
  

Biology 2020, 9, 64; doi:10.3390/biology9040064 www.mdpi.com/journal/biology 

Article 

Phylogenetic Analyses of Sites in Different Protein 
Structural Environments Result in Distinct 
Placements of the Metazoan Root 
Akanksha Pandey 1 and Edward L. Braun 1,2,* 

1 Department of Biology, University of Florida; Gainesville, FL 32611, USA; aakanksha.vit@gmail.com 
2 Genetics Institute, University of Florida, Gainesville, FL 32611, USA 
* Correspondence: ebraun68@ufl.edu 

Received: 24 October 2019; Accepted: 20 March 2020; Published: 28 March 2020 

Abstract: Phylogenomics, the use of large datasets to examine phylogeny, has revolutionized the 
study of evolutionary relationships. However, genome-scale data have not been able to resolve all 
relationships in the tree of life; this could reflect, at least in part, the poor-fit of the models used to 
analyze heterogeneous datasets. Some of the heterogeneity may reflect the different patterns of 
selection on proteins based on their structures. To test that hypothesis, we developed a pipeline to 
divide phylogenomic protein datasets into subsets based on secondary structure and relative 
solvent accessibility. We then tested whether amino acids in different structural environments had 
distinct signals for the topology of the deepest branches in the metazoan tree. We focused on a 
dataset that appeared to have a mixture of signals and we found that the most striking difference in 
phylogenetic signal reflected relative solvent accessibility. Analyses of exposed sites (residues 
located on the surface of proteins) yielded a tree that placed ctenophores sister to all other animals 
whereas sites buried inside proteins yielded a tree with a sponge+ctenophore clade. These 
differences in phylogenetic signal were not ameliorated when we conducted analyses using a set of 
maximum-likelihood profile mixture models. These models are very similar to the Bayesian CAT 
model, which has been used in many analyses of deep metazoan phylogeny. In contrast, analyses 
conducted after recoding amino acids to limit the impact of deviations from compositional 
stationarity increased the congruence in the estimates of phylogeny for exposed and buried sites; 
after recoding amino acid trees estimated using the exposed and buried site both supported 
placement of ctenophores sister to all other animals. Although the central conclusion of our analyses 
is that sites in different structural environments yield distinct trees when analyzed using models of 
protein evolution, our amino acid recoding analyses also have implications for metazoan evolution. 
Specifically, our results add to the evidence that ctenophores are the sister group of all other animals 
and they further suggest that the placozoa+cnidaria clade found in some other studies deserves 
more attention. Taken as a whole, these results provide striking evidence that it is necessary to 
achieve a better understanding of the constraints due to protein structure to improve phylogenetic 
estimation. 

Keywords: protein structure; relative solvent accessibility; non-stationary models; RY coding; 
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1. Introduction 

The growing availability of very large molecular datasets has transformed the field of 
phylogenetics. The use of these phylogenomic datasets was suggested to “end incongruence” among 
phylogenetic estimates by reducing the stochastic error associated with analyses of small datasets [1]. 
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Although phylogenomic analyses have resolved many contentious relationships [2–5], in other cases 
different analyses using genome-scale data have produced multiple distinct resolutions of 
problematic nodes, sometimes with strong support [6–11]. This suggests that analyses of these large 
datasets can be misled by non-historical signals that may not be as apparent in analyses of smaller 
datasets. Thus, rather than putting an end to incongruence, phylogenomic analyses often highlight 
the complexity of the phylogenetic signals present in genomic data.  

The idea that non-historical signals can overwhelm historical signal in large datasets predates 
the phylogenomic era (e.g., the early discussion of statistical inconsistency due to long-branch 
attraction [12,13]). However, the availability of genome-scale data emphasizes the large number of 
cases where conflicting signals emerge in phylogenetic analysis. The most extreme cases correspond 
to those where analytical methods are subject to systematic error; these are the cases where non-
historical signal overwhelms historical signal. In that part of parameter space, increasing the amount 
of data will cause phylogenetic methods to converge on inaccurate estimates of evolutionary history 
with high support [14]. Thus, phylogenomic analyses should lead either to high support for the true 
tree (the desired result) or to high support for an incorrect tree (if the analytical method is subject to 
systematic error). Cases where support is limited despite the use of large amounts of data could 
reflect one of two phenomena: 1) the data contains a mixture of signals; or 2) the underlying species 
tree contains a hard polytomy (and, therefore, historical signal is absent). If the former, the mixture 
of signals could be biological in nature (e.g., a mixture of histories due to reticulation) or it could 
reflect a mixture of historical signal and one or more non-historical signals. Understanding the 
distribution of historical and non-historical signal(s) in large-scale data matrices might provide 
insights into evolutionary processes and result in better understanding of analytical methods and 
their limitations with phylogenomic datasets. 

The problem of systematic error in phylogenomic analyses has been addressed in several ways; 
one of the most popular ways to address systematic error has been the use of more complex, and 
presumably more realistic, models of sequence evolution. These complex models typically assume 
that phylogenomic data are very heterogeneous. Most of these complex models, like the CAT model 
[15], the Thorne-Goldman-Jones structural models [16–18], and structural mixture models [19], 
introduce this heterogeneity by assuming that distinct patterns of sequence evolution (and therefore 
different models) characterize different sites in multiple sequence alignments. However, there have 
also been some efforts to develop models that assume the heterogeneity corresponds to distinct 
patterns of sequence evolution on different branches in the tree of life [20–22]. Regardless of the 
specific model under consideration, the degree to which these approaches ameliorate the impact of 
misleading signals remains a subject of debate (e.g., see the discussion of the CAT model by Whelan 
and Halanych [23]).  

Identifying and examining conflicting signals within the phylogenomic data matrices has the 
potential to provide information about the biological basis for the heterogeneity and ultimately 
inform analytical approaches to deal with heterogeneous datasets. It should be possible to identify 
conflicting signals in phylogenomic data by dividing the data into subsets and asking whether 
phylogenetic analyses of those subsets support distinct trees. This raises the question of how large-
scale datasets should be subdivided. Subdividing data matrices into individual loci is unlikely to be 
informative because individual loci are short and therefore have limited power to resolve difficult 
nodes [24]. Moreover, individual loci are expected to be associated with distinct gene trees due to 
factors like the multispecies coalescent [25–27]. The existence of genuine discordance among gene 
trees makes it necessary to sample many loci to determine whether multiple singles are present. 
Relatively large datasets where analyses yield trees with limited support could be explained by the 
presence of multiple signals. Thus, surveying publications for analyses of a relatively large dataset 
with low support for one (or more) specific nodes represents a strategy to identify datasets with two 
or more conflicting signals. Any dataset identified in this way can then be divided into two or more 
subsets, each of which can then be subjected to phylogenetic analyses to determine whether a mixture 
of conflicting signals is present. 
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There are many different ways to subdivide phylogenomic datasets in two or more subsets that 
are still large enough to overcome stochastic error. The most logical way to subdivide phylogenomic 
datasets involve the use of partitions that can be defined a priori using non-phylogenetic criteria. The 
simplest criteria might be functional in nature (e.g., coding vs. non-coding data [28] or genomic 
regions that are highly transcriptionally-active vs. those that are largely untranscribed [29]). There 
are two alternative hypotheses regarding the distribution of signal in any subdivided phylogenomic 
dataset: 

H0: Conflicting signals are randomly distributed with respect to functionally defined 
subsets of the data. This hypothesis predicts that separate analyses of those functionally 
defined subsets of the data matrix will yield trees with the same topology (probably 
with lower support than the analysis of the complete dataset due to the smaller size of 
the subsets). 

HA: Conflicting signals are associated with functionally defined data subsets. Different 
subsets of the data matrix defined using functional information are associated with 
distinct signals (i.e., analyses of those subsets support different topologies when the 
subsets are analyzed separately). 

Failure to reject H0 could reflect a genuinely random distribution of signal, failure to define the data 
subsets in an appropriate manner, or a definition of the subsets that reduces their size to the point 
where stochastic error dominates the analyses (at least for nodes that are difficult to resolve). The last 
issue is unlikely to be problematic because subdividing the original dataset too finely is likely to 
result in difficult nodes being resolved randomly with low support. The other two possibilities (truly 
random distribution of signal vs. use of incorrect criteria to define the data subsets) are essentially 
impossible to distinguish, so H0 cannot be corroborated in a global manner. However, it is still 
possible to corroborate (or falsify) HA for specific ways of subdividing phylogenomic data matrices 
if those data subsets are sufficiently large. The most important line of evidence that the data subsets 
are large enough to be informative would be observing that analyses of the data subsets yield 
relatively high support for conflicting resolutions of a node (or multiple nodes) that have proven to 
be difficult to resolve in previous studies (ideally, the support observed in analyses of the subsets 
would be higher than the complete dataset). Efforts to do this may provide substantial information 
about the patterns of sequence evolution in different parts of the genome; this information is also 
likely to be useful for phylogenetic model development. 

Coding sequences are often used to examine phylogenetic relationships deep in the tree of life 
(e.g., early land plant [5] or metazoan evolution [6,11] and efforts to identify to root of archaea [30] or 
eukaryotes [31]) and they are good candidates for this type of signal exploration. There are many 
biologically motivated ways to divide proteins into subsets that may reflect different selective 
pressures to maintain their structure and function. Ideally, the subsets should be stable over 
evolutionary time, and it should be practical to assign aligned sites to the subsets. Protein structure 
provides a good criterion for dividing the data into subsets. Protein structures diverge much more 
slowly than protein sequences [32,33], so it is reasonable to assume that alignments can simply be 
divided into structural classes that remain relatively constant over evolutionary time. Also, modern 
protein secondary structure prediction methods are relatively accurate (e.g., the SSPro and ACCPro 
programs are able to classify ~90% of residues accurately for proteins with homologs in PDB [34]), so 
it is possible to construct analytic pipelines to define the structural subsets.  

In this study, we examined whether different signals were associated with sites in different 
protein structural environments. Specifically, we subdivided globular proteins based on their 
structure and explored the distribution of signal supporting different placements of the root for the 
metazoan tree of life. Deep metazoan phylogeny has been a difficult phylogenetic problem, but there 
are a limited number of plausible arrangements for the major lineages (Figure 1). The traditional 
hypothesis (Figure 1a), which is supported by morphology [35] and some phylogenomic analyses 
[9,11,36–38], places sponges sister to all other metazoans. Many other analyses of large-scale datasets 
[7,39–42] support the hypothesis that ctenophores are sister to all other metazoans (Figure 1b). The 
third possibility, a sponge+ctenophore clade (Figure 1c), was recovered in analyses the Ryan et al. [6] 



Biology 2020, 9, 64 4 of 31 

 

genomic dataset (hereafter called the “RG dataset”) and some of the analyses in Borowiec et al. [42]. 
Support for the sponge+ctenophore clade in analyses of the RG dataset is limited, suggesting the RG 
dataset might be characterized by a mixture of conflicting signals. Our analyses revealed that the 
signal associated with solvent-exposed residues differed from the signal associated with buried 
residues; we believe that this has implications for the fit of models that are currently used for 
phylogenetic analyses of protein sequences. 

 
Figure 1. Topologies for the deepest branches in the metazoan tree recovered in phylogenomic 
analyses. (a) Porifera (sponges) sister to all other metazoa. This hypothesis includes a clade designated 
Eumetazoa (E). (b) Ctenophora (comb jellies) sister to all other metazoa. (c) A sponge+ctenophore 
clade sister to all other animals. All trees shown include a clade named Parahoxozoa (P) [43]. The 
Parahoxozoa topology was fixed based on King and Rokas [10], but an alternative topology with 
bilateria sister to a placozoa+cnidaria clade is also plausible. 

2. Materials and Methods 

2.1. Dataset 

The RG dataset comprises 242 orthologous protein-coding genes extracted from genomic data 
for 19 taxa. Ryan et al. [6] reported that ML analyses of the RG dataset resulted in topology T3 with 
limited (53%) bootstrap support; the remaining 47% of the bootstrap replicates supported T2. We 
interpreted this limited support as evidence that the RG dataset was either too small to yield high 
support or that it is characterized by a mixture of signals. We used the alignments provided by Ryan 
et al. [6] without changes; the sequences had been aligned using CLUSTALW [44] with default 
parameters and poorly-aligned regions had been excluded using Gblocks [45]. We inspected all of 
the Ryan et al. [6] alignments visually in Geneoius v. 9.1.5 (Biomatters Ltd., Auckland, New Zealand); 
none of the alignments appeared problematic. We used the TopCons prediction server [46] to 
determine whether there were any transmembrane proteins in the RG data. This resulted in the 
identification of 10 transmembrane proteins (Supplementary File S1), which were removed because 
our structural assignment pipeline was not appropriate for those proteins. This resulted in a 232-
protein dataset with 102,000 sites and 19.8% missing data.  

We conducted BLASTP searches of UNIPROT [47] to determine the identity and function of each 
gene (using annotation of the human sequence for most genes). There were 22 cases where the human 
sequence was absent from the RG alignment; in those cases, we used the Drosophila sequence to 
identify the genes. These functional annotations are available in Supplementary File S1. This analysis 
revealed that remaining proteins represent a diverse set of globular proteins without an 
overrepresentation of sequences from a particular protein family making it a relatively unbiased 
dataset. We provide all protein alignments as Nexus files with structural annotation, generated as 
described below, in Supplementary File S2. We analyzed two taxon samples: 1) the full taxon sample 
comprising all 19 taxa in the RG dataset; and 2) a reduced taxon sample that excluded four relatively 
divergent outgroup taxa [two taxa in Holozoa (Capsaspora and Sphaeroforma) that fall outside of 
Metazoa and Choanozoa and two fungi (Saccharomyces and Spizellomyces)]. 
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2.2. Structural Class Assignment 

We assigned secondary structures to the MSAs using the SSpro and ACCpro programs in the 
SCRATCH 1D suite [48]. SSpro classifies sequences into three secondary structural classes (helix, 
sheet, and coil) [34]. ACCpro assigns each residue to one of the two categories: exposed (e) or buried 
(-) [49] with the latter defined as amino acids with <25% relative solvent accessibility. We used a 
weighted consensus sequence representing each protein in the RG dataset as input for SSpro and 
ACCpro. We generated a weighted consensus sequence for each protein using the Henikoff and 
Henikoff [50] method; the amino acid residue with the highest weight at each position was used in 
the consensus sequence. The structural data were extrapolated from the consensus sequence to the 
whole alignment and then the alignment written along with CHARSETS for each structural subset in 
a nexus file [51]. We then extracted sites of a given structural class from all the genes and created a 
concatenated alignment for a given structural class. The Perl program for this analysis is available 
from (https://github.com/aakanksha12/Structural_class_assignment_pipeline).  

2.3. Phylogenetic Analyses 

We used RAxML v. 8.2.4 for log likelihood estimation and tree searches. We examined a set of 
standard empirical models (LG [52], WAG [53], VT [54], JTT-DCMUT [55] and rtREV [56]) with 
maximum-likelihood (ML) estimation of the equilibrium amino acid frequency parameters (e.g., the 
-m PROTGAMMALGX option in RAxML) and we used GTR model parameters optimized on the 
complete dataset (hereafter, we call the parameter estimates “grand GTR parameters”) and various 
subsets of the data (see below for a description of the structural partitions). Whenever we conducted 
analyses in RAxML using the GTR model we used GTRGAMMA (i.e., the GTR model combined with 
a four-category discrete approximation to the Γ distribution that describes rates across sites). We 
assessed the nodal support using rapid bootstrap [57] with the bootstopping criterion [58] as 
implemented in RaxML (i.e., the -N autoMR option). 

To examine whether there were any observed differences among partitions in their signal we 
searched for decisive sites (cf. Kimball et al. [58]). Decisive sites are the sites with a very large impact 
on the likelihood given each a specific topology. To do this we calculated per site log likelihoods for 
each candidate topology using RaxML (via the ‘-f G’ option in the program). We calculated ΔlnL for 
individual sites; we viewed sites with ΔlnL > 5 standard deviations from the mean ΔlnL as decisive 
sites, following Kimball et al. [59]. 

We also conducted preliminary analyses of 232-protein dataset by dividing the alignment into 
structural subsets; analyses of the exposed and buried subsets resulted in two distinct trees identical 
to those in Figure 2. We then determined whether any specific gene strongly favored either topology 
using “outlier gene” analysis [60]. We found that gene 41 had a strong signal favoring the T3 in Figure 
1. Unpartitioned analyses using the LG model the likelihood difference given the two trees in Figure 
2 (which have topologies T2 and T3) was more than three-fold greater for gene product 41 than for 
any of the other proteins in the data matrix (ΔlnL = 106.63 favoring the buried tree for protein 41 
compared to a range of ΔlnL = 9.39 to 28.67 for the other proteins; see Supplementary File S3). Because 
protein 41 was an outlier relative to the other sequences we removed it to yield a 231-protein data 
matrix called the filtered Ryan genomic (FRG) dataset.  

We did not explore the basis for the unusual signal associated with gene 41 any further. The 
most straightforward reason for the unusual signal is that gene 41 was an incorrect orthology call. 
Indeed, the goal of this outlier gene analysis was to identify any cases of hidden paralogy in the Ryan 
et al. [6] gene set. However, there are two alternatives to hidden paralogy that could explain the 
unusual signal. The first alternative is that the gene tree associated with gene 41 might differ from 
the species tree due to the multispecies coalescent [25–27], although it is unclear whether the branches 
at the base of the metazoan species tree are short enough for discordant gene trees to be common. 
The second alternative is that there could be some unknown source of bias associated with gene 41. 
Regardless, removing gene 41 did not have a substantive impact on the trees recovered after dividing 
sites into subsets based on relative solvent accessibility. Analysis of exposed sites from the 232-
protein dataset using the LG+Γ model resulted in a tree with a topology identical to that recovered 



Biology 2020, 9, 64 6 of 31 

 

when exposed sites from the FRG dataset were analyzed (Figure 2). Specifically, we found 97% 
bootstrap support for T2 and 99% support for the placozoa+cnidaria clade. Buried sites from the 232-
protein dataset yielded a tree with one rearrangement relative to the buried FRG tree when analyzed 
using the same method; the rearrangement was in the outgroup. The ingroup topology for the 232-
protein buried tree was identical to that for the FRG dataset; bootstrap support for T3 was 87% and 
support for the cnidaria+bilateria clade was 55%. Both trees are available in Supplementary File S3.  

2.4. Model Estimation and Model Comparisons 

We obtained ML estimates of the model parameters (amino acid exchangeabilities and amino 
acid frequencies) for each structural class using RAxML [61]. Our approach relaxes the notion that all 
sites evolve following the same Markovian process, but it still assumes that all the sites in the same 
subset of the MSA follow the same stationary and homogeneous Markov process (i.e., each subset 
has its own set of GTR parameter estimates). We examined the following classes: 

1. Two relative solvent accessibility (RSA) based classes (EXPOSED and BURIED). 
2. Three secondary structure-based classes (HELIX, SHEET, and COIL). 
3. Six classes, combining RSA and secondary structure (HELIX_EXP, HELIX_BUR, 

SHEET_EXP, SHEET_BUR, COIL_EXP, and COIL_BUR). 
We estimated the GTR model parameters for each structural class using the -f e option in RAxML 

and then performed a tree search. We used the ML tree from Ryan et al. [6] as a starting tree and 
estimated the model parameters. If the best tree obtained using the estimated parameters differed 
from the starting tree, we re-estimated model parameters using the new tree, iterating this procedure 
until the input and output tree converged (cf. Le and Gascuel [18]). Hereafter, the model parameters 
optimized for each structural class are further referred to as structure-based model estimates; the 
parameter estimates are available in Supplementary File S4. 

We used multidimensional scaling in R [62] to visualize the differences among estimates of 
exchange rate parameters obtained from the structural partitions as well as the standard empirical 
models. The exchangeability matrices for time-reversible models or protein sequence evolution 
models have 190 elements so we treated each model as a 190-element vector. These vectors were 
normalized so the elements summed to one and they were used to create a matrix of Euclidean 
distances among the models. Then we used R cmdscale function to reduce this matrix to two 
dimensions (link to the R script: https://github.com/aakanksha12/Multidimensional-Scaling/).  

To test whether the different rate matrix parameter estimates might differ due to sampling 
variance alone we randomly sampled sites ranging from 500–55000 from the original concatenated 
dataset and estimated the GTR exchangeability parameters on these samples. We then calculated the 
Euclidean distance between the GTR exchangeability parameters estimated using the complete 
concatenated dataset (the grand GTR parameters) and those estimated using the randomly sampled 
sites. These distances were then compared to the distance between GTR parameters estimated using 
each structural class.  

We assessed the accuracy of our structural assignments using estimated equilibrium amino acid 
frequencies (following convention, we use πi for the equilibrium frequency of the ith amino acid). If 
our structural assignments are accurate, we expect: 1) polar residues will dominate the exposed sites 
and hydrophobic residues will dominate the buried sites [63]; and 2) equilibrium amino acid 
frequencies for each secondary structural class will be correlated with amino acid propensities for 
each secondary structure. To examine these predictions, we calculated ∆ values (πi for each structural 
model minus πi for all sites) and examined the correlation between those ∆ values and the relevant 
amino acid characteristic. Polarity (using the Grantham [64] polarity scale) and ∆-exposed were 
positively correlated (r2 = 0.7555) whereas polarity and ∆-buried were negatively correlated (r2 = 
0.7551). Secondary structural ∆ values were positively correlated with the Fujiwara et al. [65] helix 
and sheet propensities (r2 = 0.8006 for helices and r2 = 0.9334 for sheets). ∆-coil was positively 
correlated with the Chou and Fasman [66] coil parameter (r2 = 0.6771). Glycine and proline are 
expected to be abundant in coils and those amino acids were overrepresented in our coil model; the 
coil model had πG = 0.0905 and πP = 0.0678 (compared to πG = 0.0516 and πP = 0.0358 for all sites). 
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Estimated πi values along with the polarity and secondary structure propensities are provided in 
Supplementary File S4. The expected correlations between ∆ values and the relevant amino acid 
properties were found in all analyses; those results indicate the alignment masking used by Ryan et 
al. [6]did not interfere with our structural assignments. 

2.5. Analyses Using Site-Heterogeneous CAT-Type Models 

We wanted to determine whether the topological differences between trees estimated using 
exposed and buried residues could be reduced using models that incorporate heterogeneity among 
sites in the sets of amino acids permitted at each site (typically called ‘profiles’). To do this, we used 
the CAT-type models [67] implemented in IQ-TREE v. 1.5.3 [68]. These models differ from the 
Lartillot and Philippe [15] CAT model in their details, although they are closely related (see below). 
For these analyses, we used all profile mixture classes (C10-C60) with the I+G4+FO options. We 
analyzed the exposed and buried alignments and assessed nodal support using the ultrafast 
bootstrap [69] with 1000 replicates (-bb 1000). Because we used the ultrafast bootstrap for these 
analyses and the rapid bootstrap in the RAxML analyses, we repeated the GTR bootstrap analyses in 
IQ-TREE (using the rate matrices estimated by RAxML). 

The difference between the IQ-TREE CAT-type models and the Lartillot and Philippe [15] CAT 
model involves the calculation of the amino acid frequency profiles. Briefly, the likelihood given 
CAT-type models is calculated in the same way other models of sequence evolution (reviewed in 
section 8.2 of Warnow [70]). The probability of finding amino acid j after time t if amino acid i is 
ancestral is calculated by exponentiating the product of an instantaneous rate matrix (often called Q) 
and t. Felsenstein’s tree-pruning algorithm[71] is then used to calculate the probability of each site 
pattern given the complete tree with the branch lengths. For time-reversible models, Q matrices are 
populated by setting the off-diagonal elements to qij=rijπj (rij values are amino acid exchangeabilities; 
as above, πj is the equilibrium frequency of amino acid j). The diagonal elements of Q are the negative 
sums of the off-diagonal elements on the same row. Then the Q matrix is normalized to allow t to be 
expressed as substitutions per site.  

The core feature of CAT-type models is their use of a mixture of Q matrices (each with a specific 
weight) generated using single exchangeability matrix R (which contains the rij values) and a set of 
profiles (vectors of π values) [15,67]. The idea underlying CAT-type models is the observation that 
many sites in proteins only accept a subset of the 20 amino acids, an idea corroborated by many recent 
mutagenesis studies (see Melamed et al. [72] for an example that also includes a comparison of 
mutagenesis-derived and evolutionary profiles). CAT-type models accomplish using profiles, which 
can be “narrow” (i.e., they can assign high π values to a few amino acids and low π values for the 
remaining amino acids) or “wide” (i.e., they assign most amino acids similar π values). The CAT 
model was described in a Bayesian framework where the profiles are sampled from a Dirichlet 
process prior [15]. In contrast, the profiles for the CAT-type models implemented in IQ-TREE are 
fixed profiles estimated from a large training dataset [67]. To acknowledge the use of fixed profiles, 
we call these CAT-type models “LGL models” to indicate the authors of the paper that described the 
profiles (Le, Gascuel, and Lartillot). 

Profile “width” can be assessed using their effective alphabet size (cf. equation 5 from Pollock et 
al. [73]). For example, the narrowest LGL profile (effective alphabet size of 1.93) models conserved 
tryptophan residues; it has πW = 0.864 and low π values for the other amino acids (16 of the 20 amino 
acids have π < 0.01; Supplementary File S4). The effective alphabet sizes of LGL profiles range from 
4.71 to 16.23 (median = 10.17) for C10 and from 1.93 to 17.39 (median = 8.68) for C60. For comparison, 
the effective alphabet size implied by the LG model [52] frequencies is 18.04 (Supplementary File S4). 
CAT-type models are mixture models, so individual sites are not assigned to any specific profile. 
Instead, site pattern likelihoods are calculated as the weighted sum over all profiles. 

Although the profiles are the focus of CAT-type models, it seems clear that the R matrix might 
have substantial impact on the results of analyses as the profiles. The simplest implementation of 
CAT in IQ-TREE uses equal values for all R matrix elements. An amino acid R matrix where all 
elements are equal corresponds to the 20-state F81 model [71]; thus, we use “LGL-F81 models” for 
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these models. It is unlikely that all pairs of amino acids have equal exchangeabilities, so we also 
conducted CAT analyses using the exposed or buried rate matrices estimated using RaxML (i.e., we 
used -m <matrix>+C##+I+G4+FO in IQ-TREE; C## indicates the profile mixture). This approximates 
the CAT-GTR model [15]; for clarity, we call these models LGL-BUR and LGL-EXP (for buried and 
exposed residues, respectively). 

2.6. Compositional Heterogeneity and Data Recoding 

To examine differences among taxa in their overall amino acid composition we focused on two 
groups of amino acids: those encoded by GC-rich codons (G, A, R, and P) and those encoded by AT-
rich codons (F, Y, M, I, N, and K) [74]. Briefly, we excluded parsimony uninformative sites, counted 
the numbers of amino acids in each group, and calculated the GARP/FYMINK ratio for parsimony 
informative sites. To complement our analyses of the GARP/FYMINK ratio we also back translated 
sequences and examined variation along the three axes that describe nucleotide composition (i.e., the 
strong-weak (GC-AT), amino-keto (AC-GT), and purine-pyrimidine (AG-CT) axes) for the parsimony 
informative first and second codon positions. 

We also recoded the amino acid data matrix in two ways: 1) six-state Dayhoff coding [75,76] and 
2) RY (binary) coding [77]. The six-state recoding of amino acids assigns the following codes to the 
twenty amino acids: 0 = C (cysteine); 1 = A, G, P, S, and T (small residues); 2 = N, D, E, and Q (acidic 
and amide residues); 3 = R, H, and K (basic residues); 4 = I, L, M, and V (large aliphatic residue); and 
5 = F, W, and Y (aromatic residues). The six-state data matrix was analyzed using the MULTIGAMMA 
model in RaxML, with the other settings described above. Binary coding involved back translating 
the amino acids but coding purines as 0 and pyrimidines as 1 (nucleotides that were ambiguous at 
this level were coded as ‘?’). The binary data matrix was analyzed in RaxML using the BINGAMMA 
model after completely ambiguous columns were excluded. This operation is identical to RY coding 
of nucleotide matrices and it yielded a 142,358-site matrix (30.6% missing data/gaps) for buried sites 
and a 135,945-site matrix (37.1% missing data/gaps) for exposed sites. The recoded data, generated 
using a Perl program available from https://github.com/aakanksha12/recodeAA, are provided in 
Supplementary File S2. 

3. Results 

3.1. Sites in Distinct Structural Environments Have Different Signals 

Different structural classes were associated with different phylogenetic signals based on 
analyses using standard empirical models. The most obvious difference was evident when we 
divided the FRG dataset using relative solvent accessibility (Figure 1). Analyses of solvent-exposed 
sites placed ctenophores sister to all other metazoan (topology T2 in Figure 1), whereas analyses of 
the buried sites recovered a sponge+ctenophore clade (topology T3 in Figure 1). The best-fitting 
standard empirical model was LG [52], although our results were robust to the use of different models 
for ML analyses (Table 1). The position of placozoa also differed in trees generated by analyses of 
exposed and buried sites, although support for the placozoa+bilateria clade in the analyses of buried 
sites was limited (<70%). The results of analyses using empirical models did not change when using 
the 20-state general time reversible (GTR) model, which had a better fit to both of the structurally-
defined subsets of the FRG data than the LG model despite the large number of free parameters that 
must be optimized for that model.  

Further subdivision of the FRG data using secondary structure information (helix, sheet, and 
coil) generally had limited impact on topology (Figure 3). Bootstrap support for the focal node was 
limited in most analyses. Subdividing the helix and coil sites into exposed vs. buried subsets still 
revealed the different signals evident when the exposed and buried sites were defined globally 
(Supplementary File S5); the exception was the analyses of buried sheet residues, which placed 
ctenophores sister to all other metazoan (unlike analyses of the other buried residues). However, all 
analyses of sheet residues, even when those sites were divided into solvent-exposed vs. buried sites, 
resulted in an unexpected clade comprising sponges and placozoa (Supplementary File S5). Overall, 
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these results indicate that the data subsets with and the signals in the FRG dataset support either tree 
T2 or T3 (Figure 2) and that the largest difference in signal was evident when sites are divided into 
those exposed to solvent vs. those buried in the interior of the proteins.  

 
Figure 2. Analyses of sites from different structural environments reveal conflicting phylogenetic 
signals. We show simplified RaxML trees with both trees are limited to the metazoan ingroups and 
the choanozoan outgroup (i.e., only Apoikozoa sensu Budd and Jensen [78] are shown). The position 
of the root drawn in these trees was established by the outgroup taxa (the holozoans Capsaspora and 
Sphaeroforma and the fungi Saccharomyces and Spizellomyces). Bootstrap support for the positions of 
sponges and ctenophores given the general time reversible (GTR) model and the Le and Gascuel [52] 
(LG )model is indicated next to the arrow. 

Table 1. Log likelihood and AICc valuesa for empirical models and the GTR model optimized for 
exposed and buried sites. The GTR model had the best fit (note bold AICc value). 

Structural Subset Model T2b T3b Cni+Bilc Cni+Plac lnL AICc 
Exposed GTR 92 - - 98 -1212232.985 2424956.474 

 LG 100 - - 100 -1222489.017 2445088.162 
 WAG 87 - - 100 -1225898.553 2451907.235 
 VT 96 - - 98 -1225672.633 2451455.395 
 rtREV 90 - - 98 -1222733.929 2445577.986 
 JTTDCMUT 94 - - 98 -1229028.451 2458167.031 

Buried GTR - 82 64 - -1045694.924 2091880.072 
 LG - 87 62 - -1050022.577 2100155.267 
 WAG - 85 58 - -1054829.256 2109768.626 
 VT - 81 61 - -1059148.671 2118407.455 
 rtREV - 89 52 - -1054432.123 2108974.359 
 JTTDCMUT - 81 - 54 -1061103.295 2122316.704 

a AICc was calculated using: AICc = 2k – 2(lnL) + (2k2 + 2k) / (n - k - 1) where k is the number of 
parameters and n is the number of sites. This is the formula for the AICc that is typically used in 
phylogenetics. b RaxML bootstrap support for T2 or T3. c RAxML bootstrap support for the 
cnidaria+bilateria clade or the cnidaria + placozoa clade. 

3.2. Decisive Sites Reveal Conflicts within Each Structural Class 

Strong phylogenetic signals are often limited to a subset of genes [60,79,80] or even to specific 
sites within genes [59,81]. Examining the sites with the strongest phylogenetic signals can provide a 
way to determine the distribution and amount of conflict within the data subsets. We examined the 
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number of “decisive sites” (sites that strongly support either of two trees in Figure 2) in the exposed 
and buried classes, and found significant differences (P < 0.02, Fisher’s exact test) in the numbers of 
decisive sites that correspond to solvent-exposed sites vs. those associated with buried residues 
(Table 2). We also examined the concentration of decisive sites within different genes in exposed and 
buried residues and found that they were uniformly distributed among the genes. These results 
indicate that differences in signal in different parts of the FRG dataset that can be detected in 
comparisons of solvent-exposed vs. buried sites does not reflect an unusual concentration of decisive 
sites in any particular gene within the FRG dataset; instead, the contrasting signals appear to be a 
more universal feature of analyses focused on sites in the two different structural environments. 

Table 2. Decisive sites favoring topology T2 vs. T3 in the exposed and buried residuesa. 

Site class Ctenophore sister (T2) Ctenophore + Porifera (T3) 
Exposed 172 150 
Buried 167 205 
a T2 and T3 refer to the arrangement of ctenophores, sponges, and remaining metazoa (Figure 1); other 
relationships were held constant. 

 
Figure 3. Heat map showing support for tree topologies obtained using various structural classes and 
taxon samples. In the online version colors indicate bootstrap support values (Dark green > 95, Lighter 
green >75, Yellow > 50 and Pink < 50; No color: Topology was not recovered). 

3.3. Reduced Outgroup Sampling also Reduces Some Differences in Signal 

Highly divergent outgroup taxa are known to affect phylogenetic inference. Several studies 
focused on the position of the metazoan root have analyzed reduced taxon sets that exclude divergent 
outgroups [6,36]. We conducted the same experiment by deleting the four divergent outgroups in the 
complete dataset [two fungi (Saccharomyces and Spizellomyces) and two taxa from the classes 
Mesomycetozoea (Sphaeroforma) and Filasterea (Capsaspora)] from the FRG dataset. This limits the 
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outgroups to Choanozoa, the sister group of metazoa [78,82,83]. Analyses of exposed and buried 
residues using the FRG dataset with the reduced taxon sample largely converged on a single basal 
topology (T2) (Figure 3).  

Although the position of the root was more consistent in analyses of the reduced taxon sample 
than it was in the analyses all taxa (Figure 3), divergent outgroup removal does not eliminate the 
distinct signals associated with exposed and buried sites. The position of cnidaria depended on 
relative solvent accessibility, even when the reduced taxon sample was analyzed (Supplementary 
File S6). Most exposed site analyses of placed cnidaria sister to placozoa (with 72% bootstrap support 
in the analysis of all exposed sites) but buried site analyses typically revealed a cnidaria+bilateria 
clade (albeit with limited support in many cases; Supplementary File S6). We observed a maximum 
bootstrap support of 80% for the cnidaria+bilateria clade (in the buried sites with a sheet secondary 
structure). However, the analysis of all buried sites has much lower support (55%); this is likely to 
reflect conflict within the buried sites since the buried coil sites actually yield the placozoa+cnidaria 
clade with very limited support; Supplementary File S6). 

Understanding the behavior of analyses using these reduced taxon samples is challenging. We 
conducted these taxon sampling experiments to test the hypothesis [36] that including divergent 
outgroups might improve phylogenetic estimation. However, including the divergent outgroups 
actually reduces the length of the branch separating the ingroup and outgroup (Supplementary 
Figure S1) and it might therefore reduce the potential for long-branch attraction. Moreover, we only 
observed increased congruence between exposed and buried sites regarding the position of the root; 
the position of cnidaria remained incongruent in analyses of the reduced taxon sample. Overall, our 
primary conclusion is that analyses of the reduced taxon sample further underline the complexity of 
the signals in the FRG dataset and emphasize the differences among the structural environments in 
their phylogenetic signal. 

3.4. Sites in Different Structural Environments Exhibit Distinct Patterns of Sequence Evolution 

In standard empirical models (e.g., the LG, WAG, and Dayhoff models) and in the GTR model 
with parameters optimized for a specific large-scale protein alignment, the rate matrices reflect the 
patterns of sequence evolution across all structural classes. Thus, the values in the empirical rate 
matrix might not reflect estimates from structurally divided data. We next tested if patterns of 
sequence evolution in each structural environment differed. When we examined differences among 
models using multidimensional scaling, the strongest separation among models was related to the 
best models for the two solvent accessibility classes (Figure 4). Standard models formed a cluster 
closer to models estimated using buried residues (Figure 4 and Supplementary Figure S2).  

The various structural subsets have different numbers of sites, and the GTR model for amino 
acids has a large number of free parameters, raising the question of whether the observed differences 
in exchange rate parameter estimates simply reflect sampling error. Yet the models appear to cluster 
in a manner that is correlated with structural class in multidimensional scaling space (e.g., note that 
buried sites and solvent-exposed sites cluster in Figure 4 even when they are further subdivided into 
independent sets of helical, sheet, and coil sites), suggesting that sampling error is unlikely to explain 
the observed difference. Nevertheless, we also sampled sites from the FRG dataset randomly (i.e., 
without respect to structure) to generate datasets comparable in size to the structurally defined 
subsets and estimated model parameters on these random samples. Since the sites were sampled 
randomly, estimates of GTR model parameters should converge on the values estimated from the 
dataset as a whole, assuming that the number of sites that were sampled is sufficient to overcome 
sampling variance. We assessed the distance between the GTR model parameter estimates for the 
complete FRG dataset to those of randomly selected sites. We found that this distance rapidly 
decreased as the number of sites in the random sample increased (Supplementary Figure S3); the 
distances between the “global” model based on the complete FRG dataset and the estimates based on 
each structural subset are much greater than the distances expected based on sampling variance. This 
demonstrates that the differences in parameter estimates of structural classes differ much more than 
expected based on sampling variance. 



Biology 2020, 9, 64 12 of 31 

 

 
Figure 4. Multidimensional scaling plot showing the Euclidean distances between various amino 
acids exchange rate matrices. Different colors indicate different categories of the matrices in the online 
version (Green: exposed residues, Orange: buried residues, Purple: secondary structure, and Pink: 
standard empirical models). 

3.5. Site-Heterogeneous Profile Mixture Models can Yield Surprising Topological Changes 

Site heterogeneous models, like the CAT model [15], represent another way to accommodate 
heterogeneity in the evolutionary process. As described in section 2.5 of the Materials and Methods, 
CAT models assume a mixture of distinct evolutionary processes that differ in the equilibrium 
frequencies of the 20 amino acids. To complement the ML analyses using empirical models and the 
GTR model, we analyzed exposed and buried sites using site-heterogeneous models implemented in 
IQ-TREE [68]. These models [67], which we call LGL models, are similar to the Bayesian CAT model 
but they can be used in an ML framework. We analyzed the full taxon set and the reduced outgroup 
taxon set using all six LGL models (C10 through C60). If accommodating variation among sites in 
their propensity to accept specific amino acid substitutions is necessary to obtain accurate estimates 
of phylogeny, then analyses using the LGL models should result in trees based on the two structural 
subsets (exposed vs. buried) converging on the same topology.   

Most analyses of the exposed and buried sites from the full taxon set using the LGL model with 
various number of profile mixtures and the F81 exchangeability matrix (see section 2.5 in Materials 
and Methods for details) converged on a single tree T3 (Table 3). Analyses of exposed residues using 
three profile mixtures (C10, C30, and C50) placed ctenophores sister to other metazoans. However, 
two of these analyses also resulted in a tree with the sponge+placozoa clade (Pori+Pla in Table 3). The 
sponge+placozoa clade was only recovered in analyses that included all outgroups. In contrast to 
analyses using the GTR models, analyses of the reduced taxon sample using the CAT-F81 models 
resulted in different basal topologies for exposed and buried classes (T2 and T3 respectively; Table 
3). Overall, it is important to recognize that analyses that used LGL-F81 models sometimes resulted 
in a surprising clade (sponge+placozoa) and that analyses using the LGL-F81 model did not provide 
clear evidence for increased congruence between the exposed and buried sites. 
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Table 3. Log likelihood and AICc scores for various CAT-F81 models as implemented in IQ-TREE. The best-fit model is indicated by the bold AICc value. 

LGL-F81 model Outgroup Dataset T2 T3 Cni+Bil Cni+Pla Pori + Pla lnL AICc 
 

C10 
 

All outgroups (RG) 
 

Exposed 
 

100 
   

100 
  

−1225103.471 
 

2450339.126 
C20  Exposed  63  100  −1216444.36 2433040.964 
C30  Exposed 100    72 −1214319.593 2428811.499 
C40  Exposed  100  96  −1212974.829 2426142.047 
C50  Exposed 100    73 −1212360.091 2424932.657 
C60  Exposed  100  93  −1211470.44 2423173.448 
C10  Buried  83 78   −1053873.212 2107878.588 
C20  Buried  97 80   −1048007.721 2096167.66 
C30  Buried  94 73   −1046099.005 2092370.288 
C40  Buried  92 83   −1044155.469 2088503.283 
C50  Buried  93 86   −1043172.44 2086557.3 
C60  Buried  93 89   −1042207.261 2084647.025 

 
C10 

 
Choanozoa only 

 
Exposed 

 
100 

   
100 

  
−964491.9951 

 
1929100.133 

C20  Exposed 98   74  −957706.2984 1915548.793 
C30  Exposed 96   69  −956161.8764 1912480.01 
C40  Exposed 95   71  −955297.444 1910771.215 
C50  Exposed 92   51  −953519.0992 1907234.604 
C60  Exposed 90  56   −952582.9203 1905382.332 
C10  Buried  50 46   −837871.4589 1675859.045 
C20  Buried  37 34   −833463.787 1667063.748 
C30  Buried  75 63   −832000.2662 1664156.761 
C40  Buried  66 63   −830714.1456 1661604.582 
C50  Buried  45 45   −829970.749 1660137.858 
C60  Buried  74 79   −829121.6382 1658459.713 
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Analyses of buried residues using the LGL-F81 models also resulted in non-monophyly of 
Deuterostomia; all profile mixtures placed the sea urchin Strongylocentrotus purpuratus sister to a 
clade comprising chordates along with all protostomes in the taxon sample, in contrast to results 
obtained using the GTR model (Figure 5). To test whether any of the observed topologies reflected 
differences between models or the programs IQ-TREE and RAxML (to determine whether our results 
reflected differences between the search or numerical optimization routines in those programs rather 
than the use of the LGL-F81 models); we confirmed that analyses using the site-homogeneous GTR 
model in IQ-TREE yielded the same results as analyses in RAxML (Figure 5, Supplementary File S7). 
Although the most complex LGL profile mixture (C60) had the best fit to the data based on the AICc 
(Table 3) other results that emerged from the use of the LGL models could indicate over fitting of the 
model. Specifically, the LGL-F81 models with a larger number of profile mixtures also had zero or 
near zero weights for some mixture components (Supplementary File S7). Regardless of the details, 
it seems clear that the unexpected signal in the buried residues (deuterostome non-monophyly) 
revealed by LGL-F81 models is very likely to be non-historical. 

There is evidence that the F81 exchangeability matrix is problematic for CAT models [23] so we 
repeated our analyses using an R matrix with unequal values. We combined the GTR rate matrices 
estimated for the buried and exposed sites with the Le et al. [67] profiles. These models, which we 
call LGL-BUR and LGL-EXP, should be similar to the CAT-GTR model described by Lartillot and 
Philippe [15] but they can be used in an ML framework. The LGL-BUR/EXP models had a much better 
fit to both datasets than the LGL-F81 models (compare the AICc values in Table 3 and Table 4). As we 
observed for the LGL-F81, some mixture weights for the LGL-BUR/EXP models were zero or near 
zero. One major difference between the LGL-F81 and LGL-BUR/EXP models was the estimated FO 
mixture component weight. The FO mixture component amino acid frequencies are estimated from 
the data, unlike the amino acid frequencies fixed profiles that were estimated from training data. For 
the LGL-BUR/EXP models the FO mixture weight was as high as 0.3637 (see Table 4 for all values); 
this was much higher than the FO weight for the LGL-F81 analyses (which ranged from 0.0169 to 
0.0746; see Supplementary File S7). 

Overall, the topologies of trees recovered using the LGL-BUR/EXP models were much more 
stable than those conducted using LGL-F81. All analyses of exposed and buried sites using the LGL-
BUR/EXP models supported the cnidaria+placozoa clade, often with relatively high bootstrap 
support (Table 4). Likewise, none of the unexpected relationships, like the sponge+placozoa clade or 
the chordate+protostome clade (i.e., the clade that implies deuterostome non-monophyly), were 
recovered in analyses of the complete taxon sample that used LGL-BUR/EXP. Most analyses of 
exposed sites recovered T2 and all analyses of the buried sites recovered T3 (Table 4). For the exposed 
sites, the only analysis of the complete taxon sample that failed to recover T2 was the LGL-EXP-C60. 
Although LGL-EXP-C60 had the best-fit to the data based on the AICc analyses using that model 
resulted in the T3 topology, albeit with limited support (63%; Table 4).  

The results were more complex for the reduced taxon sample. All LGL-EXP analyses resulted in 
T2 (Table 4) whereas the LGL-BUR analyses were split between T2 and T3. More specifically, analyses 
of buried sites yielded T2 when models with a limited number of mixture components (C10 and C30) 
were used but analyses using more complex LGL-BUR models (C50 and C60) resulted in T3 (Table 
4). The optimal trees for two LGL-BUR models of intermediate complexity (C20 and C40) were T3, 
but the sponge+ctenophore clade had very low support and the bootstrap consensus tree topology 
was T2. All LGL-EXP analyses yielded strong support for deuterostome monophyly (Figure 5). In 
contrast, the results of analyses using buried sites and the LGL-BUR model were more complex. The 
deuterostome clade was recovered in analyses that used all outgroups, albeit with moderate support 
(Figure 5). On the other hand, most of the analyses that used the reduced taxon sample yielded 
deuterostome non-monophyly, although bootstrap support for the unexpected chordate+protostome 
clade was also relatively low (Figure 5).
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Table 4. Log likelihood and AICc scores for various LGL-BUR and LGL-EXP models. The best-fit model is indicated in bold and the FO mixture weight is reported. 

LGL model Outgroup Dataset T2 T3 Cni+Pla FO weight lnL AICc 
 

EXP-C10 
 

All outgroups (RG) 
 

Exposed 
 

100 
  

100 
 

0.2774 
 

−1209875.9003 
 

2419883.9851 
EXP-C20  Exposed 100  99 0.1808 −1206472.3633 2413096.9708 
EXP-C30  Exposed 100  99 0.126 −1204598.8783 2409370.0689 
EXP-C40  Exposed 100  99 0.105 −1203943.3823 2408079.1535 
EXP-C50  Exposed 100  99 0.1139 −1204270.9338 2408754.3413 
EXP-C60  Exposed  63 100 0.1146 −1203752.4217 2407737.4104 
BUR-C10  Buried  93 73 0.3637 −1043644.2586 2087420.6812 
BUR-C20  Buried  95 81 0.1584 −1037855.6842 2075863.5853 
BUR-C30  Buried  95 84 0.0741 −1037721.2711 2075614.8197 
BUR-C40  Buried  91 86 0.0797 −1036144.9852 2072482.3158 
BUR-C50  Buried  95 79 0.0806 −1035169.3326 2070551.0859 
BUR-C60  Buried  95 84 0.0892 −1034522.1735 2069276.8507 

 
EXP-C10 

 
Choanozoa only 

 
Exposed 

 
92 

  
97 

 
0.2551 

 
−952094.7392 

 
1904305.6212 

EXP-C20  Exposed 87  97 0.176 −949973.8488 1900083.8935 
EXP-C30  Exposed 77  91 0.0604 −948352.7546 1896861.7664 
EXP-C40  Exposed 77  98 0.0629 −947967.3623 1896111.0517 
EXP-C50  Exposed 76  95 0.0711 −948154.1412 1896504.6876 
EXP-C60  Exposed 72  96 0.0566 −947765.6493 1895747.7905 
BUR-C10  Buried 67  96 0.2376 −826008.6321 1652133.391 
BUR-C20  Buried 48a 42a 93 0.1838 −822299.4844 1644735.1427 
BUR-C30  Buried 74  97 0.0981 −821989.872 1644135.9726 
BUR-C40  Buried 38a 37a 96 0.1211 −820830.2779 1641836.8464 
BUR-C50  Buried  74 96 0.0950 −820251.2702 1640698.9004 
BUR-C60  Buried   78 91 0.1125 −819722.1126 1639660.6619 

a The optimal tree and bootstrap consensus trees differ for these LGL-BUR analyses; the optimal tree was T3 and the bootstrap consensus was T2.
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Figure 5. Heat map showing support for deuterostome monophyly for exposed and buried residues 
using GTR, LGL-F81, and LGL-BUR/EXP models. Colors indicate whether or not deuterostome were 
monophyly (No color: monophyletic, Purple: not monophyletic). Note that the bootstrap consensus 
tree for the LGL-BUR-C20 conflicted with the optimal tree; it had 53% support for monophyly. 

3.6. Binary Recoding Eliminates the Observed Differences in Signal 

The GARP/FYMINK ratio, a metric of amino acid composition that correlates with genomic GC-
content, differed among taxa for both exposed and buried sites and the mean GARP/FYMINK ratios 
for the two structural classes also differed (Figure 6a). However, the pattern of variation among taxa 
in the ratio relative to the means was virtually identical for both structural environments. Specifically, 
the GARP/FYMINK ratio was lower than the mean for non-bilaterian animals and higher than the 
mean in most non-metazoan outgroup taxa. Despite the evidence for variation among taxa there was 
no evidence for large-scale convergence between either ctenophores or sponges and the outgroups 
(Figure 6a). Although a simple pattern of convergence was not evident, amino acid compositional 
variation does violate the assumptions of time reversible models and this could have an impact on 
phylogenetic inference. Thus, limiting compositional variation has the potential to improve our 
estimates of phylogeny. We examined variation in nucleotide composition among taxa along the 
three possible axes of nucleotide composition (Figure 6b). Since the largest degree of variation was 
on the strong-weak axis we reasoned that RY coding might reduce the impact of compositional 
variation. 

Phylogenetic analyses of exposed and buried sites after binary coding resulted in identical trees 
that placed ctenophores sister to all other animals with strong (≥88%) bootstrap support (Figure 6c). 
Analyses of the exposed sites after six-state Dayhoff recoding resulted in the same topology, also with 
high support for placing ctenophores sister to other metazoa (Figure 6c). Similarly, the analyses of 
the buried sites after six-state coding also resulted in a tree with ctenophores sister to all other 
animals, albeit with limited (48%) bootstrap support (Supplementary File S8). The buried Dayhoff 
recoded tree also had a sponge+placozoa clade, although that unexpected clade had very low (28%) 
bootstrap support (Supplementary File S8). Regardless of the details, applying either recoding 
method to the buried sites results in congruent placements of the metazoan root, specifically the T2 
topology, when either the exposed or buried subsets of the data were analyzed.    

Model
All Outgroups Choanozoa

Exposed Buried Exposed Buried
GTR 100 88 100 75

C10-F81 100 100 99 70
C20-F81 100 100 96 51
C30-F81 70 100 96 100
C40-F81 100 100 95 100
C50-F81 76 100 91 58
C60-F81 100 100 89 100

C10-BUR/EXP 100 84 100 70
C20-BUR/EXP 100 77 98 47
C30-BUR/EXP 100 64 97 53
C40-BUR/EXP 100 73 97 52
C50-BUR/EXP 100 68 96 53
C60-BUR/EXP 100 73 93 55

Deuterostome monophyly

Deuterostome non-monophyly
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Figure 6. Compositional variation and the impact of recoding on tree estimation. (a) Variation across 
taxa in the ratio of amino acids encoded by GC-rich codons (G, A, R, and P) to those encoded by AT-
rich codons (F, Y, M, I, N, and K). To limit the impact of invariant sites we only considered parsimony 
informative sites. (b) Variation in base composition for parsimony informative first and second codon 
positions after back translation. (c) The results of tree searches after recoding as binary (purine-
pyrimidine (RY)) characters. The tree topologies were identical, although the tree lengths did differ 
(note scale bars). Support for the node that defines T2 (i.e., the node that places Ctenophora sister to 
other Metazoa) is emphasized using a red box; support given the binary data is presented to the top 
and the value for six-state Dayhoff recoding is presented below. For other nodes, bootstrap values 
<100% are presented, with values for six-state recoding presented to the right. Since the trees obtained 
after binary and six-state coding of buried sites exhibited some topological conflicts the bootstrap 
support for six-state coding is not presented on that tree (except for the focal node). 
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4. Discussion 

Analysis of the FRG dataset conducted after separating sites into two subsets using relative 
solvent accessibility resulted in two different tree topologies (e.g., Figure 2). We also observed 
significant differences in the numbers of decisive sites that favor distinct placements of the metazoan 
root in the exposed and buried site subsets (P < 0.02, Fisher’s exact test; data presented in Table 2). 
These results strongly indicate that conflicting phylogenetic signals are non-randomly distributed in 
parts of the dataset that can be defined using protein structure. Although the other strategies we used 
to subdivide the data (i.e., dividing aligned sites based on their secondary structure or using a 
combination of secondary structure and relative solvent accessibility) revealed some differences in 
signal, the topological differences observed in those cases were poorly supported relative to the 
differences apparent when solvent-exposed sites was compared buried sites. These results 
corroborate the alternative hypothesis we articulated in the introduction, but only for exposed vs. 
buried sites. The different signals in exposed and buried sites were evident regardless of whether the 
phylogenetic inference was conducted using standard empirical models or with GTR model 
parameters optimized on each structural subset. Moreover, the distinct signals persisted when the 
exposed and buried data subsets were analyzed using LGL models, which are site-heterogeneous 
CAT-type models. However, amino acid recoding reduced the differences in signal for exposed and 
buried sites and, in the case of analyses using binary coding, revealed support for a single tree that 
placed the metazoan root between ctenophores and all other animals (i.e., topology T3) with a 
relatively high degree of support (Figure 6c).  

4.1. Different Models for Different Structural Environments 

The obvious explanation for the conflicting signals in each structural class, especially the strong 
difference between the exposed and buried signals, is that the sites in each of these classes exhibit 
different patterns of sequence evolution. The poor fit of standard empirical models to the data could 
then result in an incorrect inference. This could result in the observed difference in signal, with one 
structural subset yielding the correct tree while analyses of the other subset result in an incorrect 
estimate of phylogeny. Alternatively, it is possible that analyses of both exposed and buried sites 
yield different topologies, both of which are inaccurate. GTR model parameter estimates for each 
class certainly indicate that the patterns of sequence evolution are different in each structural 
environment (Figure 4 and Supplementary Figure S2). However, conducting analyses using GTR 
model parameters optimized on each class did not cause analyses in the two classes to converge on a 
single topology (in fact, the topologies were unchanged relative to those that emerged in the analyses 
that used standard empirical models). Finally, we note one intriguing aspect of our model 
comparisons: the rate matrix parameters for most empirical models lie closer to the models based on 
buried sites (this was true for all empirical models trained on diverse datasets; i.e., all empirical 
models except those trained using the more limited organellar or viral datasets).  

The basis for the differences we observed among the structural classes in their patterns of 
evolution almost certainly reflects differences in the nature of the purifying selection on sites in 
different structural environments. It is well known that protein evolution is heterogeneous and 
depends on the site-specific biochemical constraints like structure, dynamics, and biochemical 
functions [84]. There is substantial evidence that, depending on their position and role in the overall 
conformation and function sites will only accept a subset of the 20 amino acids, with all other 
possibilities being selected against [85]. For example, in the case of relative solvent accessibility, the 
sites that are exposed to an aqueous environment will include more polar residues whereas buried 
sites which form the cores of proteins and are inaccessible to solvent, will include more non-polar 
residues and be more resistant to changes in side chain volume [86]. Similar differences among the 
major secondary structural classes have also been appreciated for some time [16–18], although the 
differences among the secondary structure classes does not appear to be as extreme as the differences 
based on solvent accessibility. Overall, these differences in evolutionary patterns among the 
structural classes can lead to different signals in each structural class. 
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Models of sequence evolution that incorporate protein structure have also been proposed in the 
context of phylogenetics. For example, Goldman et al. [16] used a hidden Markov model approach to 
assign distinct rate matrices to sites based on in secondary structure and solvent accessibility (where 
secondary structure and solvent accessibility are the hidden states). Le and Gascuel [18] developed a 
mixture model that uses available protein structure annotations. Both of these studies revealed that 
efforts to acknowledge the different structural classes for sites in protein multiple sequence 
alignments can have a major impact on model fit, measured using the improvement in log likelihood 
values. However, both of those methods estimate a tree topology for the complete alignment; our 
approach of dividing proteins into structural classes follows the same basic idea but shifts the focus 
to study the phylogenetic signals in these distinct structural classes separately.  

The primary focus of this study was testing whether different signals emerge in analyses of sites 
in distinct structural environments rather than phylogenetic inference per se. This led us to analyze 
structurally defined subsets of the data. In principle, analyzing all sites in a sequence alignment using 
a model that appropriately accommodates heterogeneity should yield the best estimate of phylogeny. 
However, that approach is not ideal for examining conflicting signals or asking whether the signals 
are non-randomly distributed. Observing different topologies when data are analyzed using models 
that are structure-aware vs. models that are not structure-aware could result from the existence of 
distinct signals for sites in different structural environments. Alternatively, it could reflect other 
aspects of the models used for analyses. In contrast, it is straightforward to determine whether 
different analyses actually increase (or decrease) the congruence among the data subsets when 
analyses are conducted after dividing the data into subsets based on protein structure. Indeed, using 
this approach revealed at least one method able to increase congruence between the exposed and 
buried residues, at least for this dataset: conducting analyses after amino acid recoding. 

4.2. Site-Heterogeneous CAT-Type Models do not Increase Congruence in Signal for Different Structural 
Classes 

Site-heterogeneous models, especially the Bayesian implementation of the CAT model [15], have 
been used in many studies focused on deep branches in the metazoan tree (e.g., [37,38,87,88]). It has 
been asserted that CAT models are more biologically realistic than empirical models or the GTR 
model [15,39,89–92]. Analyses using CAT models have been suggested to be less prone to systematic 
error, such as long-branch attraction, than site-homogeneous models like the standard empirical 
models when they are applied to heterogeneous data [92–95]. The defining feature of CAT-type 
models is their use of a mixture of profiles to model amino acid propensities for different sites in 
proteins (see section 2.5 in the Materials and Methods). The ability to model differences among sites 
in their amino acid propensities has been suggested to limit systematic error when analyses are 
conducted using CAT-type models [92,93]. 

Many studies from outside of the field of molecular phylogenetics corroborate the hypothesis 
that different sites in proteins have distinct propensities for amino acid occupancy. Site-to-site 
variation in amino acid propensities can explain the observation that databases searches using 
profiles based on multiple sequence alignments identify a larger number of distant homologs than in 
searches using a single query [85]. Deep mutagenesis studies have provided direct evidence that 
distinct sets of amino acids are necessary for function at different sites within proteins [72,96–98]. Of 
course, this assumes the assays used in deep mutagenesis studies are reasonable proxies for 
evolutionary fitness; however, that assumption is likely to be correct given that amino acid profiles 
generated by comparing homologous proteins are often similar to the those resulting from 
mutagenesis experiments (cf. Figure 5 in Melamed et al. [72]).  

Despite the strong evidence that amino acid propensities vary across sites, it remains unclear 
whether CAT-type models actually provide the best framework for phylogenetic estimation. The 
CAT-type model seems reasonable from a theoretical standpoint if one postulates that the R matrix 
captures the rate at which novel mutations enter populations and that the profiles capture purifying 
selection by assigning disfavored amino acids at any given site very low equilibrium frequencies. 
However, changes in the site-specific amino acid propensities over time could lead to biases when 
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such a model is used for analyses. The phenomenon of shifting amino acid propensities has been 
given a name: heteropecilly [99]. 

The potential for heteropecilly to bias phylogenetic estimation has been acknowledged [99,100]. 
It seems reasonable to postulate that analyses of heteropecillous data might be more problematic for 
CAT-type models with narrow profiles. Herein, we used empirical CAT-type models that we call 
LGL models based on the source of the profiles [67]. LGL models permit a test of the hypothesis that 
heteropecilly can bias phylogenetic analyses using CAT-type models; if heteropecilly is problematic 
LGL models with a smaller number of wide profiles (e.g., C10 and C20) should perform better than 
those with a larger number of narrow profiles (e.g., C50 and C60). Obviously, it is challenging to 
assess the performance of phylogenetic methods using empirical datasets because true phylogenies 
are unknown. However, we believe there are several criteria that can be used to assess the 
performance of phylogenetic methods in this study. First, there is a general criterion: analyses of two 
(or more) subsets of a dataset using better methods will yield the same topology (assuming both 
subsets are large enough to overcome stochastic error). Second, given a set of topologies with 
different a priori likelihoods of being correct, the tree that emerges in analyses of all subsets is more 
likely to be the one with the higher prior probability. 

Judging the performance of various LGL models using our criteria resulted in a complex answer. 
Analyses of the exposed and buried subsets of the data using LGL models with larger numbers of 
profiles converge on the same topology (Tables 3 and 4). Those results conflict with the prediction 
we made if heteropecilly is a source of bias. However, the analyses converge on topology T3 (Tables 
3 and 4); topologies T1 and T2 are more plausible than T3 (see the introduction and section 4.4 of this 
discussion for details). Moreover, some LGL analyses yielded unexpected clades, like the 
sponge+placozoa clade and the clade uniting chordates and protostomes. As with the T3 topology, 
which emerged in analyses of exposed sites using LGL models with the largest number of profiles, 
deuterostome non-monophyly emerged in the LGL-BUR analyses with larger numbers of profiles 
(Figure 5). Taken as a whole, these results falsify the hypothesis that using CAT-type models to 
analyze subsets of the FRG dataset yield better estimates of phylogeny than single-matrix models 
(i.e., the GTR matrices estimated for each data subset). Moreover, our results indicate that, at least for 
the exposed and buried subsets of the FRG dataset, LGL models with larger numbers of profiles 
actually perform worse than those with fewer profiles. 

The results indicating that increasing the number of profiles reduced the accuracy of 
phylogenetic estimation were surprising because the AICc indicated that the C60 models had the best 
fit to the data (Tables 3 and 4). This suggests the AICc overestimates of the number substitutional 
categories appropriate for datasets; the zero or near zero estimated weights for specific substitutional 
profiles (Supplementary File S7) provides another line of evidence for this idea. Of course, the 
Bayesian implementation of the CAT model, which uses the Dirichlet process prior to elicit profiles, 
could yield different results. However, we note that at least some other analyses using the Bayesian 
CAT model have recovered similarly troubling clades [42,101]. Moreover, the need to conduct the 
analyses in a Bayesian framework in order to use the Dirichlet process prior comes with a cost: the 
fact that Bayesian phylogenetic methods overstate clade support [102,103]. Artificially inflated 
support for weak topological conflicts (e.g., the conflicts evident in analyses of secondary structural 
elements; Figure 3) would have obscured the striking differences between exposed and buried sites. 

The Bayesian CAT model was proposed at the onset of the “phylogenomic era” to facilitate 
analyses of the increasingly large sequence datasets becoming available at that time using a 
framework that accommodates heterogeneity among sites. Our results suggest that some CAT-type 
models are unable to capture some of the heterogeneity in the FRG data. Other ways to introduce 
heterogeneity to models of sequence evolution, like those using protein structure [16,17,104], might 
represent a better way to incorporate heterogeneity into phylogenetic analyses. Alternatively, single-
matrix models (GTR, empirical models, or the Braun [105] physicochemical models) may be sufficient 
to accommodate the heterogeneity in large protein datasets once those datasets have been subdivided 
(or partitioned) in an appropriate manner. In this study, the conflict between trees that result from 
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analyses of exposed and buried sites suggest that neither single matrix-models nor the CAT-type 
models we used can ameliorate the conflicting signals. 

Ultimately, all models are approximations; the question of whether any specific approximating 
model is more likely than another approximating model to reveal the true historical signal is difficult 
to assess from theory alone and should also be examined empirically. We have presented a number 
of arguments that some CAT-type models actually behave worse than single-matrix models in 
analyses of the exposed and buried subsets of the FRG dataset. Obviously, these results raise general 
questions about the utility of CAT-type models, although we stress that we have only explored a 
small part of parameter space. Regardless of the details, our results certainly indicate that CAT-type 
models do not represent a panacea for phylogenetic analyses of proteins at this timescale. 

4.3. Amino Acid Recoding Increases Congruence in Signal for Different Structural Classes 

In addition to long-branch attraction, variation in amino acid (or base) composition across the 
tree is another source of systematic error in phylogenetic analyses [106,107]. However, the impact of 
variation in base composition on phylogenetic estimation is complex and difficult to predict. This 
complexity reflects the large number of ways that the proportions of the 20 amino acids can vary. We 
focused on the GARP/FYMINK ratio (Figure 6a), which correlated with genomic GC-content, because 
many other studies have found variation along the GC-AT axis [74,108,109]. Indeed, even in studies 
that have found significant variation along other axes in protein composition space (e.g., in a study 
focused on prokaryotes [110] an axis of variation correlated with optimal growth temperature and 
IVYWREL-content was evident) there appears to be much stronger variation on the GC-AT axis (in 
the Boussau et al. [93] study the GC-AT axis explained 45.4% of the variance among taxa whereas the 
IVYWREL-axis only explained 13.8%). Back translation of the amino acid sequences confirmed that 
there was more variation along the GC-AT axis than along the other two axes in nucleotide 
composition space (AC-GT and AG-CT; Figure 6b). The mean GARP/FYMINK ratios for exposed and 
buried sites were different, although taxa with an above average GARP/FYMINK ratio in one 
structural environment also had a higher ratio in the other environment (and vice versa). Thus, the 
relative pattern of variation in the GARP/FYMINK ratio among taxa did not differ between the 
structural environments. This makes it unlikely for variation among taxa in amino acid composition 
to represent the primary explanation for the observed differences in signal for the exposed and buried 
sites. 

Despite the observed similarities in their patterns of compositional variation for exposed and 
buried sites, conducting analyses after recoding amino acids did increase congruence between 
exposed and buried sites (Figure 6c). In fact, analyses of exposed and buried data matrices generated 
by back translation with recoding the nucleotides as binary characters resulted in identical trees with 
relatively high (≥88%) bootstrap support for T2. We also conducted analyses after six-state recoding 
using the Dayhoff categories, an amino acid recoding method used in many studies (reviewed by 
Hernandez and Ryan [111]). Analyses of exposed sites after six-state recoding resulted in a topology 
identical to the tree generated by binary coding; support for T2 was also relatively high (90%). In 
contrast, analyses of buried sites after six-state recoding resulted in a tree with limited (<50%) 
bootstrap support for T2 and several other topological differences from the tree based on exposed 
sites after recoding. Indeed, many branches in the six-state recoded buried site tree had limited 
support (Supplementary File S8). Regardless, it was clear that binary coding resulted in completely 
congruent trees for exposed and buried sites and six-state recoding increased congruence (albeit with 
high support only in the analysis of exposed sites). 

Perhaps more important than the observed increase in congruence is the fact that amino acid 
recoding, especially binary coding, meets the criteria for a “well-behaved model” that we described 
above (in section 4.2). Specifically, we argued that analyses of the exposed and buried subsets of this 
dataset using an ideal model would have three properties: 1) the trees generated using exposed and 
buried sites would exhibit greater congruence; 2) the congruent placement of the root would involve 
one of the more plausible topologies (T1 or T2 rather than T3); and 3) that unexpected (and relatively 
implausible) clades, like the sponge+placozoa clade, would not be recovered. Six-state recoding does 
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not meet all of these criteria; analyses of buried sites recoded in this way yield the sponge+placozoa 
clade. However, support for that unexpected sponge+placozoa clade as well as the clade comprising 
all animals except ctenophores was very low when we conducted six-state recoding of the buried 
sites. Although it remains possible (in principle) that the behavior of six-state recoding would exhibit 
better behavior when used with a different (presumably larger) dataset it is clear based on our results 
that six-state recoding did not exhibit ideal behavior in this study. In contrast, binary coding meets 
all of the criteria described for a well-behaved analytical method. 

The increased congruence observed when the data were recoded raises the question of whether 
the apparent improvements provide evidence that compositional variation explains the different 
signals evident in exposed and buried sites. The observation that the patterns of variation across taxa 
in the GARP/FYMINK ratio are quite similar for exposed and buried sites makes it unlikely that the 
differences in signal reflects a simple case of convergence in GC-content (which would be expected 
to lead to convergence either for GARP amino acids or for FYMINK amino acids). However, model 
violations due to changes in amino acid composition might have indirect effects on phylogenetic 
estimation, perhaps exacerbating other sources of bias (e.g., long-branch attraction). Alternatively, 
amino acid recoding could improve model fit in other ways that are difficult to assess. One important 
challenge for the use of amino acid recoding is that there are not, at this times, ways to assess model 
fit using objective criteria like the AICc; Simmons [112] reviewed methods to choose the best way to 
encode data (e.g., as codons, amino acids, or even RY data) but statistical methods to choose among 
alternative amino acid alphabets do not exist at this point. Regardless of the details, it is clear that 
recoding amino acid data improves the congruence between estimates of phylogeny based on 
exposed vs. buried sites for the FRG dataset. 

One relatively straightforward way that amino acid recoding might have a positive impact on 
phylogenetic estimation is by reducing the number of substitutions; this could reduce the potential 
for phenomena like long-branch attraction. However, reducing the number of substitutions also 
eliminates phylogenetic information. Indeed, Hernandez and Ryan [111] questioned the utility of six-
state recoding, showing that the loss of phylogenetic information outweighs its benefits with respect 
to compositional heterogeneity. Our observation that analyses of the exposed sites results in 
relatively strong support after six-state recoding whereas analyses of the buried sites after six-state 
recoding results in very limited support is consistent with the hypothesis that six-state recoding 
results in substantial loss of information. This information loss is expected to be less problematic 
when the substitution rate is high; the higher rate of amino acid substitution in the solvent-exposed 
environment (note scale bars in Figures 2 and 6c) is likely to make six-state recoding less problematic 
for the exposed sites. In contrast, binary coding preserves more information because most amino 
acids are recoded as two or three binary characters; we believe that binary coding of amino acids 
deserves more consideration in future studies.  

4.4. Phylogenetic Implications 

The primary goal for this study was to ask whether the signal revealed by phylogenetic analyses 
of a large-scale protein dataset was non-randomly distributed with respect to protein structure. We 
chose the RG dataset for several reasons, one of which was the fact that basal metazoan relationships 
had limited support when it was analyzed [6]. This suggested either that conflicting signals were 
present in the data or that there was very little signal (historical or non-historical) in the data. Our 
analyses revealed: 1) that conflicting signals were present in the data; and 2) that distinct signals were 
non-randomly distributed with respect to protein structure. However, those analyses did not 
establish which of those signals were historical in nature. This raises another fundamental question: 
what do our analyses reveal about the relationships among deep-branching metazoans? 

One important feature of historical signal is that it is expected to be distributed broadly in the 
genome. Although there are certainly cases where true reticulations are present in the history of life 
[113,114], many relationships appear to reflect a “tree-like” history combined with discordance 
among individual gene trees superimposed on that tree for a variety of reasons (e.g., horizontal 
transfer and incomplete lineage sorting [25]). The structurally defined subsets of data that we 
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examined represent different parts of the same 231 orthologous proteins, although the exact number 
of gene trees they represent is unclear because intra-locus recombination could lead to a case where 
one protein may be associated with multiple gene trees [115]. Regardless of the exact number of gene 
trees in our dataset, it is important to recognize that the exposed and buried sites are found 
throughout protein sequences, sometimes quite close to each other. Therefore, exposed and buried 
sites are encoded by sequences that are likely to represent virtually identical sets of gene trees. Thus, 
the historical signal present in both subsets of the data should reflect similar sets of gene trees so 
analyses of either subset of the data would be expected to converge on similar topologies (assuming 
the number of sites analyzed is sufficiently large). This was not what we observed for the majority of 
the analyses we conducted, but it was true for the analyses that used recoded amino acids. Those 
analyses converged on T2 (ctenophores sister to all other animals). 

The observation that analyses of two non-overlapping phylogenomic datasets result in the same 
topology is not, in and of itself, sufficient to conclude that the tree topology in question (i.e., T2) is an 
accurate representation of evolutionary history. However, postulating that ctenophores are sister to 
all other animal does represent the simplest interpretation of the analyses we conducted; it is 
necessary to explain three different observations if one postulates that another topology is the best 
representation of evolutionary history. First, we observed that most phylogenetic analyses of exposed 
and buried sites in the FRG dataset yield distinct topologies (specifically, T2 and T3; e.g., Figure 2). 
This result is consistent with T2 and T3 but, as we have emphasized elsewhere, T3 is the least 
plausible of the three possible topologies. After all, T3 fails to explain the distribution of character 
states highlighted by Nielsen [35] any better than T2 but it has only been recovered in a subset of 
trees in a few phylogenomic studies [6,42]. Second, we found that the potential for the best-
characterized sources of bias in phylogenetics (long-branch attraction and variation in amino acid 
composition) are likely to have a similar impact on analyses of exposed and buried site data (the 
relative branch lengths are similar for both structural environments [Figure 1 and Figure 6c] as are 
the patterns of variation in amino acid composition [Figure 6a]). Finally, we found that analyses of 
exposed and buried sites conducted after amino acid recoding converged on a single topology (T2). 
That final observation corroborates the hypothesis that T2 reflects evolutionary history. 

Moving beyond the topology at the base of metazoa, a second difference was evident for many 
analyses of exposed and buried data. While analyses of exposed sites revealed a clade comprising 
placozoa and cnidaria (Table 1 and Figure 2) many analyses of buried sites placed placozoa sister to 
a cnidaria+bilateria clade (although support for the latter clade was low in a number of cases; Table 
1 and Figure 2). Another recent study recovered placozoa+cnidaria clade [116] and it reported that 
the placozoa+cnidaria clade only emerged after excluding compositionally heterogeneous proteins. 
Perhaps surprisingly, Laumer et al. [116] also reported that most proteins exhibit evidence of 
compositional heterogeneity. Placozoa+cnidaria also emerged in a subsequent study with more 
extensive taxon sampling [117], but only after sites that appeared to exhibit compositional bias and/or 
saturation were excluded. A provocative aspect of our analyses is that they suggest several different 
analyses can yield the placozoa+cnidaria clade: 1) excluding sites and/or proteins that exhibit 
compositional biases [116,117]; 2) limiting consideration to residues on the surface of globular 
proteins; and 3) conducting analyses after RY-coding. 

A third difference between trees resulted from analyses of exposed and buried sites was evident 
in the outgroup. Specifically, Sphaeroforma (the only member of Mesomycetozoea in the FRG dataset) 
was placed sister to Filozoa [82,118], a clade comprising Filasterea (represented herein by Capsaspora) 
and Apoikozoa (the choanozoa+metazoa clade), in analyses of exposed sites. In contrast, analyses of 
buried sites placed Apoikozoa sister to a Capsaspora+Sphaeroforma clade sister (Supplementary File 
S5). Recent phylogenomic analyses support monophyly of Filozoa [119,120] and even the studies that 
are more equivocal regarding the relationship (e.g., Brown et al. [121]) recover monophyly of Filozoa 
in some analyses. As with our focal node at the base of metazoa and the placozoa+cnidaria clade, 
analyses of RY-coded data supported Filozoa monophyly (Figure 6). 

Returning to the position of the metazoan root, we acknowledge that it remains possible to 
postulate that T1 (which sponges sister to all other animals) represents the correct position for the 
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metazoan root, despite the observations described above. Obviously, one way to embrace the 
hypothesis that T1 is correct is to dismiss the FRG dataset as uninformative, perhaps due to the 
limited number of sites and/or taxa included. However, simply postulating that FRG dataset is 
uninformative makes it difficult to explain why the bootstrap support for T2 and T3 in analyses of 
the exposed and buried sites is actually higher than the support Ryan et al. [6] observed in analyses 
of the complete dataset. 

Embracing T1 as the true topology while still acknowledging that the FRG dataset has the 
potential to be informative requires one to assume that our failure to recover T1 reflect bias. However, 
it is necessary to make several assumptions regarding the nature of the biases. First, one must 
postulate that most analyses of the exposed sites in the FRG dataset are biased toward T2. The 
exception to that bias toward T2 in analyses of exposed site would be the existence of a bias toward 
T3 evident in the subset of analyses using LGL models that yield T3 (Tables 3 and 4). Second, one 
must assume analyses of the buried sites are generally biased toward T3. Finally, one must assume 
analyses of the exposed and buried subsets of the data conducted after amino acid recoding are both 
biased toward T2. Embracing all of those assumptions represents a much more elaborate hypothesis 
than simply postulating that T2 is correct and that the only biases are the support for T3 observed in 
analyses of the buried sites without recoding and in some analyses of exposed sites using LGL 
models. For that reason, we view our results as additional evidence corroborating the hypothesis that 
the root of the animal tree lies between ctenophores and all other metazoa. 

4.5. Why Are Different Structural Environments Associated with Distinct Signals? 

Our results raise a fundamental question: why do many analyses of the exposed and buried sites 
reveal different signals? Based on the arguments described above (in section 4.4.) it is likely that the 
topology recovered in most analyses of exposed sites is the true metazoan tree (or, at the very least, 
the exposed topology is closer to the true tree). Thus, the question can be rephrased: why is the 
misleading signal in the FRG dataset disproportionately associated with buried sites? 

The answer to this question is unlikely to be straightforward. The substitution rate is for buried 
sites is lower than the rate for exposed sited (note the scale bars in Figures 2 and 6), so the association 
between misleading signal and sites with high substitution rates (which has been appreciated for 
over two decades; Bull et al. [122]), cannot answer the question. Likewise, differences in the overall 
amino composition for exposed and buried sites cannot explain the differences in signal because the 
amino acid frequencies are an intrinsic part of the models we used. Of course, the buried sites could 
have a smaller state space (average number of amino acids permitted at each site) than exposed sites; 
smaller state spaces will inflate homoplasy [123]. However, the average effective alphabet size for 
exposed and buried sites are quite similar (Supplementary File S4), as is the amount of homoplasy 
associated with each class of sites (if the Figure 6c tree is correct, the retention index [124] is 0.3054 
for buried sites and 0.3001 for exposed sites; Supplementary File S9). These results exclude the 
relatively simple reasons for the observed difference between the two site classes. 

Excluding simple explanations forces us to look to other fundamental difference between these 
site classes. One factor that might differ for sites that differ is the impact of epistasis, which likely to 
be a major source (if not the primary source) of heteropecilly. Fisher [125] defined epistatic 
interactions as any deviation between the observed phenotype for multiple mutations and the 
expected phenotype for a linear combination of those mutations. Defined in this way, epistasis has 
important implications for protein evolution (for review, see Starr and Thornton [126]) because that 
epistatic interactions causes amino acid propensities to change over time [73]. Put another way, 
epistatic interactions have the potential to cause heterpecilly. Could numbers of epistatic interactions 
(and the associated heterpecilly) represent the difference between exposed and buried sites?  

There are good reasons to postulate that patterns of epistatic interactions for buried amino acids 
might exist for the two site classes. Buried amino acids have larger numbers of inter-residue contacts 
[49], making it reasonable to postulate that buried sites have the potential for a larger number of 
epistatic interactions than exposed sites. Deep mutagenesis has shown that pairs of mutations that 
exhibit epistatic interactions are more likely to be located close to each other [72], lending credence 
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to this idea. Even if the average number of epistatic interactions is not the important factor 
distinguishing between the structural classes it remains possible that the types of interactions is 
important; intramolecular interactions are like to dominate for buried whereas epistasis involving 
two (or more) interacting molecules may be more important for surface residues. Epistatic 
interactions between residues involved in protein-protein interactions has been documented [127], 
but a full exploration of those interactions is currently very challenging. We acknowledge that these 
ideas are speculative, but the data necessary to test them are accumulating. 

It is difficult to see a connection between epistasis and the observation that amino acid recoding 
(especially RY coding) improves analyses. By definition, amino acid recoding must act to reduce the 
impact of problematic site patterns on phylogenetic analyses, but there is no reason why it should 
have an impact on site patterns that reflect epistasis. On the other hand, if recoding is acting to limit 
the impact of compositional biases (a common justification for data recoding [9,14]), it might be acting 
indirectly (see section 4.3 above). Ultimately, we uncertain whether the observation that amino acid 
recoding has a positive impact on phylogenetic analyses of the FRG dataset provide information 
about the reasons analyses of different site classes yield different topologies. 

For this part of the discussion, we hypothesized that analyses of exposed sites performed better 
than analyses of buried sites; this suggests the true position of the metazoan root is T2 (ctenophores 
sister). It is more difficult to propose a hypothesis that can explain the distribution of misleading 
signal if T1 or T3 is assumed to be correct. If topology T2 excluded from consideration, postulating 
that T3 is correct and T1 is incorrect is simpler if one only considers the analyses conducted as part 
of this study. However, other lines of evidence indicate that T3 is the least plausible topology (see 
above, section 4.4). On the other hand, we found no evidence for a signal that supports T1 so it would 
be necessary to postulate, as described above (section 4.4), that a complex mixture of misleading 
signals are present in the FRG dataset and that those signals overwhelm any historical signal 
preserved in the dataset. Obviously, this makes it very difficult to devise a hypothesis able to explain 
the existence of those hypothetical misleading signals. Overall, the hypothesis that analyses of 
exposed sites reveal the true historical signal represents the simplest interpretation of our results. We 
expect tests of that hypothesis using other datasets to reveal additional information about processes 
that drive protein evolution and the topology for the deepest branches of the metazoan tree. 

5. Conclusions 

Our signal exploration corroborated the hypothesis that different phylogenetic signals are 
associated with specific parts of proteins that can be defined using non-phylogenetic criteria (in this 
case, structural criteria). Most analyses of data from two structural environments resulted in 
conflicting trees that each had relatively high support. Our analyses also suggest the use of site-
homogeneous models (like GTR or empirical models such as LG) should not necessarily be eschewed 
in favor of CAT-type models like the LGL models, despite the observation that the latter models 
typically have a better fit to the data based on commonly used model selection criteria. This statement 
may appear to be problematic since it implicitly calls the use of standard model selection criteria into 
question, but we emphasize that it is actually very difficult to assess the fit of phylogenetic models to 
empirical dataset in absolute terms [128]. Even the most complex models currently available for 
phylogenetic analyses (including site-heterogeneous models), may be quite far from the true 
underlying processes of molecular evolution and, therefore, every bit as subject to systematic error 
as simpler models. Sanderson and Kim [129] worried that the very large AIC increases in response to 
the addition of relatively small numbers of free parameters might indicate that all models under 
consideration are very far from the (unknown) true model. Thus, the most parameter-rich models 
could be closer to the true model but still deviate from that true model in ways that actually obscure 
the historical signal. The available site-heterogeneous models might be very useful in some contexts, 
but they introduce many free parameters that are not necessarily constrained in a biologically realistic 
manner. Steel [130] worried that very parameter-rich models would be impractical because they 
would have to have enough parameters “to fit an elephant” (a colorful metaphor for an unrealistic 
and overly parameter-rich model that has been attributed to John von Neumann [131]). This 
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“elephant factor” may explain the behavior of LGL models. One way to overcome this elephant factor 
is to place biological constraints on parameters; the association between protein structure and 
phylogenetic signal that we observed suggests protein structure could provide information regarding 
the best way to move forward when devising those constraints. Alternatively, it may be easier to 
identify models that reveal historical signal after simplifying the data in some way (e.g., by recoding 
amino acids). There has been limited exploration of the best way to select phylogenetic models when 
the data can be encoded in multiple ways, but it seems reasonable to state that further exploration of 
this approach is warranted. Regardless of the specific details, we believe that the identification of 
additional phylogenomic datasets where different data types are associated with distinct signals 
could provide a way to explore the behavior of phylogenetic methods and their ability to accurately 
recover true historical signal. 
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