
  

Biology 2020, 9, 194; doi:10.3390/biology9080194 www.mdpi.com/journal/biology 

Review 

Pathogenesis of Osteoarthritis: Risk Factors, 

Regulatory Pathways in Chondrocytes, and 

Experimental Models 

Yuchen He 1,†, Zhong Li 1,†, Peter G. Alexander 1,2,†, Brian D. Ocasio-Nieves 1, Lauren Yocum 1, 

Hang Lin 1,2,3,* and Rocky S. Tuan 1,2,3,4,* 

1 Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery,  

University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; yuche@pitt.edu (Y.H.); 

alanzhongli@pitt.edu (Z.L.); pea9@pitt.edu (P.G.A.); BDO12@pitt.edu (B.D.O.-N.); LAY23@pitt.edu (L.Y.) 
2 McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine,  

Pittsburgh, PA 15219, USA 
3 Department of Bioengineering, University of Pittsburgh Swanson School of Engineering,  

Pittsburgh, PA 15219, USA 
4 Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong,  

Hong Kong SAR, China 

* Correspondence: hal46@pitt.edu (H.L.); tuanr@cuhk.edu.hk (R.S.T.) 
† These authors contribute equally to this work. 

Received: 26 June 2020; Accepted: 24 July 2020; Published: 29 July 2020 

Abstract: As the most common chronic degenerative joint disease, osteoarthritis (OA) is the leading 

cause of pain and physical disability, affecting millions of people worldwide. Mainly characterized 

by articular cartilage degradation, osteophyte formation, subchondral bone remodeling, and 

synovial inflammation, OA is a heterogeneous disease that impacts all component tissues of the 

articular joint organ. Pathological changes, and thus symptoms, vary from person to person, 

underscoring the critical need of personalized therapies. However, there has only been limited 

progress towards the prevention and treatment of OA, and there are no approved effective disease-

modifying osteoarthritis drugs (DMOADs). Conventional treatments, including non-steroidal anti-

inflammatory drugs (NSAIDs) and physical therapy, are still the major remedies to manage the 

symptoms until the need for total joint replacement. In this review, we provide an update of the 

known OA risk factors and relevant mechanisms of action. In addition, given that the lack of 

biologically relevant models to recapitulate human OA pathogenesis represents one of the major 

roadblocks in developing DMOADs, we discuss current in vivo and in vitro experimental OA 

models, with special emphasis on recent development and application potential of human cell-

derived microphysiological tissue chip platforms. 

Keywords: osteoarthritis; pathogenesis; experimental model; disease modifying osteoarthritis 

drugs; microphysiological systems 

 

1. Introduction 

Existing since ancient times and officially named and defined in the 19th century [1], 

osteoarthritis (OA) has been the most common degenerative joint disease. According to data collected 

by US Centers for Disease Control and Prevention, OA affects 52.5 million people in the United States 

in 2012 and the number is expected to go up to 78 million (26%) by 2040 [2]. In the 2010 Global Burden 

of Disease report, OA was the 11th highest global disability contributor out of 291 health conditions 
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studied [3], affecting both physical and mental health and with substantial healthcare costs [4]. Data 

from the National Institutes of Health Osteoarthritis Initiative (OAI) study demonstrated that people 

with multi-site, hip, or knee OA have greater odds of developing depression-related symptoms as 

compared to people without OA [5]. Greater suicidal ideation odds and memory loss, partially 

mediated by sleep and mood impairments caused by joint symptoms, are found in OA patients [6,7]. 

Commonly affected joints are large weight-bearing joints, such as the knee and hip [8], that are 

characterized by synovial distension and inflammation, thin and rough articular cartilage, and 

reactive bone hyperplasia at the joint edge and beneath the cartilage [9]. Radiographically, OA 

presents with joint space narrowing, osteophytosis, subchondral sclerosis, cyst formation, and 

abnormalities of bone contour [10,11]. These changes cause pain, stiffness, tenderness, and loss of 

mobility that often arise near the end of disease progression, greatly impacting patients’ life quality 

and even leading to mortality [12]. Current OA prevalence is ~15% and is predicted to reach 35% by 

2030, making it the single greatest cause of disability globally. Although it remains unclear why the 

prevalence of OA is rising, the most likely factor is the increase of obese and aged populations [13]. 

OA is characterized as a failure of the joint organ that affects all the tissues in and around the 

joint, these affects include degradation of the articular cartilage; thickening of the subchondral bone; 

osteophyte formation; variable degrees of synovial inflammation; degeneration of ligaments; 

hypertrophy of the joint capsule; and changes in periarticular muscles, nerves, bursa, and local fat 

pads [14]. Among these, cartilage degradation is considered to be the central feature [15]. This is 

because articular cartilages are anatomically at the frontline to respond to the local biomechanical 

environmental, specifically absorbing and distributing mechanical loads applied to the articular joint 

and providing a low friction system to enable mobility. Highly regulated anabolic and catabolic 

mechanisms maintain and adapt cartilage to disruptive factors [16]. In OA, dysregulation caused by 

the presence of various biofactors leads to the loss of cartilage homeostasis, resulting in degradation 

of the collagen- and proteoglycan-rich extracellular matrix (ECM), fibrillation and erosion of the 

articular surface, cell death, matrix calcification, and vascular invasion [17]. 

Despite the disease being known for centuries, the exact pathogenic mechanisms of OA remain 

unclear. Initially, OA was considered an unavoidable age-related disease caused by biomechanical 

factors, i.e., “wear-and-tear”, and an imbalance in the homeostatic biochemical mechanisms of 

cartilage, distinct from immunologically-mediated rheumatoid arthritis [18]. However, detailed 

examination revealed patient-specific variability in the clinical presentation and disease progression 

[19]. Most cases of OA have a clear predisposing condition, such as genetics, trauma, aging, or 

obesity, leading to the idea that OA describes a common endpoint with different etiologies. In any 

case, it is now widely accepted that OA is a dynamic and complex process, involving inflammatory, 

mechanical, and metabolic factors that result in the inability of the articular surface to serve its 

function of absorbing and distributing the mechanical load through the joint that ultimately leads to 

joint destruction [11]. Furthermore, it is now recognized that the disease is not restricted to the 

cartilage or subchondral bone; rather, it results from interplay among tissues of the osteochondral 

complex, including adipose and synovial tissue, as well as the ligaments, tendon, and muscles that 

surround the joint [14]. The exact pathogenic mechanism(s) of OA are still unknown, despite modern 

advances in analysis and diagnosis [20], which accounts for the pre-clinical and clinical failure of a 

number of potential disease-modifying pharmacological therapies [21]. 

Articular cartilage has a relatively simple tissue composition of only a single cell type, 

chondrocytes, encased in an abundant ECM, in the absence of blood vessels, nerves, or lymphoid 

tissue. Any change in its components affects cartilage homeostasis. As the cartilage ECM is produced 

by chondrocytes, OA pathogenesis is therefore frequently linked to changes in chondrocyte activities, 

including proliferation, matrix deposition, inflammatory cytokine production, and response to 

signaling molecules. These changes drive cartilage degradation and therefore represent candidate 

therapeutic targets to reverse OA and maintain articular cartilage integrity. We have summarized in 

this review updated findings on OA pathology, related molecular mechanisms, traditional 

experimental models, and novel OA models represented by human cell-derived microphysiological 

systems, to inform future basic and translational OA research. 
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2. Risk Factors 

The known risk factors of OA include aging, obesity, genetic predisposition, acute trauma and 

chronic overload, gender and hormone profile, and metabolic syndrome [22,23] (Figure 1). However, 

it should be noted that OA is not the inevitable consequence of these factors. In addition, the different 

risk factors may act together in the pathogenesis of osteoarthritis. For example, in older adults with 

anterior cruciate ligament tear, OA develops faster than in younger adults [24]. 

 

Figure 1. Risk factors, structural alterations, and chondrocyte-specific changes in osteoarthritis 

(OA). 

OA is a multifaceted and heterogeneous disease that affects all joint elements. Compared to the 

normal joint, OA joint exhibits different clinical and biochemical phenotypes, including breakdown 

of cartilage, thickening of the subchondral bone, osteophyte and corpus liberum formation, variable 

degrees of synovial inflammation, narrowed joint space, thickened and fibrotic ligaments, 

hypertrophy of the joint capsule and, in the knee, damaged menisci. In particular, the number of 

chondrocytes within cartilage decreases due to increased apoptosis. During OA progression, 

chondrocytes may undergo dedifferentiation and convert to the hypertrophic and senescent 

phenotypes. OA chondrocytes also synthesize and secrete SASP, creating a detrimental environment 

within the joint. Intracellular changes in OA chondrocytes include mitochondrial dysfunction, loss of 

structure and function of endoplasmic reticulum and Golgi, decreased protein synthesis capacity, as 

well as increased nuclear size and chromatin shrinkage. ECM: Extracellular matrix; SASP: 

Senescence-associated secretory phenotype. 

2.1. Aging 

Aging, characterized by the progressive loss of tissue and organ function over time, represents 

the single greatest risk factor for OA [25]. The Framingham Osteoarthritis Study has established that 

the frequency of radiographically evident OA, i.e., joint space narrowing, increases with each decade, 

beginning at 12.9% in people 30–40 years of age and increasing to 43.7% in people over the age of 80 

[26]. Several mechanisms of cellular aging have been proposed. One prominent mechanism involves 

the accumulation of random unrepaired molecular damage to DNA, proteins, and lipids over time 

that eventually leads to cellular defects and tissue dysfunction, resulting in increased frailty and age-

related diseases [27,28]. Sources of this damage are primarily reactive oxygen and nitrogen species 

produced by mitochondria and cellular stress responses, respectively. The proximal effect of these 

reactive oxygen species (ROS) is the accumulation of somatic mutations and DNA damage, telomere 
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shortening, protein and lipid damage, and mitochondrial dysfunction. These molecular changes 

reduce the ability of chondrocytes to main cartilage homeostasis and lower the threshold of damage-

inducing load [29]. A wide range of antioxidants have proven effective in reducing induced OA in 

animal models, including cyclooxygenase-2 (COX-2) inhibitors, hyaluronic acid (HA) and 

glucosamine, interleukin-1β (IL-1β) receptor antagonists, and polyphenols [30]. As many of the ROS 

are produced by inefficient mitochondria and radical scavenging, increasing mitochondrial efficiency 

through the induction of mitophagy (recycling of damaged mitochondria) is the most recent 

therapeutic target under investigation (Figure 1) [31,32]. Cellular senescence, a phenomenon of 

irreversible cell growth arrest, is a common cellular outcome of aging (time), and is highly correlated 

with ROS-induced DNA damage and protein/lipid peroxidation that result from excess ROS 

(oxidative stress) [33]. Chondrocytes from older adults are shown to exhibit many of the changes 

typical of cell senescence, such as increased senescence-associated β-galactosidase (SA-β-Gal) 

activity, enhanced p16 expression, and decreased mean telomere length [34,35]. Interestingly, 

individuals with OA display a significantly higher number of senescent cells within their cartilage, 

thus driving elevated expression of detrimental factors that contribute to cartilage degeneration, 

including IL-1β [35,36], IL-7 [37], and matrix metalloproteinase-13 (MMP-13) [38,39]. However, the 

exact contribution of aging-associated chondrocyte senescence to OA pathogenesis requires further 

investigation. 

2.2. Trauma 

Traumatic injury often causes joint instability or intraarticular fractures, causing post-traumatic 

osteoarthritis (PTOA). Joint injury results in abnormal loading vectors and increased contact stresses 

that are known to be injurious to articular cartilage [40,41]. PTOA accounts for approximately 12% of 

all OA [42], and weight-bearing joints are most susceptible. For example, injuries to the knee 

elements, such as anterior cruciate ligament (ACL) tear and meniscal resection, result in increased 

radiographic OA occurring at an earlier age [43]. It is estimated that PTOA results in 21% of patients 

after ACL transection injury, which increases to 48% in those with concomitant meniscal injury [43]. 

In comparison, 70–80% of radiographic ankle OA cases are of post-traumatic origin, with most 

patients being younger than those with primary ankle OA [44]. The principal consequences of trauma 

to the articular cartilage are an immediate loss of cells through necrosis and apoptosis and subsequent 

increased production of ROS and nitric oxide synthases (NOS) [45]. Early intervention strategies 

focused on the reduction of cell loss through inhibitors of NOS and apoptosis, and the inhibition of 

catabolic enzymes such as MMPs and aggrecanase [46]. Newer methods aim to promote anabolic 

processes through modulation of fibroblast growth factors (FGFs) and WNT signaling and inhibition 

of hypertrophy [47]. A promising recent reagent is SM04690 (Samumed), an inhibitor of WNT 

receptor binding that is now in a phase III clinical trial, which has been shown to elicit protective 

effects on cartilage during joint destruction in an acute cruciate ligament tear and partial medial 

meniscectomy rodent OA model [48]. Inhibition of β-catenin, an intracellular signal transducer of 

WNT, by StAx-35R inhibits chondrocyte phenotypic shifting of human OA cartilage explants, and 

has been reported to result in increased SRY-Box transcription factor 9 (SOX9) and aggrecan gene 

expression and decreased collagen type X α1 chain (COL10A1) gene expression [49,50]. 

2.3. Obesity 

Obesity, defined as a Body Mass Index (BMI) greater than 30 kg/m2, has become a worldwide 

problem of epidemic proportions. Mechanically, the force exerted on the knee when walking is three 

to six times one’s body weight, thus a higher body weight significantly increases joint contact stresses 

[51]. A recent meta-analysis reports an odds ratio (OR) of 1.98 (95% CI 1.57e2.20) and 2.66 (95% CI 

2.15e3.28) for developing knee OA in overweight and obese patients, respectively [52]. In contrast, 

weight loss significantly decreased the risk for the development of knee OA. According to a 

Framingham study on women, a decrease in body mass index of 2 units or more (weight loss of 

approximately 5.1 kg) over the 10 years before the designated examination decreased the odds for 

developing OA by over 50% [53]. In addition to the physical effects, obesity is associated with an 
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increase in systemic metabolic inflammation, and is a risk factor of metabolic syndrome (MS) [54]. 

Population-based studies conducted in Japan, Nigeria, Egypt, and China have shown that the 

accumulation of MS components, such as hypertension, dyslipidemia, and impaired glucose 

tolerance, is strongly correlated with the presence of knee OA and associated advanced radiographic 

changes, severe pain, and increased functional impairment score [55–58]. Therefore, the connection 

between obesity and OA is attributed to not only mechanical loading and “wear-and-tear” at the 

cartilage surface, but also metabolic and inflammatory mediators, specifically degradative enzymes 

and adipose tissue-derived cytokines (known as adipokines) [59,60]. Some adipokines, such as leptin, 

adiponectin, and lipocalin 2, among others, induce production of inflammatory cytokines, including 

tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, and C-X-C motif chemokine ligand 5 

(CXCL5), thus resulting in cartilage matrix damage and subchondral bone remodeling [61]. It is thus 

not surprising that diets rich in saturated fat have been reported to weaken cartilage metabolism and 

increase joint damage, leading to OA development. Correlations between high-fat diet and osteocyte 

changes have also been reported [62]. 

2.4. Chronic Mechanical Overloading/Overuse 

Chondrocytes are continuously subjected to physiologic mechanical loading, which is essential for 

maintaining a homeostatic balance between the catabolic and anabolic processes, mediated via the 

suppression of proinflammatory cytokines and inflammatory mediators, enhancement of anti-

inflammatory signaling, and reduction of the activity of matrix-degrading enzymes [63]. On the other 

hand, supraphysiological loading has been known to skew this balance towards catabolic processes that 

lead to cartilage defects, bone marrow lesions, subchondral sclerosis, cartilage thinning, and OA onset 

[11,64–66]. In an ex-elite female athlete study, weight-bearing sports activity was associated with a 2–3-

fold increase in radiologic OA risks [67]. Another workload study found that long-term heavy lifting or 

extended periods of standing at work are associated with hip OA [68]. It should be noted that 

physiological loading in vivo varies greatly based on anatomical location and history [69], and the area 

with more cartilage loss is often associated with higher mechanical loading [70]. The chondroprotective 

effect of physiological mechanical loading is in part achieved through the mechanotransduction 

mechanisms, such as mechanosensitive ion channels of transient receptor potential vanilloid 4 (TRPV4), 

and signaling via integrins and primary cilia [69]. For example, under moderate dynamic loading, TRPV4-

mediated Ca2+ signaling enhances matrix biosynthesis and decreases the expression of catabolic and 

proinflammatory genes via regulating multiple signaling pathways, including those involving nuclear 

factor of activated T lymphocytes (NFAT), protein kinase C, NF-κB, JNK1, and cyclic adenosine 

monophosphate (cAMP) response element-binding protein (CREB) [71]. The signaling pathways 

involved the degenerative process are, on the other hand, less understood. Available studies show that 

abnormal mechanical stress may increase the production of proinflammatory mediators, such as 

prostaglandin E2 (PGE2) and nitric oxide (NO), and proinflammatory cytokines, such as IL-1β and TNF-

α, that act together to affect cartilage metabolism in multiple ways [65]. Mitogen-activated protein kinase 

(MAPK), activator protein 1 (AP-1), and NF-κB signaling pathways participate in the upregulation of 

PGE2 and IL-1β-induced NO release [72]. COX-2 could be induced by high intensities of fluid shear stress 

through the Rac/MEKK1/MKK7/JNK2/c-JunC/EBP pathway [73]. In addition, mechanical injury can cause 

mitochondrial dysfunction [74], such as the imbalance of superoxide and superoxide dismutase 2 (SOD2), 

thus resulting in cartilage degeneration [75]. Further research is needed to reveal the molecular 

mechanisms underlying excessive mechanical loading-induced OA and propose treatment strategies 

targeting this risk factor. 

2.5. Genetics 

OA is considered a multifactorial polygenic disease that is influenced by multiple genetic and 

environmental factors [76]. Inheritance studies involving family groups and twin pairs have 

demonstrated that 39–78% of OA cases can be attributed to genetic factors [77,78]. In addition to directly 

causing OA, mutations in certain genes could also determine the age of disease onset, sites of affected 

joints, as well as the severity and progression rate of OA [78]. Most established OA-associated variants are 
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represented by common single-nucleotide polymorphism (SNP) with minor allele frequencies (MAF) > 

5% that have moderate to small effect sizes (OR: ~1.1–1.3) [79]. Genome-wide association studies (GWAS) 

are powerful tools capable of examining hundreds of thousands of SNPs across the genome to establish 

associations between genetic factors and the risk of complex diseases and traits [80]. By the end of 2019, 

90 genome-wide significant OA risk loci have been identified with GWAS, most of which are enriched 

near genes involved in skeletal development and morphogenesis [81,82]. These include the Wnt pathway 

genes HBP1 (HMG-Box transcription factor 1) and BCL9 (B cell CLL/lymphoma 9 protein), and TGFβ 

pathway genes TGFB1, latent transforming growth factor beta binding protein 1 (LTBP1), LTBP3, SMAD3, 

and the recently identified ROCR long non-coding RNA (lncRNA) that acts upstream of SOX9 during 

chondrogenic differentiation [83–85]. Genetic overlaps with height, hip shape, bone area, and 

developmental dysplasia of the hip are observed in these sensitive loci, which might alter joint 

biomechanics and predispose the individual to OA later in life [86,87]. 

3. Regulatory Pathways 

Although how the risk factors may be translated into pathogenic mechanisms is not known, 

there are a number of signaling and/or regulatory pathways (Table 1) and molecules such as 

microRNAs and lncRNAs that have been shown to play important roles in articular cartilage 

mediating the activities of chondrocytes (Figure 2). It should be emphasized that some regulatory 

pathways have a clearly defined role, either catabolic or anabolic, while others, such as those 

involving Wnt, may mediate protective or degenerative activities as a function of the state of tissue 

health. 

3.1. Wnt/β-Catenin Signaling 

Wnts are a family of extracellularly secreted glycoproteins that are involved in numerous 

biological activities, including cell proliferation, differentiation, polarization, and fate determination; 

in addition, Wnts have been implicated in the occurrence and development of some diseases via 

canonical β-catenin-dependent and noncanonical β-catenin-independent signaling pathways [47]. 

During cartilage development, Wnt/β-catenin signaling activity is strictly regulated in 

chondrogenesis and chondrocyte maturation [88]. In the adult articular cartilage, excessive Wnt 

pathway activation under IL-1β stimulation is thought to be an OA progression susceptibility factor 

and is commonly used to establish an OA model [89]. Increased expression of Wnt pathway activator 

Wnt1-inducible-signaling pathway protein 1 (WISP-1) is found in both murine and human OA tissues 

to induce articular cartilage degradation via upregulating the expression of MMPs and aggrecanases 

in chondrocytes and macrophages [90]. The expression levels of some Wnt pathway antagonists, such 

as sclerostin, dickkopf WNT signaling pathway inhibitor 1 (DKK1), and secreted frizzled-related 

protein 3 (sFRP3), may decrease in parallel with OA progression. Upregulating the expression of 

these antagonists alleviates OA cartilage destruction [91–93]. Potential drugs that selectively inhibit 

the Wnt pathway, such as SM04690, an inhibitor of intranuclear kinases CDC-like kinase 2 (CLK2) 

and dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), or XAV-939, a 

tankyrase inhibitor, have been shown to be effective in preclinical studies and clinical trials [48,94,95]. 

However, recent studies revealed a dual role of the Wnt pathway in OA development which deserves 

attention. Zhu et al. found enhanced articular cartilage destruction in transgenic mice expressing an 

inhibitor of β-catenin and Tcf in chondrocytes [96]. In the superficial zone of cartilage in adult mice, 

highly expressed Wnt ligands and stabilized β-catenin upregulate Prg4 expression, which then 

suppresses cartilage degeneration [97]. In addition, Theologis et al. found that DKK1 was upregulated 

in knee synovial fluid (SF) and serum of OA patients, showing positive correlation with OA severity 

[98]. These results reveal the importance of WNT signaling in maintaining the normal function of 

chondrocytes and suggest a potential detrimental effect of Wnt inhibitor-based DMOADs on articular 

cartilage homeostasis and OA progression [96,99]. More research is thus needed to elucidate the role 

of this pathway. In particular, a better, controlled strategy to fine-tune the spatiotemporal expression 

of β-catenin is necessary. 
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3.2. PI3K/Akt/mTOR Pathway 

The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin 

(mTOR) signaling pathway participates in cell cycle regulation, and is directly related to cellular 

quiescence, proliferation, cancer, and longevity [100,101]. It also participates in ECM catabolism, 

anabolism, and chondrocyte homeostasis via regulation of gene expression of MMPs, collagen type 

II, aggrecan, and a dis-integrin and metalloproteinase with thrombospondin motifs (ADAMTS) 

[102,103]. A GWAS report found that putative AKT1 rs2498789 and PIK3CA rs7646409 functional 

variants were associated with knee OA susceptibility in the Chinese Han population [104]. Results 

from an in vivo study showed that suppression of PI3K/AKT/mTOR signaling pathway promotes 

chondrocyte autophagy and attenuates the inflammatory response in OA rats [105]. Introduction of 

pro-autophagic γ-aminobutyric acid receptor-associated protein (GABARAP) to an OA rat model 

was shown to promote bone marrow mesenchymal stem cell (MSC)-based repair of OA cartilage 

through the inhibition of PI3K/AKT/mTOR signaling [106]. Several agents targeting the AKT 

pathway have proven effective in reducing articular cartilage destruction in animal models, 

providing potential therapeutic agents for the treatment of human OA [107–109]. 

3.3. Notch Signaling Pathway 

Notch receptors are large single-pass transmembrane proteins that regulate differentiation and 

apoptosis during embryogenesis and postnatal development through binding to transmembrane 

ligands expressed on adjacent cells [110,111]. The consequence of Notch signaling can be attributed 

to different potential Notch receptors, different subcellular locations, and crosstalk between Notch 

signaling and other signaling pathways [112]. Notch signaling has been clearly shown to play an 

important role in synovial joint development [113–116]. In fact, Notch is proposed as a marker of 

cartilage progenitor cells [117,118]. In the development of mouse limb, intracellular domains of 

Notch1 and -2 are translocated into the nucleus of chondrocytes to promote their terminal 

differentiation [118]. However, regarding the exact role of Notch in cartilage hemostasis and OA, 

apparently contradictory results have been reported in different studies. For example, both Notch 

signaling activation [118,119] and inhibition [120,121] have been shown to contribute to OA 

development. However, there is more evidence supporting the pro-degeneration role of Notch 

signaling in OA pathogenesis. For example, a primary locus in Notch control of cartilage hypertrophy 

and OA is the transcription factor HES1 (Hes family BHLH transcription factor 1), which appears to 

act via the intracellular transduction molecule RPBJ (recombination signal binding protein for 

immunoglobulin kappa J region) to induce common OA-associated genes, including MMP-13, 

ADAMTS5, and IL-6, among others [110]. Moreover, intraarticular injection of a Notch inhibitor was 

reported to prevent the development of knee OA in mice [118]. Further studies are needed to 

comprehensively understand the Notch signaling pathway in the molecular network that regulates 

cartilage homeostasis and OA pathogenesis. 

3.4. SIRT1/AMPK Pathway 

Sirtuin-1 (SIRT1) and AMP-activated protein kinase (AMPK), two critical sensors that regulate 

mitochondrial biogenesis and oxidative capacity, have been recognized as therapeutic OA targets [122]. 

Homocysteine-reduced SIRT1 leads to phosphorylated AMPK and peroxisome proliferator-activated 

receptor-gamma coactivator (PGC)-1α downregulation, leading to oxidative stress and mitochondrial 

dysfunction. These homocysteine-induced changes, along with proapoptosis effect, can be reversed by 

activating SIRT1/AMPK/PGC-1α signaling [123]. Animal studies show that quercetin attenuates 

oxidative stress-induced apoptosis and mitochondrial dysfunction via upregulated AMPK/SIRT1 

signaling pathway in chondrocytes, thus preventing OA progression in murine models [124,125]. In a 

human study, transcription factor A mitochondrial (TFAM)-mediated activation of the AMPK/SIRT-

1/PGC-1α pathway could reverse the deficiency of mitochondrial biogenesis in human OA 

chondrocytes, suggesting the potential of pharmacologic AMPK activators in mitigating OA 

progression [126]. 
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3.5. Hippo Pathway-YAP/TAZ Signaling 

The Hippo signaling pathway is a conserved organ size regulator that acts by controlling cell 

proliferation and apoptosis [127]. Central to this pathway is a kinase cascade leading from the tumor 

suppressor Hippo (Macrophage Stimulating 1 (Mst1) and Mst2 in mammals) to the oncoprotein Yki 

(yes-associated protein 1 (YAP) and tafazzin (TAZ) in mammals) [128]. Although the exact role of the 

Hippo pathway in cartilage protection and OA development is unclear, the majority of studies show 

that YAP is a protective effector. For example, YAP was found to cooperate with TEA domain 

transcriptional factor (TEAD) and activate forkhead box D1 (FOXD1) expression, thus alleviating 

chondrocyte senescence and OA [129]. In a murine OA model, YAP activation by transgenic 

overexpression or deletion of the upstream inhibitory kinase Mst1/2 binding sites preserves articular 

cartilage integrity, whereas downregulation of YAP by inflammatory cytokines through TAK1-

mediated phosphorylation promotes cartilage disruption [130,131]. Furthermore, YAP directly 

interacts with TAK1 and NF-κB signaling by inhibiting substrate TAK1 accessibility and reducing 

NF-κB-induced matrix-degrading enzyme expression and cartilage degradation during OA 

pathogenesis [130]. 

On the other hand, other studies hold that YAP activity increases catabolic gene expression in 

response to IL-1β. siRNA-mediated suppression of YAP has been shown to inhibit IL-1β stimulated 

catabolic gene expression, prevent cartilage degradation, and ameliorate OA development. This is 

supported by the observation in a murine OA model that conditional knock-out (cKO) of YAP 

preserves collagen type II expression and protects cartilage from degeneration [132]. In fact, 

intraarticular injection of YAP siRNA was shown to ameliorate OA development in mice [133]. 

Recently, YAP has also been shown to dictate chondrocyte responses to substrate stiffness. For 

example, chondrocytes cultured on soft surface display higher collagen type II expression than those 

on stiff surface, accompanied by lower expression and predominantly cytoplasmic localization of 

YAP [134]. In addition, knock-out of YAP significantly enhances collagen type II expression in 

chondrocytes seeded on stiff substrate. Finally, YAP is believed to negatively regulate chondrogenic 

differentiation of MSCs, while chondrogenic signaling de-repression requires YAP downregulation 

[135]. The exact role(s) of YAP in OA initiation and/or progression awaits further investigations. 

3.6. Disruptor of Telomeric Silencing 1-Like (DOT1L) Pathway 

Epigenetic modifications are chemical or physical changes in chromatin that control gene 

transcription and translation without changing DNA sequence. These modifications include, but are 

not limited to, DNA methylation, histone modification, chromatin remodeling, and regulatory 

noncoding RNAs (ncRNAs) [136]. DOT1 is an evolutionarily conserved histone methyltransferase 

which is involved in epigenetic gene transcription regulation via methylation of lysine-79 of histone 

H3 (H3K79) [137]. GWAS results have shown that DOT1L safeguards cartilage homeostasis and 

protects against OA [138]. Maintaining or enhancing DOT1L activity during aging or after trauma 

might prevent OA onset and progression [139], while DOT1L loss disrupts molecular signature in 

healthy chondrocytes and increases susceptibility to develop spontaneous and post-traumatic OA in 

mice [140]. Unexpectedly, the protective function of DOT1L is attributable to inhibition of Wnt 

signaling by inhibiting the activity of SIRT1 [139], which is generally seen as a protective factor for 

chondrocytes (see above). More research is needed to verify this finding. In addition to affecting 

cartilage, DOT1L seems to have an influence on synovial membrane as well. Synovial tissues of OA 

and RA patients show increased expression of DOT1L at both transcriptional and translational levels, 

along with the demethylation of its downstream H3K79 target [141]. Given its demonstrated 

association with OA, epigenetics-based strategies targeting the DOT1L network could be a novel 

therapeutic option for OA treatment; however, epigenetic modifications are regulated in an 

extremely complex network and other roles of DOT1L and its targeted genes are largely unknown. 

Thus, the regulation of DOT1L activity and the functional consequences of manipulation of DOT1L 

need to be further elucidated before efficient treatments can be developed. 
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3.7. MicroRNAs 

An alternative epigenetic mechanism is mediated by microRNAs (miRNAs), short (20–24 nt) 

non-coding RNAs that regulate gene expression post-transcriptionally by negatively affecting both 

stability and translation of message RNA (mRNA) via binding to the 3′-untranslated region (3′-UTRs) 

of specific target genes [142]. Preventing miRNA biogenesis results in skeletal growth defects and 

premature death, while specific miRNA deletion might be helpful for treating certain diseases [143]. 

Swingler et al. recently reviewed and summarized the role of RNAs and their targets on 

chondrogenesis, chondrocyte differentiation, metabolism, apoptosis, senescence, matrix degradation, 

as well as OA inflammation [144]. Here, we briefly introduce some of these microRNAs. MicroRNA-

34a (miR-34a) was the first miRNA linked to chondrocyte apoptosis. miR-34a was upregulated in 

human OA cartilage, causing OA progression through delta-like protein 1 (DLL1) and PI3K/AKT 

pathway modulation [145]. miR-34a also induced cell apoptosis via targeting SIRT1, contributing to 

chondrocyte death. miR-24 suppresses the cell cycle inhibitor P16INK4a, a senescence marker that is 

increased in OA and in terminal chondrogenesis [146]. miR-495 was overexpressed in human OA 

cartilage, causing chondrocyte apoptosis and senescence by directly targeting AKT1 and the S6 

mTOR system [147]. Other miRNAs related to OA include miR-335-5p [148], miR-107 [149], miR-140-

3p [150], miR-223 [151], miR-146a [152], miR-128a [153], miR-27b [154], miR-21-5p [155], and miR-149 

[156]. miRNAs clearly play a wide range of important roles in regulating chondrocyte and cartilage 

hemostasis, but their short half-life, degradation susceptibility, and high mismatch rate limit clinical 

applications of targeting miRNA [157]. 

3.8. LncRNAs 

LncRNAs are defined as long RNA transcripts with lengths exceeding 200 nucleotides that do 

not encode proteins [158]. LncRNAs have been demonstrated to influence gene expression through 

transcriptional and translational regulation by recruiting chromatin modification factors, influencing 

nuclear architecture, acting as decoys or sponges for microRNAs, and modulating the translation 

and/or stability of mRNAs and proteins [158–161]. LncRNAs are functionally involved in the entire 

lifespan of chondrocyte from chondrogenesis to conversion to an OA phenotype. For example, 

lncRNA differentiation antagonizing non-protein coding RNA (DANCR) regulates both the miR-

1305-Smad 4 and miR-216a-5p-JAK2-STAT3 axes, which promote chondrogenic differentiation of 

human synovium-derived MSCs and stimulate OA chondrocyte proliferation and apoptosis, 

respectively [162,163]. LncRNA ZBED3-AS1 promotes zbed3 expression, which activates Wnt/β-

catenin signaling and promotes chondrogenesis by human synovium-derived MSCs [164]. LncRNA-

HIT (HOXA transcript induced by transforming growth factor (TGF)-β) functions in chondrogenesis 

as an epigenetic regulator through recruitment of the p100/CBP (customs and border protection 

complex). Suppressing lncRNA-HIT reduces mesenchymal cell condensation and cartilage nodule 

formation, impairing chondrogenesis in limb bud mesenchyme [165]. LncRNA-ROCR promotes 

SOX9 expression and chondrogenic differentiation [83]. In terms of disease progression, over 20 

different lncRNAs have been identified in regulating ECM degradation, chondrocyte viability, 

immune response, and angiogenesis that are critical to OA pathogenesis [166]. For example, increased 

levels of six lncRNAs (HOTAIR (HOX transcript antisense RNA), GAS5 (growth arrest specific 5), 

PMS2L2 (PMS1 homolog 2 mismatch repair system component pseudogene 2), RP11-445H22.4 

(Clone-based (Vega) gene), H19 (H19 imprinted maternally expressed transcript), and CTD-

2574D22.4) are associated with the upregulation of MMP-9, MMP-13, and BMP-2 expression in OA 

cartilage [167]. LncRNA gastric cancer-associated transcript 3 (GACAT3) was highly increased in OA 

synoviocytes (OAS). Downregulating GACAT3 expression with siRNA arrested cell cycle in G0/G1 

phase and increased OAS apoptosis rate, which are mediated by interleukin-6/signal transducer and 

activator of transcription-3 (IL-6/STAT3) signaling pathway [168]. LncRNA-HOTAIRM1 variant 1 

downregulation contributes to OA via regulating the miR-125b/BMPR2 axis and activating the 

JNK/MAPK/ERK pathway [169]. Because lncHIFCAR is upregulated in OA tissues, lncHIFCAR 

suppression may improve hypoxia-induced cell injury via positively regulating HIF-1α and HIF-1α 

target genes [170]. Zinc finger antisense 1 (ZFAS1) expression is downregulated in OA chondrocytes, 
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therefore ZFAS1 overexpression promoted the viability, proliferation, migration, and inhibited OA 

chondrocyte apoptosis and matrix synthesis by decreasing Wnt3a factors [171]. At present, no 

therapy targeting lncRNA has been approved by regulatory bodies [172]. More investigations are 

needed to warrant lncRNA as a potential therapeutic target to treat OA before conducting clinical 

trials. 

Table 1. Regulatory pathways mediating chondrocyte functions. 

Pathway Cells Studied Effects Ref. 

Wnt/β-catenin 

 Mouse and human OA 

tissues 
 Upregulates MMPs and aggrecanases [90–94] 

 Mouse knee 

chondrocytes 
 Suppresses cartilage degeneration [97,98] 

PI3K/Akt/mTOR  Rat chondrocytes 
 Suppresses PI3K/Akt/mTOR promotes cartilage repair 

and attenuates inflammatory response 
[105,106] 

Notch 
 Mouse knee 

chondrocytes 

 Induces OA-associated genes and promote OA 
[110,118, 

119] 

 Required for articular cartilage and joint maintenance [120,121] 

SIRT1/AMPK 
 Human and rat knee 

chondrocytes 

 Prevents OA progression by attenuating apoptosis and 

mitochondrial dysfunction 

[123–

126] 

Hippo/YAP/TAZ 

 Human and rat knee 

chondrocytes 

 Alleviates chondrocyte senescence and reduces matrix-

degrading enzyme and cartilage degradation 
[129,130] 

 Rat knee chondrocytes 

and human MSCs 

 Suppresses YAP, preserves collagen type II expression, 

promotes chondrogenic differentiation of MSCs, and 

ameliorates OA development 

[132–

135] 

DOT1L 
 Mouse and human knee 

joints and chondrocytes 
 Prevents OA onset and progression 

[139–

142] 

 

Figure 2. Regulatory factors and pathways involved in OA pathogenesis. 

The protective effects include anti-inflammation, anti-vascularization, antioxidation, anti-

hypertrophy, antiapoptosis, anti-dedifferentiation, and promotion of cartilage formation and 

proliferation. The destructive effects typically lead to inflammation, hypertrophy, dedifferentiation, 

accelerating senescence, apoptosis and ossification, and so on. It is noteworthy that some factors and 

pathways may display protective or destructive functions dependent on different physiological 

states. AKT: RAC-alpha serine/threonine-protein kinase; AMPK: 5′ AMP-activated protein kinase; 
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DOT1L: Disruptor of telomeric silencing 1-like; mTOR: Mammalian target of rapamycin; PI3K: 

Phosphatidylinositol 3-kinase; SIRT1: Silent information regulator 1. 

4. Experimental Models 

Experimental models are critical for the study of human diseases. Various in vitro and in vivo 

models have been established throughout the years to mechanistically understand OA pathologies 

and develop effective therapies. The translational value of the models is determined by how closely 

they functionally align with the pathogenesis and progression characteristics of the disease. 

4.1. In Vivo Models 

The OA risk factors discussed above have been recapitulated in different types of animal models 

(Table 2). No single animal model can mimic all features of human OA and predict all the clinical 

responses to drugs [173]. Therefore, it is important to note that currently available OA models only 

cater to a specific mechanism or feature of disease etiology or pathogenesis observed in OA patients. 

Collectively, the in vivo OA models have significantly advanced our understanding of the disease 

and its treatment regimen. 

4.1.1. Aging-Induced Spontaneous OA Models 

Aging is among the highest risk factors for OA. In older adults, OA is the most common cause 

of limited mobility and compromised quality of life. Spontaneous OA development has been 

observed in mouse strains including C57/BL6 and STR/Ort mice [174,175]. The time required for mice 

to develop spontaneous OA phenotypes is much longer than in PTOA models. Wilhelmi et al. [174] 

reported a high OA incidence of 39–61% in 17-month-old C57/BL6 mice, and only a 19% incidence 

for those aged 15.5 months. The STR/Ort mice are known to be OA-prone and require a relatively 

short 12–20-week period to develop OA [175,176]. Articular cartilage degeneration during 

chronological aging-induced OA development was found to be closely related to the NF-κB signaling 

pathway in STR/Ort mice [174]. Aging-associated spontaneous OA model has also been established 

in other species. For example, Dunkin Hartley guinea pigs display higher OA severity with increasing 

age, reaching moderate to severe OA at 18 months [177]. Spontaneously occurring OA generally 

appears at a much older age in large animals, such as commercial pig and rhesus macaque [178,179]. 

4.1.2. Trauma-Induced OA Models 

In trauma-induced models, an injurious event, typically instability caused by disrupted joint 

mechanics, precedes joint arthritis pathogenesis. This trauma can be introduced either invasively or 

noninvasively. Destabilization of the medial meniscus (DMM) is a well-established and commonly 

used surgical model where, typically, the medial meniscotibial ligament (MMTL) is transected. As a 

result, the medial meniscus is displaced medially during activity. This displacement induces 

abnormal contact stress in the opposing cartilage surfaces which is hypothesized to cause the increase 

in OA observed clinically after meniscus injury or meniscectomy. The DMM surgery control is 

usually conducted following the same procedure but without MMTL transection. In the 129/SvEv 

mouse model, a common background in the production of targeted mutations, mild-to-moderate OA 

symptoms were observed at 4 weeks post-surgery, and moderate-to-severe OA symptoms were seen 

at 8 weeks [180]. However, subchondral bone lesions were not observed in this DMM mouse model. 

Other surgical procedures to induce joint trauma include anterior cruciate ligament transection 

(ACLT) [181] and partial or total meniscectomy [182]. The ACLT model was the earliest developed 

OA model that was intended to replicate the degradation of articular cartilage after ACL rupture in 

humans. However, it is now accepted that this model is unlikely directly comparable to injury in 

human knee joints [183]. Specifically, immediate and severe joint instability after ACLT leads to the 

rapid development and progression of OA in animal models, which does not reflect the clinical 

scenario in human OA [184]. 



Biology 2020, 9, 194 12 of 32 

 

Besides mice and rats, large animals have also been used to generate PTOA models. Using 4-

year-old wethers, Cake et al. [185] compared the well-established meniscectomy model with two less 

traumatic procedures on the meniscus—mid-body transection and cranial pole release—and found 

that the two new, simpler procedures resulted in similar primary pathological outcomes 3 months 

post-surgery. 

A number of non-surgical PTOA models have been introduced in the past decade, eliminating 

the confounding effects of invasive injurious procedures [186]. In all these models, the skin or joint 

capsule of the mice is not disrupted, making the procedure entirely aseptic. In general, noninvasive 

PTOA models are generated by (1) intraarticular fracture (IAF) of the tibial plateau [186,187], (2) tibia 

compression of articular cartilage [188,189], or (3) ACL rupture by tibia compression overload [190]. 

As an example, a custom cradle and an indenter were employed to create closed, intraarticular tibia 

plateau fracture in the mouse knee, which resulted in OA-like pathological changes in both articular 

cartilage and subchondral bone [187]. In addition to cartilage degeneration, rapid trabecular bone 

loss and subsequent partial recovery, as well as considerable bone malformation in the joint space, 

were also observed following injury. 

In previous studies, we reported a portable spring-loaded impactor designed to deliver 

traumatic, energy-controlled impacts on articular cartilage [191,192]. Using this maneuverable 

device, we created a first-of-its-kind, injury-induced OA model by subjecting the medial femoral 

condyle articular cartilage of rabbits to supraphysiological impact. OA characteristics of focal 

cartilage degeneration, including cell death, tidemark remodeling, loss of cells, and cartilaginous 

matrix, could be observed for up to 3 months after a single 0.28 J impact was delivered by this 

impactor [45]. This impact model was later adopted for generating OA-like syndrome in horses [74]. 

4.1.3. Obesity-Induced OA Models 

Higher OA incidence in obese people is attributed to not only excessive joint loading caused by 

increased body weight, but also the associated systemic inflammation, dysregulated lipid 

metabolism, and altered adipokine profile [193,194]. Mice fed with a high-fat diet (HFD) exhibit 

higher levels of proinflammatory cytokines, including IL-1β, IL-6, IL-8, IL-13, leptin, and TNF-α; also 

present at higher levels in these mice are proteins involved in cartilage metabolism, such as TGF-β1, 

MMP-13, and vascular endothelial growth factor-α (VEGF-α) [195]. 

Griffin et al. [196,197] found that HFD (60% kcal from fat, as compared to 10–13.5% from fat for 

normal diet) caused early-stage knee OA in C57BL/6J mice. Furthermore, researchers observed 

alleviated OA symptoms in mice that underwent voluntary wheel running, suggesting that higher 

joint loading per se does not suffice to explain the increased OA incidences in the obesity models 

[197]. Mice with high-fat-induced obesity have also been used to undergo joint injury, generating 

PTOA models [198,199]. In addition to accelerated development of age-related spontaneous OA, mice 

fed with HFD also displayed more severe articular cartilage degeneration in DMM-induced OA as 

compared with mice fed with lean diet [200]. Underlying the higher OA susceptibility for HFD-fed 

mice were elevated leptin levels in their plasma and articular cartilage as well as a distinct, 

longitudinal plasma profile characterized by higher levels of phosphatidylcholines and 

lysophosphatidylcholines [200]. Schott et al. created a PTOA model in C57BL/6J mice with HFD-

induced obesity, and found that the gut microbiome can be targeted to curb systemic inflammation 

and thus treat OA in obese mice [198]. It should be noted that while previous studies revealed 

unequivocally that HFD caused exacerbation of PTOA, inconsistent results have been observed in 

regard to the ability of HFD in OA induction in mouse models [195]. 

4.1.4. Chemically Induced OA Models 

Several chemicals, including monosodium iodoacetate (MIA), papain, collagenase, and quinolone, 

have been proposed to induce OA in animal models, with MIA being the most commonly used 

chemical agent to induce OA in mouse and rat models [201–204]. MIA inhibits glyceraldehyde-3-

phosphate dehydrogenase activity, resulting in rapid and widespread chondrocyte death [205]. OA rat 

models are typically generated by a single intraarticular injection of 100–1200 μg MIA, usually 
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dissolved in physiological saline [201,205–207]. Rapid disease progression can be observed after 

intraarticular MIA injection. Typically, chondrocyte degeneration and necrosis can be observed as early 

as 1–7 days post-injection, and subchondral bone changes are noted by day 7. 

It should be noted that many MIA-induced pathological changes in mice and rates are not typical 

of human OA. Transcriptional profiling and pathway analysis have revealed little similarities between 

cartilage tissues from the MIA model of OA in rats and those from human OA joints [201]. Therefore, 

MIA-induced experimental OA models possess limited clinical relevance and low translatability to 

human disease. Other OA-inducing chemicals include collagenase and quinolone [203,204]. In general, 

because of the low clinical relevance of chemical injury-caused pathophysiology, chemically induced 

models are less popular in OA research. 

4.1.5. OA Models Involving Genetic Manipulations 

Genetically modified models for OA research are predominantly established in mice because of 

their short life cycle, high fecundity, breeding efficiency, and being amenable to genetic 

manipulations [208]. They bear general biological similarities to humans, as reflected in physiology 

and disease pathogenesis. In particular, the genetic homology between mice and humans presents a 

useful model to investigate the genetic components of human diseases [209]. A number of genetic 

modifications have recently been made to target different OA characteristics, such as cartilage matrix 

degeneration [210], inflammation [211], and chondrocyte hypertrophy and apoptosis [118]. Wang et 

al. [212] studied mice genetically deficient in complement component 5, and found reduced 

expression of proinflammatory cytokines and degradative molecules in chondrocytes from joints 

destabilized by medial meniscectomy, compared to wild type animals. In addition, knock-out of 

chondrocyte-specific Epas1, the gene encoding the signaling molecule hypoxia-inducible factor (HIF)-

2α, in mice resulted in inhibition of chondrocyte apoptosis and cartilage destruction in the DMM 

models of OA [213]. 

Genetically manipulated animal models produced by gene knock-in and knock-out approaches 

have been studied to elucidate the protective or destructive role of specific molecules. For example, 

in Mmp-13-knock-out mice, structural cartilage damage was inhibited in surgically induced OA [214]. 

Neuhold et al. [215] generated Mmp-13 transgenic mice with cartilage-specific overexpression of 

Mmp-13 and observed pathological changes, such as articular cartilage degeneration and synovial 

hyperplasia, that strongly resemble human OA phenotypes. These loss- and gain-of-function studies 

clearly indicated the detrimental role of MMP-13 in OA pathogenesis. A small mutation deletion in 

collagen type II (Col2a1) gene was found to result in spontaneous, early-onset articular cartilage 

degeneration in transgenic Del1 (+/−) mice [216]. Similarly, Col9a1−/−mice, a strain deficient in 

collagen type IX, experienced faster, spontaneous OA-like changes in the knee joints than their wild 

type littermates [217]. ADAMTS-4 and ADAMTS-5 have both been recognized as enzymes 

responsible for aggrecan degradation, a key contributing factor to the degradation of OA cartilage 

[218]. While knocking out of Adamts-4 in mice did not reduce aggrecan loss or slow down the 

progression of surgically induced OA [219], Adamts-5-knock-out mice showed significant reduction 

in cartilage destruction after DMM surgery [220], revealing their different roles in cartilage 

degeneration. Little et al. [221] generated heterozygous C57BL/6 aggrecan knock-in mice, and this 

genetic modification protected the mice against cartilage degradation in both PTOA and 

inflammatory arthritis models through inhibiting aggrecanase-mediated cleavage of aggrecan in the 

interglobular domain. 

Transgenic mice are also used to investigate the roles of different signaling pathways and their 

associated receptors and ligands in OA development. For example, inhibition of TGF-β signaling by 

chondrocyte-specific deletion of TGF-β receptor type II (Tgfβr2) in mice led to progressive articular 

cartilage loss and OA-like phenotype, which was ameliorated by further deletion of Mmp13 or 

Adamts5 genes, indicating that they are critical downstream target genes of TGF-β pathway [222]. 

Indian hedgehog (Ihh), the major hedgehog ligand in chondrocytes, was specifically deleted in 

Col2a1-CreERT2 Ihhfl/f mouse cartilage, and the resultant loss in IHH signaling was found to 

significantly decrease cartilage degeneration in surgically induced OA [223]. Another signaling 
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pathway actively researched in mutant mice is the Wnt pathway due to its critical role in postnatal 

joint biology and OA development [224,225]. 

The use of genetically modified mouse strains, typically through the knock-in or -out of known 

genes, has significantly enhanced our understanding of molecular mechanisms underlying OA 

pathogenesis. Specifically, these mice are robust tools to study the upstream and downstream 

network of the target genes, and the mechanistic information facilitates the identification of new 

disease-modifying targets [226]. Given that OA is a whole joint disease, future studies should focus 

on mouse models that have been genetically manipulated to target joint tissues other than cartilage, 

including subchondral bone, synovium, and infrapatellar fat pad (IPFP), to enhance our 

understanding of the joint pathologies. 

4.2. In Vitro Models 

While biomedical research has been greatly enhanced over the past decades with the use of 

mammalian animals as a replacement for human subjects, there are also significant limitations and 

disadvantages, including high costs and social and ethical issues, including the intrinsic genetic 

differences between human and animals. Thus, in vitro cell and tissue cultures have been used since 

the development of sterile culture techniques almost a century ago as alternatives. These models are 

purposed according to the 3R principle—replacing, reducing, and refining animal work—and are 

implemented to bring about more humane research. We discuss in this section both traditional and 

novel in vitro OA research models, and their respective advantages and disadvantages (see Table 3). 

Table 2. Advantages and limitations of current animal models for studying OA. 

In vivo Models Advantages Limitations Ref. 

Aging-induced 

spontaneous OA 

models 

 Simulate natural progression of OA in 

human 

 Target one of the most important OA risk 

factors 

 Need long duration to induce OA 

 High cost due to prolonged housing 

of animals 

 Sex- and strain-dependent OA 

incidence 

[176,177] 

Trauma-induced OA 

models 

 Fast OA initiation and development 

 Noninvasive trauma-induced models can 

be created with precision and minimum 

infection risk 

 More severe trauma usually applied 

than common human knee injuries 

 Much faster and more severe OA 

induction than in human patients 

 Rely on expertise of 

surgeon/technician 

[186,226] 

Obesity-induced OA 

models 

 Target a key OA risk factor 

 Replicate both altered joint biomechanics 

and systemic inflammation seen in obese 

OA patients 

 Variability caused by interactions of 

obesity with genetic and 

environmental factors 
[197,200] 

Chemically induced 

OA models 
 Ease of OA induction 

 Precise control of chemical dose 

 Pathogenesis not typical of human 

OA 

 Low translatability 
[204,206] 

OA models involving 

genetic manipulations 

 Enable studies on the 

protective/destructive roles of specific 

genes 

 Facilitate investigations into unknown 

signaling pathways in OA 

 Can be combined with other models in 

mechanistic studies 

 High cost 

 Tend to oversimplify OA 

pathogenesis 

 Limited clinical relevance of OA 

induction by a specific gene 

mutation 

 Most reported genetic manipulations 

target only cartilage 

[212,214] 

4.2.1. Monolayer Culture 

OA studies involving monolayer culture mostly employ chondrocytes, because degradation of 

cartilage, in which chondrocyte is the sole cellular component, remains a predominant OA symptom. 

Monolayer culture serves as a convenient platform to investigate cartilage biology under normal or 

disturbed conditions. For example, cyclic strain at high magnitude and frequency was found to result 

in catabolic and degenerative responses by articular chondrocytes [227,228]. To investigate the role 
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of mechanical stress in OA development, porcine chondrocyte monolayer cultures were subjected to 

cyclic equibiaxial 10% tensile strain (0.5 Hz) [229]. At different times throughout the 24-h period of 

stretching, chondrocytes showed catabolic responses such as increased expression of MMPs, 

cyclooxygenases, nitrite, and prostaglandin E2. Monolayer cultures of synoviocytes have also been 

used in OA studies [230,231]. To investigate cartilage–synovium crosstalk, chondrocyte-conditioned 

medium was used to treat synoviofibroblasts [232]. It was found that a relatively modest 

chondrocyte-derived IL-6 concentration induced a vastly higher amount of IL-6 secreted by 

synoviocytes from obese OA patients than from normal-weight patients. This inflammatory response 

clearly indicated chondrocyte–synoviocyte crosstalk and was further found to be enhanced by leptin, 

an adipokine related to obesity [232]. Despite the relatively high reproducibility and cost-

effectiveness of monolayer cultures, there is growing consensus that a 2-dimensional (2D) plastic 

surface poorly mimics the in vivo chondrocyte niche. Specifically, in 2D cultures, chondrocytes 

undergo a dedifferentiation process characterized by the loss of collagen type II and aggrecan 

expression and increased collagen type I expression [233], thus representing a compromised cellular 

phenotype. Monolayer cultures have thus gradually fallen out of favor in recent OA studies, and are 

most often used as a supplement to 3D models. 

4.2.2. 3D Engineered Cartilage Tissues 

Recognizing that native chondrocytes reside in a 3D microenvironment, researchers have mostly 

favored 3D cartilage models for in vitro OA studies. High cell density micromass cultures and pellet 

cultures remain the most commonly used 3D culture approaches for engineering cartilage in vitro. 

Encapsulating stem cells or primary chondrocytes in biomaterial scaffolds has also been widely 

employed to create 3D cartilage tissue. In a previous study, dedifferentiated human chondrocytes at 

passage 5 were redifferentiated under identical conditions in monolayer, pellet cultures, or 3D 

alginate beads [234]. 3D cultures showed higher chondrogenic potential, while 2D cultures led to 

hypertrophic and mineralization marker expression. In a similar study, Yeung et al. [235] found that 

3D collagen microsphere culture of human OA chondrocytes (hOACs) could better recapitulate the 

OA phenotypes in vitro, as compared to 2D monolayer culture and traditional 3D pellet culture. 

3D engineered cartilage tissues are frequently employed to generate inflammatory OA models. 

To create an OA model, human articular chondrocytes and mouse RAW 264.7 macrophages were 

separately encapsulated in 3D poly (ethylene glycol) diacrylate hydrogels and co-cultured in a 

Transwell system, consisting of a semipermeable membrane to separate the two cell types cultured 

in the same medium [236]. Through the culture medium shared by the two cell-laden constructs, this 

model was intended to mimic inflammatory OA features with direct the communication between 

cartilage and macrophages. In another study, primary human chondrocytes were seeded on silk protein 

porous scaffolds to engineer 3D cartilage tissues, which displayed OA-like phenotypes when insulted by 

macrophage-conditioned medium [237]. 

OA models based on 3D engineered cartilage tissues can also be utilized to test potential OA 

therapies. For example, an arthritic neocartilage model was generated by challenging human 

chondrocyte-laden collagen scaffolds with IL-1β and TNF-α. The HA- and platelet-rich plasma used 

simultaneously rescued the disrupted chondrogenic signaling and enhanced cartilage regeneration [238]. 

Moreover, the hOAC-laden collagen microspheres, engineered by Yeung et al. [235], responded to OA 

disease-modifying factors, such as low oxygen tension and TGF-β. 

Besides primary chondrocytes, human stem cells also serve as a promising cell source to engineer 3D 

cartilage tissues [239,240]. In particular, the higher availability of stem cells like adult MSCs makes them 

preferable in engineering individual-specific cartilage tissues for regenerative medicine and OA studies. 

It is worth mentioning that the utility of 3D engineered cartilage in OA modeling is strongly dependent 

on its physiological relevance of biological accuracy. For example, pellet cultures typically require a very 

large number of cells and cell–ECM interaction is absent until newly formed ECM is generated by cells. 

On the other hand, in scaffold-based engineered cartilage tissue, cell–cell interaction cannot be achieved 

initially, due to the physical separation resulting from encapsulation of the cells in the biomaterial scaffold. 

Of special relevance, it is known that intimate cell–cell interaction, mediated by N-cadherin, a 
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transmembrane protein responsible for homotypic cell–cell adhesion, is critical in initiating mesenchymal 

chondrogenesis [241]. To overcome these limitations of the pellet and scaffold cultures, we have recently 

established a development-informed protocol to induce N-cadherin-mediated cellular condensation and 

subsequent chondrogenesis of human MSCs while encapsulated within their own ECM, which results in 

robust cartilage formation [242]. In addition, given the requisite crosstalk between cartilage and other joint 

tissues in the native joint, we have developed an engineered 3D “joint organ” that includes multiple 

components of the articular joint (see below), which should offer a physiologically more relevant platform 

for mechanistic studies on joint disorders such as OA. 

4.2.3. Tissue Explant Models 

Although the exact pathogenesis and etiology of OA are not completely understood, the 

metabolic state of articular cartilage and its crosstalk with other tissues are believed to play crucial 

roles in various proposed mechanisms. Cartilage explants from human patients and animal models 

have thus been widely utilized in mechanistic OA studies. Grenier et al. [243] established an in vitro 

cartilage degeneration model by treating bovine cartilage explants with collagenase, simulating the 

matrix damage typically observed in early-stage OA. We have previously created a traumatized OA 

model by impacting a healthy bovine articular cartilage at 36 MPa [45,191]. In a study to explore the 

crosstalk between tissue components of the joint organ, particularly subsequent to injurious insults, 

we examined the interactions between the IPFP and articular cartilage, before and after mechanical 

trauma. The traumatized cartilage was exposed to IPFP-conditioned culture medium, which was 

found to aggravate degeneration of the injured cartilage, likely due to elevated IL-6 levels. The 

traumatized cartilage-conditioned medium also increased IL-6 expression levels in adipocytes and 

adipose stem cells derived from IPFP, indicating IPFP-cartilage crosstalk [244]. Using IPFP-cartilage 

and IPFP-meniscus co-cultures, Nishimuta et al. [245] found that co-cultured healthy IPFP could 

modulate glycosaminoglycan (GAG) metabolism in cartilage and meniscus and stimulate the 

production and accumulation of GAG in cartilage. Furthermore, the authors labeled newly 

synthesized sulfated GAGs and proteins with sodium [35S]-sulfate and [3H]-proline, respectively, in 

cartilage and meniscus explants and supplemented the culture medium with several adipokines 

(resistin, leptin, adiponectin, or visfatin) and found that adipokines induced catabolic changes in 

newly incorporated matrix in both tissues [246]. An in vitro cartilage–synovium explant co-culture 

model has also been established [247]. The cytokines identified in the co-cultures were found to be 

more similar to those in OA synovial fluid than those in monocultures of cartilage or synovium. The 

synovium-secreted factors reduced GAG production in the co-cultured OA cartilage. Interestingly, 

supplementation with the corticosteroid triamcinolone acetonide (0.1 mM) was found to relieve this 

inhibitory effect, suggesting the potential utility of such explant systems in screening for OA [247]. 

The cartilage–synovium explant co-culture model has also been used to investigate the efficacy and 

mechanisms of potential OA therapies. Using this co-culture model, viscosupplementation 

(intraarticular injection of HA) was evaluated, and found to benefit OA joints potentially via an anti-

inflammatory mechanism of action and a biosynthetic chondroprotective mechanism [248]. 

4.2.4. Microphysiological Systems 

A microphysiological system (MPS), sometimes referred to as an organotypic culture model 

(OCM), describes an in vitro platform that models human tissues by providing living cells, usually 

heterogenous in nature, with a microenvironment supporting specific structure and responses that 

define an organ or tissue. The key features of an MPS include the use of human cells, multiple tissue 

components, 3D culture, as well as dynamic tissue crosstalk. MPS presents an unprecedented tool for 

us to mechanistically understand the functions, interactions, and pathogenesis of tissues/organs, and 

promises to serve as a convenient, versatile component that may be adapted for various drug testing 

and development scenarios. In view of the “whole joint” nature of OA, an ideal “joint-on-a-chip” 

should incorporate all the elements of the joint, and ideally is compatible with the application of 

mechanical load and perturbation. 
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In reality, the development of MPS for OA studies is at an early stage. In most cases, only cartilage 

tissue is included. For example, to model excessive mechanical loading-induced OA chondrocyte 

phenotypes, Occhetta et al. [249] used human articular chondrocyte-laden hydrogels to develop a 3D 

human cartilage-on-a-chip (COC) constructed on polydimethylsiloxane (PDMS) (Figure 3A,B). Under 

hyperphysiological confined compression (30% confined compression; Figure 3C), the cartilage 

microtissues in this microfluidic device displayed increased expression of catabolic enzymes and 

inflammatory markers, and chondrocyte hypertrophy [249]. Another PDMS-based COC device was 

designed as an in vitro model of equine OA [250]. The cartilage tissue in this model showed enhanced 

inflammatory phenotype in response to a 24-h treatment of TNF-α and IL-1β. As noted above, systems 

for the preparation and culture of osteochondral tissues have been in development for some time, and 

come in many different configurations and materials. Recognizing the importance of replicating native 

cartilage–bone crosstalk, we have recently developed microphysiological osteochondral systems derived 

from human MSCs or iPSCs (Figure 3D) [251,252]. We observed active cartilage–bone crosstalk with IL-

1β treatment of either bone or cartilage; we also showed the potential of such osteochondral chips in drug 

testing and development [252]. 

Perhaps the biggest advantage of the MPS platform in OA studies is its capability to enable the 

interactions and crosstalk among multiple microtissues that correspond to the tissue components 

present in specific human joints. Initially considered a disease of cartilage degeneration, OA is now 

recognized as a whole-joint disease, involving and affecting not only bone and cartilage. In particular, 

synovium and IPFP seem to act as an anatomo-functional unit, which is an emerging idea supported 

by recent studies [253,254]. Therefore, a human stem cell-derived MPS model, incorporating 

osteochondral, synovial, and adipose tissues within a chip, has been developed by our group and is 

coined the “microJoint”, which expands and replicates tissue crosstalk and communication to allow 

a more complete and holistic understanding of the process of OA pathogenesis (Figure 4). 

 

Figure 3. Schematics of cartilage- and osteochondral tissue-on-a-chip microphysiological system 

(MPS). (A–C) A cartilage-on-a-chip (COC) system. (A) The top and bottom chambers are separated 

by a polydimethylsiloxane (PDMS) membrane. (B) The COC top chamber has a central channel 

(hosting the 3D microtissues, in blue) and two side channels (for medium supplementation, in red) 

separated by two rows of T-shaped hanging posts (in white). (C) Confined hyperphysiological 

compression is exerted on the microtissues by pressurizing the bottom actuation compartment of the 

COC system. (D) Schematic of generating the osteochondral tissues-on-a-chip microphysiological 

system (MPS). After mesenchymal progenitor cells (iMPCs) are encapsulated into a hydrogel scaffold 

and placed into a dual flow bioreactor, chondrogenic medium (CM) and osteogenic medium (OM) 

are perfused through the top and bottom flow, respectively, to induce formation of the biphasic 

osteochondral tissue, with cartilage at the top and bone at the bottom (photographic image of the 

tissue shown on the right). (Reproduced with permission from Occhetta et al. [249] and Lin et al. 

[252].) 
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Figure 4. Design of a microphysiological system that simulates the in vivo crosstalk among bone, 

cartilage, synovium, and infrapatellar fat pad tissues. Each engineered tissue is connected to other 

tissues through either microfluidics or diffusion, and can thus interact with one another in a real-time 

manner. The plug-and-play design allows assessment of the contribution of each joint component in 

the process of OA pathogenesis. 

Table 3. Advantages and disadvantages of current in vitro models for OA research. 

Current in vitro 

models 
Advantages Limitations Ref. 

Monolayer culture 

 Support convenient, high-throughput 

tests 

 High reproducibility 

 Do not replicate in vivo tissue 

niche 

 Chondrocytes undergo 

dedifferentiation 

[227,232] 

3D engineered cartilage 

tissues 

 Create a 3D microenvironment enabling 

cell–cell and/or cell–matrix interactions 

 Higher chondrogenic potential than 2D 

culture 

 Varying biological relevance for 

different 3D systems 

 Other joint tissues not considered 

[235,236] 

Tissue explant models 

 Cells reside in their native environment 

 Study physiology of cartilage as a 

whole tissue 

 Properties strongly depend on 

donor and tissue harvest site 

 Cell death at tissue edges 

[245,247] 

Microphysiological 

systems 

 Support culture of multiple 3D joint 

tissues to allow their crosstalk 

 Controlled cell culture 

microenvironment 

 Enable real-time, on-chip analysis 

 Dynamic medium supply supported by 

microfluidic flow  

 Convenient application of insults and 

drugs/treatments 

 Variable biological accuracy due 

to non-standardized protocols 

 Limited material selection for 

chip manufacture 

[249,252] 

5. Summary and Future Prospects 

The significant disease burden of OA and the accompanying compromise to the quality of life 

of OA patients notwithstanding, development of effective OA prevention and treatment methods 

have been largely unsuccessful. Current treatments are still limited to lifestyle change, physical 

therapy, NSAIDs, and end-stage surgical joint replacement. The slow progress in developing novel 

and effective therapeutic approaches is primarily attributed to our insufficient understanding of OA 

etiology and pathogenesis [255]. 

Improved understanding of OA causation and pathogenesis is critical in identifying potential 

therapeutic targets to prevent disease development and progression. In this review, we have 

summarized our current understanding of OA pathogenesis. A concise introduction of OA risk 

factors is provided, as they have been widely discussed and are generally accepted. We have focused 

on the latest progress in experimental models and regulatory pathways active in OA onset and 

development. It is clear that interfering with a single known regulatory pathway will be insufficient 
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in preventing or inhibiting OA development. Instead, multiple regulatory pathways must be 

considered, as well as more upstream targets. A possible strategy is to develop multi-functional 

molecules that affect several key pathways or activities. For example, the Wnt inhibitors such as 

XAV939 and lorecivivint, not only suppress inflammatory activities, but also promote 

chondrogenesis [94,256]. In addition, these agents are known to suppress osteogenesis [239,257], and 

may thus potentially reduce osteophyte formation. 

Valid experimental models of OA are vital to advance research into disease causes and 

mechanisms, and function as a platform to screen and test potential therapeutics, thus facilitating 

rational drug design and development. Due to the inherent difference among species in physiology, 

anatomy, genetics, and metabolism, generating animal models that can faithfully recapitulate all 

human disease aspects is inherently challenging, which has hindered basic research and translation 

to clinical application. As discussed above, the integration of multiple 3D engineered joint tissue 

components into a functionally relevant MPS holds enormous potential as the next generation of OA 

models. Although establishing human joint-on-a-chip is still at a relatively early stage, promising 

data have already been obtained, supporting the recapitulation of key physiological and pathological 

features observed in vivo. As shown in Figure 4, we have recently developed a tissue chip that is 

capable of mimicking tissue–tissue communication through microfluidic flow or diffusion, which has 

allowed us to assess the known, important role of joint tissue crosstalk among in OA pathogenesis. 

Such capability is critical in enabling the refining tissue target(s) in drug development. However, 

before the complete validation of new OA models, traditional approaches, including animal and 2D 

cell cultures, will continue to correlate cell and molecular findings with in vivo physiological 

responses. 

There are multiple challenges before MPS becomes an accepted platform for the development of 

disease modifying OA drugs (DMOADs). In particular, complex mechanics operates in the articular 

joint, which is not only a part of the native functions of the joint, but also plays critical roles in OA 

pathogenesis. Although some tissue-on-a-chip models have been developed, how to incorporate the 

mechanical mechanism in the context of the MPS is not a simple task. In addition, it has been shown 

that both systemic, in particular, OA-associated pain, and local changes participate in OA 

progression, and must be incorporated in the MPS. Other requirements include validation of clinical 

relevance, standardization issues, and regulatory hurdles, but it is highly encouraging that research 

interest in the tissue/organ-on-a-chip area is rapidly rising. 

In conclusion, although there are currently no DMOADs with high efficacy, specificity, potency, 

and bioavailability [258], with scientific advances in OA pathology and experimental models being 

continuously made, we are hopefully not far from achieving our goal of finding a cure for this painful 

and debilitating disease. 
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