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Abstract: Human-induced biodiversity loss has been accelerating since the industrial revolution.
The climate change impacts will severely alter the biodiversity and biogeographical patterns at
all scales, leading to biotic homogenization. Due to underfunding, a climate smart, conservation-
prioritization scheme is needed to optimize species protection. Spatial phylogenetics enable the
identification of endemism centers and provide valuable insights regarding the eco-evolutionary
and conservation value, as well as the biogeographical origin of a given area. Many studies exist
regarding the conservation prioritization of mainland areas, yet none has assessed how climate
change might alter the biodiversity and biogeographical patterns of an island biodiversity hotspot.
Thus, we conducted a phylogenetically informed, conservation prioritization study dealing with
the effects of climate change on Crete’s plant diversity and biogeographical patterns. Using several
macroecological analyses, we identified the current and future endemism centers and assessed the
impact of climate change on the biogeographical patterns in Crete. The highlands of Cretan mountains
have served as both diversity cradles and museums, due to their stable climate and high topographical
heterogeneity, providing important ecosystem services. Historical processes seem to have driven
diversification and endemic species distribution in Crete. Due to the changing climate and the
subsequent biotic homogenization, Crete’s unique bioregionalization, which strongly reminiscent
the spatial configuration of the Pliocene/Pleistocene Cretan paleo-islands, will drastically change.
The emergence of the ‘Anthropocene’ era calls for the prioritization of biodiversity-rich areas, serving
as mixed-endemism centers, with high overlaps among protected areas and climatic refugia.

Keywords: CANAPE; conservation prioritization; ecosystem services; endemism; Mediterranean
flora; phylogenetic diversity; phylogenetic endemism; plant diversity; vascular plants

1. Introduction

Biodiversity loss due to human actions has been accelerating since the industrial revolution [1],
with current extinction rates being well above the background extinction rate [2,3], despite the resilience
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of plant taxa to extinction [4,5]. This is altering biogeographical patterns [6] and leading to biotic
homogenization across scales, with geographically widespread species gaining ground and occurring
more frequently in disturbed habitats due to land degradation, replacing narrow-ranged, rare species
in natural habitats as well [7]. This phenomenon is likely to be exacerbated in the near future, due to
synergistic effects of climate and land-use change [8,9].

To face this phenomenon, the Convention on Biological Diversity established the Aichi Targets,
with targets 11 and 12 calling for the establishment of a bare minimum regarding the percentage of
terrestrial land under protection and the prevention of known threatened species, respectively [10].
Nevertheless, we are lagging behind both those goals and the post-2020 global biodiversity agenda
might need to re-evaluate these targets [11]. In the economic depression era [12], the limited
conservation funds need to be allocated in a way that optimizes species management, protection
and conservation [13], as well as relevant ecosystem services [14]. The conservation prioritization
schemes should focus on areas where the intersection between the different facets of biodiversity
(i.e., taxonomic, phylogenetic and functional) is high [15] and there is a balance between conservation
actions and costs [16]. These biodiversity-rich areas (hotspots) may occur in climatically stable areas [17],
constituting macrorefugia [18] (i.e., climatically stable and biodiversity-rich areas), which usually have
high irreplaceability values (a measure of the conservation value of a given area [19,20]) and may
comprise of centers of endemism [21], which have been proved useful in conservation prioritization [22].
The emerging field of spatial phylogenetics [23] enables the identification of endemism centers, while
taking into account several phylogenetic diversity metrics (e.g., [24]), thus providing valuable insights
regarding the eco-evolutionary and conservation value, as well as the biogeographical origin of the
area under study [15,25,26].

As plant diversity is not evenly distributed across the globe [27], with few countries hosting more
than 1000 endemic taxa [28], certain areas have been identified as biodiversity hotspots due to their high
species richness and elevated rates of habitat degradation/loss, with at least five of them encompassing
islands or archipelagos [29,30]. The Mediterranean Basin, a terrestrial biodiversity hotspot [30,31], is the
second largest hotspot in the world [32], comprising of ca. 10,000 islands and islets. Plant endemism
reaches up to 18% in the largest Mediterranean islands and up to 40% in their (sub-) alpine zones [33].
The Mediterranean hosts several vulnerable species [34], with climate change projections expected to
be more severely expressed on the Mediterranean islands and mountain ranges [33], which may have
acted as refugia in the distant past [35]. Consequently, more plant extinctions are anticipated in these
areas, even though very few have been documented thus far [36,37], despite intense anthropogenic
pressure and plant invasions [38], acting in parallel with climate change.

A critical step towards effective conservation—apart from identifying areas with high (taxonomic
and/or phylogenetic) biodiversity and irreplaceability—is the extinction risk assessment of all the
(endemic) species occurring in a given area [39]. This constitutes Aichi Target 2 of the Convention on
Biological Diversity, which is highly unlikely to be met by the end of 2020 [28], partly due to limited
conservation funds, but also due to the Linnean and Wallacean shortfalls [40–42]. Greece, one of the
most biodiverse and environmentally complex European countries [43], has been no exception to this
rule, since most Greek endemic plant taxa have not yet been assessed according to the International
Union for Conservation of Nature (IUCN) criteria [28]. Recent advances have addressed the Wallacean
shortfall in Greece (e.g., [44]; Flora Hellenica Database (ongoing): 1.2M records). Recently, all the
single island endemics (SIEs) of Crete, the hottest endemic biodiversity Mediterranean island regional
hotspot, have been preliminary assessed under the IUCN Criteria A and B [45]; a small, yet crucial
step towards Aichi Target 2 in Greece. To date, very few studies have applied phylogenetic diversity
metrics to macroecological analyses in Greece [46,47], while none has incorporated these metrics in
conservation prioritization and/or assessment analyses. Moreover, a handful of species-specific studies
have dealt with the impacts of climate change on plant distribution patterns [48–50]. Furthermore,
even though numerous biogeographical studies have been conducted in Greece and in the Aegean
archipelago [51–59], none have yet assessed how climate change might alter the current biogeographical
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configuration, which took millennia to form [60]. The Aegean archipelago is an important component
of the Mediterranean region [61], as it comprises more than 8000 islands, located at the intersection
of Africa, Europe and Asia. Its high environmental and topographical heterogeneity, as well as its
complex palaeogeographical history contribute to its high diversity and endemism, and render it
an ideal stage for biodiversity and biogeographical studies [44]. The high endemism of the Aegean
archipelago is a result of isolation caused by the intricate geography and orography of the region since
the Palaeocene [62], followed by speciation in restricted areas such as islands, mountains and coastal
plains. The time is thus ripe for the first phylogenetically informed, conservation prioritization study
dealing with the effects of climate change on the plant diversity and biogeographical patterns in Greece.

Our general goal is to investigate how climate change will alter endemism, biogeographical
and biodiversity patterns in Crete and assess the conservation implications of those alterations.
More specifically, we aim to: (i) identify centers of endemism and the factors leading to their creation,
as well as how they will be affected by climate change, (ii) assess the impact of climate change on the
biogeographical patterns of Crete and (iii) investigate how climate change induced alterations in species
richness, ecological generalism and phylogenetic diversity may affect community composition of
Cretan endemic plants. In the end, we will provide a cost-effective, climate-smart and phylogenetically
informed conservation strategy framework that could be applied at a regional scale.

2. Materials and Methods

2.1. Study Area

The island of Crete (Greece—Figure 1) has a surface area of 8836 km2, thus being one of the largest
Mediterranean islands. Crete hosts 2240 native plant species [43,44,63], as well as the most endemic
plant species in the Mediterranean Basin [33]: 395 species. Crete hosts 183 single island endemics
(SIEs), belonging to 38 families and 104 genera. Regarding the SIE, Caryophyllaceae and Asteraceae
constitute the richest families, while Dianthus and Silene comprise the richest genera. Most of the SIE
are characterized as either Critically Endangered or Endangered under the IUCN Criteria A and B [45].
Crete, together with its satellite islands, comprises of a distinct Aegean biogeographical region [52]
and is subdivided into nine distinct biogeographical sectors [59]. In Crete, 54 sites are included in the
NATURA 2000 protected area network, covering ca. 40% of the island’s extent.

Crete is geologically very diverse—even though limestone is the dominant geological substrate
—and belongs to the Hellenic arc [64]. The island was formed as a result of the subduction of the African
plate beneath the Aegean microplate [64]. Crete is characterized by a complicated palaeogeographical
history [65,66] and has been shaped by two main geological events, namely its isolation from: (i) the
Karpathos’ archipelago and the Cyclades 12 Mya and (ii) Peloponnese after the Messinian salinity
crisis [67].

Four mountain ranges (Lefka Ori, Idi, Dikti and Thrypti) with 50 peaks that exceed 2000 m a.s.l.
(the highest peak is on Mt. Idi and reaches 2456 m a.s.l.), dominate in a W–E axis the topographically
complex terrain of Crete (numerous gorges and ravines occur on the island) and strongly shape its
climatic gradient, with the lowland plains being warm and dry.

2.2. Environmental Data

Current climatic data were obtained from the WorldClim database [68] at a 30 s resolution.
We constructed 16 additional climatic variables at the same resolution via the ‘envirem’ 1.1 [69]
R package based on the 19 bioclimatic variables from WorldClim for current climate conditions.
We selected three global circulation models (GCMs) that are rendered more suitable and realistic for the
study area’s future climate based on [70] and two different Intergovernmental Panel on Climate Change
scenarios from the representative concentration pathways (RCPs) family: RCP2.6 (mild scenario) and
RCP8.5 (severe scenario). Seven soil variables providing predicted values for the surface soil layer at
varying depths, were obtained from the SoilGrids database [71]. Elevation data were derived from the
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CGIAR-CSI data-portal [72] and then aggregated and resampled using ‘raster’ 2.6.7 R package [73] to
match the resolution of the other environmental variables. Climate stability for the past 4 My in Crete,
as well as the extent and occurrence of climatic refugia were obtained from [45].Biology 2020, 9, x FOR PEER REVIEW 4 of 23 
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2.3. Species Occurrence Data

We used the final dataset from [45] for the current and future potential distribution of 172 SIEs,
as eleven SIEs are known from less than three locations and could not be modeled in a species
distribution modeling framework [45].

Regarding the phylogenetic data, we used both phylogenies from [45] as a sensitivity analysis.
The presence of polytomies and/or randomly resolving polytomies do not impact community-level
phylogenetic metrics and the latter are significantly correlated with metrics derived from ‘purpose-built’
phylogenies [74,75]. Nevertheless, all subsequent phylogenetic analyses were computed for both trees.
We followed the same methodology as [45] did for the estimation of the phylogenetic alpha diversity
(the sum of the branch lengths of all the species consisting of a community [76]—see supplementary
materials for a thorough explanation of this method).

2.4. Biodiversity Analyses

We followed the categorical analyses of neo- and paleo-endemism (CANAPE) protocol for spatial
phylogenetic analyses as set out in [23,77]. We carried out all the relevant analyses in Biodiverse version
3.0 [77]. We first calculated phylogenetic endemism [78] and relative phylogenetic endemism [23],
which are the basis for the CANAPE. Phylogenetic endemism is the total branch length from the dated
phylogenetic tree of the lineages present at a grid cell divided by the range sizes of the respective
lineages [23]. Relative phylogenetic endemism is the ratio between phylogenetic endemism measured
from the original phylogeny in relation to the phylogenetic endemism estimated from a phylogeny
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with equally distributed branch lengths [23]. Relative phylogenetic diversity is also a ratio that
compares the phylogenetic diversity observed on the actual tree in the numerator to that observed on a
comparison tree in the denominator [23]. To make them easily comparable between analyses, the trees
in both the numerator and the denominator are scaled such that branch lengths are calculated as a
fraction of the total tree length [23]. The comparison tree retains the actual tree topology but makes
all branches of equal length [23]. Thus, relative phylogenetic diversity is the phylogenetic diversity
measured on the actual tree divided by the phylogenetic diversity measured on the comparison tree,
while relative phylogenetic endemism is the phylogenetic endemism measured on the actual tree
divided by phylogenetic endemism measured on the comparison tree [23]. We assessed the statistical
significance of phylogenetic diversity, phylogenetic endemism, relative phylogenetic diversity and
relative phylogenetic endemism by the following [23] approach. We compared the actual phylogenetic
endemism and relative phylogenetic endemism values of each grid cell to the 999 values of a null
distribution, using the ‘rand_structured’ option in Biodiverse. We estimated p-values from a two-tailed
distribution to identify areas with higher (>0.975) or lower (<0.025) phylogenetic endemism or relative
phylogenetic endemism than the null distribution [23]. Relative phylogenetic endemism and relative
phylogenetic diversity are effective tools for the understanding of the primary evolutionary mechanisms
shaping biotas, thus enabling robust conservation assessment and prioritization [79].

CANAPE is a two-step procedure discriminating grid cells with significantly high phylogenetic
endemism in neo- or paleo-endemism based on species occurrences and the dated phylogenetic tree
([23]—see supplementary materials for a thorough explanation of this method). Using this method,
grid cells can be characterized as neo-, paleo- or mixed centers of endemism. Super-endemism areas
represent a subdivision of mixed endemism centers with highly significant concentration of both neo-
and paleo-endemics. If a point is significantly high in the relative phylogenetic endemism ratio, then it
is a center of paleo-endemism [23]. If a point is significantly low in the relative phylogenetic endemism
ratio, then it is a center of neo-endemism [23]. Finally, if a point is significantly high in both the
numerator and the denominator (taken alone), but not significant for relative phylogenetic endemism,
then it is a center of mixed endemism [23]. As CANAPE results might be sensitive to the grid cell size,
CANAPE was also carried out for both phylogenetic trees with four different grid cell sizes across the
study area. Overall results for the study area are congruent, regardless of the grid resolution.

All analyses were performed using Perl wrapper functions to run Biodiverse in R modified from
https://github.com/NunzioKnerr/biodiverse_pipeline.

2.5. Spatial Autoregressive Models

We employed spatial autoregressive models with spatially autocorrelated errors as outlined
in [80], to test the relationships among phylogenetic endemism and relative phylogenetic endemism
with elevation, pH, mean diurnal range and climate stability (these predictors were not correlated;
VIF < 2—the multicollinearity assessment was performed with the ‘usdm’ 1.1.18 R package [81]).
Spatial autoregressive models with spatially autocorrelated errors circumvent the problem of the
non-independence of residuals related to ordinary least squares regression, as they account for spatial
autocorrelation in parameter estimation [82]. All variables were standardized [i.e., (value-mean/

standard deviation)] to enhance the comparability of parameter estimates. We used correlograms of
the residuals of both spatial autoregressive models with spatially autocorrelated errors and generalized
linear models to infer the degree of spatial autocorrelation [80], using functions from the ‘spdep’ 1.1.3 R
package [83]. We selected the number of neighbors for the spatial autoregressive models with spatially
autocorrelated errors so as to minimize the corrected Akaike information criterion (AICc [80]). We then
tested models for all combinations of variables and selected the best model (lower AICc).

https://github.com/NunzioKnerr/biodiverse_pipeline
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2.6. Future Diversity and Biogeographical Patterns

We derived species composition in each grid cell under current and future climatic conditions by
stacking the presences from the individual species models from [45]. We used a grid cell resolution of
1 km to match the resolution of the predictor variables [84].

2.6.1. Changes in Species Richness (∆SR)

We estimated projected changes in species richness (∆SR) by subtracting future projected species
richness from current species richness. Negative and positive values represent projected species losses
and gains, respectively.

2.6.2. Changes in Phylogenetic Diversity (∆PD)

We estimated the current and future standardized effect size phylogenetic diversity scores as
described above and in supplementary materials for each grid cell. Negative and positive changes in
phylogenetic diversity (∆PD) indicate that assemblages are projected to become increasingly clustered
or overdispersed, respectively.

2.6.3. Changes in Ecological Generalism (∆EG)

Niche breadth [85] is a reasonable surrogate for ecological generalism–specialism of species [86]
and ranges between 0 and 1, with higher and lower values indicating generalists and specialists,
respectively [85]. We derived the mean of the current niche breadth for the species present in each
grid cell under current and future climate scenarios and calculated their difference. Negative and
positive changes in ecological generalism (∆EG) indicate assemblages that are predicted to shift their
composition towards a greater proportion of specialists and generalists, respectively [87].

2.6.4. Changes in Phylogenetic Beta Diversity (∆BD)

Phylogenetic beta diversity is built upon two major components: turnover (βsim) and nestedness
(βnes), which may occur between nested or non-nested assemblages [88–90]. Phylogenetic beta diversity
and its components were computed using the ‘betapart’ 1.3 R package [91]. We focused on βsim as
it contributes more than βnes to overall beta diversity among sites [92,93]. We estimated projected
changes in phylogenetic beta diversity (∆BD) by subtracting future projected βsim from current βsim.
Negative and positive values indicate a trend towards biotic homogenization and heterogeneity,
respectively [87].

We assessed whether changes in βsim were associated with ∆SR, ∆PD, ∆EG and elevation by fitting
generalized additive models with the ‘mgcv’ 1.8.31 R package [94] in a model selection framework [95]
to determine the best models for describing βsim (see supplementary materials for more details
regarding this method).

2.6.5. Changes in Biogeographical Patterns

Following the framework of [96], we estimated the current and future bioregionalization of
Crete via an unsupervised classification procedure, using two clustering algorithms: k-means and
clustering for large applications) based on the generalized dissimilarity modeling data from [45].
We assessed the optimal number of clusters via the silhouette index [97] for each time period. Finally,
we quantitatively assessed the similarity of the different bioregionalizations via the V-measure index of
spatial association [98,99]. All analyses were performed using functions from the ‘raster’ 3.0.7 [73],
‘cluster’ 2.0.7-1 [100], ‘clusterCrit’ 1.2.8 [101] and ‘sabre’ 0.3.1 [98] R packages.
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3. Results

3.1. Biodiversity Indices

The CANAPE analyses revealed that the endemism centers were mainly concentrated within
and at the periphery of the four Cretan mountain massifs (Figure 2A). Areas of mixed-endemism
were the most common, followed by paleo-, neo- and super-endemism areas (156, 26, 21 and 5,
respectively; Figure 2A). Centers of paleo- and mixed-endemism occurred at a significantly higher
altitude than not-significant sites (Kruskal–Wallis ANOVA: H = 15.73, df = 4, p < 0.01; Table S1;
Figure 3). Most paleo-endemism areas occurred in Western Crete and on the mountain massifs of
Eastern Crete (Figure 2A). Overall results were congruent, regardless of the grid resolution and the
way the phylogenetic tree was constructed (Figures S1 and S2).
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The occurrence of the centers of endemism is projected to shift downwards (except for the
super-endemism centers) in the future under any GCM/RCP (Figure 2B, Figure 3B and Figure S3,
Table S2) and these changes were significantly different for the mixed- and paleo-endemism centers
mainly (Kruskal–Wallis ANOVA: H = 344.17, d.f. = 9, p < 0.01).

The spatial autoregressive models with spatially autocorrelated errors indicate that elevation was
the most important predictor of both phylogenetic endemism and relative phylogenetic endemism
(Gelkerke pseudo R-squared (GR2) = 16.1% and 5.9%, respectively; Table S3), followed by mean diurnal
range and climate stability, respectively.

3.2. Future Diversity and Biogeographical Patterns

3.2.1. Changes in ∆EG, ∆PD, ∆SR and ∆BD

Areas with high SIE βsim were currently concentrated in high altitudes, mainly across the four
Cretan mountain massifs (Figure S4a). On the other hand, βsim was relatively low over most of the
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lowlands and especially in the coastal area of Northern Crete (Figure S4a). βsim was projected to
generally increase in Western Crete and in the mid-elevation areas (1000–1500 m a.s.l.—a trend towards
biotic heterogeneity) and this pattern was projected to be greatest in a small coastal area of SW Crete
(Figure 4). An entirely different pattern emerged mainly in the Cretan highlands, where βsim was
predicted to decrease (i.e., a trend towards biotic homogenization—Figure 4 and Figure S4).

Biology 2020, 9, x FOR PEER REVIEW 8 of 23 

 

The spatial autoregressive models with spatially autocorrelated errors indicate that elevation 
was the most important predictor of both phylogenetic endemism and relative phylogenetic 
endemism (Gelkerke pseudo R-squared (GR2) = 16.1% and 5.9%, respectively; Table S3), followed by 
mean diurnal range and climate stability, respectively. 

3.2. Future Diversity and Biogeographical Patterns 

3.2.1. Changes in ΔEG, ΔPD, ΔSR and ΔBD 

Areas with high SIE βsim were currently concentrated in high altitudes, mainly across the four 
Cretan mountain massifs (Figure S4a). On the other hand, βsim was relatively low over most of the 
lowlands and especially in the coastal area of Northern Crete (Figure S4a). βsim was projected to 
generally increase in Western Crete and in the mid-elevation areas (1000–1500 m a.s.l.—a trend 
towards biotic heterogeneity) and this pattern was projected to be greatest in a small coastal area of 
SW Crete (Figure 4). An entirely different pattern emerged mainly in the Cretan highlands, where 
βsim was predicted to decrease (i.e., a trend towards biotic homogenization—Figures 4 and S4). 

The most parsimonious model for all GCMs/RCPs was the full generalized additive model 
including ΔEG, ΔPD, ΔSR and elevation (Table S4, ΔAICC < 2; all the other models had ΔAICC > 2), 
which explained 71.2%–96.6% of the total variance in βsim (Table S4). Both ΔPD and ΔSR were 
negatively correlated with the βsim change, while ΔEG was positively correlated with the βsim change 
(Figures S5–S10). Here we focused on the results obtained for the CCSM4 2.6 GCM/RCP, as it shows 
the highest similarity with the current conditions (see Section 3.2.2 below) and the patterns and trends 
did not deviate between the different GCMs and RCPs. The increasing heterogeneity of Western 
Crete and mid-elevation areas (Figures 4 and S4) was mainly driven by range expansion and local 
extinction of generalist and specialist species, respectively (Figure S5; see also red areas in Figure 
S4b,c). Range expansions and local extinctions tended to drive species richness decreases, resulting 
in phylogenetic clustering (Figure S4d). Hence, future SIE assemblages will tend to be species-poor 
and comprised of taxa that are more closely related than current assemblages (Figure S5; see also blue 
areas in Figure S4d). The same processes were largely responsible for the predicted biotic 
homogenization of the higher elevation areas in Crete, even though these areas were predicted to 
host more specialist species. 

 
Figure 3. Altitudinal distribution of the different types of endemism centers identified by the CANAPE
analysis in Crete for (A) the current time period and (B) the CCSM4 global circulation model (GCM)
and the representative concentration pathway (RCP) 2.6.

The most parsimonious model for all GCMs/RCPs was the full generalized additive model
including ∆EG, ∆PD, ∆SR and elevation (Table S4, ∆AICC < 2; all the other models had ∆AICC > 2),
which explained 71.2%–96.6% of the total variance in βsim (Table S4). Both ∆PD and ∆SR were
negatively correlated with the βsim change, while ∆EG was positively correlated with the βsim change
(Figures S5–S10). Here we focused on the results obtained for the CCSM4 2.6 GCM/RCP, as it shows
the highest similarity with the current conditions (see Section 3.2.2 below) and the patterns and trends
did not deviate between the different GCMs and RCPs. The increasing heterogeneity of Western
Crete and mid-elevation areas (Figure 4 and Figure S4) was mainly driven by range expansion and
local extinction of generalist and specialist species, respectively (Figure S5; see also red areas in
Figure S4b,c). Range expansions and local extinctions tended to drive species richness decreases,
resulting in phylogenetic clustering (Figure S4d). Hence, future SIE assemblages will tend to be
species-poor and comprised of taxa that are more closely related than current assemblages (Figure S5;
see also blue areas in Figure S4d). The same processes were largely responsible for the predicted biotic
homogenization of the higher elevation areas in Crete, even though these areas were predicted to host
more specialist species.

3.2.2. Changes in Biogeographical Patterns

Crete was subdivided into 14 different biogeographical sectors (Figure 5, Figures S11 and S12,
Table S5). This biogeographical compartmentalization was predicted to change drastically under any
GCM/RCP (Figures S12–S18, Table S5), showing a trend towards biotic homogenization (i.e., decrease
in the number of biogeographical sectors—Table S5). Based on the V-measure index, the highest and
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the lowest similarity was observed for the CCSM4 2.6 and the HadGEM2 8.5 GCM/RCP, respectively
(Figure S19, Table S5).
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diversity—∆PBD), according to the CCSM4 2.6 global circulation model/representative concentration
pathway compared to the current time period. Blue areas indicate a decrease in beta-diversity
(biotic homogenization). Red areas indicate an increase in beta-diversity (biotic heterogenization).
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Figure 5. Bioregionalization of Crete for (A) the current time period and (B) the CCSM4 global
circulation model (GCM) and the representative concentration pathway (RCP) 2.6. Each color indicates
a different biogeographical sector.

3.3. Climatic Refugia and Protected Areas Network Overlap

The overlap between the protected areas network in Crete and endemism centers detected
by CANAPE was rather high and ranged between 52% and 65% (Tables S6 and S7; Figure S20a).
The overlap between the areas recognized as climatic refugia and endemism centers detected by
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CANAPE was lower than that reported for the protected areas network and ranged between 0 and 22%
(Tables S6 and S7; Figure S20b). Under any GCM/RCP, the predicted overlap for both the protected areas
network and the climatic refugia were lower than the one currently observed for most GCMs/RCPs
and CANAPE categories (Table S6). The percent overlap based on the recognized climatic refugia of at
least the neo-endemism centers was predicted to increase in the future, while the opposite trend was
predicted for all the other CANAPE types (Tables S6 and S7).

4. Discussion

Crete, one of the largest Mediterranean islands, constitutes the richest regional Mediterranean endemic
biodiversity hotspot [33]. It is a speciation center for animal and plant taxa (e.g., [60,102] and references
therein), due to its rugged topography, past climatic stability, environmental heterogeneity and
long-term isolation, all being crucial factors promoting lineage diversification and persistence [17,103].
Palaeogeographical history, mountain uplift and climate have shaped Crete’s biodiversity and
biogeographical patterns (e.g., [59,104,105]). Climate change is expected to modify biodiversity
and biogeographical patterns globally [6], with islands and mountain summits exhibiting higher
vulnerability to these impacts (e.g., [33,37]). Spatial phylogenetics are a valuable tool for the
development of protected areas management schemes, since they reflect spatiotemporal biodiversity
patterns (e.g., [106]) and may guide scientific effort towards climate change impact mitigation [107].
Urgent measures to address these effects on biodiversity and to avoid further deterioration are needed,
especially concerning the areas of high conservation and evolutionary value that have been highlighted
in this study.

4.1. Centers of Endemism

In Crete, mixed-endemism centers occurring at a higher altitude than the other types of endemism
centers, prevail (Figure 3). It seems that in Crete, montane regions do not act just as diversity cradles,
but also as diversity museums—a pattern observed in other parts of the world as well (e.g., [108])
and are considered as important providers of ecosystem services [109]. Most paleo-endemism centers
occur in or near ravines/gorges in Western Crete and on the mountain massifs of Eastern Crete
(Figure 2A), indicating that these areas may have functioned as biogeographical museums [105,110].
Neo-endemism centers tend to occur in sub-montane altitude in Crete, rather near mixed-endemism
centers (Figures 2A and 3A), pinpointing that their recent diversification may have hindered their
expansion. In the Pliocene, the Cretan mountain massifs were paleo-islands, reaching 800 m a.s.l.,
while vast lowland areas were submerged [111]. The SIE altitudinal distribution patterns conform to
the mid-domain effect hypothesis [105], peaking at 1500 m a.s.l., due to diversification. Our results lend
weight to this notion, since most endemism centers in Crete occur in mid-elevation areas (Table S1).
Probably the species present in these paleo-islands migrated and diversified both down- and up-wards,
after the sea retracted and Crete acquired its current spatial configuration during the Pleistocene [66].
Most SIE neo-endemics likely diversified in lower altitudes (Figures 2A and 3A; Table S1), probably
due to ecological release triggered by low competition [105]. SIE paleo-endemics, which are remnants
of an older continental flora [105,112,113], likely persisted in mid- and higher-altitudes (Figures 2A
and 3A; Table S1) and at least some of them became high-elevation specialists [105]. Thus, historical
processes, such as mountain uplift and isolation due to sea-level oscillations, seem to have driven
diversification and endemic species distribution in Crete (e.g., [114]), with this pattern being evident in
Cretan endemic animals as well (e.g., [115]) and in other regions of the world [24,107,116–118].

In the future, the occurrence of almost all types of endemism centers are projected to shift
downwards under any GCM/RCP (Figure 2B, Figure 3B and Figure S3; Table S2), suggesting that
montane areas that have served as both diversity cradles and museums for a very long time, will probably
become diversity ‘death-zones’ in the near future (see also [45]), as a result of the ‘escalator to extinction’
phenomenon [119]. In many cases, the extent of all types of endemism centers is predicted to
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significantly shrink (Table S6), due to lineage extinction and/or spatial shift—a phenomenon observed
elsewhere as well [120].

Climatic stability and high topographical/environmental heterogeneity may act in conjunction to
provide the conditions needed for the simultaneous persistence of paleo-endemics and the diversification
of neo-endemics [121]. In this context, altitude—a proxy of environmental heterogeneity [104,105,122,123]
—emerged as the most important predictor of PE and RPE in Crete, followed by the mean diurnal range,
pH and climate stability. Distinct endemism patterns may be found in sites with phylogenetically
distinct assemblages, even if environmental similarity is high, due to phylogenetically conserved niche
breadth and dispersal ability [124]. This could be the case in Crete, since SIE’s niche breadth displays
a significant, though weak phylogenetic signal [45]. Our results lend weight to the suggestion that
the interplay between topographical heterogeneity and climate may be linked with the configuration
of centers of paleo- and neo-endemism on mountain massifs [125], a phenomenon also recorded
in the Western and Central Mediterranean [107,126], as well as the Neotropics [121]. However, the
low GR2 for both phylogenetic endemism and relative phylogenetic endemism limits the scope of
conclusions we could draw from these results, and so they should be regarded as informative rather
than conclusive.

4.2. Trends in Biogeographical Patterns

Dispersal limitation, climate differentiation and palaeogeographical configurations have largely
shaped the present-day biogeographical division of the Aegean islands ([52] and references therein),
with Crete being no exception. The biogeographical affinities of Crete lie with: (i) the Peloponnese
to the west, (ii) to the Karpathos’ archipelago to the east and (iii) the South Cyclades to the north
(summarized in [52,54,58]), as a result of the turbulent palaeogeographical evolution of the Southern
Aegean Sea [53,127]. Crete currently constitutes a distinct Aegean biogeographical region, together with
its satellite islands [52]. Nearly three decades ago, [59] divided Crete into nine distinct biogeographical
sectors, which they attributed to species-specific altitudinal preferences, based on the then available
distribution data. According to our results, Crete is biogeographically subdivided into 14 different
sectors (Figure 5 and Figures S11–S18), a result probably of palaeogeographical history and local
climate differentiation, since the most important gradient for determining SIE turnover is annual
potential evapotranspiration, followed by geographical distance [45] and niche-based processes were
found to exert some influence in the distribution of species occurring in Crete [104]. Moreover,
Crete’s biogeographical compartmentalization bears a striking resemblance to the spatial configuration
of the paleo-islands that were present in the Pliocene/Pleistocene, which correspond roughly with
the Cretan mountain massifs [111], a phenomenon observed in several animal taxa as well ([128] and
references therein). Migration between those paleo-islands was improbable, even during the Messinian
Salinity Crisis, when sea-levels were considerably lower [67], due to unfavorable climatic conditions
and the presence of dry steppes and deep canyons [129,130].

This unique biogeographical compartmentalization seems to be at peril, since under any GCM/RCP
it will drastically change (Figures S12–S18, Table S5), showing a trend towards biotic homogenization
in a W–E axis, along Crete’s altitudinal range. This phenomenon seems to have a greater impact on
the SIE of the Cretan highlands, since most of the habitat specialists occurring there, will probably be
among the first to become extinct in the next decades [45].

We also predict a trend towards biotic homogenization in the Cretan highlands, whereas an opposite
trend towards biotic heterogenization will probably occur in low- and mid-elevation areas in Crete
(Figure 4 and Figure S4). This is in line with the thermophilization and phylogenetic diversity decline
observed in other regions as well ([131] and references therein). Biotic homogenization is driven by the
range expansion of generalists and the consequent local extinction of specialists, resulting in overall
lower local species richness and phylogenetic diversity (Figures S5–S10). The aforementioned processes
drive biotic heterogenization in Crete, however these heterogeneous assemblages will probably
have higher species richness, due to the higher migration rate from the lowlands. The prominent
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homogenization of the Cretan highlands suggests that climate-driven extinctions of specialists may
have greater impact on beta-diversity patterns than the generalists’ range expansion. These regional
variation shifts in beta diversity have significant impact on ecoevolutionary processes [132] and could
disrupt ecosystem functioning and provisioning of ecosystem services [133].

4.3. Conservation Prioritization

There is an urgent need for operational and scalable triage approaches in conservation decision
making, due to the accelerating threats to biodiversity, coupled with limited resources ([13,134] and
references therein). Conservation triage focuses on prioritizing species, populations or habitats based
on biodiversity benefits, recovery potential and costs to achieve a desired goal [135]. Prioritization
should be based on species uniqueness and probabilities of extinction, as well as cost of conservation
actions [16], even though it is debated whether or not to prioritize paleo- or neo-endemic taxa [134].

A fundamental block for understanding biodiversity patterns and consequently for conservation
prioritization is to determine where species diversify (centers of neo-endemism—cradles) and persist
(centers of paleo-endemism—museums) over evolutionary time. Irreplaceability is a measure of the
conservation value of a given area [19]. An expansion of the existing protected areas [136,137], as is
included in the post-2020 biodiversity protection agenda [11] could potentially triple the species’
range under protection, as well as that of phylogenetic/functional units [138]. Many protected
areas are also facing increased climate change based risks [139]. In the era of rapid biodiversity
decline [140], it is necessary to investigate if different facets of biodiversity are included in existing
protected areas [141] and to identify new areas of high evolutionary and conservation value. For these
reasons, phylogenetic information, evolutionary history and randomization processes could improve
conservation management.

Nearly two decades earlier, the protected areas network in Crete was rendered insufficient to
ensure satisfactory representation of the regional plant diversity [142], but as new and detailed data
came into light [44], this view has been overturned [45]. The majority of the endemism centers in Crete
are within protected areas (Figure S20a; Table S6), a phenomenon observed in mainland Greece [143]
and in other regions of the world as well [117]. The recognized climatic refugia in Crete contain
mostly mixed- and paleo-endemism centers, while no neo-endemism center is within these refugia
(Figure S20b; Table S6). Paleo-endemics are considered extinction-prone and highly threatened in
the climate change era [107,120,144,145] and should probably be prioritized in terms of conservation
efforts. However, in order to circumvent the problems raised by [134] and building on the results
of [45], conservation efforts should focus at areas with high overlaps among protected areas and
climatic refugia, characterized simultaneously by high endangered species diversity, as well as serving
as mixed-endemism centers. These areas have a relatively small extent, contain both endangered paleo-
and neo-endemic species in high numbers and are under protection, while being climatically stable
in the past and in the foreseeable future. Thus, they constitute Anthropocene refugia [146] and their
management would be cost-effective, in socioeconomic terms. As [120] first suggested, this approach
could timely notify conservationists for the impeding loss of different aspects of biodiversity.

4.4. Conservation Considerations

Our results are in line with the emergence of the ‘Homogenocene’ era, observed in other regions
and organisms as well (e.g., [87,147]). This phenomenon of biotic homogenization could be greatly
deteriorated in Crete, if more widespread, more abundant and with different life-strategy taxa
(e.g., native non-endemics and aliens) are included in the analyses, as there is mounting evidence
of widespread biotic homogenization [147,148], at the taxonomic and phylogenetic scale [149,150].
Alien and invasive species, such as Agave americana, Solanum elaeagnifolium and Oxalis pes-caprae,
are already occupying vast areas in Crete [151,152], especially in lower to mid-elevation areas, thus
already placing immense pressure on (at least some of) the SIE distribution. This phenomenon seems
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to be affecting more the neo-endemic species, as they usually occur in lower altitudes, as well as those
paleo-endemics occurring in the lowland areas of Crete.

In the future, conservationists should address the impact of biotic homogenization on ecosystem
services [147], since it is particularly important for policy and decision-making related to land and
resource use [153]. To properly assess and predict future projections of landscape fragmentation,
changes in demand, use and supply of ecosystem services should be taken into account, using a climate
change, management scenario-based approach [154,155].

In Greece, the identification of endemism centers and biodiversity hotspots will aid the mapping
and assessment of ecosystems and their services implementation by providing invaluable information,
since locating biodiversity hotspots and refugia is a key prerequisite in the national set of mapping and
assessment of ecosystems and their services indicators, in order to map and assess biodiversity-related
ecosystem services [156].

5. Conclusions

This is the first phylogenetically informed, conservation prioritization study taking into
consideration the potential impacts of climate change that has ever been conducted in Greece,
one of the most species-rich countries of Europe and the Mediterranean Basin. We used Crete,
a Mediterranean island regional biodiversity hotspot, as a case study. Even though several climatic
refugia exist on Crete and a large part of the island is under efficient protection, urgent measures are
needed to halt the biotic homogenization that is under way and preserve the distinct evolutionary
heritage present on the high-altitude areas of the study area. Underfunding, taken together with an
elevated climate change driven extinction risk, require the application of the cost-effective conservation
prioritization scheme that we have developed herein, which could act as a valuable tool to support
awareness-raising and decision-making in Greece and at the EU level, in the framework of the EU
biodiversity Strategy and the EU Green Deal.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-7737/9/8/199/s1,
Extended Materials and Methods, Figure S1: Categorical analysis of neo- and paleo-endemism (CANAPE) results
estimated for coarser geographical scales, based on the phylogeny generated following the framework proposed
by [14,15]. (a)–(e): 0.008, 0.0125, 0.025, 0.05 and 0.1 degrees, respectively. The cells identified as not significant are not
depicted. Overall results are congruent, especially for the mixed-endemism patterns, regardless the grid resolution,
Figure S2: Categorical analysis of neo- and paleo-endemism (CANAPE) results estimated for different geographical
scales, based on the phylogeny generated following the framework proposed by [16]. (a)–(e): 0.008, 0.0125, 0.025,
0.05 and 0.1, and degrees, respectively. Dark grey cells contain no records. Overall results are congruent, especially
for the mixed-endemism patterns, regardless of the grid resolution, Figure S3: Map of significant phylogenetic
endemism (PE) identified by the categorical analysis of neo- and paleo-endemism (CANAPE) analysis for 172
Cretan single island endemics for (a) the BCC global circulation model (GCM) and the representative concentration
pathway (RCP) 2.6, (b) the BCC 8.5 GCM/RCP, (c) the CCSM4 2.6 GCM/RCP, (d) the CCSM4 8.5 GCM/RCP, (e)
the HadGEM2 2.6 GCM/RCP and (f) the HadGEM2 8.5 GCM/RCP. Dark grey cells contain no records, Figure S4:
Bivariate maps depicting relative changes in biodiversity measures for Cretan single island endemics between the
present and the CCSM4 26 global circulation model/representative concentration pathway. Colors indicate the
relative amount of change. The red and blue end of the spectrum indicate reductions and increases, respectively.
Each transition in color shading indicates a 10% quantile shift in the value of the variables. (a) Beta-diversity, (b)
species richness (SR), (c) average level of ecological generalism (EG) and (d) phylogenetic diversity (PD). Yellow
areas indicate sites with high current beta-diversity that will continue to have proportionally high beta-diversity.
Blue areas indicate sites that beta-diversity is predicted to increase in the future. Green areas indicate sites where
beta-diversity will remain largely unchanged. We used a function generated by José Hidasi-Neto to generate
the map (http://rfunctions.blogspot.ca/2015/03/bivariate-maps-bivariatemap-function.html), Figure S5: Biplots
showing the predicted relationships between βsim change and the four environmental predictors included in the
best generalized additive model (GAM) for the CCSM4 26 global circulation model/representative concentration
pathway. (a) Change in species richness (∆SR). (b) Change in phylogenetic diversity (∆PD). (c) Change in elevation.
(d) Change in the average level of ecological generalism (∆EG). Fitted lines show the univariate GAMs with 95%
confidence interval (dark grey). Rugs on the x-axes show the predictor values and how they are distributed.
Labels on the y-axes indicate the smooth functions for the term of interest (∆SR, ∆PD, ∆EG and elevation) and
the estimated degrees of freedom (following the term). Values above and below the horizontal dashed line
indicate heterogenization and homogenization, respectively. Values left and right of the vertical dashed line
indicate (a) species loss and gain, (b) PD decrease and increase and (d) assemblages composed by specialists and
generalists, respectively, Figure S6: Biplots showing the predicted relationships between βsim change and the
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four environmental predictors included in the best generalized additive model (GAM) for the BCC 2.6 GCM/RCP
combination. (a). Change in species richness (∆SR). (b). Change in phylogenetic diversity (∆PD). (c). Change
in elevation. (d). Change in the average level of ecological generalism (∆EG). Fitted lines show the univariate
GAMs with 95% confidence interval (dark grey). Rugs on the x-axes show the predictor values and how they
are distributed. Labels on the y-axes indicate the smooth functions for the term of interest (∆SR, ∆PD, ∆EG and
elevation) and the estimated degrees of freedom (following the term). Values above and below the horizontal
dashed line indicate heterogenization and homogenization, respectively. Values left and right of the vertical
dashed line indicate in (a) species loss and gain, (b) PD decrease and increase and (d) assemblages composed
by specialists and generalists, respectively, Figure S7 Biplots showing the predicted relationships between βsim
change and the four environmental predictors included in the best generalized additive model (GAM) for the BCC
8.5 GCM/RCP combination. (a). Change in species richness (∆SR). (b). Change in phylogenetic diversity (∆PD).
(c). Change in elevation. (d). Change in the average level of ecological generalism (∆EG). Fitted lines show the
univariate GAMs with 95% confidence interval (dark grey). Rugs on the x-axes show the predictor values and how
they are distributed. Labels on the y-axes indicate the smooth functions for the term of interest (∆SR, ∆PD, ∆EG
and elevation) and the estimated degrees of freedom (following the term). Values above and below the horizontal
dashed line indicate heterogenization and homogenization, respectively. Values left and right of the vertical
dashed line indicate in (a) species loss and gain, (b) PD decrease and increase and (d) assemblages composed
by specialists and generalists, respectively, Figure S8: Biplots showing the predicted relationships between βsim
change and the four environmental predictors included in the best generalized additive model (GAM) for the
CCSM4 8.5 GCM/RCP combination. (a). Change in species richness (∆SR). (b). Change in phylogenetic diversity
(∆PD). (c). Change in elevation. (d). Change in the average level of ecological generalism (∆EG). Fitted lines show
the univariate GAMs with 95% confidence interval (dark grey). Rugs on the x-axes show the predictor values
and how they are distributed. Labels on the y-axes indicate the smooth functions for the term of interest (∆SR,
∆PD, ∆EG and elevation) and the estimated degrees of freedom (following the term). Values above and below
the horizontal dashed line indicate heterogenization and homogenization, respectively. Values left and right of
the vertical dashed line indicate in (a) species loss and gain, (b) PD decrease and increase and (d) assemblages
composed by specialists and generalists, respectively, Figure S9: Biplots showing the predicted relationships
between βsim change and the four environmental predictors included in the best generalized additive model
(GAM) for the HadGEM2 2.6 GCM/RCP combination. (a). Change in species richness (∆SR). (b). Change in
phylogenetic diversity (∆PD). (c). Change in elevation. (d). Change in the average level of ecological generalism
(∆EG). Fitted lines show the univariate GAMs with 95% confidence interval (dark grey). Rugs on the x-axes show
the predictor values and how they are distributed. Labels on the y-axes indicate the smooth functions for the term
of interest (∆SR, ∆PD, ∆EG and elevation) and the estimated degrees of freedom (following the term). Values
above and below the horizontal dashed line indicate heterogenization and homogenization, respectively. Values
left and right of the vertical dashed line indicate in (a) species loss and gain, (b) PD decrease and increase and (d)
assemblages composed by specialists and generalists, respectively, Figure S10: Biplots showing the predicted
relationships between βsim change and the four environmental predictors included in the best generalized additive
model (GAM) for the HadGEM2 8.5 GCM/RCP combination. (a). Change in species richness (∆SR). (b). Change in
phylogenetic diversity (∆PD). (c). Change in elevation. (d). Change in the average level of ecological generalism
(∆EG). Fitted lines show the univariate GAMs with 95% confidence interval (dark grey). Rugs on the x-axes show
the predictor values and how they are distributed. Labels on the y-axes indicate the smooth functions for the term
of interest (∆SR, ∆PD, ∆EG and elevation) and the estimated degrees of freedom (following the term). Values
above and below the horizontal dashed line indicate heterogenization and homogenization, respectively. Values
left and right of the vertical dashed line indicate in (a) species loss and gain, (b) PD decrease and increase and
(d) assemblages composed by specialists and generalists, respectively, Figure S11: The values of the Silhouette
index for the k-means and the CLARA unsupervised clustering algorithms regarding the optimal number of
biogeographical sectors (clusters) currently occurring in Crete, Figure S12: Bioregionalization of Crete for (a)
the current time-period, (b) the BCC Global Circulation Model (GCM) and the Representative Concentration
Pathway (RCP) 2.6, (c) the BCC 8.5 GCM/RCP, (d) the CCSM4 2.6 GCM/RCP, (e) the CCSM4 8.5 GCM/RCP, (f) the
HadGEM2 2.6 GCM/RCP and (g) the HadGEM2 8.5 GCM/RCP. Each colour indicates a different biogeographical
sector, Figure S13: The values of the Silhouette index for the k-means and the CLARA unsupervised clustering
algorithms regarding the optimal number of biogeographical sectors (clusters) predicted to occur for the BCC 2.6
GCM/RCP combination in Crete, Figure S14: The values of the Silhouette index for the k-means and the CLARA
unsupervised clustering algorithms regarding the optimal number of biogeographical sectors (clusters) predicted
to occur for the BCC 8.5 GCM/RCP combination in Crete, Figure S15: The values of the Silhouette index for the
k-means and the CLARA unsupervised clustering algorithms regarding the optimal number of biogeographical
sectors (clusters) predicted to occur for the CCSM4 2.6 GCM/RCP combination in Crete, Figure S16: The values of
the Silhouette index for the k-means and the CLARA unsupervised clustering algorithms regarding the optimal
number of biogeographical sectors (clusters) predicted to occur for the CCSM4 8.5 GCM/RCP combination in
Crete, Figure S17: The values of the Silhouette index for the k-means and the CLARA unsupervised clustering
algorithms regarding the optimal number of biogeographical sectors (clusters) predicted to occur for the HadGEM2
2.6 GCM/RCP combination in Crete, Figure S18: The values of the Silhouette index for the k-means and the
CLARA unsupervised clustering algorithms regarding the optimal number of biogeographical sectors (clusters)
predicted to occur for the HadGEM2 8.5 GCM/RCP combination in Crete, Figure S19: Similarity regarding Crete’s
bioregionalization schema between the present and each Global Circulation Model (GCM) and Representative
Concentration Pathway (RCP), based on the V-measure index, Figure S20: (a) Map of the protected areas (PA)
network in Crete overlaid onto the Categorical Analysis of Neo- and Paleo-Endemism (CANAPE) results, (b) Map
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of the recognised climate refugia in Crete overlaid onto the CANAPE results. SCI: Sites of Community Importance.
Dark grey cells contain no records, Table S1: Summary statistics regarding altitude (m a.s.l.) for the different
types of endemism centers as well as for the not-significant sites. NS: not-significant. SD: standard deviation,
Table S2: Median altitude for the different types of endemism centers for the present, as well as for all global
circulation models (GCMs) and representative concentration pathways (RCPs) included in the analyses. * denotes
a p-value < 0.001 in the Kruskal–Wallis ANOVA, Table S3: Best spatial autoregressive error models (SARerr) for
the relationships among phylogenetic endemism (PE), relative phylogenetic endemism (RPE) and the predictor
variables. GR2: Gelkerke pseudo R-squared. AICc: Akaike information criterion corrected for small samples.
Asterisks denote: * p < 0.05, ** p < 0.01, *** p < 0.001. Alt: Altitude. CS: Climate stability. MDR: Mean diurnal range,
Table S4: Results for BCC 2.6 GCM/RCP combination of the best (i.e., full) generalized additive model relating
change in SIEC beta-diversity to change in species richness (∆SR), average level of ecological generalism (∆EG)
and phylogenetic diversity (∆PD), as well as elevation. Variables were standardized (i.e., (value-mean/standard
deviation)) prior to analysis. AIC: Akaike Information Criterion. AICc: Akaike Information criterion corrected for
small samples. df: Degrees of freedom. F: F-values. logLik: log-likelihood. R2

adj: adjusted R2
. The full model

was the only model with ∆AICc < 2. Asterisks denote: * p < 0.05, ** p < 0.01, *** p < 0.001, Table S5: Number of
biogeographical sectors (BR), silhouette index (SI) for the k-means and clustering for large applications (CLARA)
unsupervised clustering algorithms and the V-measure index for the present and every global circulation model
(GCM) and representative concentration pathway (RCP) combination, Table S6: Percent overlap (%) between the
protected areas (PA) network in Crete, the climate refugia (CR) recognized in Crete and the endemism centers
detected by the categorical analyses of neo- and paleo-endemism (CANAPE). GCM: Global Circulation Model.
RCP: Representative Concentration Pathway. The extent (in km2) of each CANAPE category for every GCM/RCP
combination is also presented, Table S7: Median percent overlap (%) between the protected areas (PA) network in
Crete, the climate refugia (CR) recognized in Crete and the endemism centers detected by the categorical analyses
of neo- and paleo-endemism (CANAPE) for the present, as well as for the future climate conditions (averaged for
all global circulation models and representative concentration pathways).
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