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Abstract: The rapid progress in artificial intelligence enables technology to more and more become
a partner of humans in a team, rather than being a tool. Even more than in human teams, partners
of human–agent teams have different strengths and weaknesses, and they must acknowledge and
utilize their respective capabilities. Coordinated team collaboration can be accomplished by smartly
designing the interactions within human–agent teams. Such designs are called Team Design Patterns
(TDPs). We investigated the effects of a specific TDP on proactive task reassignment. This TDP
supports team members to dynamically allocate tasks by utilizing their knowledge about the task
demands and about the capabilities of team members. In a pilot study, agent–agent teams were used
to study the effectiveness of proactive task reassignment. Results showed that this TDP improves
a team’s performance, provided that partners have accurate knowledge representations of each
member’s skill level. The main study of this paper addresses the effects of task reassignments in
a human–agent team. It was hypothesized that when agents provide explanations when issuing
and responding to task reassignment requests, this will enhance the quality of the human’s mental
model. Results confirmed that participants developed more accurate mental models when agent-
partners provide explanations. This did not result in a higher performance of the human–agent
team, however. The study contributes to our understanding of designing effective collaboration in
human–agent teams.

Keywords: artificial intelligence; human–agent teams; human–AI teams; human–machine teaming;
mental models; team design pattern; team collaboration

1. Introduction

The increasing development of Artificial Intelligence (AI) and technological innova-
tions are changing the way individuals and teams learn and perform their tasks. In hybrid
teams, people collaborate with artificially intelligent partners (from now on: agents) to
achieve a common team goal. An important question regarding teamwork in hybrid teams
is how its members can be adequately supported to establish coordinated task operation.
It is believed that effective collaboration can be accomplished by smartly designing the
interaction between hybrid team partners [1,2].

In expert human teams, members use their knowledge about the relationship between
task demands, competencies of team members, and situational circumstances. By sharing
this awareness, expert teams are able to assign tasks to the members in a flexible and
dynamic manner, allowing the team to achieve a better overall performance [3,4]. Achieving
such aligned collaboration in human-only teams is by no means self-evident, and requires
thoughtful design and deliberate practice [5,6]. One reason why human-only teams have
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the potential to evolve into an expert team is that members share the same systems for
information processing. Each member is aware that the others in the team perceive, reason,
and think in more or less the same terms as they do. In hybrid teams though, humans
and agents have different information processing systems that underlie their intelligence.
Hence, achieving common ground and aligning task objectives sets additional demands [7].
One distinctive difference is that in a hybrid team, the team members are a priori not
familiar with the capabilities and restrictions of each other’s systems. Regardless, in order
to understand each other, which is a prerequisite for being able to coordinate and cooperate,
the interactions between humans and agents have to be explicitly designed to bring about
experiences that enable team members to improve their understanding of the task and
of their teammates. Furthermore, building upon the acquired understanding, interaction
designs for hybrid teams should guide partners how to select the strategies that support
the overall performance of the team. Thus, the purpose of an interaction design is to
guide a team with proven solutions on how to operate when it is faced with a specific and
repeatedly occurring task situation or problem [8].

Recently, it has been proposed to use team design patterns (TDPs) as an approach for
designing human–machine teaming [8–10]. There have been studies into the design of such
patterns [11], and also in how TDPs affect team functioning and team performance [12,13].
A common feature of TDPs is that they require team members to have an internal or mental
representation about the task and the team. Otherwise members would lack the necessary
knowledge for executing the collaborative interactions as intended [14]. However, TDPs
do not only require a basic internal representation, their execution should also bring forth
experiences that enable partners to improve and refine their mental representations, thus
enhancing the quality of teamwork in the long term. An important question is whether the
experiences evoked by a TDP are by themselves sufficient for team members to develop
and expand their mental models, or that additional explanations are needed to achieve
learning benefits [13,15,16].

In this paper we present a preliminary study into the effects of a team design pattern
on the collaboration of agents in an agent-only team. In an experiment with human partici-
pants, we then investigate the effects of this TDP with and without agent-explanations on
the collaboration and learning in a hybrid team. We used one specific pattern, proactive
task reassignment, that guides members of a team in deciding whether or not to exchange
assigned tasks. We first investigated whether agent teams that operate according to this
pattern function and perform better than control teams. Then, we investigate if agents that
provide explanations for their decisions yield benefits to the human team member in terms
of knowledge about the task and the team, and on the performance of the team as a whole.
This study amends our knowledge of how to design human–agent team collaboration in
such a manner that partners get to know one another, and develop a shared understanding.
Such common ground is of critical importance for a team [17]. The movie “2001: A Space
Odyssey” shows what happens if there is no common ground. Upon commands of the
scientist dr. David Bowman, the computer agent HAL 9000 just responds with: “I’m sorry
Dave. I’m afraid I can’t do that”, leaving Bowman bewildered and frustrated. Thus, getting to
know your teammates and developing and maintaining a shared objective and strategy is
key in effective human–agent teaming.

2. Related Work

Teamwork is the process through which team members collaborate their task work to
achieve team goals [18,19]. The development of intelligent agents to perform in a team is
often focused on the task work, not the teamwork. As a result, tasks tend to be allocated
to team members in a fixed manner. However, hybrid human–agent teams can be more
effective when, just like in human expert teams, tasks can be assigned dynamically between
all team members. This research proposes an approach for designing agents that use
teamwork skills to support dynamic task allocation.
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Patterns of interaction that prove to be successful for the team, and that are reusable
in recurring similar situations, are called Team Design Patterns (TDPs) [10]. A team may
use a variety of TDPs to successfully address different kinds of recurring problems. One
such problem may concern how to assign the various task among the team members in
such a way that it supports effective and efficient performance by the team as a whole.
The TDP proactive task reassignment, here abbreviated as PATRA, was designed to guide a
team addressing this problem. The objective of PATRA is to distribute the required work
effectively by utilizing the different strengths and weaknesses of humans and agents. The
pattern describes various actions of—and interactions between—team members that help
to achieve this objective, such as dictating a low-skilled team member to request a higher-
skilled team member to take over a task. For example, the TDP dictates team members
with low workload to request tasks from busy team members. Such interactions might
facilitate that the workload is divided more equally, thus supporting the team’s overall
effectivity and efficiency.

It should be noted that PATRA is not the only possible design solution for the task
allocation problem. Some team tasks do not provide the right conditions for PATRA. If, for
example, team members cannot access information about their team members, then PATRA
is not suitable. In such a situation, a design in which the distribution of tasks among team
members is allocated to one central leader may be more appropriate. As the suitability of
a TDP depends on the nature of the task, the team, and the situational context, any TDP
should, therefore, carefully specify under which conditions it should be applied (see also
Table 1).

Team Design Patterns are proven solutions that help a team to organize their work and
efforts in such a fashion that the team responds effectively to the demands of a particular
type of task situation [10]. TDPs have in common that they require team members to
have or obtain knowledge about all tasks and about all team members. The interactions
described in TDP PATRA, in which team members delegate tasks among one another,
require knowledge of:

• Competency (the skills of team members for each task);
• Workload (all team members’ present and future tasks);
• Efficiency (the expected benefits in ratio to the required effort of the interaction).

If team members have this knowledge, then they have the information to establish
whether it is beneficial for the team to either delegate a task, or to take over a task from
another team member. Thus, TDPs might require team members to have mental models
that include knowledge about the team’s mission and the team’s tasks, about their own
role and tasks in the team, and of the role and tasks of the other team members.

There is evidence that having accurate mental models of each other’s competences
and shortcomings is vital for team performance [20,21] and for efficient and cooperative
human–robot interaction [22,23]. When human individuals are collected to become a
team, they generally have some basic knowledge about the context, the task, and the
team. They develop, correct, and refine their mental models through experience and team
communication [24,25]. How this process culminates in a mental model is difficult to
determine precisely. In fact, humans themselves are often not consciously aware of what
and how they learn from experiences [26]. Humans may unconsciously select features
from a team task experience and use these to refine their mental model [27]. This implies
that the human may also select characteristics that are not or only partially related to the
task. For example, a human may notice that two team agents often follow each other, and
may record in its mental model the deduction that the two are friends. This assumption
may affect the human’s behavior, perhaps without consciously realizing it. Or, another
example, the human may notice that a particular team member has a preference for a
certain location in the scenario. The examples point out that the specific information
humans extract from experiences cannot be predicted exactly, or how they will use this
to update their mental model. This is different when we consider the development of
the knowledge representation of an agent [28]. When an agent is programmed to act as
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member of a team, it too is initially programmed with basic knowledge about the context,
the task, and the team. In contrast to humans, the way how agents develop, correct,
and refine their knowledge representation from experiences is precisely defined in the
computational source.

One objective of Team Design Patterns is to bring about experiences that potentially
support human and agent team members to improve their internal models. Potentially,
because learning from experiences is not guaranteed, as the meaning of an agent’s act
may be obscured to the partner agent. For example, suppose that one member requests
another team member to take over its task. What exactly does it mean if the addressed
team member rejects the request? Does it mean that the addressed agent feels it lacks the
required competency to do the task? Or does the addressed agent think that yet another
team member may be even more competent? Or does the addressed agent conclude that an
additional task would aggravate its task-load too much? It is difficult for the requesting
team member to tell what the reason is for the rejection, preventing the agent in improving
its internal model. Thus, sometimes the experience alone provides insufficient information
to learn. It has been shown that providing explanations are important for collaboration and
to improve learning (e.g., [16,29,30]).

Explanations are important for human–agent teams, as agents tend to have no or very
little background knowledge. They often fail to understand the meaning of a particular
observation, which may be obvious to a human observer, thus missing the opportunity for
the agent to learn [31]. Vice versa, agents that provide explanations for their actions are
essential for humans to learn from experiences [32]. Generating an explanation requires
access to some sort of internal representation about the task, the team, and the situational
context. Humans have a mental model [33]; agents have an internal representation in
the form of a computer model. The quality and usefulness of generated explanations are
bounded by the accuracy and elaborateness of the internal model. In order for an agent
to provide usable and effective explanations, it must continually determine the human’s
perspective, requiring an updated representation of its teammate, often referred to as a
Theory of Mind [34].

3. Use-Cases

This section introduces the selected use-cases for the two experiments with the TDP
PATRA. In both use-cases, we investigate the applicability of the TDP. Team members
have different skill levels for the various tasks in the use-case, meaning that they are more
or less capable of completing a task. In the blanket search use-case, there are only soft
dependencies between team members, meaning that team members are generalists that are
able to perform every task in the scenario. In the USAR use-case, we also introduce hard
dependencies in the team, meaning that team members are specialists who can perform
particular tasks very well, but rely on others to complete other types of tasks in the scenario.
By applying the TDP PATRA in these two different use-cases, we obtain insight into the
generalizability of this team design pattern for different team collaboration structures.

3.1. Blanket Search

In a naval military context, “blanket search” is a damage assessment and repair
procedure for incidents and malfunctions on a ship. A team of naval personnel performs
a round, and each member is assigned a route along a series of compartments. Incidents,
such as a fire, need immediate counteraction. Malfunctions, such as a failing energy
system are often solved after incidents have been resolved. Typically, specialized engineers
are assigned to routes that contain systems within their area of expertise to ensure that
malfunctions are solved effectively and efficiently. Figure 1 shows the simplified simulation
of the blanket search task that we developed, involving team members that are able to
solve every incident and malfunction, albeit with varying degrees of efficiency resulting
from differing skill levels.
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Figure 1. Screenshot of the simulated blanket search task, in which three team members collaborate
to solve incidents (shown with icons representing fire, a leaking pipe, or wounded personnel) and
malfunctions (shown with icons representing energy-, mobility-, SeWaCo-, and C4I-systems). Each
cell represents a compartment, which belongs to a route of a particular agent. Routes are indicated by
colored circles.

3.1.1. Objective and Tasks

The team’s objective is to collectively complete a blanket search effectively and effi-
ciently. This objective is achieved when all tasks (incidents and malfunctions) are found
and repaired. Incidents and malfunctions both distinguish three levels of severity: mild,
normal, and severe. The time that is required to solve a task increases with severity of
that task. Repairing incidents has priority over repairing malfunctions. Three types of
incidents were implemented in a simulated blanket search use-case: leakage, fire, and
wounded personnel. In addition, malfunctions of four types of systems occurred during
the scenarios: SeWaCo (sensor, weapon, and command), C4I (command, control, computer,
communication, and intelligence), energy, and mobility systems.

3.1.2. Team Members

In both experiments, the blanket search team members all have different levels for the
following skills:

• Extinguishing fires;
• Repairing leakages;
• Providing first aid to wounded personnel;
• Repairing SeWaCo malfunctions;
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• Repairing C4I malfunctions;
• Repairing energy malfunctions;
• Repairing mobility malfunctions.

The difference in skill levels between members makes it useful for the team to learn
about each other’s capabilities, in order to effectively coordinate their task execution. The
team conducts the blanket search according to the following protocol:

1. Each member has been assigned a specific route through the ship. As a team, they
check all compartments;

2. Upon entering a compartment, any incidents appear automatically. Human and
agent team members need to actively search (i.e., by executing a search action in the
simulation) for any system malfunctions within each compartment. After performing
a search, any found malfunctions appear;

3. Incidents on a route can only be solved by the team member who is assigned that
route. When a team member finds a system malfunction on its route, it can also
request another team member to perform the required repair.

Multiple incidents and/or malfunctions may be present in one compartment. If so,
team members are programmed (in the case of agents) and instructed (in the case of human
team members) to prioritize as follows:

• Extinguish fires;
• Repair leakages;
• Provide first aid to victims;
• Continue search;
• Handle malfunctions.

3.1.3. Agent Implementation

The agents are programmed to have a task model, including how repair time is affected
by skill level. In addition, agents also have a mental model that includes information about
the skill levels of the other agents. Furthermore, their mental models include the location of
a task that was reassigned to them. The implemented behavior protocol for the autonomous
agents is shown in Figure 2.

Follow waypoint

Loop

Handle incident

Send message

Search

Perceive

Mobility

Fire Leak Injured

C4I SeWaCo Energy

Priority

Has request?

Switch criteriaAccept Decline

Delegate?

Ye
s

No

Ye
s

No
Incident found?

Yes

N
o

Loop

LoopAccepted?

Ye
s

No

Introduction

Figure 2. Behavior rules for autonomous agents in the blanket search scenario.
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Before an agent proceeds to the next compartment of its route, it first checks whether
it has received a request to take over a task of another team member. If so, it starts the
procedure to consider whether to accept or to decline the request (see below). If not, it
proceeds with its own assigned task.

Figure 3 shows the protocol for evaluating a task take-over request issued by another
team member:

1. If no more scheduled tasks, then accept the request;
2. If for the requested task, the requesting agent’s skill level exceeds the own skill level,

then decline the request;
3. Else, if the distance from current location to the location of the requested task exceeds

the threshold level, then decline the request;
4. Else, if number of scheduled tasks exceeds the number of scheduled task of the

requesting agent by a certain threshold, then decline the request.

Otherwise, accept the task request. If the agent accepts a request, the agent moves
to the task location and performs the repair. Whenever an agent finds a malfunction on
its route, it will issue a task request if the difference between its own skill level and the
estimated skill level of another team member (based on its knowledge about that team
member) exceeds a particular threshold.

Figure 3. Selecting criteria for autonomous agents in the blanket search scenario.

The machine agent in the presented experiments has a strictly-defined knowledge
representation. It holds for each agent an estimation of their skill levels for each type of
skill. During the execution of the task, skill levels may be adapted based on interactions,
for example a team member that refuses work. This knowledge representation works well
when interacting with other robot agents, as these work with the same paradigm.
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3.2. Urban Search and Rescue

Urban search and rescue (USAR) is a type of technical rescue operation that involves
the localization, extrication, and initial medical stabilization of victims trapped in an urban
area. An USAR mission is executed when there is a high chance of structural collapse due
to, for example, natural disasters, war, or accidents.

Teams performing an USAR operation have to be well coordinated to make good use
of each individual’s skills. With the advancement in technology, robots were introduced in
USAR operations [35]. Although currently these are mainly tele-operated, a lot of research
is being completed in order to increase the autonomy of robots that assist in the USAR
task [36,37]. This indicates the importance of team collaborations with autonomous robots
and human team members in the future.

3.2.1. Objective and Tasks

Figure 4 shows an example of the simulated USAR-task that was created. The goal is
to find victims in buildings and bring them to safety in the command post. Team members
have to collaborate in order to clear rubble in front of a building, establish whether it is
safe to enter a building, establish whether a victim needs treatment, treat victims, and
carry them to the command post. The skills and skill levels of the team members differ
significantly, depending on their role within the team. Only a rescue worker (human)
can establish whether a victim needs first aid, and provide it when necessary, while only
explorers (agents) are able to clear rubble in front of building entrances, and can enter
collapsed buildings. Robot agents also have a battery that needs to be replaced by a
human agent.

Figure 4. Screenshot of the simulated urban search and rescue (USAR) task. In this example, three
team members collaborate to find and treat victims (represented by the blue person-like icons) in
buildings that are either collapsed (grey walls) or safe to enter (blue walls). Red squares indicate
rubble that needs to be cleared before the building can be entered. All victims need to be brought to
the command post (building with green walls).
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3.2.2. Team Members

In both the agent-only and human–agent experiment, AI agents fulfilled the role of
explorer. Explorer agents differ in competency level between 0 and 1 on the tasks they are
able to perform (determining the status of a building, clearing the entrance of a building,
and transporting victims. In experiment 2, the human fulfilled the role of rescue worker,
differing in skillset from the explorer agents.

The explorer robots exhibit a default behavior which is as follows:

• Travel to the closest building that has not been inspected yet;
• Inspect that building;
• Clear the entrance of rubble if there is any;
• Search the building for victims;
• Repeat 1–4 until all buildings are inspected and searched;
• Inspect closest victim until all victims are inspected;
• Bring closest victim to the command post.

From the default robot behavior may be deviated when other agents, human or robot,
send requests for delegating tasks. Conducting actions takes time. How much time is
required for a certain task depends on the skill level of the robot for that task. Figure 5
shows an overview of the behavior of a robot explorer in the USAR case. It shows both
the behavior for the basic reasoner, as well as the mental reasoner. Please note that the
mental model reasoner checks in between each task of the default behavior whether task
delegation messages have to be sent, or whether task delegation messages were received.

Loop

Handle task

Send message

Inspect Victim
with unknown
health status

Inspect Building

Has request?

Switch criteriaAccept Decline

Delegate?

Ye
s

No

Ye
s

No Task/victim 
found?

Yes

N
o

Loop

LoopAccepted?
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s

No

Introduction
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Search for Victims
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N
o

Basic Reasoner

Mental Model Reasoner

Entry Point Basic
Reasoner

Entry Point
Mental Model

Reasoner

Carry victim to
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N
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e
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Figure 5. The basic reasoner behavior in the USAR case (right), and its mental model reasoner
addition (left).
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3.2.3. Agent Implementation

The agent implementation in the USAR task is similar to the one in the blanket search.
Therefore only significant differences are mentioned in this section. All agents have a task
model, containing information about the task context and the skill dependencies. The
agents decide autonomously whether their own tasks should be delegated to someone else,
and whether a request of another agent seems beneficial for the team. This is completed
with task switch criteria. The task switch criteria are almost identical compared to the
blanket search task, and agent again use a mental model based on holds skill-estimations
for each agent for each type of skill. Some changes have been added to prevent deadlocks.
The deadlocks can occur as in the USAR task agents might lack a skill completely, while
in the blanket search tasks all agents could perform all tasks (although sometimes not
efficient). The process of deciding whether or not to accept a task delegation is shown in
Figure 6.

Switch criteria

Yes No current tasks 
and my skill > 0

Other agent
better?

Relatively  
busy?

No

No

DeclineAccept

N
o

Yes

Yes

Too far?

No

Yes

Other agent 
skill = 0 and  

my skill = best

Yes

No

Figure 6. Task acceptance criteria for the USAR task.

4. The Value of Proactive Task Reassignment for the Team

The study concerns the question whether explanations of agents help a human to
form an accurate mental model of the agent’s capabilities. These explanations are provided
within the team design pattern “proactive task reassignment” (PATRA), which is intro-
duced in Section 4.1. If explanations do help, then humans should develop more accurate
knowledge of the team members’ competencies, and a better understanding of when to
exchange tasks, and when not to. In turn, it is expected that the quality of collaboration,
and the team’s overall performance will improve. To show that accurate mental models
indeed improve the team performance, we tested the value of accurate mental models in
an team consisting of only agents for the blanket search use-case (see Section 3.1). These
results are shown in Section 4.3.

4.1. Definition of TDP PATRA

Proactive task reassignment is defined in Table 1, according to the Team Design Pattern
template as proposed by [9,10].
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Table 1. Definition of TDP PATRA.

Pattern Title Proactive Task Reassignment (PATRA)

Behavior
pattern

1. The agent encounters a task.
2. The agent deliberates whether delegating a certain task will be beneficial

for the team performance.
3. The agent decides whether or not to delegate the task and to whom.
4. The agent sends a request to the other team member asking them to adopt

the task.
5. The team member receives the request.
6. The team member considers whether adopting the requested task is

beneficial for the team performance.
7. The team member decides whether or not to adopt the task.
8. Depending on the decision the team member either sends an accept

message or a reject message.
9. If the team member accepts the task, the requesting agent removes the task

from their action list. If the team member rejects the task, the requesting
agent keeps the task in its action list for the time being.

Positive effect
Team members can divide tasks based on skill and work pressure. There is a
higher chance of tasks being performed by those team members that are most
effective performing them.

Negative
effect

One might potentially decrease overall team performance depending on the
implementation of this pattern. For example, the mental models may be
incorrect, or the exchange of tasks may not be beneficial for the total division of
tasks among the team members.

Use when

The overall task performance depends on the division of tasks among the team
members and can be improved by altering the division of tasks within the team,
for example based on competencies or circumstantial possibilities for the
different team members.

Example

A team of three actors works together in an urban search and rescue task. One of
the actors is a medic, the second one is a fire fighter, and the third an ambulance
driver. The medic searches for survivors in a room and runs into a fire hazard.
He requests for the firefighter to come and extinguish the fire. The firefighter is
more capable at extinguishing the fire, so the total team performance is expected
to improve: the fire is put out sooner and more safely.

Design
rationale

Members of well-functioning teams make use of each other’s skills and expertise:
assigning tasks to members with the required skill supports teamwork and team
performance [38,39].

Type Individual

4.2. Applicability of TDP PATRA for Hybrid Teams

In this paper, two use-cases are considered: a blanket search use-case and an urban
search and rescue (USAR) use-case. These use-cases share the characteristic that their
tasks are usually completed in a team setting and are quite complex and extensive. When
working in a team, good coordination and making use of each other’s skills is vital. The
blanket search use-case might illustrate that even though all team members are able to
perform all possible tasks, having a task division based on not only skills but also workload
(and other environmental factors) can be beneficial for the team performance. The USAR
use-case on the other hand, highlights that with a different division of skills, being able to
reassign tasks based on workload and other environmental factors might also improve the
overall performance.

The strength of TDP PATRA lies in the reassignment of tasks based on skills, workload,
and other environmental factors. Creating an initial task division purely on skill works well
in missions where all possible tasks are known beforehand. In the two use-cases described
in this paper, this is not the case. In the blanket search use-case, the team members do
not know yet what tasks they will find. For example, a fire might be present below deck,
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but this is not yet known at the start of the blanket search. For the USAR use-case, while
the locations of buildings may be known beforehand, the team members do not know
the status of the buildings or the number of victims still inside. Due to this uncertainty
in the world, it is important to be reactive to the world in the sense that team members
can re-allocate tasks. Doing this purely based on skill might not be sufficient as utilizing
less-skilled team members may improve the overall team performance as more work can
be performed in parallel.

When considering TDP PATRA for other use-cases, it becomes clear that the TDP might
especially support learning and collaboration in hybrid teams. It is especially important in
hybrid teams to have a clear understanding of one’s team members, as it is vital for team
performance. A well performing team knows and trusts each other and communicates
clearly and efficiently. TDP PATRA can help not only in finding the best team member for a
task, but also in increasing understanding about why a team member wants to re-allocate a
task. This might especially benefit hybrid teams, as it instructs the artificial team members
to make their reasoning about their choice of task explicit to human partners.

TDP PATRA might especially be considered in situations where learning to collaborate
with team members is one of the main goals, and where the team size is small (e.g., 2–8 team
members). That is, the TDP is focused at supporting team members to learn about others
and to use this information to divide tasks more effectively. In the long term, these learning
outcomes facilitate understanding between team members, thereby improving effective
collaboration of the team. In large teams, the TDP might not be able to benefit short-term
task performance because of the significant communication effort that is required between
all team members. In situations where there is less freedom for team members to devise
tasks when collaborating (e.g., because the tasks and team roles are already clear prior to
collaboration, or because there is a team leader that gives orders), PATRA might not be
desired as it can impede progress by drawing team members’ attention away from the
task. Thus, PATRA mainly offers support in situations where it is beneficial to (re)distribute
tasks when collaborating. For example, the TDP can support self-managing hybrid teams
to learn about each others skills and preferences, to define roles within the team, and to
establish a way of working for the task at hand.

When evaluating the added value of PATRA for a situation, team learning and perfor-
mance on the short- and long-term basis needs to be taken into account. TDP PATRA is
especially suitable if the expected (short- or long-term) learning outcome for the team is
more important than the performance on the task at hand. In addition, it is also suitable for
directly improving task performance, especially for tasks where expertise of team members
has a large influence on the efficiency and/or effectively with which a task is performed.

4.3. The Value of Proactive Task Reassignment

This section presents an experiment into the effects of the TDP PATRA when all agent
team members have a complete and accurate mental model of each other. The purpose
of this experiment is to investigate whether the pattern improves team performance in
the selected use case, when compared to teams that do not exchange tasks. Testing the
effectiveness of the TDP is important, as in the main study (Section 5) we investigate
whether adding the element of “providing explanations” to the TDP leads to a better
understanding in the human agent, and whether it yields additional effects on the team’s
functioning and performance.

A team of five artificial agents performed the blanket search as efficiently as possible.
The task environment distinguished five routes, with each route being assigned to an
artificial agent. Agents differed in skill level on handling the various malfunctions, but not
on solving incidents. One agent had equally moderate skills on all malfunctions; the other
four agents were characterized by having high skill on repairing a particular malfunction,
and below-average skill on the other malfunctions.

Two types of scenarios were administered: (1) An easy scenario, in which the proba-
bility of incidents and malfunctions was low. Incidents were uniformly distributed over
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the compartments of the ship; (2) A difficult scenario, in which there is a high likelihood of
fires near mobility systems; victims near SeWaCo systems; and malfunctions in energy near
SeWaCo systems.

Three types of team agents were developed: (1) “BR” indicates that the team consists of
agents with a basic reasoner. Agents of BR-teams performed the tasks in prefixed division
without exchanging tasks; (2) “SBR” indicates that the team consists of agents that have a
skill-based reasoner, enabling them to take knowledge about the skill levels of all agents
into account when requesting task exchanges; (3) “SCBR” indicates that the team consists
of agents that have a skills and circumstances reasoner, enabling them to take skill levels of
all agents into account, as well as distance and workload.

We measured: (1) how often tasks were exchanged; (2) the time that agents are idling;
(3) how skilled agents are on average on the tasks that they perform; and (4) the total time
needed to complete the blanket search. Each team performed 100 blanket searches on the
easy and difficult scenario, and the measurements were averaged over all 100 runs. The
results are presented in Table 2.

Table 2. Testing the value of proactive task reassignment with perfect mental models.

BR SBR SCBR

Easy Difficult Easy Difficult Easy Difficult

Task Exchange 0% 0% 28.5% 24.7% 25.4% 19.9%
Percentage (28.5%) (24.7%) (28.1%) (23.5%)

Idling Percentage 65.2% 54.0% 44.9% 43.8% 47.5% 48.4%

Task 0.58 0.60 0.72 0.72 0.70 0.71
Competency ±0.10 ±0.08 ±0.10 ±0.07 ±0.10 ±0.07

Completion 2742 3453 1468 1982 1596 2289
Time ±972 ±1141 ±511 ±650 ±667 ±952

For the task exchanges, the number in the brackets in the first row of Table 2 indicates
how may requests were made on average, and the number outside the brackets the average
number of accepted requests. The BR team obviously sends no requests as they follow a
fixed task division. We see that approximately a quarter of all tasks are exchanged. In the
difficult scenario this percentage is for SCBR somewhat lower as there are many tasks and
workload is taken into account. We also see that SCBR does not grant all the requests. This
is because they consider its location and workload upon receiving a request. These factors
are not known to the requesting agent and may lead to rejected requests.

Once all tasks of an agent are performed, an agent falls idle. As Table 2 shows, the
BR team spend relatively more time being idle than agents in the other two type of teams.
Thus, re-assignment of tasks, as induced by the PATRA Team Design Pattern, supports
the teams to deploy their agent capacity more efficiently. The SCBR has a slightly higher
idle time. This might be caused due to the slightly higher rejection level of requests, for
example, if a task is too far away according to the reasoning criteria, the SCBR agent does
not accept the task reassignment.

Table 2 also shows that PATRA increases the average task-specific competency of an
agent that is performing a task. On average agents that use PATRA solve tasks that are
better suited to their capability.

The measure that reflects overall performance of a team is the time to complete the
entire blanket search. Table 2 that teams of agents that apply the TDP PATRA complete the
blanket search faster than teams who do not. Interestingly the SCBR agents required more
time to complete the blanket search task than the SBR agents. It was hypothesized that the
SCBR team would be the quickest, as these agents take into account the when to accept or
reject a task take-over request. It was believed that this would prevent them from accepting
requests that increase unbalance in the agents’ workloads or involve long-distance traveling.
It may be that the chosen thresholds for workload and distance are not optimal for the



Systems 2022, 10, 15 14 of 24

scenario. The time gained by solving problems that match a high agent skill currently
outweighs the additional overhead.

In general, we can conclude that TDP PATRA improves the team performance when it
is being used with an accurate mental model. It is known that dynamic allocation of tasks to
team members is one reason for expert human teams being so effective and efficient [40,41].
It is, therefore, of vital importance to form an accurate mental model to utilize the team
design pattern efficiently. How artificial team members can support the human in forming
an accurate mental model by providing explanations is discussed in the next sections.

5. The Effects of Explanations on Human Mental-Model Shaping and on
Team Performance

This section describes the setup of the experiments of measuring the model that a
human forms of artificial team members within a human–AI team and the implications
on team performance. During the execution of the team task, the human creates a mental
model of the task, its team members, and him/herself. As a human is not bound by written
computer code, any aspect may be included in the mental model. Even aspects that are not
relevant in the implementation may appear relevant to the human until enough empirical
evidence suggests otherwise. It is, therefore, interesting to measure the effect of additional
explanations of the agents behavior on how the mental model of the human is shaped.

An ideal robot agent would not stick purely to its own mental model paradigm, but
would try to understand the mental model that the human is currently using in order to
improve the team performance. This is a mental model of another agent’s mental model,
so to speak. Such a meta mental model is out of scope of this research, and robot agents
stick to their own mental model paradigm. This section purely concerns the human side of
mental model shaping, and how explanations may help this process.

The experiments presented in this section measure how the human mental model
is being formed during the execution of the blanket search and urban search and rescue
team tasks. More specifically, the effects of providing additional explanations during the
task delegation interaction with team members is investigated. The hypothesis is that
by providing explanations, the human mental model will more quickly converge to an
accurate representation of the team task and the skills levels of the agents. In order to test
this hypothesis, a controlled experiment with humans was conducted. The experimental
setup is discussed in Section 5.1, and Section 5.2 presents the results of this experiment.

5.1. Method

This section describes the experimental setup for measuring whether explanations
during task reassignments indeed enhance the quality of the mental models of human
team members.

5.1.1. Participants

A total of 44 subjects participated in this experiment. Data of eight participants was left
out of the analysis due to technical issues early on in the experiment. The experiment was
approved by the TNO ethics committee. Inclusion criteria were an academic background
and experience in the healthcare domain. All experts stated to have sufficient technical
ability to participate in an experiment held in a digital environment. Compensation and
travel reimbursement of EUR 25 was offered.

5.1.2. Design

The goal of the experiment is to investigate whether explanations, that agents either
provide or do not provide in task exchange requests, have an effect of the quality of the
human’s mental model. This is being investigated using a within-subjects design, in the
context of two different task domains: blanket search, and urban search and rescue. Each
participant participates in both tasks, with either an explaining agent as team partner, or
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with a non-explaining agents as team partner. The order in which the tasks were being
administered was balanced. The design can be seen in Table 3.

Table 3. Within-subjects design of experiment into the effects of explanation in human–agent com-
munication about task exchanges. Effects of explanation were measured on human understanding
(mental model), team functioning (within-team collaboration), and on team performance. Two task
were used: blanket search (BS) and urban search and rescue (USAR). Order of tasks, and explanation
condition were balanced.

Cohort N First Task Second Task

1 17 BS (explaining agents) USAR (non-explaining agents)
2 19 USAR (explaining agents) BS (non-explaining agents)
3 19 BS (non-explaining agents) USAR (explaining agents)
4 17 USAR (non-explaining agents) BS (explaining agents)

Measures of understanding (quality of the human’s mental model); of team functioning
(quality and fluency of human–agent collaboration), and team performance are being
collected after and during each run.

5.1.3. Materials

A simulation of the USAR-task was developed using the Python programming lan-
guage and a software library called MATRX (human–agent teaming rapid experimenta-
tion)1. MATRX allows rapid design, simulation, and testing of 2D top–down, grid-based
environments in which multiple agents can perform tasks collaboratively. Moreover, it
contains a chat window as part of its interface, allowing agents to communicate. The
behavior of the agents can be programmed or controlled by a human player. Both the
blanket search (Section 3.1) and the urban search and rescue use case (Section 3.2) were
implemented in the MATRX framework.

In the experiment, participants were asked to perform each team task (Blanket search
and USAR) in four different scenarios. The scenarios were increased in complexity in terms
of the number of subtasks that needed to be executed in order to complete the overall team
task. For the blanket search task, the scenarios differed in the number of malfunctions and
incidents. In the USAR task, complexity was increased by adding more victims and more
collapsed buildings. By gradually increasing the complexity the participants were eased
into the more difficult situations without overwhelming them. In all scenarios, the skillset
of the agents remains constant.

5.1.4. Agent Skill Levels

Table 4 shows skill levels of team members per incident and malfunction in the
blanket search. A 1 indicates skilled; 0.1 indicates a low proficiency. All team members
are equally skilled to solve incidents, and they are instructed and programmed to solve
found incidents immediately. Team members differ, however, with respect to their skill in
repairing malfunctions. All members are able to eventually repair any malfunction, but
members with a high skill level require substantial less time for repair.

Table 4. Skill levels assigned to the members of the blanket search team.

Skill Agent: SKY Agent: HAL HUMAN

SEWACO 1 0.1 0.1
MOBILITY 0.1 1 0.1

C4I 1 0.1 1
ENERGY 0.1 1 1

FIRE 0.5 0.5 0.5
LEAK 0.5 0.5 0.5

ASSIST 1 1 1
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Table 5 shows how skilled the agent team members in the USAR scenario are. The
skills were defined in such a way that the agents are specialized in certain tasks. Please
note that some tasks are require specific team members.

Table 5. Division of skills of the two artificial team members for the USAR task.

Skill Agent: BOB Agent: DATA HUMAN

DETERMINE VICTIM’S HEALTH 0.7 0.1 1
CARRY VICTIM 0.5 1 1

DETERMINE BUILDING STATUS 1 0.5 0
CLEAR ENTRANCE 0.1 1 0

TREAT VICTIM 0 0 1

5.1.5. Procedure

It takes about 90–120 min for a participant to participate in the experiment. First, the
participants are given information about the purpose of the study and about the tasks that
they will perform in collaboration with the software robot-agents.

Figure 7 gives an overview of the experiment. First, participants were welcomed,
received general instructions, and were asked to sign an informed consent form. Then, two
blocks of tasks were executed, one with all the blanket search scenarios, and another for all
the USAR scenarios. The order in which the participants did these two tasks was balanced
over the participants. One task block contained instructions of the task and a practice run.
Then, the four scenarios of each task were executed (see Section 5.1.2). After all scenarios of
the same use case were completed, the participants were asked to fill in a question form.
This process is shown in Figure 7. The measures, as described in Section 5.1.6, are recorded
during the task runs.

Figure 7. The flow of the experiment.

5.1.6. Measures

In order to investigate the effect of agent explanations on human mental model
formation and team performance in a human–AI team, several aspects were measured
during the task, and in a questionnaire after completion of each task. Table 6 shows all
measurements that were performed in the experiment. Team performance was objectively
measured by logging quantitative aspects during task execution, and subjectively by
evaluative questions in the questionnaire (e.g., the Collaboration fluency questionnaire from
Hoffman [42]). To externalize the mental model that was created by the participants during
the experiment, several questions were added to the questionnaire about the reasoning
of participants and the reasoning of other team members during the task. For the latter
type of questions, participants were presented with visualizations of two scenarios in the
BS and USAR task, and were asked about the expected behavior of a particular agent in
the scenario (e.g., “In this scenario, will agent HAL accept the request from agent SKY?
Why (not)?”).
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Table 6. Overview of the measures that were recorded during task execution. TP = measurement of
team performance, MM = measurement of mental model.

Measurement Method (Range) Description

Task request
behavior (MM) Q item Four open questions on the reasoning of participants when sending task

request, or responding to task requests from the robot agents.

Best agent for task
score (MM) Q item (0–1)

Ratio of correct answers on questions asking which team member would
be best suited for a specific subtask. Participants also indicated the
certainty of their answers on these questions on a 1–5 Likert scale.

Best task for agent
score (MM) Q item (0–1)

Ratio of correct answers on questions asking which subtask would be best
suited for a specific agent. Participants also indicated the certainty of their

answers on these questions on a 1–5 Likert scale.

Agent behavior
prediction score (MM) Q item (0–2)

Mean score on questions about the expected request, accept or decline
behavior of a particular agent for particular scenarios. Participants also

indicated the certainty of their answers on these questions on a 1–5
Likert scale.

Collaboration
fluency (TP) Q item (1–5) Mean score on the Collaboration Fluency questionnaire [42].

Explanation
evaluation (TP) Q item (1–5) Mean score on two evaluative questions about the explanation provided by

the robots.

Mental effort (TP) Q item (1–20) Mean score on the Rating Scale Mental Effort (RSME) [43].

5.1.7. Analyses

We performed multiple linear mixed effects analyses in order to investigate the effect
of agent type (explaining vs. not explaining), task type (blanket search vs. urban search
and rescue), and their interaction on the measurements in Table 6. This type of statistical
analysis subtracts the random variability within each participant’s outcomes, thereby
correcting for potential effects of the order in which participants carried out the tasks while
collaborating with a particular type of robot agent (see Table 3).

Responses on the open questions about task request behavior (i.e., reasons to request a
robot-agent to take over a task, and reasons to respond to task requests from robot-agents)
were analyzed by two authors. We independently coded and categorized responses from
five randomly chosen participants. We then discussed our results and developed a closed
coding scheme for further analysis. Keywords were assigned to each response, and we
calculated the sum of their occurrence for each question. Answers on the situational
judgment questions in which participants predicted agents’ task request behaviors were
scored based on their accuracy (i.e., answer on the yes/no question whether an agent
would reassign/accept/reject a particular task), and the number of correct arguments they
include in their answer (e.g., ‘HAL is less skilled than SKY’/‘HAL is too busy’). With each
question, a total score of 4 points could be obtained (1 point for accuracy, and 1 point for
each correct argument). The scores on the questions concerning the best agent for a task,
best task for an agent, and the predicted agent behavior with respect to task requests were
normalized between −1 (all questions answered incorrectly) and 1 (all questions answered
correctly) prior to analysis.

5.2. Results

The results of the experiment are presented in two sections. In Section 5.2.1, we show
the findings regarding participants’ mental model of robot team members. Section 5.2.2
shows the findings regarding the team performance. For both the mental model and
performance results, we investigated differences between participant groups working with
robot agents that provided explanations, and with agents that did not. We also compare
results between the blanket search and urban search and rescue task.
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Prior to analysis, we checked each variable for any outliers and for the presence of
other effects. Although some outliers were found, they were relatively small (<2.5 × SD)
and we judged them be representative of the population, so we decided to keep them in
the analysis. We found one small interaction effect between order and task for the agent
behavior prediction score, which is discussed in Section 5.2.1. Table 7 shows the results of
all statistical analysis that were performed on the quantitative data, which will be further
discussed in Sections 5.2.1 and 5.2.2.

Table 7. Results of the linear mixed effects analyses on all measurement variables. Results in bold
text indicate statistical significance at α = 0.05.

Variable
Main Effect of Explanation
Condition (Explanation vs.

No-Explanation)

Main Effect of Task Type (BS
vs. USAR)

Interaction Effect (Expl.
Condition × Task Type)

Best agent for task score t(69) = 1.22, p = 0.223 t(69) = 3.76, p < 0.001 t(36) = 1.22, p = 0.223

Certainty of best
agent answers t(64) = 1.91, p = 0.061 t(64) = −0.72, p < 0.471 t(36) = 0.46, p = 0.649

Best task for agent score t(72) = 0.22, p = 0.824 t(72) = 1.51, p < 0.136 t(36) = 0.18, p = 0.859

Agent behavior
prediction score t(70) = −2.21, p = 0.030 t(70) = −1.12, p < 0.267 t(36) = −0.29, p = 0.776

Certainty of agent behavior
predictions t(72) = −0.46, p = 0.065 t(64) = −1.02, p < 0.310 t(36) = 1.90, p = 0.066

Collaboration fluency t(68) = −0.18, p = 0.086 t(68) = 1.74, p < 0.087 t(36) = 0.52, p = 0.601

Explanation evaluation n.a. t(24) = −1.28, p < 0.214 n.a.
Mental effort t(69) = 2.58, p = 0.012 t(69) = 3.51, p < 0.001 t(36) = −1.73, p = 0.093

5.2.1. Results on the Development of Mental Models

In order to investigate whether people managed to develop accurate mental models of
their robot team members, we analyze their ability to choose the best agent for a specific task
(best agent for task score), to choose the best task for a specific agent (best task for agent
score), and to predict the task request/response behavior of both agent team members in
specific scenarios (agent behavior prediction score). Moreover, we take into account the
results on the open questions about task request and response behavior.

Figure 8 shows the aggregated results of the questions in which participants indicated
the best agent for a task in either the BS or USAR scenario. Overall, scores indicate that,
on average, participants perform much better than chance level (which corresponds to a
score ratio of 0 due to our applied scoring mechanic). A similar result is found for the
reversed version of this question (best task for agent score), for which an average of 56%
of the maximum score was achieved for BS, and 40% for USAR. We found no main effects
of explanation condition on these scores. For best agent for task type score, we found a
small effect of task type, in which participants were able to better identify the best agent for
a task in the USAR scenario compared to the BS scenario (see Table 7). Although it looks
like there is a trend in which the best agent scores are higher in groups where participants
collaborated with agents that did not provide explanations when sending or responding to
task requests, this results is not statistically significant (see Table 7). Finally, we analyzed
the certainty with of participants in choosing the best agent for a given a task (Certainty of
best agent answers). On average, participants were quite certain that the agent they chose
was the best choice for a task (mean certainty score of 3.79 out a 5-point Likert scale), and
this did not significantly differ between Explanation and Task conditions.
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Figure 8. Means and SDs for the score ratio of participants when choosing the best agent for each
task in the blanket search (BS) and urban search and rescue (USAR) use-cases. Ratios are compared
between groups working with explaining (E) agents and working with non-explaining (NE) agents.
The main effect of task (BS vs. USAR) is significant at α = 0.05.

Figure 9 shows the mean score ratios for the questions in which participants predict
the task request and response behavior of the robot agent team partners. On average, scores
were high (74% of total score for the BS task, and 60% for the USAR task), indicating that
participants were quite good at predicting when an agent would request a team member
to take over a task, and how this agent would reply to task requests of others. Although
the difference between task type was not statistically significant, there is a significant effect
of explanation condition on the agent behavior prediction score. That is, the prediction
scores were significantly higher after collaborating with agents that explained their task
request/respond behavior (M = 0.74, SD = 0.28) than after collaborating with agents that
did not provide explanations (M = 0.59, SD = 0.25). This same effect was found within
the BS and USAR case (i.e., there was no interaction effect between explanation condition
and task type). Interestingly, participants reported a high certainty of agent behavior
predictions (average of 3.44 out of a 5-point Likert scale), and these certainty scores did not
differ between explanation conditions, or between task types. We however found a small,
but statistically significant effect between order and explanation condition for the certainty
ratings on the behavior prediction questions (Certainty of agent behavior predictions):
for the BS task, on average, people were more certain of their behavior predictions for
NE-agents when they first collaborated with E-agents. For the USAR task, this effect was
reversed; on average, people were more certain of their behavior prediction for E-agents
when they first collaborated with NE-agents.

The improved ability to predict agents’ task request/respond behavior (agent behav-
ior prediction score) when receiving explanations from those agents was also supported
by the answers on the open questions about this behavior. After collaborating with ex-
plaining agents, people mentioned more valid arguments (i.e., containing task/mental
load, distance to a task, and/or skills) for sending and receiving task requests to and from
others (an average of 7.67 valid arguments per participant) than after collaborating with
non-explaining agents (an average of 4.67 valid arguments). Within those arguments, work-
load is mentioned much more frequently by participants after working with explaining
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agents (average of 1.00 per participant), than after working with non-explaining agents
(average of 0.47 per participant). Moreover, after completing the BS task, people more often
mention skill differences between agents, and a task list that is contained by agents in one
of their answers, than after completing the USAR task (on average 2.37 vs. 1.61).

Figure 9. Means and SDs for the score ratio of participants when predicting the task request and
-respond behavior of agents for particular scenarios within the blanket search (BS) and urban search
and rescue (USAR) use-cases. Ratios are compared between groups working with explaining (E)
agents and working with non-explaining (NE) agents.

5.2.2. Results on the Effect on the Subjective Team Performance

On average, participants rated the experienced collaboration as rather fluent in both
tasks and explanation conditions, as indicated by their general agreement with most 5-point
Likert scale items of the collaboration fluency questionnaire (M = 3.15, SD = 0.43). The
ability of agents to provide explanations when sending and receiving task requests did not
have an effect on the fluency ratings, nor did the ratings differ between task types. However,
on average, the agents’ explanations were deemed valuable by participants (explanation
evaluation) as indicated by their level of agreement with the two 5-point Likert scale items
about the explanations (M = 3.66, SD = 0.67). This rating did not significantly differ between
BS and USAR task types. Lastly, we analyzed the results on the rating scale for mental
effort. Performing the USAR task was rated as requiring significantly more mental effort
(M = 12.11, SD = 2.37) than performing the blanket search task (M = 10.44, SD = 2.08). No
statistically significant effect of collaborating with either explaining or non-explaining
agents was found, although a trend was visible in which the mental effort was rated as
being lower when collaborating with explaining agents (M = 10.96, SD = 2.12) as compared
to non-explaining agents (M = 11.59, SD = 2.33).

6. Discussion

In hybrid human–agent teams, people and artificially intelligent agents collaborate
to achieve a common team goal. A way to do this effectively is by making use of Team
Design Patterns (TDP) [10], which are formalized, proven solutions for effective teamwork.
This paper investigated the effects of the TDP “proactive task reassignment” (PATRA) on
the functioning and performance of a human–agent team. The concept behind PATRA is
regulating task delegation within the team based upon the competencies of team partners
and their current workload, while controlling for overhead due to task exchanges to uphold
team efficiency. A pilot study demonstrated that PATRA improves performance of agent–
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agent teams. Earlier research has shown that providing explanations to experiences are
important for collaboration and for learning (e.g., [16,29,44]. This inspired the main study of
this paper, investigating the effects of explanations during PATRA on the collaboration and
performance of hybrid human–agent teams. Furthermore, it is tested whether explanations
support the humans to develop mental models of their team partners and of the team.

6.1. Discussion on the Effects of Explanations

Intuitively, assigning tasks to the most competent team member is more effective than
when each member simply executes the tasks that happen to be on its route. Exchanging
tasks can especially be beneficial if the team consists of members with each having their
own speciality concerning the various tasks. However, exchanging tasks is only profitable
for the team if the benefits exceed the costs of deliberating whether or not to exchange
a task, and of the costs involved in executing task exchange (e.g., movement, work load
disturbance). In order to make good assessments concerning task exchange, team members
need to have adequate and dynamically updated internal representations of task, team,
and context. The development and maintenance of mental models is, therefore, of critical
importance. In the main study of this paper, it was investigated whether explanations
during the execution of PATRA had an effect on the quality of the human team member’s
mental model, and on the team’s performance.

Results showed that explanations supported the human’s understanding of the condi-
tions under which task exchange is profitable, and the awareness of the competencies of
team members. This finding was more profound for the USAR-task than for the BS-task.
The USAR-task involved hard dependencies, thus demanding team members to organize
coordinated action. This feature probably incited humans to become well-informed about
the qualities of their team partners. The blanket search task did not involve such hard
dependencies. Although exchanging tasks with team members would improve perfor-
mance, the BS-task can also be completed without. In principle, the human would be able
to complete all of its tasks, even though for some tasks with rudimentary skill only. The
fact that task exchange in the BS-task is not imperative may have hampered humans to
learn about the teammates’ competencies.

Explanations did not affect the human’s experience regarding the fluency of collabora-
tion. Participants’ appreciation of the collaboration with team agents was higher for the
USAR-task than for the BS-task. We think that this outcome is caused by the nature of the
USAR-task. As this task involves hard dependencies, it inevitably demands coordinated
action between the human and the other agents in the team, which likely resulted in a
higher appreciation.

The here presented research addressed an important challenge of human–AI co-
learning [1,14], namely that team members need mental models of one another’s capabilities.
Such capabilities are essential in situations where the cost-of-failure is high [45]. We believe
that PATRA is one of many team design patterns that potentially improve the coordination
of human–machine teams [46], in which theory of mind plays an important role.

6.2. Limitations

The aim of this study is to investigate the effects of team design patterns and the effects
of explanations in the TDP on human understanding of task and team. To address these
questions, we designed a task, a team, and designed the experiment. All of these may have
imposed limitations which we will discuss below.

First, we consider the selected task. There are not yet many real-life situations in
which humans and artificially intelligent agents work together as a team on a task. Follow-
ing other researchers [47], we, therefore, decided to construct a simulation of tasks with
representative features of the respective domains (i.e., battle damage repair, and urban
search and rescue). However, we realize that results obtained within these experimental
task cannot automatically be transferred to the associated tasks in real life. Similarly, it
is uncertain whether the effects of TDPs can be generalized to other domains (also see
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Section 4.2 for a discussion on applicability of the TDP). Further research is needed to
validate such claims.

Secondly, we consider the sample of participants. The participants of this research
were recruited among the general public, with the selection criteria of having an academic
background and having no experience in the selected domains. When for a real-life
application humans are being teamed with agents, the humans are likely to have domain
experience. For example, a navy sailor is likely to bring in its mental model of the task
and environment when he or she starts working with an agent partner. This may affect the
nature of teaming, and may thus yield different outcomes than shown in the present study.

Thirdly, we consider the developed experimental tasks. At all times throughout the
experiment, participants were able to perceive the other agent team members at work. This
was to ensure that participants could execute the TDP as intended by its design (e.g., by
including the positions of all other team members). Thus, the results are obtained in a
setting that is more transparent than situations will be in real life, as in real life it is not
always possible to maintain fully informed about team members.

Finally, we consider the experimental design. For practical reasons we adopted a
within-subjects design. This implies that each participants performed the BS and USAR
task once, in either the explanation or the non-explanation condition (see Table 3). As a
result, we used a multiple linear mixed effects to analyze effects. A more straightforward
approach is to use a between-subjects design. This would reduce the time-on-task for
participants, but would require significantly more participants.

6.3. Future Work

The current research presented the value of explanations in a single team design pat-
tern. The question may be asked what the influence of team design pattern characteristics
are on the shaping of the mental model of the human.

In contrast to the focus of the present paper on manipulations (i.e., PATRA, and expla-
nations) intended to improve the human’s mental model of the team agents, future work
includes investigating how artificial agents develop a mental model of the human partner.

Another line of future research is to develop a communication model that enables
humans to share their knowledge and understanding with collaborating artificial agents, and
vice versa. The model needs to be able to accommodate the intrinsically different nature of
representations that humans and agents have of their worlds. Such a communication model
will be of benefit for implementing explainability of team actions and reasoning [48].
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