
the product E[R]E[E] of the mean response time and the mean power cost. See Gandhi
et al. [12] and Gandhi [10] for systematical research. Maccio and Down [14] generalized
the ERP to a more general performance cost function that considers the expected cycle
rate. Gebrehiwot et al. [18] made some interesting generalizations of the ERP and ERWS
by introducing multiple intermediate sleep states. Additionally, Gebrehiwot et al. [19,20]
generalized the FCFS queue of the data center with multiple intermediate sleep states
to the processor-sharing discipline and to the shortest remaining processing time (SRPT)
discipline, respectively. In addition, Mitrani [21,22] provided another interesting method to
discuss the data center of N identical servers that contain m reserves, while the idle or work
of the servers is controlled by an up threshold U and a down threshold D. He established
a new performance cost C = c1E[L] + c2E[S] and provided expressions for the average
numbers E[L] and E[S], so that the performance cost C can be optimized with respect to the
three key parameters m, U, and D.

To date, little work has been done on applications of Markov decision processes (MDPs)
to find the optimal dynamic control policies of energy-efficient data centers. Readers may
refer to recent publications for details, among which Kamitsos et al. [23] constructed a
discrete-time MDP and proved that the optimal sleep energy-efficient policy is simply
hysteretic, so that it has a double threshold structure. Note that such an optimal hysteretic
policy follows Hipp and Holzbaur [24] and Lu and Serfozo [25]. For policy optimization and
dynamic power management for electronic systems or equipment, the MDPs and stochastic
network optimization were developed from five different perspectives: (a) the discrete-time
MDPs by Yang et al. [26]; (b) the continuous-time MDPs by Ding et al. [27]; (c) stochastic
network optimization by Liang et al. [28]; (d) the sensitivity-based optimization by Xia and
Chen [29], Xia et al. [30], and Ma et al. [31]; and (e) the deep reinforcement learning by
Chi et al. [32].

The purpose of this paper is to apply continuous-time MDPs to set up optimal dynamic
energy-efficient policies for data centers, in which the sensitivity-based optimization is
developed to find the optimal solution. Note that the sensitivity-based optimization is
greatly refined from the MDPs by dealing with the Poisson equation by means of some
novel tools, for instance, performance potential and performance difference. To date, the
sensitivity-based optimization has also been sufficiently related to the Markov reward
processes (see Li [33]), thus, it is an effective method for the performance optimization of
many practical systems (see an excellent book by Cao [34] for more details). The sensitivity-
based optimization theory has been applied to performance optimization in many practical

Systems 2022, 10, 27 3 of 48

areas. For example, in energy-efficient data centers by Xia et al. [35]; inventory rationing by
Li et al. [36]; the blockchain selfish mining by Ma and Li [37]; and in finance by Xia [38].

The main contributions of this paper are threefold. The first contribution is to apply
the sensitivity-based optimization (and the MDPs) to study a more general energy-efficient
data center with key practical factors, for example, a finite buffer, a fast setup process, and
transferring some incomplete service jobs to the idle servers in Group 1 or to the finite buffer,
if any. Although practical factors will not increase any difficulty in performance evaluation
(e.g., modeling by means of queueing systems or Markov processes, also see Gandhi [10]
for more details), they can largely cause substantial difficulties and challenges in finding
optimal dynamic energy-efficient policies and, furthermore, in determining threshold-
type policies by using the sensitivity-based optimization. For instance, the finite buffer
makes the policy-based Markov process appear as the two-dimensional block-structured
Markov process from the one-dimensional birth–death process given in Ma et al. [31] and
Xia et al. [35].

Note that this paper has two related works: Ma et al. [31] and Xia et al. [35], and it
might be necessary to set up some useful relations between this paper and each of the two
papers. Compared with Ma et al. [31], this paper considers more practical factors in the
energy-efficient data centers such that the policy-based Markov process is block-structured,
which makes solving the block-structured Poisson equation more complicated. Compared
with Xia et al. [35], this paper introduces a more detailed cost and reward structure,
which makes an analysis of the monotonicity and optimality of dynamic energy-efficient
policies more difficult and challenging. Therefore, this paper is a necessary and valuable
generalization of Ma et al. [31] and Xia et al. [35] through extensively establishing the
block-structured policy-based Markov processes, which in fact are the core part of the
sensitivity-based optimization theory and its applications in various practical systems.

The second contribution of this paper is that it is the first to find an optimal asyn-
chronous dynamic policy in the study of energy-efficient data centers. Note that the two
groups of servers in the data center have “the setup actions from the sleep state to the
work state” and “the close actions from the work state to the sleep state”, thus, we follow
the two action steps to form an asynchronous dynamic policy, which is decomposed into
two sub-policies: the setup policy (or the setup action) and the sleep policy (or the close
action). Crucially, one of the successes of this paper is to find the optimal asynchronous dy-
namic policy from many asynchronous dynamic policies by means of the sensitivity-based
optimization. To date, it has still been very difficult and challenging in the MDPs.

The third contribution of this paper is to provide a unified framework for applying
the sensitivity-based optimization to study the optimal asynchronous dynamic policy
of the energy-efficient data center. For such a more complicated energy-efficient data
center, we first establish a policy-based block-structured Markov process as well as a more
detailed cost and reward structure, and provide an expression for the unique solution
to the block-structured Poisson equation by means of the RG-factorization. Then, we
show the monotonicity of the long-run average profit with respect to the setup and sleep
policies and the asynchronous policy, respectively. Based on this, we find the optimal
asynchronous policy when the service price is higher (or lower) than a key threshold.
Finally, we indicate that the optimal control is a bang–bang control. Such a structure of
the optimal asynchronous energy-efficient policy reduces the search space, which is a
significant reduction of the optimization complexity and effectively alleviates the curse
of the dimensionality of MDPs. Therefore, the optimal asynchronous dynamic policy
is the threshold-type in the energy-efficient data center. Note that the optimality of the
threshold-type policy can realize a large reduction for the search space, thus, the optimal
threshold-type policy is of great significance to solve the mechanism design problem
of energy-efficient data centers. Therefore, the methodology and results developed in
this paper provide new highlights for understanding dynamic energy-efficient policy
optimization and mechanism design in the study of more general data centers.

Systems 2022, 10, 27 4 of 48

The organization of this paper is as follows. In Section 2, we give a problem description
for an energy-efficient data center with more practical factors. In Section 3, we establish
a policy-based continuous-time block-structured Markov process and define a suitable
reward function with respect to both states and policies of the Markov process. In Section 4,
we set up a block-structured Poisson equation and provide an expression for its unique
solution by means of the RG-factorization. In Section 5, we study a perturbation realization
factor of the policy-based continuous-time block-structured Markov process for the asyn-
chronous dynamic policy, and analyze how the service price impacts on the perturbation
realization factor. In Section 6, we discuss the monotonicity and optimality of the long-run
average profit of the energy-efficient data center with respect to the asynchronous policy.
Based on this, we can give the optimal asynchronous dynamic policy of the energy-efficient
data center. In Section 7, if the optimal asynchronous dynamic policy is the threshold-type,
then we can compute the maximal long-run average profit of the energy-efficient data center.
In Section 8, we give some concluding remarks. Finally, three appendices are given, both
for the state-transition relation figure of the policy-based block-structured continuous-time
Markov process and for the block entries of its infinitesimal generator.

2. Model Description

In this section, we provide a problem description for setting up and optimizing
an asynchronous dynamic policy in an energy-efficient data center with two groups of
different servers, a finite buffer, and a fast setup process. Additionally, we provide the
system structure, operational mode, and mathematical notations in the energy-efficient
data center.

Server groups: The data center contains two server groups: Groups 1 and 2, each of
which is also one interactive subsystem of the data center. Groups 1 and 2 have m1 and m2
servers, respectively. Servers in the same group are homogeneous, while those in different
groups are heterogeneous. Note that Group 1 is viewed as a base-line group whose servers
are always at the work state even if some of them are idle, the purpose of which is to
guarantee a necessary service capacity in the data center. Hence, each server in Group 1
always works regardless of whether it has a job or not, so that it must consume an amount
of energy at any time. In contrast, Group 2 is regarded as a reserved group whose servers
may either work or sleep so that each of the m2 servers can switch its state between work
and sleep. If one server in Group 2 is at the sleep state, then it consumes a smaller amount
of energy than the work state, as maintaining only the sleep state requires very little energy.

A finite buffer: The data center has a finite buffer of size m3. Jobs must first enter
the buffer, and then they are assigned to the groups (Group 1 is prior to Group 2) and
subsequently to the servers. To guarantee that the float service capacity of Group 2 can
be fully utilized when some jobs are taken from the buffer to Group 2, we assume that
m3 ≥ m2, i.e., the capacity of the buffer must be no less than the server number of Group 2.
Otherwise, if there are more jobs waiting in the buffer, the jobs transferred from Group 2 to
the buffer will be lost.

Arrival processes: The arrivals of jobs at the data center are a Poisson process with
arrival rate λ. If the buffer is full, then any arriving job has to be lost immediately. This
leads to an opportunity cost C5 per unit of time for each lost job due to the full buffer.

Service processes: The service times provided by each server in Groups 1 and 2 are
i.i.d. and exponential with service rates µ1 and µ2, respectively. We assume that µ1 ≥ µ2,
which makes the prior use of servers in Group 1. The service discipline of each server in the
data center is First Come First Serve (FCFS). If a job finishes its service at a server, then it
immediately leaves the system. At the same time, the data center can obtain a fixed service
reward (or service price) R from the served job.

Once a job enters the data center for its service, it has to pay holding costs per unit
of time C(1)

2 , C(2)
2 , and C(3)

2 in Group 1, Group 2, and the buffer, respectively. We assume

that C(1)
2 ≤ C(2)

2 also guarantees the prior use of servers in Group 1. Therefore, to support

Systems 2022, 10, 27 5 of 48

the service priority, each server in Group 1 is not only faster but also cheaper than that in
Group 2.

Switching between work and sleep: To save energy, the servers in Group 2 can switch
between the work and sleep states. On the one hand, if there are more jobs waiting in
the buffer, then Group 2 sets up and turns on some sleeping servers. This process usually
involves a setup cost C(1)

3 . However, the setup time is very short as it directly begins
from the sleep state and it can be ignored. On the other hand, if the number of jobs in
Group 2 is smaller, then the working servers are switched to the sleep state, while the
incomplete-service jobs are transferred to the buffer and served as the arriving ones.

Transfer rules: (1) To Group 1. Based on the prior use of servers in Group 1, if a
server in Group 1 becomes idle and there is no job in the buffer, then an incomplete-service
job (if it exists) in Group 2 must immediately be transferred to the idle server in Group 1.
Additionally, the data center needs to pay a transferred cost C4 to the transferred job.

(2) To the buffer. If some servers in Group 2 are closed to the sleep state, then those
jobs in the servers closed at the sleep state are transferred to the buffer, and a transferred
cost C(2)

3 is paid by the data center.
To keep the transferred jobs that can enter the buffer, we need to control the new jobs

arriving at the buffer. If the sum of the job number in the buffer and the job number in
Group 2 is equal to m3, then the newly arriving jobs must be lost immediately.

Power Consumption: The power consumption rates P1,W and P2,W are for the work
states of servers in Groups 1 and 2, respectively, while P2,S is only for the sleep state of a
server in Group 2. Note that each server in Group 1 does not have the sleep state and it is
clear that P1,S = 0. We assume that 0 < P2,S < P2,W . There is no power consumption for
keeping the jobs in the buffer. C1 is the power consumption price per unit of the power
consumption rate and per unit of time.

Independence: We assume that all the random variables in the data center defined
above are independent.

Finally, to aid reader understanding, the data center, together with its operational
mode and mathematical notations, is depicted in Figure 1. Table 1 summarizes some
notations involved in the model. This will be helpful in our later study.

Figure 1. Energy-efficient management of a data center.

Systems 2022, 10, 27 6 of 48

Table 1. Cost notation in the data center.

Cost Necessary Interpretation

C1 The power consumption price
C(1)

2 The holding cost for a job in Group 1 per unit of sojourn time
C(2)

2 The holding cost for a job in Group 2 per unit of sojourn time
C(3)

2 The holding cost for a job in the buffer per unit of sojourn time
C(1)

3 The setup cost for a server switching from the sleep state to the work state
C(2)

3 The transferred cost for a incomplete-service job returning to the buffer
C4 The transferred cost for a job in Group 2 is transferred to Group 1
C5 The opportunity cost for each lost job
R The service price from the served job

In the remainder of this section, it might be useful to provide some comparison of the
above model assumptions with those in Ma et al. [31] and in Xia et al. [35].

Remark 1. (1) Compared with our previous paper [31], this paper considers several new practical
factors, such as a finite buffer, a fast setup process, and a job transfer rule. The new factors make our
MDP modeling more practical and useful in the study of energy-efficient data centers. Although the
new factors do not increase any difficulty in performance evaluation through modeling by means of
queueing systems or Markov processes, they can cause substantially more difficulties and challenges
in finding optimal dynamic energy-efficient policies and, furthermore, in determining threshold-type
policies by using the sensitivity-based optimization. Note that the difficulties mainly grow out
of establishing the policy-based block-structured Markov process and solving the block-structured
Poisson equation. On this occasion, we have simplified the above model descriptions: for example,
the setup is immediate, the jobs can be transferred without delay either between the slow and fast
servers or between the slow servers and the buffer, the jobs must be transferred as soon as the fast
server becomes free, the finite buffer space is reserved for jobs in progress, and so on.

(2) For the energy-efficient data center operating with some buffer, it is seen from Figure A3
in Appendix B that the main challenge of our work is to focus on how to describe the policy-based
block-structured Markov process. Obviously, (a) if there are more than two groups of servers, then
it is easy to check that the policy-based Markov process will become multi-dimensional so that its
analysis is very difficult; (b) if the buffer is infinite, then we have to deal with the policy-based block-
structured Markov process with infinitely many levels, for which the discussion and computation
are very complicated.

Remark 2. Compared with Xia et al. [35], this paper introduces a more detailed cost and reward
structure, which makes analysis for the monotonicity and optimality of the dynamic energy-efficient
policies more difficult and challenging. Therefore, many cost and reward factors make the MDP
analysis and the sensitivity-based optimization more complicated.

3. Optimization Model Formulation

In this section, for the energy-efficient data center, we first establish a policy-based
continuous-time Markov process with a finite block structure. Then, we define a suitable
reward function with respect to both states and policies of the Markov process. Note that
this will be helpful and useful for setting up a MDP to find the optimal asynchronous
dynamic policy in the energy-efficient data center.

3.1. A Policy-Based Block-Structured Continuous-Time Markov Process

The data center in Figure 1 shows Group 1 of m1 servers, Group 2 of m2 servers, and a
buffer of size m3. We need to introduce both “states” and “policies” to express the stochastic
dynamics of this data center. Let N1(t), N2(t), and N3(t) be the numbers of jobs in Group 1,
Group 2, and the buffer, respectively. Therefore, (N1(t), N2(t), N3(t)) is regarded as a state

Systems 2022, 10, 27 7 of 48

of the data center at time t. Let all the cases of such a state (N1(t), N2(t), N3(t)) form a set
as follows:

Ω = Ω0 ∪Ω1 ∪Ω2 ∪ · · · ∪Ωm2 ∪Ωm2+1 ∪Ωm2+2,

where

Ω0 = {(0, 0, 0), (1, 0, 0), . . . , (m1, 0, 0)},
Ω1 = {(m1, 0, 1), (m1, 0, 2), . . . , (m1, 0, m3)},
Ω2 = {(m1, 1, 0), (m1, 1, 1), . . . , (m1, 1, m3 − 1)},

...
...

Ωm2 = {(m1, m2 − 1, 0), (m1, m2 − 1, 1), . . . , (m1, m2 − 1, m3 −m2 + 1)},
Ωm2+1 = {(m1, m2, 0), (m1, m2, 1), . . . , (m1, m2, m3 −m2)},
Ωm2+2 = {(m1, m2, m3 −m2 + 1), (m1, m2, m3 −m2 + 2), . . . , (m1, m2, m3)}.

For a state (n1, n2, n3), it is seen from the model description that there are four different
cases: (a) By using the transfer rules, if n1 = 0, 1, . . . , m1 − 1, then n2 = n3 = 0; if either
n2 6= 0 or n3 6= 0, then n1 = m1. (b) If n1 = m1 and n2 = 0, then the jobs in the buffer
can increase until the waiting room is full, i.e., n3 = 1, 2, . . . , m3. (c) If n1 = m1 and
n2 = 1, 2, . . . , m2 − 1, then the total numbers of jobs in Group 2 and the buffer are no more
than the buffer size, i.e., n2 + n3 ≤ m3. (d) If n1 = m1 and n2 = m2, then the jobs in the
buffer can also increase until the waiting room is full, i.e., n3 = 1, 2, . . . , m3.

Now, for Group 2, we introduce an asynchronous dynamic policy, which is related to
two dynamic actions (or sub-policies): from sleep to work (setup) and from work to sleep
(close). Let dW

n1,n2,n3
and dS

n1,n2,n3
be the numbers of working servers and of sleeping servers

in Group 2 at State (n1, n2, n3), respectively. By observing the state set Ω, we call dW and
dS the setup policy (i.e., from sleep to work) and the sleep policy (i.e., from work to sleep),
respectively.

Note that the servers in Group 2 can only be set up when all of them are idle, while
we cannot simultaneously have the setup policy (dW) because the servers in Group 2 are
always affected by the sleep policy (dS) if they still work for some jobs. This is what we
call asynchronous dynamic policies. Here, we consider the control optimization of the
total system. For such sub-policies, we provide an interpretation of four different cases
as follows:

(1) In Ω0, if n1 = 0, 1, . . . , m1 − 1, then n2 = n3 = 0 due to the transfer rule. Thus,
there are no jobs in Group 2 or in the buffer, so that no policy in Group 2 is used;

(2) In Ω1, the states will affect how to use the setup policy. If n1 = m1, n2 = 0, n3 =
1, 2, . . . , m3, then dW

m1,0,n3
is the number of working servers in Group 2 at State (m1, 0, n3).

Note that some of the slow servers need to first start, so that some jobs in the buffer can
enter the activated slow servers, thus, dW

m1,0,n3
∈ {0, 1, . . . , m2}, each of which can possibly

take place under an optimal dynamic policy;
(3) From Ω2 to Ωm2+1, the states will affect how to use the sleep policy. If n1 = m1,

n2 = 1, 2, . . . , m2, n3 = 0, 1, . . . , m3 − n2, then dS
m1,n2,n3

is the number of sleeping servers in
Group 2 at State (m1, n2, n3). We assume that the number of sleeping servers is no less than
m2− n2. Note that the sleep policy is independent of the work policy. Once the sleep policy
is set up, the servers without jobs must enter the sleep state. At the same time, some working
servers with jobs are also closed to the sleep state, and the jobs in those working servers are
transferred to the buffer. It is easy to see that dS

m1,n2,n3
∈ {m2 − n2, m2 − n2 + 1, . . . , m2};

(4) In Ωm2+2, if n1 = m1 and n2 = m2, then n3 may be any element in the set
{m3−m2+1, m3−m2+2, . . . , m3}, it is clear that n2 + n3 > m3.

Our aim is to determine when or under what conditions an optimal number of servers
in Group 2 switch between the sleep state and the work state such that the long-run average

Systems 2022, 10, 27 8 of 48

profit of the data center is maximal. From the state space Ω, we define an asynchronous
dynamic energy-efficient policy d as

d = dW � dS, (1)

where dW and dS are the setup and sleep policies, respectively; ‘�’ denotes that the policies
dW and dS occur asynchronously; and

dW =
(

dW
m1,0,1, dW

m1,0,2, . . . , dW
m1,0,m3

)
,

dS =
(

dS
m1,1,0, dS

m1,1,1, . . . , dS
m1,1,m3−1; dS

m1,2,0, dS
m1,2,1, . . . , dS

m1,2,m3−2; . . . ;

dS
m1,m2,0, dS

m1,m2,1, . . . , dS
m1,m2,m3−m2

)
.

Note that dW is related to the fact that if there is no job in Group 2 at the initial time,
then all the servers in Group 2 are at the sleep state. Once there are jobs in the buffer, we
quickly set up some servers in Group 2 such that they enter the work state to serve the jobs.
Similarly, we can understand the sleep policy dS. In the state subset

⋃ m2+2
i=2 Ωi, it is seen

that the setup policy dW will not be needed because some servers are kept at the work state.
For all the possible policies d given in (1), we compose a policy space as follows:

D :=
{

d = dW � dS : dW
m1,0,n3

∈ {0, 1, . . . , m2} for 1 ≤ n3 ≤ m3;

dS
m1,n2,n3

∈ {m2 − n2, m2 − n2 + 1, . . . , m2}for (m1, n2, n3) ∈ Ω2 ∪Ω3 ∪ · · · ∪Ωm2+1

}
.

Let X(d)(t) = (N1(t), N2(t), N3(t))
(d) for any given policy d ∈ D. Then {X(d)(t) : t ≥ 0}

is a policy-based block-structured continuous-time Markov process on the state space Ω

whose state transition relations are given in Figure A3 in Appendix B (we provide two simple
special cases to understand such a policy-based block-structured continuous-time Markov
process in Appendix A). Based on this, the infinitesimal generator of the Markov process{

X(d)(t) : t ≥ 0
}

is given by

Q(d)=



Q0,0 Q0,1
Q1,0 Q1,1 Q1,2 Q1,3 Q1,4 · · · Q1,m2+1
Q2,0 Q2,1 Q2,2

Q3,1 Q3,2 Q3,3
Q4,1 Q4,2 Q4,3 Q4,4

...
...

...
...

. . .
Qm2+1,1 Qm2+1,2 Qm2+1,3 Qm2+1,4 · · · Qm2+1,m2+1 Qm2+1,m2+2

Qm2+2,m2+1 Qm2+2,m2+2


, (2)

where every block element Qi,j depends on the policy d (for simplification of description,
here we omit “d”) and it is expressed in Appendix C.

It is easy to see that the infinitesimal generator Q(d) has finite states, and it is irreducible
with Q(d)e = 0, thus, the Markov process Q(d) is a positive recurrent. In this case, we write
the stationary probability vector of the Markov process

{
X(d)(t) : t ≥ 0

}
as

π(d) =
(

π
(d)
0 , π

(d)
1 , . . . , π

(d)
m2+2

)
, d ∈ D, (3)

Systems 2022, 10, 27 9 of 48

where

π
(d)
0 =

(
π(d)(0, 0, 0), π(d)(1, 0, 0), . . . , π(d)(m1, 0, 0)

)
,

π
(d)
1 =

(
π(d)(m1, 0, 1), π(d)(m1, 0, 2), . . . , π(d)(m1, 0, m3)

)
,

π
(d)
2 =

(
π(d)(m1, 1, 0), π(d)(m1, 1, 1), . . . , π(d)(m1, 1, m3 − 1)

)
,

...
...

π
(d)
m2 =

(
π(d)(m1, m2 − 1, 0), π(d)(m1, m2 − 1, 1), . . . , π(d)(m1, m2 − 1, m3 −m2 + 1)

)
,

π
(d)
m2+1 =

(
π(d)(m1, m2, 0), π(d)(m1, m2, 1), . . . , π(d)(m1, m2, m3 −m2)

)
,

π
(d)
m2+2 =

(
π(d)(m1, m2, m3 −m2 + 1), π(d)(m1, m2, m3 −m2 + 2), . . . , π(d)(m1, m2, m3)

)
.

Note that the stationary probability vector π(d) can be obtained by means of solving
the system of linear equations π(d)Q(d) = 0 and π(d)e = 1, where e is a column vector
of the ones with a suitable size. To this end, the RG-factorizations play an important role
in our later computation. Note that some computational details are given in Chapter 2 in
Li [33].

Now, we use UL-type RG-factorization to compute the stationary probability vector
π(d) as follows. For 0 ≤ i, j ≤ k and 0 ≤ k ≤ m2 + 2, we write

Q[≤k]
i,j = Qi,j +

m2+2

∑
n=k+1

Q[≤n]
i,n

{
−Q[≤n]

n,n

}−1
Q[≤n]

n,j .

Clearly, Q[≤m2+2]
i,j = Qi,j and Q[≤0]

i,j = Q[0]
i,j . Let

U(d)
n = Q[≤n]

n,n , 0 ≤ n ≤ m2 + 2,

R(d)
i,j = Q[≤j]

i,j

(
−U(d)

j

)−1
, 0 ≤ i < j ≤ m2 + 2,

and
G(d)

i,j =
(
−U(d)

i

)−1
Q[≤i]

i,j , 0 ≤ j < i ≤ m2 + 2.

Then the UL-type RG-factorization is given by

Q(d) =
(

I −R(d)
U

)(
I −U(d)

D

)(
I −G(d)

L

)
,

where

R(d)
U =



0 R(d)
0,1 R(d)

0,2 · · · R(d)
0,m2+1 R(d)

0,m2+2

0 R(d)
1,2 · · · R(d)

1,m2+1 R(d)
1,m2+2

0
. . .

...
...

0 R(d)
m2,m2+1 R(d)

m2,m2+2

0 R(d)
m2+1,m2+2

0


,

U(d)
D = diag

(
U(d)

0 , U(d)
1 , . . . , U(d)

m2+1, U(d)
m2+2

)

Systems 2022, 10, 27 10 of 48

and

G(d)
L =



0
G(d)

1,0 0

G(d)
2,0 G(d)

2,1 0

G(d)
3,0 G(d)

3,1 G(d)
3,2 0

...
...

...
.

G(d)
m2+2,0 G(d)

m2+2,1 G(d)
m2+2,2 · · · G(d)

m2+2,m2+1 0


.

By using Theorem 2.9 of Chapter 2 in Li [33], the stationary probability vector of the
Markov process Q(d) is given by

π
(d)
0 = τ(d)x(d)0 ,

π
(d)
k =

k−1
∑

i=0
π

(d)
i R(d)

i,k , 1 ≤ k ≤ m2 + 2,

where x(d)0 is the stationary probability vector of the censored Markov chain U(d)
0 to level 0,

and the positive scalar τ(d) is uniquely determined by
m2+2

∑
k=0

π
(d)
k e = 1.

Remark 3. The RG-factorizations provide a unified, constructive and algorithmic framework for
the numerical computation of many practical stochastic systems. It can be applied to provide effective
solutions for the block-structured Markov processes, and are shown to be also useful for the optimal
design and dynamical decision-making of many practical systems. See more details in Li [33].

The following theorem provides some useful observations on some special policies
dW � dS ∈ D, in which the special policies will have no effect on the infinitesimal generator

Q(dW�dS) or the stationary probability vector π(dW�dS).

Theorem 1. Suppose that two asynchronous energy-efficient policies dW1 � dS, dW2 � dS ∈
D satisfy one of the following two conditions: (a) for each n3 = 1, 2, . . . , m2, if dW1

m1,0,n3
∈

{n3, n3 + 1, . . . , m2}, then we take dW2
m1,0,n3

as any element of the set {1, 2, . . . , m2}; (b) for each

n3 = m2 + 1, m2 + 2, . . . , m3, if dW1
m1,0,n3

∈ {1, 2, . . . , m2}, then we take dW2
m1,0,n3

= dW1
m1,0,n3

. Under
both such conditions, we have

Q(dW1�dS) = Q(dW2�dS), π(dW1�dS) = π(dW2�dS).

Proof of Theorem 1. It is easy to see from (2) that all the levels of the matrix Q(dW1�dS) are
the same as those of the matrix Q(dW2�dS), except level 1. Thus, we only need to compare

level 1 of the matrix Q(dW1�dS) with that of the matrix Q(dW2�dS).
For the two asynchronous energy-efficient policies dW1 � dS, dW2 � dS ∈ D satisfying

the conditions (a) and (b), by using 1{
dW

m1,0,n3
≥n3

} in (2), it is clear that for n3 = 1, 2, . . . , m2,

if dW1
m1,0,n3

, dW2
m1,0,n3

∈ {n3, n3 + 1, . . . , m2}, then

1{
d

W1
m1,0,n3

≥n3

} = 1{
dW2

m1,0,n3
≥n3

}.

Thus, it follows from (2) that Q(dW1�dS)
1,k = Q(dW2�dS)

1,k , k = 1, 2, . . . , m2 + 1. This also

gives that Q(dW1�dS) = Q(dW2�dS), and thus π(dW1�dS) = π(dW2�dS). This completes
the proof.

Note that Theorem 1 will be necessary and useful for analyzing the policy monotonicity
and optimality in our later study. Furthermore, see the proof of Theorem 4.

Systems 2022, 10, 27 11 of 48

Remark 4. This paper is the first to introduce and consider the asynchronous dynamic policy in the
study of energy-efficient data centers. We highlight the impact of the two asynchronous sub-policies:
the setup and sleep policies on the long-run average profit of the energy-efficient data center.

3.2. The Reward Function

For the Markov process Q(d), now we define a suitable reward function for the energy-
efficient data center.

Based on the above costs and price notations in Table 1, a reward function with respect
to both states and policies is defined as a profit rate (i.e., the total revenues minus the total
costs per unit of time). Therefore, according to the impact of the asynchronous dynamic
policy on the profit rate, the reward function at State (n1, n2, n3) under policy d is divided
into four cases as follows:

Case (a): For n1 = 0, 1, . . . , m1 and n2 = n3 = 0, the profit rate is not affected by any
policy, and we have

f (n1, 0, 0) = Rn1µ1 − (m1P1,W + m2P2,S)C1 − n1C(1)
2 . (4)

Note that in Case (a), there is no job in Group 2 or in the buffer. Thus, it is clear that
each server in Group 2 is at the sleep state.

However, in the following two cases (b) and (c), since there are some jobs either in
Group 2 or in the buffer, the policy d will play a key role in opening (i.e., setup) or closing
(i.e., sleep) some servers of Group 2 to save energy efficiently.

Case (b): For n1 = m1, n2 = 0 and n3 = 1, 2, . . . , m3, the profit rate is affected by the
setup policy dW , we have

f (dW)(m1, 0, n3) = Rm1µ1 −
[
m1P1,W + dW

m1,0,n3
P2,W +

(
m2 − dW

m1,0,n3

)
P2,S

]
C1

−
[
m1C(1)

2 + n3C(3)
2

]
− dW

m1,0,n3
C(1)

3 − λ1{n1=m1,n2=0,n3=m3}C5, (5)

where 1{·} is an indicator function whose value is 1 when the event is in {·}, otherwise its
value is 0.

Case (c): For n1 = m1, n2 = 1, 2, . . . , m2 and n3 = 0, 1, . . . , m3 − n2, the profit rate is
affected by the sleep policy dS, we have

f (dS)(m1, n2, n3) = R
[
m1µ1 +

(
m2 − dS

m1,n2,n3

)
µ2

]
−
[
m1P1,W + dS

m1,n2,n3
P2,S +

(
m2 − dS

m1,n2,n3

)
P2,W

]
C1

−
[
m1C(1)

2 + n2C(2)
2 + n3C(3)

2

]
−
[
n2 −

(
m2 − dS

m1,n2,n3

)]
C(2)

3

−m1µ11{n2>0,n3=0}C4 − λ1{n1=m1,n2+n3=m3}C5. (6)

Note that the job transfer rate from Group 2 to Group 1 is given by n1µ11{n2>0,n3=0}.
If 0 ≤ n1 ≤ m1 − 1, then n2 = 0 and n1µ11{n2>0,n3=0}C4 = 0. If n1 = m1 and n2 = 0, then
n1µ11{n2>0,n3=0}C4 = 0. If n1 = m1, 1 ≤ n2 ≤ m2 and n3 = 0, then n1µ11{n2>0,n3=0}C4 =
m1µ1C4.

Case (d): For n1 = m1, n2 = m2 and n3 = m3 −m2 + 1, m3 −m2 + 2, . . . , m3, the profit
rate is not affected by any policy, we have

f (m1, m2, n3) = R(m1µ1 + m2µ2)− (m1P1,W + m2P2,W)C1

−
[
m1C(1)

2 + m2C(2)
2 + n3C(3)

2

]
− λ1{n1=m1,n2=m2,n3=m3}C5. (7)

Systems 2022, 10, 27 12 of 48

We define a column vector composed of the elements f (n1, n2, n3), f (dW)(n1, n2, n3)

and f (dS)(n1, n2, n3) as

f (d) =

(
(f0)

T ,
(

f (
dW)

1

)T
,
(

f (
dS)

2

)T
, . . . ,

(
f (

dS)
m2+1

)T
, (fm2+2)

T

)T

, (8)

where

f0 = (f (0, 0, 0), f (1, 0, 0), . . . , f (m1, 0, 0))T ,

f (
dW)

1 =
(

f (dW)(m1, 0, 1), f (dW)(m1, 0, 2), . . . , f (dW)(m1, 0, m3)
)T

,

f (
dS)

2 =
(

f (dS)(m1, 1, 0), f (dS)(m1, 1, 1), . . . , f (dS)(m1, 1, m3 − 1)
)T

,

...
...

f (
dS)

m2+1 =
(

f (dS)(m1, m2, 0), f (dS)(m1, m2, 1), . . . , f (dS)(m1, m2, m3 −m2)
)T

,

fm2+2 = (f (m1, m2, m3 −m2 + 1), f (m1, m2, m3 −m2 + 2), . . . , f (m1, m2, m3))
T .

In the remainder of this section, the long-run average profit of the data center (or the
policy-based continuous-time Markov process

{
X(d)(t) : t ≥ 0

}
) under an asynchronous

dynamic policy d is defined as

ηd = lim
T→+∞

E
{

1
T

∫ T

0
f (d)
(

X(d)(t)
)

dt
}

= π(d) f (d), (9)

where π(d) and f (d) are given by (3) and (8), respectively.
We observe that as the number of working servers in Group 2 decreases, the total

revenues and the total costs in the data center will decrease synchronously, and vice versa.
On the other hand, as the number of sleeping servers in Group 2 increases, the total
revenues and the total costs in the data center will decrease synchronously, and vice versa.
Thus, there is a tradeoff between the total revenues and the total costs for a suitable number
of working and/or sleeping servers in Group 2 by using the setup and sleep policies,
respectively. This motivates us to study an optimal dynamic control mechanism for the
energy-efficient data center. Thus, our objective is to find an optimal asynchronous dynamic
policy d∗ such that the long-run average profit ηd is maximized, that is,

d∗ = arg max
d∈D

{
ηd
}

. (10)

Since the setup and sleep policies dW and dS occur asynchronously, they cannot
interact with each other at any time. Therefore, it is seen that the optimal policy can be
decomposed into

d∗ = dW∗ � dS∗ = arg max
dW∈D

{
ηdW

}
� arg max

dS∈D

{
ηdS
}

.

In fact, it is difficult and challenging to analyze the properties of the optimal asyn-
chronous dynamic policy d∗ = dW∗ � dS∗ , and to provide an effective algorithm for
computing the optimal policy d∗. To do this, in the next sections we will introduce the
sensitivity-based optimization theory to study this energy-efficient optimization problem.

4. The Block-Structured Poisson Equation

In this section, for the energy-efficient data center, we set up a block-structured Poisson
equation which provides a useful relation between the sensitivity-based optimization and

Systems 2022, 10, 27 13 of 48

the MDP. Additionally, we use the RG-factorization, given in Li [33], to solve the block-
structured Poisson equation and provide an expression for its unique solution.

For d ∈ D, it follows from Chapter 2 in Cao [34] that for the policy-based continuous-
time Markov process

{
X(d)(t) : t ≥ 0

}
, we define the performance potential as

g(d)(n1, n2, n3) = E
{∫ +∞

0

[
f (d)
(

X(d)(t)
)
− ηd

]
dt
∣∣∣∣X(d)(0) = (n1, n2, n3)

}
, (11)

where ηd is defined in (9). It is seen from Cao [34] that for any policy d ∈ D, g(d)(n1, n2, n3)
quantifies the contribution of the initial state (n1, n2, n3) to the long-run average profit of
the data center. Here, g(d)(n1, n2, n3) is also called the relative value function or the bias in
the traditional Markov decision process theory, see, e.g., Puterman [39] for more details.
We further define a column vector g(d) with elements g(d)(n1, n2, n3) for (n1, n2, n3) ∈ Ω

g(d) =
(

g(d)0 , g(d)1 , g(d)2 , . . . , g(d)m2+1, g(d)m2+2

)T
, (12)

where

g(d)0 =
(

g(d)(0, 0, 0), g(d)(1, 0, 0), . . . , g(d)(m1, 0, 0)
)T

,

g(d)1 =
(

g(d)(m1, 0, 1), g(d)(m1, 0, 2), . . . , g(d)(m1, 0, m3)
)T

,

g(d)2 =
(

g(d)(m1, 1, 0), g(d)(m1, 1, 1), . . . , g(d)(m1, 1, m3 − 1)
)T

,

...
...

g(d)m2+1 =
(

g(d)(m1, m2, 0), g(d)(m1, m2, 1), . . . , g(d)(m1, m2, m3 −m2)
)T

,

g(d)m2+2 =
(

g(d)(m1, m2, m3 −m2 + 1), g(d)(m1, m2, m3 −m2 + 2), . . . , g(d)(m1, m2, m3)
)T

.

A similar computation to that in Ma et al. [31], the block-structured Poisson equation
is given by

Q(d)g(d) = ηde− f (d), (13)

where ηd is defined in (9), f (d) is given in (8), and Q(d) is given in (2).
To solve the system of linear equations (13), we note that rank

(
Q(d)

)
= m1 + 3m2/2−

m2
2/2+m2m3 +m3 and det

(
Q(d)

)
= 0 because the size of the matrix Q(d) is m1 + 3m2/2−

m2
2/2 + m2m3 + m3 + 1. Hence, this system (13) of linear equations exists with infinitely

many solutions with a free constant of an additive term. Let Q̃ be a matrix obtained through
omitting the first row and the first column vectors of the matrix Q(d). Then,

Q̃(d) =



Q̃0,0 Q̃0,1
Q̃1,0 Q1,1 Q1,2 Q1,3 Q1,4 · · · Q1,m2+1
Q̃2,0 Q2,1 Q2,2

Q3,1 Q3,2 Q3,3
Q4,1 Q4,2 Q4,3 Q4,4

...
...

...
...

. . .
Qm2+1,1 Qm2+1,2 Qm2+1,3 Qm2+1,4 · · · Qm2+1,m2+1 Qm2+1,m2+2

Qm2+2,m2+1 Qm2+2,m2+2


, (14)

Systems 2022, 10, 27 14 of 48

where

Q̃0,0 =


−(λ + µ1) λ

2µ1 −(λ + 2µ1) λ
.

(m1 − 1)µ1 −[λ + (m1 − 1)µ1] λ
m1µ1 −(λ + m1µ1)

,

Q̃0,1 is obtained by means of omitting the first row vector of Q0,1, Q̃1,0 and Q̃2,0 are obtained
from omitting the first column vectors of Q1,0 and Q2,0, respectively. The other block entries
in Q̃(d)are the same as the corresponding block entries in the matrix Q(d).

Note that, rank
(

Q̃(d)
)
= m1 + 3m2/2−m2

2/2 + m2m3 + m3 and the size of the matrix

Q̃(d) is m1 + 3m2/2−m2
2/2 + m2m3 + m3. Hence, the matrix Q̃(d) is invertible.

Let h(d) and ϕ(d) be two column vectors of size m1 + 3m2/2− m2
2/2 + m2m3 + m3

obtained through omitting the first element of the two column vectors f (d) − ηde and g(d)

of size m1 + 3m2/2−m2
2/2 + m2m3 + m3 + 1, respectively, and

l0 = m1,

l1 = m1 + m3,

l2 = m1 + 2m3,
...

lm2+1 = m1 +
m2

2
−

m2
2

2
+ m2m3 + m3,

L = m1 +
3m2

2
−

m2
2

2
+ m2m3 + m3.

Then,

h(d) =



f̃0 − ηd

f (
dW)

1 − ηd

f (
dS)

2 − ηd

...

f (
dS)

m2+1 − ηd

fm2+2 − ηd


def
=



h(d)
0

h(d)
1

h(d)
2
...

h(d)
m2+1

h(d)
m2+2


, ϕ(d) def

=



g̃(d)0

g(d)1

g(d)2
...

g(d)m2+1

g(d)m2+2


, (15)

where f̃0 and g̃(d)0 are the two column vectors, which are obtained through omitting the

scale entries f (0, 0, 0) and g(d)(0, 0, 0) of f0 and g(d)0 , respectively, and

h(d)
0 =

(
h1, h2, . . . , hl0

)T ,
h(d)

1 =
(
hl0+1, hl1+2, . . . , hl1

)T ,
h(d)

2 =
(
hl1+1, hl2+2, . . . , hl2

)T ,
...

h(d)
m2+1 =

(
hlm2+1, hlm2+1+2, . . . , hlm2+1

)T
,

h(d)
m2+2 =

(
hlm2+1+1, hlm2+2+2, . . . , hL

)T
.

Therefore, it follows from (13) that

− Q̃(d)ϕ(d) = h(d) + µ1e1g(d)(0, 0, 0), (16)

Systems 2022, 10, 27 15 of 48

where e1 is a column vector with the first element being one and all the others being zero.

Note that the matrix −Q̃(d) is invertible and
(
−Q̃(d)

)−1
> 0, thus the system (16) of linear

equations always exists with one unique solution:

ϕ(d) =
(
−Q̃(d)

)−1
h(d) + µ1

(
−Q̃(d)

)−1
e1 · =, (17)

where g(d)(0, 0, 0) = = is any given positive constant. For the convenience of computation,
we take g(d)(0, 0, 0) = = = 1. In this case, we have

ϕ(d) =
(
−Q̃(d)

)−1
h(d) + µ1

(
−Q̃(d)

)−1
e1. (18)

Note that the expression of the invertible matrix
(
−Q̃(d)

)−1
can be obtained by means

of the RG-factorization, which is given in Li [33] for general Markov processes.
For convenience of computation, we write(

−Q̃(d)
)−1

=
(
QT

0 ,QT
1 ,QT

2 , . . . ,QT
m2+1,QT

m2+2

)T
,

and every element of the matrix Qr is written by a scalar q(r)n,l , we denote by n a system state
under the certain block, and l the index of element, where r = 0, 1, . . . , m2 + 2, l = 1, 2, . . . , L,
for L = m1 + 3m2/2−m2

2/2 + m2m3 + m3, and

n =


1, 2, . . . , m1, for r = 0,
1, 2, . . . , m3, for r = 1,
0, 1, . . . , m3 − r + 1, for 2 ≤ r ≤ m2 + 1,
m3 −m2 + 1, m3 −m2 + 2, . . . , m3, for r = m2 + 2.

It is easy to check that

Q0 =


q(0)1,1 q(0)1,2 · · · q(0)1,L

q(0)2,1 q(0)2,2 · · · q(0)2,L
...

...
...

q(0)m1,1 q(0)m1,2 · · · q(0)m1,L


L×m1

,

Q1 =


q(1)1,1 q(1)1,2 · · · q(1)1,L

q(1)2,1 q(1)2,2 · · · q(1)2,L
...

...
...

q(1)m3,1 q(1)m3,2 · · · q(1)m3,L


L×m3

,

for 2 ≤ r ≤ m2 + 1,

Qr =


q(r)0,1 q(r)0,2 · · · q(r)0,L

q(r)1,1 q(r)1,2 · · · q(r)1,L
...

...
...

q(r)m3−r+1,1 q(r)m3−r+1,2 · · · q(r)m3−r+1,L


L×(m3−r+2)

,

Systems 2022, 10, 27 16 of 48

and

Qm2+2 =


q(m2+2)

m3−m2+1,1 q(m2+2)
m3−m2+1,2 · · · q(m2+2)

m3−m2+1,L

q(m2+2)
m3−m2+2,1 q(m2+2)

m3−m2+2,2 · · · q(m2+2)
m3−m2+2,L

...
...

...
q(m2+2)

m3,1 q(m2+2)
m3,2 · · · q(m2+2)

m3,L


L×m2

.

The following theorem provides an expression for the vector ϕ(d) under a constraint
condition g(d)(0, 0, 0) = = = 1. Note that this expression is very useful for applications of
the sensitivity-based optimization theory to the study of Markov decision processes in our
later study.

Theorem 2. If g(d)(0, 0, 0) = 1, then for n1 = 1, 2, . . . , m1,

g(d)(n1, 0, 0) =
L

∑
l=1

q(0)n1,lhl + µ1q(0)n1,1;

for n3 = 1, 2, . . . , m3,

g(d)(m1, 0, n3) =
L

∑
l=1

q(1)n3,lhl + µ1q(1)n3,1;

for n2 = r− 1, n3 = 0, 1, . . . , m3 − n2, and 2 ≤ r ≤ m2 + 1,

g(d)(m1, n2, n3) =
L

∑
l=1

q(r)n3,lhl + µ1q(r)n3,1;

for n3 = m3 −m2 + 1, m3 −m2 + 2, . . . , m3,

g(d)(m1, m2, n3) =
L

∑
l=1

q(m2+2)
n3,l hl + µ1q(m2+2)

n3,1 .

Proof of Theorem 2. It is seen from (18) that we need to compute two parts:
(
−Q̃(d)

)−1
h(d)

and µ1

(
−Q̃(d)

)−1
e1. Note that

(
−Q̃

)−1
h(d) =



∑L
l=1 q(0)1,l hl

...

∑L
l=1 q(0)m1,lhl

...

∑L
l=1 q(r)0,l hl

...

∑L
l=1 q(r)m3−r+1,lhl

...

∑L
l=1 q(m2+2)

m3−m2+1,lhl
...

∑L
l=1 q(m2+2)

m3,l hl


L×1

and µ1

(
−Q̃

)−1
e1 = µ1



q(0)1,1
...

q(0)m1,1
...

q(r)0,1
...

q(r)m3−r+1,1
...

q(m2+2)
m3−m2+1,1

...
q(m2+2)

m3,1


L×1

.

thus a simple computation for the vector ϕ(d) =
(
−Q̃(d)

)−1
h(d) + µ1

(
−Q̃(d)

)−1
e1 can

obtain our desired results. This completes the proof.

Systems 2022, 10, 27 17 of 48

5. Impact of the Service Price

In this section, we study the perturbation realization factor of the policy-based
continuous-time Markov process both for the setup policy and for the sleep policy (i.e., they
form the asynchronous energy-efficient policy), and analyze how the service price impacts
on the perturbation realization factor. To do this, our analysis includes the following two
cases: the setup policy and the sleep policy. Note that the results given in this section will
be useful for establishing the optimal asynchronous dynamic policy of the energy-efficient
data center in later sections.

It is a key in our present analysis that the setup policy and the sleep policy are
asynchronous at any time; thus, we can discuss the perturbation realization factor under
the asynchronous dynamic policy from two different computational steps.

5.1. The Setup Policy

For the performance potential vector ϕ(d) under a constraint condition g(d)(0, 0, 0) = 1,
we define a perturbation realization factor as

G(d)(n, n′
) def
= g(d)

(
n′
)
− g(d)(n), (19)

where n = (n1, n2, n3), n′ =
(
n′1, n′2, n′3

)
. We can see that G(d)(n, n′) quantifies the difference

between two performance potentials g(d)(n1, n2, n3) and g(d)
(
n′1, n′2, n′3

)
. It measures the

long-run effect on the average profit of the data center when the system state is changed
from n′ =

(
n′1, n′2, n′3

)
to n = (n1, n2, n3). For our next discussion, through observing the

state space, it is necessary to define some perturbation realization factors as follows:

G(dW)
1

def
= g(d)(m1, i1, n3 − i1)− g(d)(m1, i2, n3 − i2),

G(dW)
2

def
= g(d)(m1, 0, n3)− g(d)(m1, i1, n3 − i1), (20)

G(dW)
3

def
= g(d)(m1, 0, n3)− g(d)(m1, i2, n3 − i2),

where 0 ≤ i2 < i1 ≤ m2 and n3 = 0, 1, . . . , m3.
It follows from Theorem 2 that

g(d)(m1, 0, n3) =
L

∑
l=1

q(1)n3,l
hl + µ1q(1)n3,1

,

g(d)(m1, i1, n3 − i1) =
L

∑
l=1

q(i1+1)
n3−i1,lhl + µ1q(i1+1)

n3−i1,1,

g(d)(m1, i2, n3 − i2) =
L

∑
l=1

q(i2+1)
n3−i2,lhl + µ1q(i2+1)

n3−i2,1.

To express the perturbation realization factor by means of the service price R, we write

A0 = 0, B0 = (m1P1,W + m2P2,S)C1 > 0;

for 1 ≤ l ≤ l0 and n1 = 1, 2, . . . , m1, n2 = n3 = 0,

Al = n1µ1 > 0, Bl = (m1P1,W + m2P2,S)C1 + n1C(1)
2 > 0;

Systems 2022, 10, 27 18 of 48

for l0 + 1 ≤ l ≤ l1, and n1 = m1, n2 = 0, n3 = 1, 2, . . . , m3,

Al = m1µ1 > 0,

B(
dW)

l =
[
m1P1,W + dW

m1,0,n3
P2,W +

(
m2 − dW

m1,0,n3

)
P2,S

]
C1

+
[
m1C(1)

2 + n3C(3)
2

]
+ dW

m1,0,n3
C(1)

3 + λ1{n1=m1,n2=0,n3=m3}C5 > 0;

for l1 + 1 ≤ l ≤ lm2+1, and n1 = m1, n2 = 1, 2, . . . , m2, n3 = 0, 1, . . . , m3 − n2,

A(dS)
l = m1µ1 +

(
m2 − dS

m1,n2,n3

)
µ2 > 0,

B(
dS)

l =
[
m1P1,W + dS

m1,n2,n3
P2,S +

(
m2 − dS

m1,n2,n3

)
P2,W

]
C1 +

[
m1C(1)

2 + n2C(2)
2 + n3C(3)

2

]
+
[
n2 −

(
m2 − dS

m1,n2,n3

)]
C(2)

3 + m1µ11{n3=0}C4 + λ1{n2+n3=m3}C5 > 0;

for lm2+1 + 1 ≤ l ≤ L, and n1 = m1, n2 = m2, n3 = m3 −m2 + 1, m3 −m2 + 2, . . . , m3,

Al = m1µ1 + m2µ2 > 0,

Bl = (m1P1,W + m2P2,W)C1 +
[
m1C(1)

2 + m2C(2)
2 + n3C(3)

2

]
+ λ1{n1=m1,n2=m2,n3=m3}C5 > 0.

Then for 1 ≤ l ≤ l0 and n1 = 0, 1, . . . , m1, n2 = n3 = 0,

f (n1, 0, 0) = RAl − Bl ;

for l0 + 1 ≤ l ≤ l1, and n1 = m1, n2 = 0, n3 = 1, 2, . . . , m3,

f (dW)(m1, 0, n3) = RAl − B(
dW)

l ;

for l1 + 1 ≤ l ≤ lm2+1, and n1 = m1, n2 = 1, 2, . . . , m2, n3 = 0, 1, . . . , m3 − n2,

f (dS)(m1, n2, n3) = RA(dS)
l − B(

dS)
l ;

for lm2+1 + 1 ≤ l ≤ L, and n1 = m1, n2 = m2, n3 = m3 −m2 + 1, m3 −m2 + 2, . . . , m3,

f (d)(m1, m2, n3) = RAl − Bl .

We rewrite π(d) as

π
(d)
0 =

(
π0; π1, π2, . . . , πl0

)
,

π
(d)
1 =

(
πl0+1, πl0+2, . . . , πl1

)
,

π
(d)
2 =

(
πl1+1, πl1+2, . . . , πl2

)
,

...
π

(d)
m2+1 =

(
πlm2+1, πlm2+2, . . . , πlm2+1

)
,

π
(d)
m2+2 =

(
πlm2+1+1, πlm2+1+2, . . . , πL

)
.

Then it is easy to check that

D(d) = π0 A0 +
l0

∑
l=0

πl Al +
l1

∑
l=l0+1

πl Al +

lm2+1

∑
l=l1+1

πl A
(dS)
l +

L

∑
l=lm2+1+1

πl Al > 0,

Systems 2022, 10, 27 19 of 48

and

F(d) = π0B0 +
l0

∑
l=0

πl Bl +
l1

∑
l=l0+1

πl B
(dW)
l +

lm2+1

∑
l=l1+1

πl B
(dS)
l +

L

∑
l=lm2+1+1

πl Bl > 0.

Thus, we obtain

ηd = π(d) f (d)

=
m1

∑
n1=0

π(d)(n1, 0, 0) f (n1, 0, 0) +
m3

∑
n3=1

π(d)(m1, 0, n3) f (dW)(m1, 0, n3)

+
m3−n2

∑
n3=0

m2

∑
n2=0

π(d)(m1, n2, n3) f (dS)(m1, n2, n3)

+
m3

∑
n3=m3−m2+1

π(d)(m1, m2, n3) f (m1, m2, n3)

= RD(d) − F(d).

It follows from (15) that for 1 ≤ l ≤ l0,

hl = R
[

Al − D(d)
]
−
[

Bl − F(d)
]
;

for l0 + 1 ≤ l ≤ l1,

hl = R
[

Al − D(d)
]
−
[

B(
dW)

l − F(d)
]

;

for l1 + 1 ≤ l ≤ lm2+1,

hl = R
[

A(dS)
l − D(d)

]
−
[

B(
dS)

l − F(d)
]

;

for lm2+1 + 1 ≤ l ≤ L,

hl = R
[

Al − D(d)
]
−
[

Bl − F(d)
]
.

If a job finishes its service at a server and leaves this system immediately, then the data
center can obtain a fixed revenue (i.e., the service price) R from such a served job. Now, we
study the influence of the service price R on the perturbation realization factor. Note that
all the numbers q(r)n,l are positive and are independent of the service price R, while all the
numbers hl are the linear functions of R. We write

W(r)
n =

l0

∑
l=1

q(r)n,l
hl

[
Al − D(d)

]
+

l1

∑
l=l0+1

q(r)n,l
hl

[
Al − D(d)

]

+

lm2+1

∑
l=l1+1

q(r)n,l
hl

[
A(dS)

l − D(d)
]
+

L

∑
l=lm2+1+1

q(r)n,l
hl

[
Al − D(d)

]
+ µ1q(r)n,1

and

V(r)
n =

l0

∑
l=1

q(r)n,l
hl

[
Bl − F(d)

]
+

l1

∑
l=l0+1

q(r)n,l
hl

[
B(

dW)
l − F(d)

]

+

lm2+1

∑
l=l1+1

q(r)n,l
hl

[
B(

dS)
l − F(d)

]
+

L

∑
l=lm2+1+1

q(r)n,l
hl

[
Bl − F(d)

]
,

Systems 2022, 10, 27 20 of 48

then for i1, i2 = 0, 1, . . . , m2, we obtain

G(dW)
1 = R

[
W(i1+1)

n3−i1
−W(i2+1)

n3−i2

]
−
[
V(i1+1)

n3−i1
−V(i2+1)

n3−i2

]
,

G(dW)
2 = R

[
W(1)

n3 −W(i1+1)
n3−i1

]
−
[
V(1)

n3 −V(i1+1)
n3−i1

]
, (21)

G(dW)
3 = R

[
W(1)

n3 −W(i2+1)
n3−i2

]
−
[
V(1)

n3 −V(i2+1)
n3−i2

]
.

Now, we define

G(dW) = m1µ1G(dW)
1 − i1µ2

(
G(dW)

2 + β1

)
+ i2µ2

(
G(dW)

3 + β1

)
,

where β1 is defined as

β1 =
(P2,W − P2,S)C1 + C(1)

3
µ2

.

From the later discussion in Section 6, we will see that G(dW) plays a fundamental role

in the performance optimization of data centers, and the sign of G(dW) directly determines
the selection of decision actions, as shown in (38) later. To this end, we analyze how the
service price can impact on G(dW) as follows. Substituting (21) into the linear equation
G(dW) = 0, we obtain

R =
ϕ(i1)V

(i1+1)
n3−i1

− ϕ(i2)V
(i2+1)
n3−i2

− ψ(i1, i2)
(

V(1)
n3 − β1

)
ϕ(i1)W

(i1+1)
n3−i1

− ϕ(i2)W
(i2+1)
n3−i2

− ψ(i1, i2)W
(1)
n3

, (22)

where ϕ(i1) = m1µ1 + i1µ2, ϕ(i2) = m1µ1 + i2µ2 and ψ(i1, i2) = (i1 − i2)µ2.
Thus, the unique solution of the price R in (22) is given by

<(dW)(i1, i2) =
ϕ(i1)V

(i1+1)
n3−i1

− ϕ(i2)V
(i2+1)
n3−i2

− ψ(i1, i2)
(

V(1)
n3 − β1

)
ϕ(i1)W

(i1+1)
n3−i1

− ϕ(i2)W
(i2+1)
n3−i2

− ψ(i1, i2)W
(1)
n3

, (23)

It is easy to see from (22) that (a) if R ≥ <(dW)(i1, i2), then G(dW) ≥ 0; and (b) if
R ≤ <(dW)(i1, i2), then G(dW) ≤ 0.

In the energy-efficient data center, we define two critical values, related to the service
price, as

RW
H = max

d∈D

{
0,<(dW)(1, 0),<(dW)(2, 0), . . . ,<(dW)(m2, m2 − 1)

}
(24)

and
RW

L = min
d∈D

{
<(dW)(1, 0),<(dW)(2, 0), . . . ,<(dW)(m2, m2 − 1)

}
(25)

The following proposition uses the two critical values, which are related to the service
price, to provide a key condition whose purpose is to establish a sensitivity-based opti-
mization framework of the energy-efficient data center in our later study. Additionally,
this proposition will be useful in the next section for studying the monotonicity of the
asynchronous energy-efficient policies.

Proposition 1. (1) If R ≥ RW
H , then for any d ∈ D and for each couple (i1, i2) with 0 ≤ i2 <

i1 ≤ m2, we have
G(dW) ≥ 0. (26)

Systems 2022, 10, 27 21 of 48

(2) If 0 ≤ R ≤ RW
L , then for any d ∈ D and for each couple (i1, i2) with 0 ≤ i2 < i1 ≤ m2,

we have
G(dW) ≤ 0. (27)

Proof of Proposition 1. (1) For any d ∈ D and for each couple (i1, i2) with 0 ≤ i2 < i1 ≤ m2,

since R ≥ RW
H and RW

H = maxd∈D
{

0,<(dW)(1, 0),<(dW)(2, 0), . . . , <(dW)(m2, m2 − 1)
}

,
this gives

R ≥ <(dW)(i1, i2).

Thus, for any couple (i1, i2) with 0 ≤ i2 < i1 ≤ m2 this makes that G(dW) ≥ 0.
(2) For any d ∈ D and for each couple (i1, i2) with 0 ≤ i2 < i1 ≤ m2, if 0 ≤ R ≤ RW

L ,
we get

R ≤ <(dW)(i1, i2),

this gives that G(dW) ≤ 0. This completes the proof.

5.2. The Sleep Policy

The analysis for the sleep policy is similar to that of the setup policy given in the above
subsection. Here, we shall provide only a simple discussion.

We define the perturbation realization factor for the sleep policy as follows:

G(dS)
1

def
= g(d)(m1, j2, n3 + n2 − j2)− g(d)(m1, j1, n3 + n2 − j1),

G(dS)
2

def
= g(d)(m1, n2, n3)− g(d)(m1, j1, n3 + n2 − j1), (28)

G(dS)
3

def
= g(d)(m1, n2, n3)− g(d)(m1, j2, n3 + n2 − j2),

where 0 ≤ j2 < j1 ≤ n2, n2 = 0, 1, . . . , m2 and n3 = 0, 1, . . . , m3.
It follows from Theorem 2 that

g(d)(m1, n2, n3) =
L

∑
l=1

q(n2+1)
n3,l hl + µ1q(n2+1)

n3,1 ,

g(d)(m1, j1, n3 + n2 − j1) =
L

∑
l=1

q(j1+1)
n3+n2−j1,lhl + µ1q(j1+1)

n3+n2−j1,1,

g(d)(m1, j2, n3 + n2 − j2) =
L

∑
l=1

q(j2+1)
n3+n2−j2,lhl + µ1q(j2+1)

n3+n2−j2,1.

Similarly, to express the perturbation realization factor by means of the service price
R, we write

G(dS) = m1µ1G(dS)
1 + j1µ2

(
G(dS)

2 + β2

)
− j2µ2

(
G(dS)

3 + β2

)
,

where

G(dS)
1 = R

[
W(j2+1)

n3+n2−j2
−W(j1+1)

n3+n2−j1

]
−
[
V(j2+1)

n3+n2−j2
−V(j1+1)

n3+n2−j1

]
,

G(dS)
2 = R

[
W(n2+1)

n3 −W(j1+1)
n3+n2−j1

]
−
[
V(n2+1)

n3 −V(j1+1)
n3+n2−j1

]
, (29)

G(dS)
3 = R

[
W(n2+1)

n3 −W(j2+1)
n3+n2−j2

]
−
[
V(n2+1)

n3 −V(j2+1)
n3+n2−j2

]
,

and

β2 = −R +
(P2,W − P2,S)C1 + C(2)

3
µ2

.

Systems 2022, 10, 27 22 of 48

Now, we analyze how the service price impacts on G(dS) as follows: Substituting (29)
into the linear equation G(dS) = 0, we obtain

R =
ϕ(j1)V

(j1+1)
n3+n2−j1

− ϕ(j2)V
(j2+1)
n3+n2−j2

− ψ(j1, j2)
(

V(n2+1)
n3 − β2

)
ϕ(j1)W

(j1+1)
n3+n2−j1

− ϕ(j2)W
(j2+1)
n3+n2−j2

− ψ(j1, j2)µ2W(n2+1)
n3

. (30)

Then, the unique solution of the price R in (30) is given by

<(dS)(j1, j2) =
ϕ(j1)V

(j1+1)
n3+n2−j1

− ϕ(j2)V
(j2+1)
n3+n2−j2

− ψ(j1, j2)
(

V(n2+1)
n3 − β2

)
ϕ(j1)W

(j1+1)
n3+n2−j1

− ϕ(j2)W
(j2+1)
n3+n2−j2

− ψ(j1, j2)µ2W(n2+1)
n3

.

It is easy to see from Equation (30) that (a) if R ≥ <(dS)(j1, j2), then G(dS) ≥ 0; and (b)

if R ≤ <(dS)(j1, j2), then G(dS) ≤ 0.
In the energy-efficient data center, we relate to the service price and define two critical

values as

RS
H = max

d∈D

{
0,<(dS)(1, 0),<(dS)(2, 0), . . . ,<(dS)(m2, m2 − 1)

}
(31)

and
RS

L = min
d∈D

{
<(dS)(1, 0),<(dS)(2, 0), . . . ,<(dS)(m2, m2 − 1)

}
(32)

The following proposition is similar to Proposition 1, thus its proof is omitted here.

Proposition 2. (1) If R ≥ RS
H , then for any d ∈ D and for each couple (j1, j2) with 0 ≤ j2 <

j1 ≤ n2, we have
G(dS) ≥ 0.

(2) If 0 ≤ R ≤ RS
L, then for any d ∈ D and for each couple (j1, j2) with 0 ≤ j2 < j1 ≤ n2,

we have
G(dS) ≤ 0.

From Propositions 1 and 2, we relate to the service price and define two new critical
values as

RH = max
{

RW
H , RS

H

}
and RL = min

{
RW

L , RS
L

}
. (33)

The following theorem provides a simple summarization from Propositions 1 and 2,
and it will be useful for studying the monotonicity and optimality of the asynchronous
dynamic policy in our later sections.

Theorem 3. (1) If R ≥ RH , then for any asynchronous dynamic policy d ∈ D, we have

G(dW) ≥ 0 and G(dS) ≥ 0.

(2) If 0 ≤ R ≤ RL, then for any asynchronous policy d ∈ D, we have

G(dW) ≤ 0 and G(dS) ≤ 0.

6. Monotonicity and Optimality

In this section, we use the block-structured Poisson equation to derive a useful perfor-
mance difference equation, and discuss the monotonicity and optimality of the long-run
average profit of the energy-efficient data center with respect to the setup and sleep policies,
respectively. Based on this, we can give the optimal asynchronous dynamic policy of the
energy-efficient data center.

Systems 2022, 10, 27 23 of 48

The standard Markov model-based formulation suffers from a number of drawbacks.
First and foremost, the state space is usually too large for practical problems. That is,
the number of potentials to be calculated or estimated is too large for most problems.
Secondly, the generally applicable Markov model does not reflect any special structure of a
particular problem. Thus, it is not clear whether and how potentials can be aggregated to
save computation by exploring the special structure of the system. The sensitivity point of
view and the flexible construction of the sensitivity formulas provide us a new perspective
to explore alternative approaches for the performance optimization of systems with some
special features.

For any given asynchronous energy-efficient policy d ∈ D, the policy-based continuous-
time Markov process {X(d)(t) : t ≥ 0} with infinitesimal generator Q(d) given in (2) is an
irreducible, aperiodic, and positive recurrent. Therefore, by using a similar analysis to
Ma et al. [31], the long-run average profit of the data center is given by

ηd = π(d) f (d),

and the Poisson equation is written as

Q(d)g(d) = ηde− f (d).

For State (n1, n2, n3), it is seen from (2) that the asynchronous energy-efficient policy d
directly affects not only the elements of the infinitesimal generator Q(d) but also the reward
function f (d). That is, if the asynchronous policy d changes, then the infinitesimal generator
Q(d) and the reward function f (d) will have their corresponding changes. To express such
a change mathematically, we take two different asynchronous energy-efficient policies d
and d′, both of which correspond to their infinitesimal generators Q(d) and Q(d′), and to
their reward functions f (d) and f (d

′).
The following lemma provides a useful equation for the difference ηd′ − ηd of the long-

run average performances ηd and ηd′ for any two asynchronous policies d, d′ ∈ D. Here,
we only restate it without proof, while readers may refer to Ma et al. [31] for more details.

Lemma 1. For any two asynchronous energy-efficient policies d, d′ ∈ D, we have

ηd′ − ηd = π(d′)
[(

Q(d′) −Q(d)
)

g(d)+
(

f (d
′) − f (d)

)]
. (34)

Now, we describe the first role played by the performance difference, in which we
set up a partial order relation in the policy set D so that the optimal asynchronous energy-
efficient policy in the finite set D can be found by means of finite comparisons. Based on
the performance difference ηd′ − ηd for any two asynchronous energy-efficient policies
d, d′ ∈ D, we can set up a partial order in the policy set D as follows. We write d′ � d if
ηd′ > ηd; d′ ≈ d if ηd′ = ηd; d′ ≺ d if ηd′ < ηd. Furthermore, we write d′ � d if ηd′ ≥ ηd;
d′ � d if ηd′ ≤ ηd. By using this partial order, our research target is to find an optimal
asynchronous policy d∗ ∈ D such that d∗ � d for any asynchronous energy-efficient policy
d ∈ D, or

d∗ = arg max
d∈D

{
ηd
}

.

Note that the policy set D and the state space Ω are both finite, thus an enumeration
method is feasible for finding the optimal asynchronous energy-efficient policy d∗ in the
policy set D. Since

D =
{

d = dW � dS : dW
m1,0,n3

∈ {0, 1, . . . , m2} for 1 ≤ n3 ≤ m3;

dS
m1,n2,n3

∈ {m2 − n2, m2 − n2 + 1, . . . , m2} for (m1, n2, n3) ∈ Ω2 ∪Ω3 ∪ · · · ∪Ωm2+1

}
.

Systems 2022, 10, 27 24 of 48

It is seen that the policy set D contains (m2 + 1)m3 ×2m3 × 3m3−1× · · · × (m2 + 1)m2+1

elements so that the enumeration method used to find the optimal policy will require
a huge enumeration workload. However, our following work will be able to greatly
reduce the amount of searching for the optimal asynchronous policy d∗ by means of the
sensitivity-based optimization theory.

Now, we discuss the monotonicity of the long-run average profit ηd with respect to any
asynchronous policy d under the different service prices. Since the setup and sleep policies
dW and dS occur asynchronously and they will not interact with each other at any time, we
can, respectively, study the impact of the policies dW and dS on the long-run average profit
ηd. To this end, in what follows we shall discuss three different cases: R ≥ RH , 0 ≤ R ≤ RL,
and RL < R < RH .

6.1. The Service Price R ≥ RH

In the case of R ≥ RH , we discuss the monotonicity and optimality with respect to
two different policies: the setup policy and the sleep policy, respectively.

6.1.1. The Setup Policy with R ≥ RW
H

The following theorem analyzes the right-half part of the unimodal structure
(see Figure 2) of the long-run average profit ηd with respect to the setup policy—either
dW

m1,0,n3
∈ {n3, n3 + 1, . . . , m2} if n3 ≤ m2 or dW

m1,0,n3
= m2 if n3 > m2.

Theorem 4. For any setup policy dW with dW � dS ∈ D and for each n3 = 1, 2, . . . , m3, the long-
run average profit ηdW�dS

is linearly increasing with respect to the setup policy either dW
m1,0,n3

∈
{n3, n3 + 1, . . . , m2} if n3 ≤ m2 or dW

m1,0,n3
= m2 if n3 > m2.

Proof of Theorem 4. For each n3 = 1, 2, . . . , m3, we consider two interrelated policies
dW � dS, dW ′ � dS ∈ D as follows:

dW =
(

dW
m1,0,1, dW

m1,0,2, . . . , dW
m1,0,n3−1, dW

m1,0,n3
, dW

m1,0,n3+1, . . . , dW
m1,0,m3

)
,

dW ′ =
(

dW
m1,0,1, dW

m1,0,2, . . . , dW
m1,0,n3−1, n3 ∧m2, dW

m1,0,n3+1, . . . , dW
m1,0,m3

)
,

where dW
m1,0,n3

≤ n3 ∧m2. It is seen that the two policies dW , dW ′ have one difference only
between their corresponding decision elements dW

m1,0,n3
and n3 ∧m2. In this case, it is seen

from Theorem 1 that Q(dW�dS) = Q
(

dW′�dS
)

and π(dW�dS) = π

(
dW′�dS

)
. Furthermore, it

is easy to check from (4) to (7) that

f (d) − f (d
′) =

(
0, 0, . . . , 0,−

(
dW

m1,0,n3
− n3 ∧m2

)[
(P2,W − P2,S)C1 + C(1)

3

]
,0, . . . , 0

)T
.

Thus, it follows from Lemma 1 that

ηdW�dS − ηdW′�dS

= π(dW�dS)
[(

Q(dW�dS) −Q
(

dW′�dS
))

g(d
W′�dS)+

(
f (dW) − f

(
dW′

))]
= −π(dW�dS)(m1, 0, n3)

(
dW

m1,0,n3
− n3 ∧m2

)[
(P2,W − P2,S)C1 + C(1)

3

]
or

ηdW�dS
= ηdW′�dS − π(dW�dS)(m1, 0, n3)

(
dW

m1,0,n3
− n3 ∧m2

)[
(P2,W − P2,S)C1 + C(1)

3

]
. (35)

Systems 2022, 10, 27 25 of 48

Since π(dW�dS) = π

(
dW′�dS

)
, it is easy to see that π(dW�dS)(m1, 0, n3) = π

(
dW′�dS

)
(m1, 0, n3) can be determined by dW ′

m1,0,n3
= n3 ∧m2. This indicates that π(dW�dS)(m1, 0, n3)

is irrelevant to the decision element dW
m1,0,n3

. Furthermore, note that ηdW′�dS
is irrelevant to

the decision element dW
m1,0,n3

, and P2,W − P2,S, C1 and C(1)
3 are all positive constants, thus it is

easy to see from (35) that the long-run average profit ηdW�dS
is linearly decreasing with re-

spect to each decision element dW
m1,0,n3

for dW
m1,0,n3

∈ {(n3 + 1) ∧m2, (n3 + 2) ∧m2, . . . , m2}.
It is worth noting that if m2 ≤ n3 ≤ m3, then dW

m1,0,n3
∈ {m2, m2, . . . , m2}. This completes

the proof.

In what follows, we discuss the left-half part of the unimodal structure (see Figure 2) of
the long-run average profit ηd with respect to each decision element dW

m1,0,n3
∈ {0, 1, . . . , n3}

if n3 < m2. Compared to analysis of its right-half part, our discussion for the left-half part
is a little bit complicated.

Let the optimal setup policy dW∗ = arg max
dW�dS∈D

{
ηdW�dS

}
be

dW∗ =
(

dW∗
m1,0,1, dW∗

m1,0,2, . . . , dW∗
m1,0,m3

)
.

Then, it is seen from Theorem 4 that

dW∗
m1,0,n3

=

{
0, 1, . . . , n3, 1 ≤ n3 ≤ m2,
m2, m2 ≤ n3 ≤ m3.

Hence, Theorem 4 takes the area of finding the optimal setup policy dW∗ from a large
set {0, 1, . . . , m2}m3 to a greatly shrunken area {0, 1} × {0, 1, 2} × · · · × {0, 1, . . . , m2 − 1} ×
{0, 1, . . . , m2}m3−m2+1.

To find the optimal setup policy dW∗ , we consider two setup policies with an interre-
lated structure as follows:

dW =
(

dW
m1,0,1, . . . , dW

m1,0,n3−1, dW
m1,0,n3

,dW
m1,0,n3+1, . . . , dW

m1,0,m2
, . . . , dW

m1,0,m3

)
,

dW ′ =
(

dW
m1,0,1, . . . , dW

m1,0,n3−1, dW ′
m1,0,n3

,dW
m1,0,n3+1, . . . , dW

m1,0,m2
, . . . , dW

m1,0,m3

)
,

where dW ′
m1,0,n3

= i1 > dW
m1,0,n3

= i2, and dW
m1,0,n3

, dW ′
m1,0,n3

∈ {1, 2, . . . , n3 ∧m2}. It is easy to
check from (2) that

Q
(

dW′�dS
)
−Q(dW�dS)=

0 0 0
.

0 0 0
−(i1 − i2)µ2 · · ·−(m1µ1 + i2µ2) · · ·m1µ1 + i1µ2

0 0 0
.

0 0 0


. (36)

On the other hand, from the reward functions given in (8), it is seen that for n3 =
1, 2, . . . , m2, and dW

m1,0,n3
∈ {0, 1, . . . , n3},

f (dW)(m1, 0, n3) = −
[
(P2,W − P2,S)C1 + C(1)

3

]
dW

m1,0,n3
+ Rm1µ1

− (m1P1,W + m2P2,S)C1 −
[
m1C(1)

2 + n3C(3)
2

]
− λ1{n3=m3}C5

Systems 2022, 10, 27 26 of 48

and

f
(

dW′
)
(m1, 0, n3) = −

[
(P2,W − P2,S)C1 + C(1)

3

]
dW ′

m1,0,n3
+ Rm1µ1

− (m1P1,W + m2P2,S)C1 −
[
m1C(1)

2 + n3C(3)
2

]
− λ1{n3=m3}C5.

Hence, we have

f
(

dW′
)
− f (dW) = (0, 0, . . . , 0,−(i2 − i1)µ2β1, 0, . . . , 0)T . (37)

We write that
ηd|dW

m1,0,n3
=i = π(d)|dW

m1,0,n3
=i · f (d)|dW

m1,0,n3
=i.

The following theorem discusses the left-half part (see Figure 2) of the unimodal
structure of the long-run average profit ηd with respect to each decision element dW

m1,0,n3
∈

{0, 1, . . . , m2}.

Theorem 5. If R ≥ RW
H , then for any setup policy dW with dW � dS ∈ D and for each n3 =

1, 2, . . . , m2, the long-run average profit ηdW�dS
is strictly monotone and increasing with respect to

each decision element dW
m1,0,n3

for dW
m1,0,n3

∈ {0, 1, . . . , n3}.

Proof of Theorem 5. For each n3 = 1, 2, . . . , m2, we consider two setup policies with an
interrelated structure as follows:

dW =
(

dW
m1,0,1, . . . , dW

m1,0,n3−1, dW
m1,0,n3

,dW
m1,0,n3+1, . . . , dW

m1,0,m2
, . . . , dW

m1,0,m3

)
,

dW ′ =
(

dW
m1,0,1, . . . , dW

m1,0,n3−1, dW ′
m1,0,n3

,dW
m1,0,n3+1, . . . , dW

m1,0,m2
, . . . , dW

m1,0,m3

)
,

where dW ′
m1,0,n3

= i1 > dW
m1,0,n3

= i2, and dW
m1,0,n3

, dW ′
m1,0,n3

∈ {0, 1, . . . , n3}. Applying
Lemma 1, it follows from (36) and (37) that

ηdW′�dS − ηdW�dS

= π

(
dW′�dS

)[(
Q
(

dW′�dS
)
−Q(dW�dS)

)
g(d)+

(
f
(

dW′
)
− f (dW)

)]
= π

(
dW′�dS

)
(m1, 0, n3)

[
−(i1 − i2)µ2g(d)(m1, 0, n3)

−(m1µ1 + i2µ2)g(d)(m1, i2, n3 − i2) (38)

+(m1µ1 + i1µ2)g(d)(m1, i1, n3 − i1)− (i1 − i2)β1

]
= π

(
dW′�dS

)
(m1, 0, n3)

[
m1µ1G(dW)

1 − i1µ2

(
G(dW)

2 + β1

)
+ i2µ2

(
G(dW)

3 + β1

)]
= π

(
dW′�dS

)
(m1, 0, n3)G(dW).

If R ≥ RW
H , then it is seen from Proposition 1 that G(dW) ≥ 0. Thus, we get that

for the two policies dW � dS, dW ′ � dS ∈ D with dW ′
m1,0,n3

> dW
m1,0,n3

and dW
m1,0,n3

, dW ′
m1,0,n3

∈
{0, 1, . . . , n3},

ηdW′�dS
> ηdW�dS

.

This shows that

ηd|dW
m1,0,n3

=1 < ηd|dW
m1,0,n3

=2 < · · · < ηd|dW
m1,0,n3

=n3−1 < ηd|dW
m1,0,n3

=n3
.

This completes the proof.

Systems 2022, 10, 27 27 of 48

Figure 2. The unimodal structure of the long-run average profit by the setup policy.

When R ≥ RW
H , now we use Figure 2 to provide an intuitive summary for the main

results given in Theorems 4 and 5. In the right-half part of Figure 2,

ηdW�dS
= ηdW′�dS − π(dW�dS)(m1, 0, n3)

(
dW

m1,0,n3
− n3

)[
(P2,W − P2,S)C1 + C(1)

3

]
shows that ηdW�dS

is a linear function of the decision element dW
m1,0,n3

. By contrast, in the
right-half part of Figure 2, we need to first introduce a restrictive condition: R ≥ RW

H ,
under which

ηdW′�dS − ηdW�dS
= π

(
dW′�dS

)
(m1, 0, n3)G(dW).

Since G(dW) also depends on the decision element dW
m1,0,n3

, it is clear that ηdW�dS
is a

nonlinear function of the decision element dW
m1,0,n3

.

6.1.2. The Sleep Policy with R ≥ RS
H

It is different from the setup policy in that, for the sleep policy, each decision element
is dS

m1,n2,n3
∈ {m2 − n2, m2 − n2 + 1, . . . , m2}. Hence, we just consider the structural prop-

erties of the long-run average profit ηdW�dS
with respect to each decision element dS

m1,n2,n3
.

We write the optimal sleep policy as dS∗ = arg max
dW�dS∈D

{
ηdW�dS

}
, where

dS∗ =
(

dS∗
m1,1,0, dS∗

m1,1,1, . . . , dS∗
m1,1,m3−1; dS∗

m1,2,0, . . . , dS∗
m1,2,m3−2; . . . ; dS∗

m1,m2,0, . . . , dS∗
m1,m2,m3−m2

)
.

Then, it is seen that

dS∗
m1,1,0 ∈ {m2 − 1, m2}, · · · , dS∗

m1,1,m3−1 ∈ {m2 − 1, m2};

dS∗
m1,2,0 ∈ {m2 − 2, m2 − 1, m2}, · · · , dS∗

m1,2,m3−2 ∈ {m2 − 2, m2 − 1, m2};
...

dS∗
m1,m2,0 ∈ {0, 1, . . . , m2}, · · · , dS∗

m1,m2,m3−m2
∈ {0, 1, . . . , m2}.

It is easy to see that the area of finding the optimal sleep policy dS∗ is {m2 − 1, m2}m3 ×
{m2 − 2, m2 − 1, m2}m3−1 × · · · × {0, 1, . . . , m2}m3−m2 .

Systems 2022, 10, 27 28 of 48

To find the optimal sleep policy dS∗ , we consider two sleep policies with an interrelated
structure as follows:

dS =
(

dS
m1,1,0, dS

m1,1,1, . . . , dS
m1,n2,n3−1, dS

m1,n2,n3
, dS

m1,n2,n3+1, . . . , dS
m1,m2,m3−m2

)
,

dS′ =
(

dS
m1,1,0, dS

m1,1,1, . . . , dS
m1,n2,n3−1, dS′

m1,n2,n3
, dS

m1,n2,n3+1, . . . , dS
m1,m2,m3−m2

)
,

where dS′
m1,n2,n3

= m2 − j2 > dS
m1,n2,n3

= m2 − j1, 0 ≤ j2 < j1 ≤ n2, it is easy to check
from (2) that

Q
(

dW�dS′
)
−Q(dW�dS)=

0 0 0
.

0 0 0
m1µ1 + j2µ2 · · · −(m1µ1 + j1µ2) · · · −(j2 − j1)µ2

0 0 0
.

0 0 0


. (39)

On the other hand, from the reward functions given in (6), dS
m1,n2,n3

, dS′
m1,n2,n3

is in either
{m2 − n2, m2 − n2 + 1, . . . , m2} for 1 ≤ n2 ≤ m2 and 0 ≤ n3 ≤ m3 − n2 or {0, 1, . . . , m2} for
n2 = m2 and 0 ≤ n3 ≤ m3 −m2, we have

f (dS)(m1, n2, n3) = −
[

Rµ2 − (P2,W − P2,S)C1 + C(2)
3

]
dS

m1,n2,n3
+ R(m1µ1 + m2µ2)

− (m1P1,W + m2P2,W)C1 −
[
m1C(1)

2 + n2C(2)
2 + n3C(3)

2

]
− (n2 −m2)C

(2)
3 −m1µ11{n3=0}C4

and

f
(

dS′
)
(m1, n2, n3) = −

[
Rµ2 − (P2,W − P2,S)C1 + C(2)

3

]
dS′

m1,n2,n3
+ R(m1µ1 + m2µ2)

− (m1P1,W + m2P2,W)C1 −
[
m1C(1)

2 + n2C(2)
2 + n3C(3)

2

]
− (n2 −m2)C

(2)
3 −m1µ11{n3=0}C4.

Hence, we have

f
(

dS′
)
− f (dS) = (0, 0, . . . , 0,−(j2 − j1)µ2β2, 0, . . . , 0)T . (40)

We write

ηd|dS
m1,n2,n3=m2−j = π(d)|dS

m1,n2,n3=m2−j · f (d)|dS
m1,n2,n3=m2−j.

The following theorem discusses the structure of the long-run average profit ηdW�dS

with respect to each decision element dS
m1,n2,n3

.

Theorem 6. If R ≥ RS
H , then for any sleep policy dS with dW � dS ∈ D and for each n2 =

1, 2, . . . , m2, n3 = 0, 1, . . . , m3 − n2, the long-run average profit ηd is strictly monotone decreasing
with respect to each decision element dS

m1,n2,n3
∈ {m2 − n2, m2 − n2 + 1, . . . , m2}.

Systems 2022, 10, 27 29 of 48

Proof of Theorem 6. For each n2 = 1, 2, . . . , m2 and n3 = 1, 2, . . . , m3 − n2, we consider
two sleep policies with an interrelated structure as follows:

dS =
(

dS
m1,1,0, . . . , dS

m1,n2,n3−1, dS
m1,n2,n3

, dS
m1,n2,n3+1, . . . , dS

m1,m2,m3−m2

)
,

dS′ =
(

dS
m1,1,0, . . . , dS

m1,n2,n3−1, dS′
m1,n2,n3

, dS
m1,n2,n3+1, . . . , dS

m1,m2,m3−m2

)
,

where dS′
m1,n2,n3

= m2 − j2 > dS
m1,n2,n3

= m2 − j1, 0 ≤ j2 < j1 ≤ n2 and dS
m1,n2,n3

, dS′
m1,n2,n3

∈
{m2 − n2, m2 − n2 + 1, . . . , m2}. Applying Lemma 1, it follows from (39) and (40) that

ηdW�dS′ − ηdW�dS

= π

(
dW�dS′

)[(
Q
(

dW�dS′
)
−Q(dW�dS)

)
g(d)+

(
f
(

dS′
)
− f (dS)

)]
= π

(
dW�dS′

)
(m1, n2, n3)

[
(m1µ1 + j2µ2)g(d)(m1, j2, n3 + n2 − j2)

−(m1µ1 + j1µ2)g(d)(m1, j1, n3 + n2 − j1)− (j2 − j1)µ2g(d)(m1, n2, n3)− (j2 − j1)µ2β2

]
(41)

= π

(
dW�dS′

)
(m1, n2, n3)

[
m1µ1G(dS)

1 + j1µ2

(
G(dS)

2 + β2

)
− j2µ2

(
G(dS)

3 + β2

)]
= π

(
dW�dS′

)
(m1, n2, n3)G(dS).

It is worthwhile to note that (41) has the same form as (38), since the perturbation of
the sleep policy, j1, and j2 denote the number of the working servers. If R ≥ RS

H , then it is

seen from Proposition 1 that for j2 < j1, we have G(dS) ≥ 0. Thus, we get that for j2 < j1
and j1, j2 ∈ {0, 1, . . . , n2},

ηdW�dS′
> ηdW�dS

,

this shows that ηdW�dS
is strictly monotone increasing with respect to m2 − dS

m1,n2,n3
. Thus,

we get that for the two policies dW � dS, dW � dS′ ∈ D with dS
m1,n2,n3

> dS′
m1,n2,n3

and
dS

m1,n2,n3
, dS′

m1,n2,n3
∈ {m2 − n2, m2 − n2 + 1, . . . , m2},

ηdW�dS′
< ηdW�dS

.

It is easy to see that

ηd|dS
m1,n2,n3=m2−n2

> ηd|dS
m1,n2,n3=m2−n2+1 > · · · > ηd|dS

m1,n2,n3=m2
.

This completes the proof.

When R ≥ RS
H , now we use Figure 3 to provide an intuitive summary for the main

results given in Theorems 6. According to (41), G(dS) depends on dS
m1,n2,n3

, and it is clear

that ηdW�dS
is a nonlinear function of dS

m1,n2,n3
.

As a simple summarization of Theorems 5 and 6, we obtain the monotone structure
of the long-run average profit ηd with respect to the asynchronous energy-efficient policy,
while its proof is easy only on the condition that R ≥ RH makes R ≥ RW

H and R ≥ RS
H .

Theorem 7. If R ≥ RH , then for any policy d ∈ D, the long-run average profit ηd is strictly
monotone with respect to each decision element of dW and of dS, respectively.

Systems 2022, 10, 27 30 of 48

Figure 3. The monotone structure of the long-run average profit by the sleep policy.

6.2. The Service Price 0 ≤ R ≤ RL

A similar analysis to that of the case R ≥ RH , we simply discuss the service price
0 ≤ R ≤ RL for the monotonicity and optimality for two different policies: the setup policy
and the sleep policy.

6.2.1. The Setup Policy with 0 ≤ R ≤ RW
L

Theorem 8. If 0 ≤ R ≤ RW
L , for any setup policy dW with dW � dS ∈ D and for each n3 =

1, 2, . . . , m2, then the long-run average profit ηdW�dS
is strictly monotone decreasing with respect

to each decision element dW
m1,0,n3

∈ {0, 1, . . . , n3} .

Proof of Theorem 8. This proof is similar to that of Theorem 5. For each n3 = 1, 2, . . . , m2,
we consider two setup policies with an interrelated structure as follows:

dW =
(

dW
m1,0,1, . . . , dW

m1,0,n3−1, dW
m1,0,n3

,dW
m1,0,n3+1, . . . , dW

m1,0,m2
, . . . , dW

m1,0,m3

)
,

dW ′ =
(

dW
m1,0,1, . . . , dW

m1,0,n3−1, dW ′
m1,0,n3

,dW
m1,0,n3+1, . . . , dW

m1,0,m2
, . . . , dW

m1,0,m3

)
,

where dW ′
m1,0,n3

= i1 > dW
m1,0,n3

= i2, and dW
m1,0,n3

, dW ′
m1,0,n3

∈ {0, 1, . . . , n3} for 1 ≤ n3 ≤ m2. It
is clear that

ηdW′�dS − ηdW�dS
= π

(
dW′�dS

)
(m1, 0, n3)G(dW).

If 0 ≤ R ≤ RW
L , then it is seen from Proposition 1 that G(dW) ≤ 0. Thus, we get that

for the two setup policies with dW ′
m1,0,n3

< dW
m1,0,n3

and dW
m1,0,n3

, dW ′
m1,0,n3

∈ {0, 1, . . . , n3},

ηdW′�dS
< ηdW�dS

.

This shows that for 1 ≤ n3 ≤ m2,

ηd|dW
m1,0,n3

=1 > ηd|dW
m1,0,n3

=2 > · · · > ηd|dW
m1,0,n3

=n3−1 > ηd|dW
m1,0,n3

=n3
.

This completes the proof.

When 0 ≤ R ≤ RW
L , we also use Figure 4 to provide an intuitive summary for the main

results given in Theorems 4 and 8.

Systems 2022, 10, 27 31 of 48

Figure 4. The decreasing structure of the long-run average profit by the setup policy.

6.2.2. The Sleep Policy with 0 ≤ R ≤ RS
L

Theorem 9. If 0 ≤ R ≤ RS
L, then for any sleep policy dS with dW � dS ∈ D and for each n2 =

1, 2, . . . , m2, n3 = 0, 1, . . . , m3− n2, the long-run average profit ηdW�dS
is strictly monotone increas-

ing with respect to each decision element dS
m1,n2,n3

, for dS
m1,n2,n3

∈ {m2 − n2, m2 − n2 + 1, . . . , m2}.

Proof of Theorem 9. This proof is similar to that of Theorem 6. For each n2 = 1, 2, . . . , m2
and n3 = 0, 1, . . . , m3 − n2, we consider two sleep policies with an interrelated structure
as follows:

dS =
(

dS
m1,1,0, dS

m1,1,1, . . . , dS
m1,n2,n3−1, dS

m1,n2,n3
, dS

m1,n2,n3+1, . . . , dS
m1,m2,m3−m2

)
,

dS′ =
(

dS
m1,1,0, dS

m1,1,1, . . . , dS
m1,n2,n3−1, dS′

m1,n2,n3
, dS

m1,n2,n3+1, . . . , dS
m1,m2,m3−m2

)
,

where dS′
m1,n2,n3

= m2 − j2 > dS
m1,n2,n3

= m2 − j1, 0 ≤ j2 < j1 ≤ n2 and dS
m1,n2,n3

, dS′
m1,n2,n3

∈
{m2 − n2, m2 − n2 + 1, . . . , m2}. It is clear that

ηdW�dS′ − ηdW�dS
= π

(
dW�dS′

)
(m1, n2, n3)G(dS).

By a similar analysis to that in Theorem 6, if 0 ≤ R ≤ RS
L, then it is seen from

Proposition 1 that for j2 < j1, we have G(dS) ≤ 0. Thus, we get that for j2 < j1
and j1, j2 ∈ {0, 1, . . . , n2}, ηdW�dS

is strictly monotone decreasing with respect to m2 −
dS

m1,n2,n3
, hence it is also strictly monotone increasing with respect to dS

m1,n2,n3
. Thus,

we get that for the two sleep policies with dS
m1,n2,n3

< dS′
m1,n2,n3

and dS
m1,n2,n3

, dS′
m1,n2,n3

∈
{m2 − n2, m2 − n2 + 1, . . . , m2},

ηdW�dS′
< ηdW�dS

.

This shows that

ηd|dS
m1,n2,n3=m2−n2

< ηd|dS
m1,n2,n3=m2−n2+1 < · · · < ηd|dS

m1,n2,n3=m2
.

This completes the proof.

When 0 ≤ R ≤ RS
L, we also use Figure 5 to provide an intuitive summary for the main

results given in Theorem 9.

Systems 2022, 10, 27 32 of 48

Figure 5. The increasing structure of the long-run average profit by the sleep policy.

As a simple summarization of Theorems 8 and 9, the following theorem further
describes monotone structure of the long-run average profit ηd with respect to the asyn-
chronous energy-efficient policy, while its proof is easy only through using the condition
that 0 ≤ R ≤ RL makes 0 ≤ R ≤ RW

L and 0 ≤ R ≤ RS
L.

Theorem 10. If 0 ≤ R ≤ RL, then for any asynchronous energy-efficient policy d ∈ D, the
long-run average profit ηd is strictly monotone with respect to each decision element of dW and
of dS, respectively.

In the remainder of this section, we discuss a more complicated case with the service
price RL < R < RH . In this case, we use the bang–bang control and the asynchronous
structure of d ∈ D to prove that the optimal asynchronous energy-efficient polices dW∗ and
dS∗ both have bang–bang control forms.

6.3. The Service Price RL < R < RH

For the price RL < R < RH , we can further derive the following theorems about the
monotonicity of ηd with respect to the setup policy and the sleep policy, respectively.

6.3.1. The Setup Policy with RW
L < R < RW

H

For the service price RW
L < R < RW

H , the following theorem provides the monotonicity
of ηd with respect to the decision element dW

m1,0,n3
.

Theorem 11. If RW
L < R < RW

H , then the long-run average profit ηdW�dS
is monotone (either

increasing or decreasing) with respect to the decision element dW
m1,0,n3

, where n3 = 1, 2, . . . , m3 and
dW

m1,0,n3
∈ {0, 1, . . . , n3}.

Proof of Theorem 11. Similarly to the first part of the proof for Theorem 5, we consider
any two setup policies with an interrelated structure as follows:

dW =
(

dW
m1,0,1, . . . , dW

m1,0,n3−1, dW
m1,0,n3

,dW
m1,0,n3+1, . . . , dW

m1,0,m2
, . . . , dW

m1,0,m3

)
,

dW ′ =
(

dW
m1,0,1, . . . , dW

m1,0,n3−1, dW ′
m1,0,n3

,dW
m1,0,n3+1, . . . , dW

m1,0,m2
, . . . , dW

m1,0,m3

)
,

where dW
m1,0,n3

, dW ′
m1,0,n3

∈ {0, 1, . . . , n3}. Applying Lemma 1, we obtain

ηdW′�dS − ηdW�dS
= π

(
dW′�dS

)
(m1, 0, n3)G(dW). (42)

Systems 2022, 10, 27 33 of 48

On the other hand, we can similarly obtain the following difference equation

ηdW�dS − ηdW′�dS
= −π(dW�dS)(m1, 0, n3)G

(
dW′

)
. (43)

By summing (42) and (43), we have

π

(
dW′�dS

)
(m1, 0, n3)G(dW) − π(dW�dS)(m1, 0, n3)G

(
dW′

)
= 0.

Therefore, we have the sign conservation equation

G(dW)

G(dW′)
=

π(dW�dS)(m1, 0, n3)

π(dW′�dS)(m1, 0, n3)
> 0. (44)

The above equation means that the sign of G(dW) and G
(

dW′
)

are always identical when
a particular decision element dW

m1,0,n3
is changed to any dW ′

m1,0,n3
. With the sign conservation

Equation (44) and the performance difference Equation (43), we can directly derive that
the long-run average profit ηdW�dS

is monotone with respect to dW
m1,0,n3

. This completes
the proof.

Based on Theorem 11, the following corollary directly derives that the optimal decision
element dW∗

m1,0,n3
has a bang–bang control form (see more details in Cao [34] and Xia and

Chen [35]).

Corollary 1. For the setup policy, the optimal decision element dW∗
m1,0,n3

is either 0 or n3, i.e., the
bang–bang control is optimal.

With Corollary 1, we should either keep all servers in sleep mode or turn on the servers
such that the number of working servers equals the number of waiting jobs in the buffer. In
addition, we can see that the search space of dW

m1,0,n3
can be reduced from {0, 1, . . . , n3} to a

two-element set {0, n3}, which is a significant reduction of search complexity.

6.3.2. The Sleep Policy with RS
L < R < RS

H

For the service price RS
L < R < RS

H , the following theorem provides the monotonicity
of ηd with respect to the decision element dS

m1,n2,n3
.

Theorem 12. If RS
L < R < RS

H , then the long-run average profit ηdW�dS
is monotone (either

increasing or decreasing) with respect to the decision element dS
m1,n2,n3

, where n2 = 1, 2, . . . , m2,
n3 = 0, 1, . . . , m3 − n2 and dS

m1,n2,n3
∈ {m2 − n2, m2 − n2 + 1, . . . , m2}.

Proof of Theorem 12. Similar to the proof for Theorem 11, we consider any two sleep
policies with an interrelated structure as follows:

dS =
(

dS
m1,1,0, dS

m1,1,1, . . . , dS
m1,n2,n3−1, dS

m1,n2,n3
, dS

m1,n2,n3+1, . . . , dS
m1,m2,m3−m2

)
,

dS′ =
(

dS
m1,1,0, dS

m1,1,1, . . . , dS
m1,n2,n3−1, dS′

m1,n2,n3
, dS

m1,n2,n3+1, . . . , dS
m1,m2,m3−m2

)
,

where dS
m1,n2,n3

, dS′
m1,n2,n3

∈ {0, 1, . . . , m2}. Applying Lemma 1, we obtain

ηdW�dS′ − ηdW�dS
= π

(
dW�dS′

)
(m1, n2, n3)G(dS). (45)

On the other hand, we can also obtain the following difference equation:

ηdW�dS − ηdW�dS′
= −π(dW�dS)(m1, n2, n3)G

(
dS′
)

. (46)

Systems 2022, 10, 27 34 of 48

Thus, the sign conservation equation is given by

G(dS)

G(dS′)
=

π(dW�dS)(m1, n2, n3)

π(dW�dS′)(m1, n2, n3)
> 0. (47)

This means that the signs of G(dS) and G
(

dS′
)

are always identical when a particular
decision element dS

m1,n2,n3
is changed to any dS′

m1,n2,n3
. We can directly derive that the

long-run average profit ηdW�dS
is monotone with respect to dS

m1,n2,n3
. This completes

the proof.

Corollary 2. For the sleep policy, the optimal decision element dS∗
m1,n2,n3

is either m2 − n2 or m2,
i.e., the bang–bang control is optimal.

With Corollary 2, we should either keep all in sleep or turn off the servers such that
the number of sleeping servers equals the number of servers without jobs in Group 2.
We can see that the search space of dS

m1,n2,n3
can be reduced from {m2 − n2, m2 − n2 +

1, . . . , m2} to a two-element set {m2 − n2, m2}, hence this is also a significant reduction of
search complexity.

It is seen from Corollaries 1 and 2 that the form of the bang–bang control is very simple
and easy to adopt in practice, while the optimality of the bang–bang control guarantees the
performance confidence of such simple forms of control. This makes up the threshold-type
of the optimal asynchronous energy-efficient policy in the data center.

7. The Maximal Long-Run Average Profit

In this section, we provide the optimal asynchronous dynamic policy d∗ of the
threshold-type in the energy-efficient data center and further compute the maximal long-
run average profit.

We introduce some notation as follows:

c0 = (P2,W − P2,S)C1,

c1 = (m1P1,W + m2P2,W)C1,

c2 = (m1P1,W + m2P2,W)C1 + m1C(1)
2 , (48)

c3 = (m1P1,W + m2P2,W)C1 + m1C(1)
2 + m2C(1)

3 ,

c4 = (m1P1,W + m2P2,W)C1 + m1C(1)
2 + m1µ11{n2>0,n3=0}C4,

c5 = (m1P1,W + m2P2,W)C1 + m1C(1)
2 + m2C(2)

2 + m1µ11{n2>0,n3=0}C4 + λ1{n2+n3=m3}C5.

Now, we express the optimal asynchronous energy-efficient policy d∗ of the threshold-
type and compute the maximal long-run average profit ηd∗ under three different service
prices as follows:

Case 1. The service price R ≥ RH
It follows from Theorem 7 that

dW∗ = (1, 2, . . . , n3, . . . , m2, . . . , m2),

dS∗ = (m2 − 1, . . . , m2 − 1; . . . ; m2 − n2, . . . , m2 − n2; . . . ; 1, . . . , 1; 0, . . . , 0),

Systems 2022, 10, 27 35 of 48

thus we have

ηd∗ =
m1

∑
n1=0

π(d)(n1, 0, 0)
[(

Rµ1 − C(1)
2

)
n1 − c1

]
+

m3

∑
n3=1

π(d)(m1, 0, n3)
[

Rm1µ1 − c2 −
(

c0 + C(1)
3

)
(n3 ∧m2)− C(3)

2 n3

]
+

m3−n2

∑
n3=0

m2

∑
n2=0

π(d)(m1, n2, n3)
[

Rm1µ1 − c4 +
(

Rµ2 − c0 − C(2)
2

)
n2 − C(3)

2 n3

]
+

m3

∑
n3=m3−m2+1

π(d)(m1, m2, n3)
[

R(m1µ1 + m2µ2)− c5 − C(3)
2 n3

]
.

Case 2. The service price 0 ≤ R ≤ RL
It follows from Theorem 10 that

dW∗ = (0, 0, . . . , 0),

dS∗ = (m2, m2, . . . , m2),

thus we have

ηd∗ =
m1

∑
n1=0

π(d)(n1, 0, 0)
[(

Rµ1 − C(1)
2

)
n1 − c1

]
+

m3

∑
n3=1

π(d)(m1, 0, n3)
[

Rm1µ1 − c2 − C(3)
2 n3

]
+

m3−n2

∑
n3=0

m2

∑
n2=0

π(d)(m1, n2, n3)
[

Rm1µ1 − c4 −
(

C(2)
2 + C(2)

3

)
n2 − C(3)

2 n3

]
+

m3

∑
n3=m3−m2+1

π(d)(m1, m2, n3)
[

R(m1µ1 + m2µ2)− c5 − C(3)
2 n3

]
.

Remark 5. The above results are intuitive because when the service price is suitably high, the
number of working servers is equal to a crucial number related to waiting jobs both in Group 2 and
in the buffer; when the service price is lower, each server at the work state must pay a high energy
consumption cost, but they receive only a low revenue. In this case, the profit of the data center
cannot increase, so that all the servers in Group 2 would like to be closed at the sleep state.

Case 3. The service price RL < R < RH
In Section 6.3, we have, respectively, proven the optimality of the bang–bang control for the

setup and sleep policies, regardless of the service price R. However, if RL < R < RH , we cannot
exactly determine the monotone form (i.e., increasing or decreasing) of the optimal asynchronous
energy-efficient policy. This makes the threshold-type of the optimal asynchronous energy-efficient
policy in the data center. In fact, such a threshold-type policy also provides us with a choice to
compute the optimal setup and sleep policies, they not only have a very simple form but are also
widely adopted in numerical applications.

In what follows, we focus our study on the threshold-type asynchronous policy, although its
optimality is not yet proven in our next analysis.

We define a couple of threshold-type control parameters as follows:

{(θ1, θ2) : θ1, θ2 = 0, 1, . . . , m2},

Systems 2022, 10, 27 36 of 48

where θ1 and θ2 are setup and sleep thresholds, respectively. Furthermore, we introduce two
interesting subsets of the policy set D. We write dW

θ1
as a threshold-type setup policy and dS

θ2
as a

threshold-type sleep policy. Let

dW
θ1

def
=

0, 0, . . . , 0︸ ︷︷ ︸,
θ1−1 zeros

θ1, θ1 + 1, . . . , m2, . . . , m2

,

dS
θ2

def
=

0, 0, . . . , 0; . . . ; m2 − (θ2 + 1), . . . , m2 − (θ2 + 1); m2 − θ2, . . . , m2 − θ2; m2, . . . , m2︸ ︷︷ ︸
(m3− 1

2 θ2)(θ2−1) m2s

.

Then
D4 =

{
d(θ1,θ2) : d(θ1,θ2) = dW

θ1
� dS

θ2
, θ1, θ2 = 0, 1, . . . , m2

}
.

It is easy to see that D4 ⊂ D.
For an asynchronous energy-efficient policy d(θ1,θ2), it follows from (4) to (7) that for n1 =

0, 1, . . . , m1 and n2 = n3 = 0,

f (n1, 0, 0) = Rn1µ1 − (m1P1,W + m2P2,S)C1 − n1C(1)
2 ;

for n1 = m1, n2 = 0 and n3 = 1, 2, . . . , θ1 − 1,

f
(

dW
θ1

)
(m1, 0, n3) = Rm1µ1 − (m1P1,W + m2P2,S)C1 −

[
m1C(1)

2 + n3C(3)
2

]
;

for n1 = m1, n2 = 0 and n3 = θ1, θ1 + 1, . . . , m3,

f
(

dW
θ1

)
(m1, 0, n3) = Rm1µ1 − {m1P1,W + (n3 ∧m2)P2,W

+[m2 − (n3 ∧m2)]P2,S}C1

−
[
m1C(1)

2 + n3C(3)
2

]
− (n3 ∧m2)C

(1)
3 ;

for n1 = m1, n2 = 1, 2, . . . , θ2 − 1 and n3 = 0, 1, . . . , m3 − n2,

f
(

dS
θ2

)
(m1, n2, n3) = Rm1µ1 − (m1P1,W + m2P2,S)C1

−
[
m1C(1)

2 + n2C(2)
2 + n3C(3)

2

]
− n2C(2)

3 −m1µ11{n3=0}C4;

for n1 = m1, n2 = θ2, θ2 + 1, . . . , m2 and n3 = 0, 1, . . . , m3 − n2,

f
(

dS
θ2

)
(m1, n2, n3) = R(m1µ1 + n2µ2)− [m1P1,W + (m2 − n2)P2,S + n2P2,W]C1

−
[
m1C(1)

2 + n2C(2)
2 + n3C(3)

2

]
−m1µ11{n3=0}C4;

for n1 = m1, n2 = m2 and n3 = m3 −m2, m3 −m2 + 1, . . . , m3,

f (m1, m2, n3) = R(m1µ1 + m2µ2)− (m1P1,W + m2P2,W)C1

−
[
m1C(1)

2 + m2C(2)
2 + n3C(3)

2

]
− λ1{n3=m3}C5.

Systems 2022, 10, 27 37 of 48

Note that

η
d(θ1,θ2) =

m1

∑
n1=0

π

(
d(θ1,θ2)

)
(n1, 0, 0) f (n1, 0, 0)

+
m3

∑
n3=1

π

(
d(θ1,θ2)

)
(m1, 0, n3) f

(
dW

θ1

)
(m1, 0, n3)

+
m3−n2

∑
n3=0

m2

∑
n2=0

π

(
d(θ1,θ2)

)
(m1, n2, n3) f

(
dS

θ2

)
(m1, n2, n3)

+
m3

∑
n3=m3−m2+1

π

(
d(θ1,θ2)

)
(m1, m2, n3) f (m1, m2, n3).

It follows from (48) that the long-run average profit under policy d(θ1,θ2) is given by

η
d(θ1,θ2) =

n

∑
i=0

π

(
d(θ1,θ2)

)
(n1, 0, 0)

[(
Rµ1 − C(1)

2

)
n1 − c1

]
+

θ1−1

∑
n3=1

π

(
dW

θ1

)
(m1, 0, n3)

[
Rm1µ1 − c2 − C(3)

2 n3

]
+

m3

∑
n3=θ1

π

(
dW

θ1

)
(m1, 0, n3)

[
Rm1µ1 − c2 −

(
c0 + C(1)

3

)
(n3 ∧m2)− n3C(3)

2

]
+

m3−n2

∑
n3=0

θ2

∑
n2=1

π

(
dS

θ2

)
(m1, n2, n3)

[
Rm1µ1 − c4 +

(
Rµ2 − c0 − C(2)

2

)
n2 − C(3)

2 n3

]
+

m3−n2

∑
n3=0

m2

∑
n2=θ2+1

π

(
dS

θ2

)
(m1, n2, n3)

[
Rm1µ1 − c4 −

(
C(2)

2 + C(2)
3

)
n2 − C(3)

2 n3

]
+

m3

∑
n3=m3−m2+1

π

(
d(θ1,θ2)

)
(m1, m2, n3)

[
R(m1µ1 + m2µ2)− c5 − C(3)

2 n3

]
.

Let
(θ∗1 , θ∗2) = arg max

(θ1,θ2)∈{0,1,...,m2}

{
η

d(θ1,θ2)
}

.

Then, we call d(θ∗1 ,θ∗2)
the optimal threshold-type asynchronous energy-efficient policy in the

policy setD4. SinceD4 ⊂ D, the partially ordered setD shows thatD4 is also a partially ordered
set. Based on this, it is easy to see from the two partially ordered sets D and D∆ that

η
d(θ∗1 ,θ∗2) ≤ ηd∗ .

For the energy-efficient data center, if η
d(θ∗1 ,θ∗2) = ηd∗ , then we call d(θ∗1 ,θ∗2)

the optimal

threshold-type asynchronous energy-efficient policy in the original policy set D; if η
d(θ∗1 ,θ∗2) < ηd∗ ,

then we call d(θ∗1 ,θ∗2)
the suboptimal threshold-type asynchronous energy-efficient policy in the

original policy set D.

Remark 6. This paper is a special case of the group-server queue (see Li et al. [6]), but it provides
a new theoretical framework for the performance optimization of such queueing systems. It is
also more applicable to large-scale service systems, such as data centers for efficiently allocating
service resources.

Remark 7. In this paper, we discuss the optimal asynchronous dynamic policy of the energy-efficient
data center deeply, and such types of policies are widespread in practice. It would be interesting to

Systems 2022, 10, 27 38 of 48

extend our results to a more general situation. Although the sensitivity-based optimization theory
can effectively overcome the drawbacks of MDPs, it still has some limitations. For example, it cannot
discuss the optimization of two or more dynamic control policies synchronously, which is a very
important research direction in dynamic optimization.

8. Conclusions

In this paper, we highlight the optimal asynchronous dynamic policy of an energy-
efficient data center by applying sensitivity-based optimization theory and RG-factorization.
Such an asynchronous policy is more important and necessary in the study of energy-
efficient data centers, and it largely makes an optimal analysis of energy-efficient manage-
ment more interesting, difficult, and challenging. To this end, we consider a more practical
model with several basic factors, for example, a finite buffer, a fast setup process from sleep
to work, and the necessary cost of transferring jobs from Group 2 either to Group 1 or to the
buffer. To find the optimal asynchronous dynamic policy in the energy-efficient data center,
we set up a policy-based block-structured Poisson equation and provide an expression for
its solution by means of the RG-factorization. Based on this, we derive the monotonicity
and optimality of the long-run average profit with respect to the asynchronous dynamic
policy under different service prices. We prove the optimality of the bang–bang control,
which significantly reduces the action search space, and study the optimal threshold-type
asynchronous dynamic policy. Therefore, the results of this paper provide new insights
to the discussion of the optimal dynamic control policies of more general energy-efficient
data centers.

Along such a line, there are a number of interesting directions for potential future
research, for example:

• Analyzing non-Poisson inputs such as Markovian arrival processes (MAPs) and/or
non-exponential service times, e.g., the PH distributions;

• Developing effective algorithms for finding the optimal dynamic policies of the policy-
based block-structured Markov process (i.e., block-structured MDPs);

• Discussing the fact that the long-run performance is influenced by the concave or
convex reward (or cost) function;

• Studying individual optimization for the energy-efficient management of data centers
from the perspective of game theory.

Author Contributions: Conceptualization, J.-Y.M. and Q.-L.L.; methodology, L.X. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China
under grant No. 71932002, by the Beijing Social Science Foundation Research Base Project under
grant No. 19JDGLA004, and in part by the National Natural Science Foundation of China under
grant No. 61573206 and No. 11931018.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors are grateful to the editor and anonymous referees for their construc-
tive comments and suggestions, which sufficiently help the authors to improve the presentation of
this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Special Cases

In this appendix, we provide two simple special cases to understand the state transition
relations and the infinitesimal generator of the policy-based block-structured continuous-
time Markov process

{
X(d)(t) : t ≥ 0

}
.

Case A1. m1 = m2 = 2 and m3 = 3

Systems 2022, 10, 27 39 of 48

To understand the block-structured continuous-time Markov process under an asynchronous
energy-efficient policy, we first take the simplest case of m1 = m2 = 2 and m3 = 3 as an example to
illustrate the state transition relations and infinitesimal generator in detail.

Figure A1 shows the arrival and service rates without any policy for the Markov process{
X(d)(t) : t ≥ 0

}
. The transitions in which the transfer rates and the policies are simultaneously

involved are a bit difficult, and such transition relations appear in a Markov chain with sync jumps
of multi-events (either transition rates or policies (see Budhiraja and Friedlander [40])). For example,
what begins a setup policy at State (2, 0, 1) is the entering Poisson process to State (2, 0, 1), whose
inter-entering times are i.i.d. and exponential with the entering rate λ + 2µ1 + µ2. Hence, if there
exists one or two server set ups, then the transition rate from State (2, 0, 1) to State (2, 1, 0) is
1{dW

2,0,1≥1}(λ + 2µ1 + µ2). Such an entering process is easy to see in Figure A1.

(0,0,0)
μ1

(2,0,0)

2μ1

(1,0,0) (2,0,1)

2μ1

(2,0,2)

(2,1,0) (2,2,0)

(2,0,3)

(2,2,2)

μ2

2μ1+2μ2

 2μ1

 2μ1

(2,1,1)

(2,1,2)

 2μ1

 2μ1

(2,2,1)

2μ2

2μ2

 2μ1

(2,2,3)

2μ1+2μ2

(1)

1,1a

(2)

1,2a

(3)

1,3a

(0)

1,0,0a

(1)

1,1,0a

(2)

1,2,0a

()2

2 , 2a

(3)

2 , 3a

(3)

2 , 0 , 0a

()5

2,1,0a
()5

2,1,1a

The sleep policy and

its process

The setup policy and

its process

(3)

2,0,1a

Figure A1. State transition relations for the case of m1 = m2 = 2 and m3 = 3.

We denote a(i)k1,k2
as the transitions with the setup policy

a(1)1,1 = 1{dW
2,0,1≥1}(λ + 2µ1 + µ2),

a(2)1,2 = 1{dW
2,0,2=1}(λ + 2µ1 + µ2),

a(2)2,2 = 1{dW
2,0,2=2}(λ + 2µ1 + µ2),

a(3)1,3 = 1{dW
2,0,3=1}λ, a(3)2,3 = 1{dW

2,0,3=2}λ.

Similarly, a(i)k3,k4,k5
denotes the transitions with the sleep policy from

a(0)1,0,0 = 1{dS
2,1,0=2}(2µ1 + 2µ2),

a(1)1,1,0 = 1{dS
2,1,1=2}(λ + 2µ1 + 2µ2),

a(2)1,2,0 = 1{dS
2,1,2=2}λ,

a(3)2,0,0 = 1{dS
2,2,0=2}2µ1,

a(3)2,0,1 = 1{dS
2,2,0=1}2µ1,

a(5)2,1,0 = 1{dS
2,2,1=2}(λ + 2µ1 + 2µ2),

a(5)2,1,1 = 1{dS
2,2,1=1}(λ + 2µ1 + 2µ2).

Systems 2022, 10, 27 40 of 48

Furthermore, we write the diagonal entries

b(1)1 = λ + 2µ1 + a(1)1,1 ,

b(2)2 = λ + 2µ1 + a(2)1,2 + a(2)2,2 ,

b(3)3 = 2µ1 + a(3)1,3 + a(3)2,3 ;

b(0)1,0 = λ + µ2 + a(0)1,0,0,

b(1)1,1 = λ + 2µ1 + µ2 + a(1)1,1,0,

b(2)1,2 = 2µ1 + µ2 + a(2)1,2,0.

Therefore, its infinitesimal generator is given by

Q(d) =


Q0,0 Q0,1
Q1,0 Q1,1 Q1,2 Q1,3
Q2,0 Q2,1 Q2,2

Q3,1 Q3,2 Q3,3 Q3,4
Q4,3 Q4,4

,

where for level 0, it is easy to see that

Q0,0 =

 −λ λ
µ1 −(λ + µ1) λ

2µ1 −(λ + µ1)

 and Q0,1 =

 0
0

λ

;

for level 1, the setup policy affects the infinitesimal generator

Q1,0 =

 2µ1
0

0

, Q1,1 =

−b(1)1 λ

2µ1 −b(2)2 λ

2µ1 −b(3)3

,

Q1,2 =


a(1)1,1

a(2)1,2

a(3)1,3

 and Q1,3 =

a(2)2,2

a(3)2,3

;

for level 2, the sleep policy affects the infinitesimal generator

Q2,0 =

 µ2
0

0

, Q2,1 =


a(1)1,0,0

µ2 a(1)1,1,0

µ2 a(1)1,2,0

 and Q2,2 =


−b(0)1,0 λ

2µ1 −b(1)1,1 λ

2µ1 −b(2)1,2

;

for level 3, we have

Q3,1 =

(
0 a(3)2,0,0 0

0 0 a(5)2,1,0

)
, Q3,2 =

(
2µ2 a(3)2,0,1 0

0 2µ2 a(5)2,1,1

)
,

Q3,3 =

(
−b(3)2,0 λ

2µ1 −b(5)2,1

)
and Q3,4 =

(
0 0
λ 0

)
;

for level 4, we have

Q4,3 =

(
0 2µ1 + 2µ2
0 0

)
and Q4,4 =

(
−(λ + 2µ1 + 2µ2) λ

2µ1 + 2µ2 −(2µ1 + 2µ2)

)
.

Systems 2022, 10, 27 41 of 48

Case A2. m1 = 2, m2 = 3 and m3 = 4
To further understand the policy-based block-structured continuous-time Markov process{

X(d)(t) : t ≥ 0
}

, we take another example to illustrate that if the parameters m2 and m3 increase
slightly, the complexity of the state transition relations will increase considerably.

Figure A2. State transition relations for the case of m1 = 2, m2 = 3 and m3 = 4.

The number of servers in Group 2 and the buffer capacity both increase by one, which makes the
number of state transitions affected by the setup and sleep policies increase from 5 to 9 and from 7 to
15, respectively. Compared with Figure A2, the state transition relations become more complicated.
We divide the state transition rate of the Markov process into two parts, as shown in Figure A2:
(a) the state transitions without any policy and (b) the state transitions by both setup and sleep
policies. Similar to Case 1, for the state transitions in which the transfer rates and the policies are
simultaneously involved in the Markov chain with sync jumps of multi-events, the transfer rate is
equal to the total entering rate at a certain state.

Furthermore, its infinitesimal generator is given by

Q(d) =



Q0,0 Q0,1
Q1,0 Q1,1 Q1,2 Q1,3 Q1,4
Q2,0 Q2,1 Q2,2

Q3,1 Q3,2 Q3,3
Q4,1 Q4,2 Q4,3 Q4,4 Q4,5

Q5,4 Q5,5

.

Systems 2022, 10, 27 42 of 48

Similarly, we can obtain every element Qi,j, 0 ≤ i, j ≤ 5; here, we omit the computational
details.

Appendix B. State Transition Relations

In this appendix, we provide a general expression for the state transition relations
of the policy-based block-structured continuous-time Markov process

{
X(d)(t) : t ≥ 0

}
.

To express the state transition rates, in what follows, we need to introduce some notations.
Based on the state transition rates for both special cases that are related to either the

arrival and service processes or the setup and sleep policies, Figure A3 provides the state
transition relations of the Markov process

{
X(d)(t) : t ≥ 0

}
in general. Note that the figure

is so complicated that we have to decompose it into three different parts: (a) the arrival and
service processes, (b) the state transitions by the setup policy, and (c) the state transitions
by the sleep policy. However, the three parts must be integrated as a whole.

(a) The arrival and service rates: The first type is ordinary for the arrival and service
rates without any policy (see Figure A3a).

(b) The setup policy: For k2 = k1, we write

a(1)k1,k1
= 1{

dW
m1,0,k2

≥k1

}(λ + m1µ1 + µ2),

for k2 = k1 + 1, k1 + 2, . . . , m3 − 1,

a(2)k1,k2
= 1{

dW
m1,0,k2

=k1

}(λ + m1µ1 + µ2),

for k2 = m3,
a(3)k1,m3

= 1{
dW

m1,0,k2
=k1

}λ.

Observing Figure A3b, what begins a setup policy at State (m1, 0, k) is the entering
Poisson process to State (m1, 0, k), whose inter-entering times are i.i.d. and exponential
with entering rates, namely either λ + m1µ1 + µ2 for 0 ≤ k ≤ m3 − 1 or λ for k = m3. Such
an entering process is easy to see from Figure A3a.

Since the setup and sleep policies are asynchronous, a(i)k1,k2
will not contain any transi-

tion with the sleep policy because the sleep policy cannot be followed by the setup policy
at the same time. To express the diagonal entries of Q1,1 in Appendix C, we introduce

b(1)k2
=λ + m1µ1+a(1)k1,k1

+
k2−1
∑

k1=1
a(2)k1,k2

, if k2=1, 2, . . . , m2−1,

b(2)k2
=λ+m1µ1+

m2
∑

k1=1
a(2)k1,k2

, if k2=m2, m2+1, . . . , m3−1,

b(3)k2
= m1µ1 +

m2
∑

k1=1
a(3)k1,m3

, if k2 = m3.

(A1)

(c) The sleep policy: For k3 = 1, 2, . . . , m2, k4 = 0, 1, . . . , m3− k3, and k5 = 0, 1, . . . , m2,
we write

Systems 2022, 10, 27 43 of 48

a(0)k3,k4,k5
= 1{

dS
m1,k3,k4

=m2−k5

}[m1µ1 + (k3 + 1)µ2],

a(1)k3,k4,k5
= 1{

dS
m1,k3,k4

=m2−k5

}[λ + m1µ1 + (k3 + 1)µ2],

a(2)k3,k4,k5
= 1{

dS
m1,k3,k4

=m2−k5

}λ,

a(3)k3,k4,k5
= 1{

dS
m1,k3,k4

=m2−k5

}m1µ1, (A2)

a(4)k3,k4,k5
= 1{

dS
m1,k3,k4

=m2−k5

}(λ + m1µ1),

a(5)k3,k4,k5
= 1{

dS
m1,k3,k4

=m2−k5

}(λ + m1µ1 + m2µ2).

From Figure A3c, it is seen that there is a difference between the sleep and setup
policies: State transitions with the sleep policy exist at many states (m1, i, k) for 1 ≤ i ≤ m2.
Clearly, the state transition with the sleep policy from State (m1, i, k) is the entering Poisson
processes, with the rate being the total entering rate to State (m1, i, k). Note that the sleep
policy cannot be followed by the setup policy at the same time. Thus, it is easy to check
these state transition rates given in the above ones.

To express the diagonal entries of Qi,i for 2 ≤ i ≤ m2 + 1, we introduce

b(0)k3,k4
= λ + k3µ2 +

k3

∑
k5=0

a(0)k3,k4,k5
,

b(1)k3,k4
= λ + m1µ1 + k3µ2 +

k3

∑
k5=0

a(1)k3,k4,k5
,

b(2)k3,k4
= m1µ1 + k3µ2 +

k3

∑
k5=0

a(2)k3,k4,k5
,

b(3)k3,k4
= λ + m2µ2 +

k3

∑
k5=0

a(3)k3,k4,k5
, (A3)

b(4)k3,k4
= λ + m1µ1 + m2µ2 +

k3

∑
k5=0

a(4)k3,k4,k5
,

b(5)k3,k4
= m1µ1 + m2µ2 +

k3

∑
k5=0

a(5)k3,k4,k5
.

Remark A1. The first key step in applications of the sensitivity-based optimization to the study of
energy-efficient data centers is to draw the state transition relation figure (e.g., see Figure A3) and
to write the infinitesimal generator of the policy-based block-structured Markov process. Although
this paper has largely simplified the model assumptions, Figure A3 is still slightly complicated by its
three separate parts: (a), (b), and (c). Obviously, if we consider some more general assumptions (for
example, (i) the faster servers are not cheaper, (ii) Group 2 is not slower, (iii) there is no transfer
rule, and so on), then the state transition relation figure will become more complicated, so that it
is more difficult to write the infinitesimal generator of the policy-based block-structured Markov
process and to solve the block-structured Poisson equation.

Systems 2022, 10, 27 44 of 48

Figure A3. State transition relations of the policy-based block-structured Markov process.

Systems 2022, 10, 27 45 of 48

Remark A2. Figure A3 shows that Part (a) expresses the arrival and service rates, while Parts
(b) and (c) express the state transition rates caused by the setup and sleep policies, respectively.
Note that the setup policy is started by only the arrival and service process at State (m1, 0, k) for
1 ≤ k ≤ m3 (see Part (b)), in which there is no setup rate because the setup time is so short that it is
ignored. Similarly, it is easy to understand Part (c) for the sleep policy. It is worthwhile to note that
an idle server may be at the work state, as seen in the idle servers with the work state in Group 1.

Appendix C. Block Elements in Q(d)

In this appendix, we write each block element in the matrix Q(d).
(a) For level 0, it is easy to see that

Q0,0 =


−λ λ
µ1 −(λ + µ1) λ

.
(m1 − 1)µ1 −[λ + (m1 − 1)µ1] λ

m1µ1 −(λ + m1µ1)

, Q0,1 =


λ

.

(b) For level 1, the setup policy affects the infinitesimal generator, and Q1,0 is given by

Q1,0 =

 m1µ1
, Q1,k1+1 =

0, 0, . . . , 0,︸ ︷︷ ︸
(k1−1) 0s

Ak1


T

,

where

Ak1 =

 diag
(

a(1)k1,k1
, a(2)k1,k1+1, . . . , a(2)k1,m3−1, a(3)k1,m3

)
, if 1 ≤ k1 ≤ m2 − 1,

diag
(

a(2)k1,k1
, a(2)k1,k1+1, . . . , a(2)k1,m3−1, a(3)k1,m3

)
, if k1 = m2,

and 0 is a block of zeros with suitable size. From (A1), we have

Q1,1 =



−b(1)1 λ

m1µ1 −b(1)2 λ
.

m1µ1 −b(1)m2−1 λ

m1µ1 −b(2)m2 λ
.

m1µ1 −b(2)m3−1 λ

m1µ1 −b(3)m3


. (A4)

(c) For level 2, i.e., k3 = 1,

Q2,0 =



µ2
, Q2,1 =



a(0)1,0,0

µ2 a(1)1,1,0
.

µ2 a(1)1,m3−2,0

µ2 a(2)1,m3−1,0


,

Systems 2022, 10, 27 46 of 48

and

Q2,2 =



−b(0)1,0 λ

m1µ1 −b(1)1,1 λ

.

m1µ1 −b(1)1,m3−2 λ

m1µ1 −b(2)1,m3−1


.

(d) For level k3 + 1, k3 = 2, 3, . . . , m2 − 2, subdivided into three cases as follows:
For k5 = 0, 1, . . . , k3 − 2,

Qk3+1,k5+1 =

0, 0, . . . , 0,︸ ︷︷ ︸
(k3−k5) 0s

Ak3,k5

,

where
Ak3,k5 = diag

(
a(0)k3,0,k5

, a(1)k3,1,k5
, . . . , a(1)k3,m3−k3,k5

, a(2)k3,m3−k3,k5

)
.

For k5 = k3 − 1,

Qk3+1,k3 =



k3µ2 a(0)k3,0,k3−1

k3µ2 a(1)k3,1,k3−1
.

k3µ2 a(1)k3,m3−k3−1,k3−1

k3µ2 a(1)k3,m3−k3,k3−1


.

For k5 = k3,

Qk3+1,k3+1 =



−b(0)k3,0 λ

m1µ1 −b(1)k3,1 λ

.

m1µ1 −b(1)k3,m3−k3−1 λ

m1µ1 −b(2)k3,m3−k3


.

(e) For level m2 + 1, i.e., k3 = m2,

Qm2+1,k5+1 =

0, 0, . . . , 0,︸ ︷︷ ︸
(m2−k5) 0s

Am2,k5

, k5 = 0, 1, . . . , m2 − 2,

where
Am2,k5 = diag

(
a(3)m2,0,k5

, a(4)m2,1,k5
, . . . , a(4)m2,m3−m2−1,k5

, a(5)m2,m3−m2,k5

)
.

Qm2+1,m2 =



m2µ2 a(3)m2,0,m2−1

m2µ2 a(4)m2,1,m2−1
.

m2µ2 a(4)m2,m3−m2−1,m2−1

m2µ2 a(5)m2,m3−m2,m2−1


,

Systems 2022, 10, 27 47 of 48

Qm2+1,m2+2 =


λ

,

and

Qm2+1,m2+1 =



−b(3)m2,0 λ

m1µ1 −b(4)m2,1 λ

.

m1µ1 −b(4)m2,m3−m2−1 λ

m1µ1 −b(5)m2,m3−m2


.

(f) For level m2 + 2,

Qm2+2,m2+1 =


a
 and Qm2+2,m2+2 =


−(λ + a) λ

a −(λ + a) λ
.

a −(λ + a) λ

a −a

,

where a = m1µ1 + m2µ2.

References
1. Masanet, E.; Shehabi, A.; Lei, N.; Smith, S.; Koomey, J. Recalibrating global data center energy-use estimates. Science 2020,

367, 984–986. [CrossRef] [PubMed]
2. Zhang, Q.; Meng, Z.; Hong, X.; Zhan, Y.; Liu, J.; Dong, J.; Bai, T.; Niu, J.; Deen, M.J. A survey on data center cooling systems:

Technology, power consumption modeling and control strategy optimization. J. Syst. Archit. 2021, 119, 102253. [CrossRef]
3. Nadjahi, C., Louahlia, H., Lemasson, S. A review of thermal management and innovative cooling strategies for data center.

Sustain. Comput. Inform. Syst. 2018, 19, 14–28. [CrossRef]
4. Koot, M.; Wijnhoven, F. Usage impact on data center electricity needs: A system dynamic forecasting model. Appl. Energy 2021,

291, 116798. [CrossRef]
5. Shirmarz, A.; Ghaffari, A. Performance issues and solutions in SDN-based data center: A survey. J. Supercomput. 2020, 76, 7545–7593.

[CrossRef]
6. Li, Q.L.; Ma, J.Y.; Xie, M.Z.; Xia, L. Group-server queues. In Proceedings of the International Conference on Queueing Theory and

Network Applications, Qinhuangdao, China, 21–23 August 2017; pp. 49–72.
7. Harchol-Balter, M. Open problems in queueing theory inspired by data center computing. Queueing Syst. 2021, 97, 3–37.

[CrossRef]
8. Barroso, L.A.; Hölzle, U. The case for energy-proportional computing. Computer 2007, 40, 33–37. [CrossRef]
9. Kuehn, P.J.; Mashaly, M.E. Automatic energy efficiency management of data center resources by load-dependent server activation

and sleep modes. Ad Hoc Netw. 2015, 25, 497–504. [CrossRef]
10. Gandhi, A. Dynamic Server Provisioning for Data Center Power Management. Ph.D. Dissertation, School of Computer Science,

Carnegie Mellon University, Pittsburgh, PA, USA, 2013.
11. Gandhi, A.; Doroudi, S.; Harchol-Balter, M.; Scheller-Wolf, A. Exact analysis of the M/M/k/setup class of Markov chains via

recursive renewal reward. Queueing Syst. 2014, 77, 177–209. [CrossRef]
12. Gandhi, A.; Gupta, V.; Harchol-Balter, M.; Kozuch, M.A. Optimality analysis of energy-performance trade-off for server farm

management. Perform. Eval. 2010, 67, 1155–1171. [CrossRef]
13. Gandhi, A.; Harchol-Balter, M.; Adan, I. Server farms with setup costs. Perform. Eval. 2010, 67, 1123–1138. [CrossRef]
14. Maccio, V.J.; Down, D.G. On optimal policies for energy-aware servers. Perform. Eval. 2015, 90, 36–52. [CrossRef]
15. Maccio, V.J.; Down, D.G. Exact analysis of energy-aware multiserver queueing systems with setup times. In Proceedings of

the IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
London, UK, 19–21 September 2016; pp. 11–20.

16. Phung-Duc, T. Exact solutions for M/M/c/setup queues. Telecommun. Syst. 2017, 64, 309–324. [CrossRef]
17. Phung-Duc, T.; Kawanishi, K.I. Energy-aware data centers with s-staggered setup and abandonment. In Proceedings of the

International Conference on Analytical and Stochastic Modeling Techniques and Applications, Cardiff, UK, 24–26 August 2016;
pp. 269–283.

http://doi.org/10.1126/science.aba3758
http://www.ncbi.nlm.nih.gov/pubmed/32108103
http://dx.doi.org/10.1016/j.sysarc.2021.102253
http://dx.doi.org/10.1016/j.suscom.2018.05.002
http://dx.doi.org/10.1016/j.apenergy.2021.116798
http://dx.doi.org/10.1007/s11227-020-03180-7
http://dx.doi.org/10.1007/s11134-020-09684-6
http://dx.doi.org/10.1109/MC.2007.443
http://dx.doi.org/10.1016/j.adhoc.2014.11.013
http://dx.doi.org/10.1007/s11134-014-9409-7
http://dx.doi.org/10.1016/j.peva.2010.08.009
http://dx.doi.org/10.1016/j.peva.2010.07.004
http://dx.doi.org/10.1016/j.peva.2015.04.002
http://dx.doi.org/10.1007/s11235-016-0177-z

Systems 2022, 10, 27 48 of 48

18. Gebrehiwot, M.E.; Aalto, S.; Lassila, P. Optimal energy-aware control policies for FIFO servers. Perform. Eval. 2016, 103, 41–59.
[CrossRef]

19. Gebrehiwot, M.E.; Aalto, S.; Lassila, P. Energy-performance trade-off for processor sharing queues with setup delay. Oper. Res.
Lett. 2016, 44, 101–106. [CrossRef]

20. Gebrehiwot, M.E.; Aalto, S.; Lassila, P. Energy-aware SRPT server with batch arrivals: Analysis and optimization. Perform. Eval.
2017, 15, 92–107. [CrossRef]

21. Mitrani, I. Service center trade-offs between customer impatience and power consumption. Perform. Eval. 2011, 68, 1222–1231.
[CrossRef]

22. Mitrani, I. Managing performance and power consumption in a server farm. Ann. Oper. Res. 2013, 202, 121–134. [CrossRef]
23. Kamitsos, I.; Ha, S.; Andrew, L.L.; Bawa, J.; Butnariu, D.; Kim, H.; Chiang, M. Optimal sleeping: Models and experiments for

energy-delay tradeoff. Int. J. Syst. Sci. Oper. Logist. 2017, 4, 356–371. [CrossRef]
24. Hipp, S.K.; Holzbaur, U.D. Decision processes with monotone hysteretic policies. Oper. Res. 1988, 36, 585–588. [CrossRef]
25. Lu, F.V.; Serfozo, R.F. M/M/1 queueing decision processes with monotone hysteretic optimal policies. Oper. Res. 1984, 32, 1116–1132.

[CrossRef]
26. Yang, J.; Zhang, S.; Wu, X.; Ran, Y.; Xi, H. Online learning-based server provisioning for electricity cost reduction in data center.

IEEE Trans. Control Syst. Technol. 2017, 25, 1044–1051. [CrossRef]
27. Ding, D.; Fan, X.; Zhao, Y.; Kang, K.; Yin, Q.; Zeng, J. Q-learning based dynamic task scheduling for energy-efficient cloud

computing. Future Gener. Comput. Syst. 2020, 108, 361–371. [CrossRef]
28. Liang, Y.; Lu, M.; Shen, Z.J.M.; Tang, R. Data center network design for internet-related services and cloud computing. Prod. Oper.

Manag. 2021, 30, 2077–2101. [CrossRef]
29. Xia, L.; Chen, S. Dynamic pricing control for open queueing networks. IEEE Trans. Autom. Control 2018, 63, 3290–3300. [CrossRef]
30. Xia, L.; Miller, D.; Zhou, Z.; Bambos, N. Service rate control of tandem queues with power constraints. IEEE Trans. Autom. Control

2017, 62, 5111–5123. [CrossRef]
31. Ma, J.Y.; Xia, L.; Li, Q.L. Optimal energy-efficient policies for data centers through sensitivity-based optimization. Discrete Event

Dyn. Syst. 2019, 29, 567–606. [CrossRef]
32. Chi, C.; Ji, K.; Marahatta, A.; Song, P.; Zhang, F.; Liu, Z. Jointly optimizing the IT and cooling systems for data center energy

efficiency based on multi-agent deep reinforcement learning. In Proceedings of the 11th ACM International Conference on Future
Energy Systems, Virtual Event, Australia, 22–26 June 2020; pp. 489–495.

33. Li, Q.L. Constructive Computation in Stochastic Models with Applications: The RG-Factorizations; Springer: Beijing, China, 2010.
34. Cao, X.R. Stochastic Learning and Optimization—A Sensitivity-Based Approach; Springer: New York, NY, USA, 2007.
35. Xia, L.; Zhang, Z.G.; Li, Q.L. A c/µ-rule for for job assignment in heterogeneous group-server queues. Prod. Oper. Manag. 2021, 1–18.

[CrossRef]
36. Li, Q.L.; Li, Y.M.; Ma, J.Y.; Liu, H.L. A complete algebraic transformational solution for the optimal dynamic policy in inventory

rationing across two demand classes. arXiv 2019, arxiv:1908.09295v1.
37. Ma, J.Y.; Li, Q.L. Sensitivity-based optimization for blockchain selfish mining. In Proceedings of the International Conference on

Algorithmic Aspects of Information and Management, Dallas, TX, USA, 20–22 December 2021; pp. 329–343.
38. Xia, L. Risk-sensitive Markov decision processes with combined metrics of mean and variance. Prod. Oper. Manag. 2020,

29, 2808–2827. [CrossRef]
39. Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming; John Wiley& Sons: New York, NY, USA, 2014.
40. Budhiraja, A.; Friedlander, E. Diffusion approximations for controlled weakly interacting large finite state systems with simulta-

neous jumps. Ann. Appl. Probab. 2018, 28, 204–249. [CrossRef]

http://dx.doi.org/10.1016/j.peva.2016.06.003
http://dx.doi.org/10.1016/j.orl.2015.12.004
http://dx.doi.org/10.1016/j.peva.2017.07.003
http://dx.doi.org/10.1016/j.peva.2011.07.017
http://dx.doi.org/10.1007/s10479-011-0932-1
http://dx.doi.org/10.1080/23302674.2016.1193253
http://dx.doi.org/10.1287/opre.36.4.585
http://dx.doi.org/10.1287/opre.32.5.1116
http://dx.doi.org/10.1109/TCST.2016.2575801
http://dx.doi.org/10.1016/j.future.2020.02.018
http://dx.doi.org/10.1111/poms.13355
http://dx.doi.org/10.1109/TAC.2018.2799576
http://dx.doi.org/10.1109/TAC.2017.2678109
http://dx.doi.org/10.1007/s10626-019-00293-x
http://dx.doi.org/10.1111/poms.13605
http://dx.doi.org/10.1111/poms.13252
http://dx.doi.org/10.1214/17-AAP1303

	Introduction
	Model Description
	Optimization Model Formulation
	A Policy-Based Block-Structured Continuous-Time Markov Process
	The Reward Function

	The Block-Structured Poisson Equation
	Impact of the Service Price
	The Setup Policy
	The Sleep Policy

	Monotonicity and Optimality
	The Service Price R RH
	The Setup Policy with R RHW
	The Sleep Policy with R RHS

	The Service Price 0 R RL
	The Setup Policy with 0 R RLW
	The Sleep Policy with 0 R RLS

	The Service Price RL<R<RH
	The Setup Policy with RLW<R<RHW
	The Sleep Policy with RLS<R<RHS

	The Maximal Long-Run Average Profit
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

