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Simple Summary: Using tools from both mathematics (especially wavelet theory) and computer
science (machine learning), we present a general new method for modelling the evolution of epidemics
which is not restricted to human populations. A crucial novel feature of our approach is that it
significantly takes into account that an epidemic may take place in certain types of waves which
cannot only be of a global as well as local nature, but can also occur at multiple different times and
locations. In the particular case of the current Covid-19 pandemic, based on recent figures from the
Johns Hopkins database we apply our model to France, Germany, Italy, the Czech Republic, as well
as the US federal states New York and Florida, and compare it and its predictions to established as
well as other recently developed forecasting methods and techniques.

Abstract: We introduce the concept of epidemic-fitted wavelets which comprise, in particular,
as special cases the number I(t) of infectious individuals at time t in classical SIR models and
their derivatives. We present a novel method for modelling epidemic dynamics by a model
selection method using wavelet theory and, for its applications, machine learning-based curve fitting
techniques. Our universal models are functions that are finite linear combinations of epidemic-fitted
wavelets. We apply our method by modelling and forecasting, based on the Johns Hopkins University
dataset, the spread of the current Covid-19 (SARS-CoV-2) epidemic in France, Germany, Italy and the
Czech Republic, as well as in the US federal states New York and Florida.
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1. Introduction

The present work proposes a novel method for modelling epidemic dynamics by combining
wavelet theory and data-driven model section techniques in machine learning.

In understanding epidemic diffusion and the growth rate of an infectious disease at population
level, the actual number of reported cases of infections always plays a (if not the) crucial role and,
far beyond that, at least in the case of diseases afflicting human societies, directly influences government
and health care system decisions and measures regarding, e.g., protection, containment and hospital
capacities. However, due to both the manifold practical as well as conceptual issues involved,
a rigorous and accurate detection of this number turns out to be a rather difficult and complex problem.

To illustrate at least some of the theoretical difficulties involved here by a prominent
and important case which calls the entire world now to action, let us note that most current
mathematical modelling and forecasting techniques for the spread of the Covid-19 disease are
based on classical Susceptible–Infectious–Recovered/Removed (SIR) and Susceptible-Exposed-
Infectious-Recovered/Removed (SEIR) compartmental epidemiological models [1–3]. Yet, with regard
to predicting the number of infectious cases I(t) at time t, they suffer from severe and model-inherent
principal limitations:

All these models, as well as all their derivatives, are not suitable to build a model for the function
I(t) which is compatible with any given population. This is because these models are based on the
assumption that the population is homogeneously composed and distributed (i.e., the chance that an
arbitrary infected person will infect an arbitrary susceptible person is taken to be constant throughout
the epidemic, and, moreover, it is assumed that at any given time every infected person has one and
the same constant chance to recover).

In real life, however, there are actually many and rather diverse waves of outbreaks, stemming
from different times or locations. One faces here not only drastically varying growth rates, but also
hot spots versus no-cluster locations, infection rates depending on age or other parameters, etc.
which altogether entails that the homogeneity assumption approach taken in SIR models and their
variations is oversimplified and cannot give realistic forecasts.

To overcome the drawbacks caused by homogeneity assumptions, the new approach presented in
this work is based on the following idea: we shall decompose the growth curve of infection numbers
into several basic “waves”, where each basic wave is considered as a representation of the epidemic,
and localised both in time and position.

This point of view naturally calls for the use of wavelet theory. Wavelets as such are special
families of functions which came up in the 1980s by combining older concepts from mathematics,
computer science, electrical engineering and physics, having since found fruitful applications in many
other disciplines. In particular, some precursor, wave-based approaches to modelling epidemic growth
appeared already a long time before wavelets emerged in both deterministic and stochastic models,
compare, among others, the works in [4–7], and only very recently, Krantz et al. (compare with
the work in [8]). Moreover, the latter work has also proposed building epidemic growth models by
combining wavelet with discrete graph theory (see also below).

In this article, we propose an approach to epidemic dynamics by modelling the number of daily
reported cases using specially designed wavelets, called epidemic-fitted (EF) wavelets. For instance,
the number I(t) of infectious individuals at time t in the classical SIR and SEIR models is an EF wavelet,
see Section 3.4. Another example of an EF wavelet is the log-normal one, which we will use in our
Covid-19 spread forecasting applications, see Sections 4.1 and 3.4 for more details.

In our approach, the number of daily reported cases is the value of a function that is a positive
linear combination of N EF wavelets at the given day. We fix the number N of summands of EF
wavelets entering in our modelling function (and in our applications N is usually taken to be 3 or 5).
The wavelet series coefficients themselves are then obtained by machine learning-based curve fitting
methods with square loss function, see Sections 2.2 and 4.1.
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We then proceed with specific applications to Covid-19 scenarios. Here, we present, now using
in addition data-driven machine learning-based curve fitting, some of our model’s predictions to
selected countries and US federal states, which are based on the currently existing respective data
for these locations provided by the most recent numbers supplied by the Johns Hopkins University
Covid-19 database.

Before mentioning and commenting upon other related works, let us adopt from now on,
and throughout all following parts of the present work, the following convention: as we shall consider
only reported cases in our paper, we will omit the adjective “reported” from “reported cases of
infected”. In [9], the authors present three basic “macroscopic” models to fit data emerging from local
and national governments: exponential growth, self-exciting branching process and compartmental
models. The compartmental models are the classical SIR and SEIR models; the self-exciting branching
process has been used before with regard to treating Ebola disease outbreaks and other dynamics of
social interaction. In the exponential growth model, the number I(t) of infectious individuals at time t
is expressed as I(t) = I0eαt, where α is the rate constant. The exponential growth model is related to
our approach, in which the exponential function is modelling the reported infections. However, as this
is a one-parameter model, it works only well for fitting the data at the beginning of an outbreak.

In [10], the authors use a log-normal density function with three parameters to fit the daily
reported cases. However, as they tried to fit the data with only one function, the curve of reported
cases may not be well fitted, as there are usually several waves of the epidemic for a period while
one function presents only one wave. As explained above, our wavelet approach does overcome this
difficulty. In [11], the authors use the function f (x) = kγβαβx−1−β exp(−γ(α/x)β) with parameters
α, β, γ, k to fit all data. This method, too, can fit the data only for one wave. In [12], the authors fit the
data of daily reported cases with a two-wave model, using the sum of two Gaussian functions.

In [13], the authors introduce an epidemic model composed of overlapping sub-epidemic waves,
where each wave is a generalised logistic growth model given by solution of differential equations.
A short-term forecast of the Covid-19 epidemic in China from 5 to 24 February 2020 was given in [14]
using three phenomenological models (generalised logistic growth model, the Richards growth model
and sub-epidemic wave model in [13]) and ensemble methods (see also [15] for the ensemble approach
in forecasting epidemic trajectories). In [16], a multi-wave model combining several SIR models,
namely, a Multiple-Wave Forced-SIR model, was introduced to fit the data of daily cases.

Recently, Krantz et al. [8] have proposed an approach to construct epidemic growth models
using fractional wavelets. These are built from the number of reported cases to construct wavelets that
model the dynamics of the number of completed cases [8]. In their paper, the number of completed
cases is the sum of the number of reported cases and the number of unreported cases. Furthermore,
the proposed approach there is to update their models assuming the availability of the reporting error
which improves over time and tends to zero eventually. This assumption appears to us, however, as a
too idealistic one.

Those two last approaches are the ones which are most closely related to our own. However,
while those use single waves coming from solutions differential equations, we use general wavelet
functions such as Gaussian functions, log-normal functions, Gompertz density functions and Beta
prime density functions, which all satisfy our general condition of being epidemic-fitted in the
sense of Definition 2. We also refer to the works in [17–41] for other approaches on modelling
and forecasting the spread of Covid-19 epidemic using deep learning, machine learning, time series
analysis, network model, stochastic model and deterministic compartmental framework.

The remaining parts of the present paper are organised as follows. In Section 2, we first recall the
notion of a wavelet (Definition 1) and the fundamental theorem of wavelet theory (Theorem 1),
which we are going to put to use in the sequel. We proceed by introducing the notion of an
epidemic-fitted (EF) wavelet (Definition 2) and propose our method for modelling epidemic dynamics
(Proposition 1), justified by the fundamental Theorem 1. In Section 3, we consider several important
examples of EF wavelets and impose constraints on an EF wavelet to be suitable as a basic EF wavelet in
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epidemic dynamics. In Section 4, we present applications of our method to modelling and forecasting
the current spread of Covid-19 in France, Germany, Italy, the Czech Republic and several US federal
states, all based on the most recent JHU data.

2. Epidemic Modelling via Wavelet Theory and Machine Learning

2.1. Wavelets

In this subsection, we recall and collect some basic concepts and facts from Wavelet Theory
(cf. [42–44]), which will be needed in our approach for modelling epidemic dynamics.

Definition 1 ([42] [p. 24]). A wavelet or mother wavelet is a function ψ ∈ L1(R) such that the following
admissibility condition holds:

Cψ =
∫ ∞

−∞
|ψ̂(ξ)|2 dξ

|ξ| < ∞, (1)

where ψ̂ is the Fourier transform of ψ, i.e., ψ̂(ξ) =
∫
R ψ(x)e−iξxdx.

Notice that condition (1) is only satisfied if ψ̂(0) = 0 or
∫

ψ(x)dx = 0. Conversely, we have the
following sufficient condition for (1).

Lemma 1 ([42] [p. 24). ] Let ψ ∈ L1(R) and
∫
R ψ(x)dx = 0. If

∫
R |ψ(x)|(1+ |x|)αdx < ∞ for some α > 0,

then |ψ̂(ξ)| ≤ C|ξ|min(α,1) and Cψ < ∞.

A basic example of a wavelet is the function

ψ(t) =
sin(2πt)− sin(πt)

πt
.

From a mother wavelet one can generate other wavelets (called children wavelets), using affine
transformations (i.e., dilations and translations):

ψa,b(t) =
1√
|a|

ψ

(
t− b

a

)
, (a, b) ∈ R×R.

These wavelets provide us with the following decomposition of L2(R).

Theorem 1 ([42] [Proposition 2.4.1 and pp. 25–26]). Let ψ be a mother wavelet. Then, any f ∈ L2(R)
decomposes as

f = C−1
ψ

∫
R2

< f , ψa,b > ψa,b
dadb

a2 , (2)

strongly in L2(R), where <,> denotes the standard scalar product in L2(R), i.e.,

lim
A1,A2,B→∞

‖ f − C−1
ψ

∫
1/A1≤|a|≤A2,|b|≤B

< f , ψa,b > ψa,b
dadb

a2 ‖L2 = 0. (3)

Any function f ∈ L2(R) can then be written as a superposition of ψak ,b` , i.e.,

f (x) = ∑
k,l

αk,`ψak ,b`(x).

We refer to the work in [42] for more details on the analysis of discrete wavelet decomposition
and, especially, for precise formulas for the coefficients αk,`.
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Notice that from a machine learning point of view, finding the αk,`, ak, b` can be thought of as a
curve fitting problem, and this is how we will combine wavelet theory and machine learning techniques
in our approach to modelling epidemic dynamics.

2.2. Epidemic-Fitted Wavelets and Modelling

As we already explained in the introduction, the time development of an epidemic features local
as well as global wave-type phenomena. This leads us to the concept of epidemic-fitted wavelets.
Informally speaking, such a wavelet is given by a positive real function W : R→ R>0, whose value
W(t) at a given time t describes the number of new infected cases in a homogeneous population with
respect to an epidemic that occurs in one wave only, and thus will satisfy some sort of homogeneous
compartmental model (without network structure).

As we are interested in the daily infected cases, we can assume that W(t) is strictly positive but
tends to 0 when t tends to±∞. Setting w(t) = ln W(t) so that W(t) = ew(t), the (multiplicative) growth
rate of W is its log-derivative:

Ẇ(t)
W

= ẇ(t).

We wish W(t) to “start” at t = a, (reach its) “peak” at t = χ, and “stop” at t = b (a < χ < b).
This is to say that w(a) = w(b) = 0, ẇ(χ) = 0, ẇ(t) > 0 for t < χ and ẇ(t) < 0 for t > χ.

Definition 2. Given an interval (a, b) ⊂ R, a ≥ 0, an epidemic-fitted wavelet is a positive real function ψ ∈
L1((a, b),R+) such that ψ has start-peak-stop behaviour, i.e., ψ satisfies limx→a+ ψ(x) = limx→b− ψ(x) = 0,
and ψ admits its maximum at some point in (a, b).

We can interpret ψ as a wavelet ψ̃ in the sense of Definition 1 by simply setting ψ̃(x) := ψ(x) for
x ∈ (a, b), ψ̃(x) := −ψ(|x|) for x < −a, and ψ(x) = 0 otherwise. Indeed, this definition implies that∫
R ψ̃(x)dx = 0 and

∫
R |ψ̃(x)|(1 + |x|)dx < ∞, therefore Cψ̃ < ∞ by Lemma 1 and ψ̃ is a wavelet.

The first examples of EF wavelets which come to mind are polynomial functions of degree 3
(restricted to some finite interval). Other examples of functions with start-peak-stop behaviour are
Gaussian functions, log-normal functions, Gompertz density functions

ψb,c(x) = bc exp(c + bx− cebx), (4)

and, in SIR models, the solution function giving the number of I(t), the number of infectious
individuals (cf. the work in [45], etc.).

In our applications to real data (see Section 4), we will employ log-normal functions as
epidemic-fitted (EF) wavelets. For treating an epidemic, we will concentrate on the curve of daily
(reported) infected cases, denoted by RC(t), and try to understand the epidemic growth based on this
information. Theorem 1 implies that our following ansatz is “asymptotically” correct, as the number
N grows to infinity. In particular, numerical simulations involving bigger and bigger numbers N will
lead to better and better accuracy.

Proposition 1 (Ansatz). A positive function (or curve) whose value is the number of infected cases at time t is
representable as a finite linear combination of epidemic-fitted wavelets:

RC(t) =
N

∑
i=1

αiWi(t, θi), (5)

where each such wavelet Wi can be obtained from a basic (mother) EF wavelet ψ by adding some parameters
θi = (θ1

i , . . . , θk
i ).
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Using this ansatz, we shall model epidemic dynamics by finding the wavelet series coefficients αi
and θi in the decomposition (5), when given the number of infected cases over a sufficient long time
frame. This amounts to solving a curve fitting problem in machine learning .

3. Epidemic-Fitted (EF) Wavelets

In this section, we introduce some epidemic models with different basic (mother) epidemic-fitted
(EF) wavelets. In Section 4, we show by fitting the Covid-19 data that log-normal EF wavelet models
are highly compatible with the data and lead to very good forecast projections.

3.1. Gaussian EF Wavelets

The standard Gaussian function is a fundamental example of a function which has start-peak-stop
behaviour and exponential growth:

ψ : R+ → (0, 1]

x 7→ exp(−x2/2).

After dilating and translating, we obtain a general Gaussian function

ψb,c(x) = exp
(
− (x− b)2

2c2

)
.

We remark that, in general, limx→−∞ ψb,c(x) = 0, but for certain b, c > 0 we have ψb,c(0) � 1.
In this case, we can simply set ψ̃(x) = max(ψb,c(x) − ψb,c(0), 0) as the corresponding Gaussian
EF wavelet.

In [12], the authors fitted the data of daily reported cases with a two-wave model using the sum
of two Gaussian functions. However, as these are symmetric with respect to the the vertical line x = b,
this model may be not compatible with the curve of daily cases. We will explain this point in further
detail in the next section.

3.2. Log-Normal EF Wavelets

We define here the log-normal function, which is a Gaussian function in which the variable x is
interchanged by log x:

ψb,c : R+ → (0, 1]

x 7→ exp(− (log x− b)2

2c2 ).

We then define the corresponding log-normal wavelet by extending

ψb,c(x) = − exp(− (log(−x)− b)2

2c2 ), forx < 0.

Thus, we can rewrite it as

ψb,c(x) = sgn(x) exp

(
−
( 1

2 log(x2)− b)2

2c2

)
.

By dilating and translating, we obtain a general log-normal EF wavelet

ψb,c,d(x) = exp

(
−
( 1

2 log(x− d)2 − b)2

2c2

)
.
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Figure 1 depicts the graph of the log-normal function with scaling coefficient

ψ(x) = a exp(− (log x− b)2

2c2 ), x > 0.

Figure 1. Log-normal graph.

3.3. Further Examples of EF Wavelets

Based on probability distributions, we can also choose many other functions to build a basic EF
wavelet. For example, one can start here from Gompertz density functions

ψb,c(x) = bc exp(c + bx− cebx), (6)

or Beta prime density functions

ψb,c(x) = xb−1(1 + x)−b−c/B(b, c), (7)

where B is the Beta function. For appropriately chosen parameters b, c, they all satisfy the
epidemic-fitted condition in Definition 2.

Another important class of EF wavelets is given by the function reporting the number of infectious
individuals I(t) in compartmental SIR models and their variations (such as SEIR and SIRD models,
etc.). The SIR (compartmental) model was introduced by W. O. Kermack and A. G. McKendrick [2],
in which they considered a fixed population with only three compartments, and the numbers S(t) (for
“susceptible”), I(t) (for “infectious”), and R(t) (for “recovered” (or “removed”)).

dS
dt

= − βIS
N

(8)

dI
dt

=
βIS
N
− γI (9)

dR
dt

= γI. (10)

In Figure 2, these curves show the number of infectious individuals I(t).
In general, I(t) is an implicit function defined by a system of differential equations, which can

lead to difficulties when trying to fit the data. However, we can use here the implicit solutions for
simple SIR models which were deduced recently in [45].
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Figure 2. Infectious individuals I(t) for different initial conditions.

3.4. Choosing Suitable EF Wavelets

We explain here how to choose good EF wavelets for building an epidemic model. The first
criterion to meet is the start-peak-stop behaviour as discussed in Section 2. Our second criterion is
based on the following analysis of the number I(t) of infectious individuals in the SIR model:

dS
dt

= − βIS
N

(11)

dI
dt

=
βIS
N
− γI (12)

dR
dt

= γI. (13)

A closer look at SIR models reveals that the number S(t) of susceptible individuals is decreasing
in time. Therefore, the number I(t) of infectious also grows less and the rate of infectious, i.e., dI/dt,
before the peak is always less than the one after the peak. This is an important criterion when choosing
EF wavelets.

Log-normal EF wavelets actually turn out to be very good candidates in this regard. Indeed, the first
advantage here is the start-peak-stop behaviour, where the start for a log-normal wavelet is at x = 0 (or
near 0), the peak is achieved at x = eb and the stop depends on the constant c. The second advantage
is that at the same value of ψ, the rate of the curve before the peak is less than the one after the peak.
This can be easily seen as follows. The derivative of ψb,c is

ψ′b,c(x) = ψb,c(x)
−(log x− b)

c2x
. (14)

Now, suppose that ψ(x1) = ψ(x2) with x1 < eb < x2, then | log x1 − b| = | log x2 − b|. Therefore,
we have

|ψ′b,c(x1)| =
x2

x1
|ψ′b,c(x2)| < |ψ′b,c(x2)|

as required.
These are the main reasons why we first chose log normal functions as basic EF wavelets for our

numerical simulations (see Section 4). We also remark that in [10] the authors used the log-normal



Biology 2020, 9, 477 9 of 21

density function, i.e., fa,b,c(x) = a√
2πcx

ψb,c(x), to fit the number of daily reported cases. However,
as they used only one single function, and as there are in general many waves of the epidemic, the data
may not be well-fitted enough to produce realistic projections.

4. Data-Driven Numerical Forecasts

In this section, using log-normal EF wavelets we provide numerical results on the fitting and
forecasting of daily new cases of Covid-19 epidemic for some European countries and US federal states.

4.1. The Log-Normal Wavelet Model

Our EF wavelet model for the curve of daily new cases is a finite representation by log-normal EF
wavelest introduced in Section 4.1:

W(t) =
N

∑
i=1

aiψbi ,ci
(t),

where ai, bi, ci are parameters, N is the number of log-normal EF wavelets and t is the time variable.
We intend to find the parameters ai, bi, ci such that W(t) is close to the number of daily infections

RC(t) by a suitable loss function L(·, ·). In other words, we want to find parameters which minimise
L(W, RC). For our numerical simulations presented in the next section of this work, we shall use the
Levenberg–Marquardt algorithm (cf. [46,47]) for the least squares loss function. The main advantage
of this approach is that the loss function helps us to force the peaks of EF wavelets close to the peaks of
real data.

The number of log-normal wavelets N depends on the data of each population level, since it
presents the numbers sub-epidemic. In our numerical simulations, we first try with N = 3, 5. It would
be interesting to estimate N before fitting the model. Otherwise, we will need to choose N sufficiently
large, and redundant wavelets will have very small coefficients and, correspondingly, very little effect.

4.2. Data and Smoothing

We will be using the data supplied by the Johns Hopkins University Center [48], noting, however,
that almost all data from countries or US federal states are subject to (high) noise. One of the main
reason for this is the reporting delay (cf. [49,50]). As explained in [50], “there will be two main sources of
delay in monitoring trends. First of all, there will be a testing delay between the actual date when an individual
becomes infected and the date when that individual is ultimately tested. Second, unless test samples are very
rapidly processed, there will be a further reporting delay between the date of testing and the date the test results
are communicated by the reporting entity.”

In order to reduce noise, we do smooth out the real data using a (two-sided) moving average
method (cf. [51] Chapter 3, cf. [52,53]). A moving average is a time series constructed by taking
averages of several sequential values of another time series which is a type of mathematical convolution.
In statistics, two-sided moving averages are used to smooth a time series in order to estimate or highlight
the underlying trend. If we represent the original time series by x1, ..., xn, then a (simple) two-sided
moving average of the time series will be given by

x̄i =
1

2d + 1

i+d

∑
k=i−d

xk.

If the data are showing a periodic fluctuation, moving averages of periods of equal length will
eliminate the periodic variations (cf. [51,52]). Observing various population levels indicates that there
is periodic fluctuation of 7 days on the data, and thus we will take the average of 7 days

RC(i) =
1
7

i+3

∑
k=i−3

RC(k).
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4.3. Projections and Validations for the Czech Republic, France, Germany and Italy

4.3.1. Projections from 25 October 2020

In Figures 3–11, the green curve shows the approximate number of daily confirmed new cases
and also a possible scenario with a 60-day projection for the Czech Republic (or, in short: Czechia),
France, Germany and Italy. Other curves present log-normal EF wavelets where each one can be
seen as a sub-epidemic, localised both in time and location. These EF wavelets then give us the
nowcasting for the epidemic situation for each population level, i.e., forecasts present sub-epidemics,
recent sub-epidemics and the combination of sub-epidemics.

For validation, we use the metric relative percentage difference:

erri =
|yi − ŷi|

yi
, (15)

where yi is the real data at day i smoothed by a 7-days moving average and ŷi is the prediction of
our model. We fit our model with the data of daily cases until 19 October and keep the last 6 days
(20–25 October) for the validation set, then obtain the average error of 4.17% for Czechia, 7.48% for
Germany and 3.25% for Italy (see Table 1).

Table 1. Prediction by log-normal wavelet model for Czechia, Germany, Italy from 20 October to
25 October.

Czechia

Day Real Data Smoothing Prediction Error

20 October 11,984 11,173 10,730 3.96%

21 October 14,969 11,710 11,161 4.68%

22 October 14,150 12,030 11,564 3.87%

23 October 15,258 12,689 11,934 5.95%

24 October 12,474 12,830 12,269 4.37%

25 October 7300 12,295 12,564 2.18%

Germany

Day Real Data Smoothing Prediction Error

20 October 8523 9472 8346 11.88%

21 October 12,331 10,019 8763 12.53%

22 October 5952 9861 9164 7.06%

23 October 22,236 10,105 9545 5.54%

24 October 8688 10,421 9902 4.98%

25 October 2900 9944 10,231 2.88%

Italy

Day Real Data Smoothing Prediction Error

20 October 10,871 13,322 13,000 2.41%

21 October 15,199 14,567 14,080 3.34%

22 October 16,078 15,934 15,203 4.58%

23 October 19,143 17,034 16,364 3.93%

24 October 19,640 18,266 17,557 3.88%

25 October 21,273 19,033 18,777 1.34%
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However, we obtain an average error of 32.61% for France (see Figure 6) on the validation set
from 20–25 October. We remark here that in some periods of 3 consecutive days the total cases of
France remain constant in the Johns Hopkins University data [48], and the total cases are updated by
summing up for the day after these 3 days. For example, the periods 9–11 October and 16–18 October
show 732,434 and 876,342 total cases, respectively. This makes the daily reported cases equal to zero in
some 2 consecutive days. Using a moving average of 7 days we overcome this situation and then use
the smoothing data for the projections shown in Figures 5–7.

Figure 3. Czechia: fitting and forecasting (green curve) from 25 October with 5 wavelets. The green
curve is the combination of other curves which are EF wavelets.

Figure 4. Czechia: fitting and forecasting from 19 October with 5 wavelets. The green curve is the
combination of other curves which are EF wavelets.

Figure 5. France: fitting and forecasting from 25 October with 5 wavelets. Our model predicts a new
wave starting from October 2020.
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Figure 6. France: fitting and forecasting from 19 October with 5 wavelets. The green curve is the
combination of other curves which are EF wavelets.

Figure 7. France: fitting and forecasting from 26/09 with 5 wavelets. The green curve is the
combination of other curves which are EF wavelets.

Figure 8. Germany: fitting and forecasting from 25 October with 5 wavelets. The green curve is the
combination of other curves which are EF wavelets.
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Figure 9. Germany: fitting and forecasting from 19 October with 5 wavelets. The green curve is the
combination of other curves which are EF wavelets.

Figure 10. Italy: fitting and forecasting from 25 October with 5 wavelets. The green curve is the
combination of other curves which are EF wavelets.

Figure 11. Italy: fitting and forecasting from 19 October with 5 wavelets. The green curve is the
combination of other curves which are EF wavelets.

4.3.2. Updated Projections from 9 November 2020

Figures 12–15 show the projections from 9 November 2020.
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Figure 12. Italy: fitting and forecasting from 9 November with 5 wavelets. The green curve is the
combination of other curves which are EF wavelets.

Figure 13. France: fitting and forecasting from 9 November with 5 wavelets. The green curve is the
combination of other curves which are EF wavelets.

Figure 14. Germany: fitting and forecasting from 9 November with 5 wavelets. The green curve is the
combination of other curves which are EF wavelets.
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Figure 15. Czechia: fitting and forecasting from 10 November with 5 wavelets. The green curve is the
combination of other curves which are EF wavelets.

4.4. Projections for Federal States in the United States

In Figures 16 and 17, the green curve shows the projections for Florida, New York from
25 October 2020.

Figure 16. Florida: fitting and forecasting from 25 October. The green curve is the combination of other
curves which are EF wavelets.

Figure 17. New York: fitting and forecasting from 25 October. The green curve is the combination of
other curves which are EF wavelets.

Updated Projections for Florida and New York from 10 November 2020

Figures 18 and 19 show the projections for Florida and New York from 10 November 2020.
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Figure 18. Florida: fitting and forecasting from 10 November 2020. The green curve is the combination
of other curves which are EF wavelets.

Figure 19. New York: fitting and forecasting from 10 November 2020. The green curve is the
combination of other curves which are EF wavelets.

5. Comparing with Other Methods

In this section, we compare our approach to other methods in statistical analysis for forecasting:
simple moving average (SMA), autoregressive moving average (ARMA) and autoregressive integrated
moving average (ARIMA). We chose two situations: before the first epidemic peak and after the first
epidemic peak. We take the average of 7 days for SMA. The parameters for ARMA are p = 7, q = 7
and the ones for ARIMA are p = 7, d = 2, q = 7.

In Figure 20, we compare the forecastings of 20 days from 20 March. We can see that our model
can give a good prediction for the peak. In Figure 21, we compare the forecastings of 20 days from
06 April. This shows that our model also gives good results here.
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Figure 20. Forecasting 20 day from March 30, using Wavelet model (green curve) which is combined
by EF wavelets, SMA (blue curve), ARMA model (cyan curve) and ARIMA model (yellow curve)

Figure 20. Forecasting 20 days from 30 March, using a wavelet model (green curve) which is combined
from EF wavelets, SMA (blue curve), ARMA model (cyan curve) and ARIMA model (yellow curve).
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Figure 21. Forecasting 20 day from April 06, using Wavelet model (green curve) which is combined by
EF wavelets, SMA (blue curve), ARMA model (cyan curve) and ARIMA model (yellow curve)

Figure 21. Forecasting 20 days from 06 April, using a wavelet model (green curve) which is combined
from EF wavelets, SMA (blue curve), ARMA model (cyan curve) and ARIMA model (yellow curve).

6. Conclusions and Outlook

The numerical results in the last section of our paper suggest that our models are actually able
to predict the number of daily infected Covid-19 individuals many days ahead in many different
countries. In particular, our approach also gives reasonable results for the epidemic situation on
population levels by precising sub-epidemics corresponding to EF wavelets.

For solving the curve fitting problem in our model selection, we only have to use relatively few
parameters. The model can be seen as a neural network containing only one hidden layer with a
log-normal function activation, entailing that we do not have to deal with overfitting problems and
that the estimation error of our model is low [54]
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Our method for modelling the number of daily reported cases of infectious individuals also
applies to other epidemics characteristics, e.g., to the number of active cases, and thus is also important
for health care system decisions.

In future work, we will present refinements of our approach as well as refinements of the curve
fitting techniques employed here. We will also extend our approach based on the epidemic-fitted
wavelet approach to situations where EF wavelets are multivariate functions of time variables,
measurement levels, or other variables such as death rate, recovery rate, etc.
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supported by GAČR-project 18-01953J and RVO: 67985840.

Acknowledgments: It is our pleasure to thank Tat Dat Tran and Vit Fojtik for useful suggestions and comments
on an earlier version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Brauer, F.; van den Driessche, P.; Wu, J. (Eds.) Mathematical epidemiology. In Lecture Notes in Mathematics
1945, Mathematical Biosciences Subseries; Springer: Berlin, Germany, 2008.

2. Kermack, W.O.; McKendrick, A.G. A Contribution to the Mathematical Theory of Epidemics. Proc. R. Soc.
1927, 115, 700–721.

3. Wang, J. Mathematical models for COVID-19: Applications, limitations, and potentials. J. Public Health Emerg.
2020, 4, doi:10.21037/jphe-2020-05.

4. Bartlett, M.S. Deterministic and stochastic models for recurrent epidemics. In Proceedings of the Third
Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 23–25 December 1956;
Volume 4, pp. 81–109.

5. Bartlett, M.S. Measles periodicity and community size. J. R. Stat. Soc. A 1957, 120, 48–70.
6. Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Humans and Animals; Princeton University Press:

Princeton, NJ, USA, 2008.
7. Soper, H.E. The interpretation of periodicity in disease prevalence. J. Roy. Stat. Soc. Ser. A 1929, 92, 34–61.
8. Krantz, P.P.; Polyakov, P.; Rao, A.S.R.S. True epidemic growth construction through harmonic analysis.

J. Theor. Biol. 2020, 494, 110243.
9. Bertozzi, A.L.; et al. The challenges of modeling and forecasting the spread of COVID-19. Proc. Natl. Acad.

Sci. USA 2020, 117, 16732–16738, doi:10.1073/pnas.2006520117.
10. Nishimoto1, Y.; Inoue, K. Curve-fitting approach for COVID-19 data and its physical background. medRxiv

2020, doi:10.1101/2020.07.02.20144899.
11. Tuli, S.; Tuli, S.; Tuli, R.; Gill, S.S. Predicting the growth and trend of COVID-19 pandemic using machine

learning and cloud computing. Internet Things 2020, 11, 100222, doi:10.1016/j.iot.2020.100222.
12. De Noni, A., Jr.; da Silva, B.A.; Dal-Pizzol, F.; Porto, L.M. A two-wave epidemiological model of COVID-19

outbreaks using MS-Excel. medRxiv 2020, doi:10.1101/2020.05.08.20095133.
13. Chowell, G.; Tariq, A.; Hyman, J. A novel sub-epidemic modeling framework for short-term forecasting

epidemic waves. BMC Med. 2019, 17, 164, doi:10.1186/s12916-019-1406-6.
14. Roosa, K.; Lee, Y.; Luo, R.; Kirpich, A.; ; Rothenberg, R.; Hyman, J.M.; Yan, P.; Chowell, G. Real-time forecasts

of the COVID-19 epidemic in China from February 5th to February 24th, 2020. Infect. Dis. Model. 2020, 5,
256–263.

15. Chowell, G.; Luo, R.; Sun, K.; Roosa, K.; Tariq, A.; Viboud, C. Real-time forecasting of epidemic trajectories
using computational dynamic ensembles. Epidemics 2020, 30, 100379.

16. Kaxiras, E.; Neofotistos, G. Multiple Epidemic Wave Model of the COVID-19 Pandemic: Modeling Study.
J. Med. Internet Res. 2020, 22, e20912. doi:10.2196/20912.



Biology 2020, 9, 477 20 of 21

17. Acuna-Zegarra M.A.; Santana-Cibriancd, M.; Velasco-Hernandez, X.J. Modeling behavioral change and
COVID-19 containment in Mexico: A trade-off between lockdown and compliance. Math. Biosci. 2020, 325,
108370, doi:10.1016/j.mbs.2020.108370.

18. Aràndiga, F.; Baeza, A.; Cordero-Carrión, I.; Donat, R.; Martí, M.C.; Mulet, P.; Yáñez, D.F. A Spatial-Temporal
Model for the Evolution of the COVID-19 Pandemic in Spain Including Mobility. Mathematics 2020, 8, 1677,
doi:10.3390/math8101677.

19. Arenas, A.; Cota, W.; Gomez-Gardenes, J.; Gomez, S.; Granell, C.; Matamalas, J.; Soriano, D.;
Steinegger, B. A mathematical model for the spatiotemporal epidemic spreading of COVID19. MedRxiv
2020, doi:10.1101/2020.03.21.20040022.

20. Cotta, R.M.; Naveira-Cotta, C.P.; Magal, P. Mathematical Parameters of the COVID-19 Epidemic in Brazil and
Evaluation of the Impact of Different Public Health Measures. Biology 2020, 9, 220.

21. Demongeot, J.; Griette, Q.; Magal, P. SI epidemic model applied to COVID-19 data in mainland China.
medRxiv 2020, doi:10.1101/2020.10.19.20214528.

22. Zhu, H.; Guo, Q.; Li, M.; Wang, C.; Fang, Z.; Wang, P.; Tan, J.; Wu, S.; Xiao, Y. Host and infectivity prediction of
Wuhan 2019 novel coronavirus using deep learning algorithm. bioRxiv 2020, doi:10.1101/2020.01.21.914044.

23. Hao, Y.; Xu, T.; Hu, H.; Wang, P.; Bai, Y. Prediction and Analysis of Corona Virus Disease 2019. PLoS ONE
2020, 15, e0239960, doi:10.1371/journal.pone.0239960.

24. Hern-Matamoros, A.; Fujita, H.; Hayashi, T.; Perez-Meana, H. Forecasting of COVID19 per regions using
ARIMA models and polynomial functions. Appl. Soft Comput. 2020, 96, 106610.

25. Hernandez-Vargas, E.A.; Velasco-Hernandez, J.X. In-host Mathematical Modelling of COVID-19 in Humans.
Annu. Rev. Control. 2020, doi:10.1016/j.arcontrol.2020.09.006.

26. Huang, C.-Y.; Chen, Y.-H.; Ma, Y.; Kuo, P.-H. Multiple-Input Deep Convolutional Neural Network 2 Model
for COVID-19 Forecasting in China. medRxiv 2020, doi:10.1101/2020.03.23.20041608.

27. Iboi, E.; Sharomi, O.; Ngonghala, C.; Gumel, A.B. Mathematical Modeling and Analysis of COVID-19
pandemic in Nigeria. medRxiv 2020 . doi:10.1101/2020.05.22.20110387.

28. Kapoor, A.; Ben, X.; Liu, L.; Perozzi, B.; Barnes, M.; Blais, M.; O’Banion, S. Examining COVID-19 Forecasting
using Spatio-Temporal Graph Neural Networks. arXiv 2020, arXiv:2007.03113.

29. Kucharski, A.J.; Russell, T.W.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R.M. Early dynamics of
transmission and control of COVID-19: A mathematical modelling study. Lancet Infect. Dis. 2020, 20, 553–558 .

30. Liu, Z.; Magal, P.; Seydi, ; O.; Webb, G. Predicting the cumulative number of cases for the COVID-19 epidemic
in China from early data. Math. Biosci. Eng. 2020, 17, 3040–3051.

31. Liu, Z.; Magal, P.; Seydi, ; O.; Webb, G. A COVID-19 epidemic model with latency period. Infect. Dis. Model.
2020, 5, 323–337.

32. Liu, Z.; Magal, P.; Webb, G. Predicting the number of reported and unreported cases for the COVID-19
epidemics in China, South Korea, Italy, France, Germany and United Kingdom. J. Theor. Biol. 2021, 509, 21.

33. Manevski, D.; Gorenjec, N.R.; Kejžar, N. Modeling COVID-19 pandemic using Bayesian analysis with
application to Slovene data. Math. Biosci. 2020, 329, 108466.

34. Reiner, R.C.; Barber, R.M.; Collins, J.K.; et al. Modeling COVID-19 scenarios for the United States. Nat. Med.
2020, doi:10.1038/s41591-020-1132-9.

35. Saqib, M. Forecasting COVID-19 outbreak progression using hybrid polynomial-Bayesian ridge regression
model. Appl. Intell. 2020, doi:10.1007/s10489-020-01942-7.

36. Soubeyr, S.; Demongeot, J.; Roques, L. Towards unified and real-time analyses of outbreaks at country-level
during pandemics. One Health 2020, 100187, doi:10.1016/j.onehlt.2020.100187.

37. Seligmann, H.; Vuillerme, N.; Demongeot, J. Summer COVID-19 third wave: Faster high altitude spread
suggests high UV adaptation. medRxiv 2020, doi:10.1101/2020.08.17.20176628.

38. Wang, L.; Adiga, A.; Venkatramanan, S.; Chen, J.; Lewis, B.; Marathe, M. Examining Deep Learning Models
with Multiple Data Sources for COVID-19 Forecasting. arXiv 2020, arXiv:2010.14491.

39. Xue, L.; Jing, S.; Miller, J.C.; Sun, W.; Li, H.; Estrada-Franco, J.G.; Hyman, J.M.; Zhu, H. A data-driven network
model for the emerging COVID-19 epidemics in Wuhan, Toronto and Italy. Math. Biosci. 2020, 326, 108391.

40. Yang, Z.; Zeng, Z.; Wang, K.; Wong, S.S.; Liang, W.; Zanin, M.; Liang, J. Modified SEIR and AI prediction of
the epidemics trend of COVID-19 in China under public health interventions. Thorac. Dis. 2020, 12, 165–174,
doi:10.21037/jtd.2020.02.64.



Biology 2020, 9, 477 21 of 21

41. Jin, X.; Wang, Y.X.; Yan, X. Inter-Series Attention Model for COVID-19 Forecasting. arXiv 2020,
arXiv:2010.13006.

42. Daubechies, I. Ten Lectures on Wavelets; Society for Industrial and Applied Mathematics: Philadelphia, PA,
USA, 1992.

43. Meyer, Y.; Ryan, D. Wavelets: Algorithms and Applications; Society for Industrial and Applied Mathematics:
Philadelphia, PA, USA, 1996.

44. Meyer, Y. Wavelets, Vibrations and Scalings; CRM Monograph Series; American Mathematical Society:
Providence, RI, USA, 1997.

45. Bohner, M.; Streipert, S.; Torres, D.F.M. Exact solution to a dynamic SIR model. Nonlinear Anal. Hybrid Syst.
2019, 32, 228–238.

46. Levenberg, K. A Method for the Solution of Certain Non-Linear Problems in Least Squares. Q. Appl. Math.
1944, 2, 164–168.

47. Marquardt, D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM J. Appl. Math.
1963, 11, 431–441.

48. Johns Hopkins University Center, Covid-19 Data. Available online: https://github.com/CSSEGISandData/
COVID-19 (accessed on 09 November 2020).

49. Cavataio, J.; Schnell, S. Interpreting SARS-CoV-2 fatality rate estimates—A case for introducing standardized
reporting to improve communication. SSRN 2020, doi:10.2139/ssrn.3695733.

50. Harris, J.E. Overcoming Reporting Delays Is Critical to Timely Epidemic Monitoring: The Case of COVID-19
in New York City. medRxiv 2020. doi:10.1101/2020.08.02.20159418.

51. Makridakis, S.; Wheelwright, S.C.; Hyndman, R.J. Forecasting: Methods and Applications, 3rd ed.; Wiley:
New York, NY, USA, 1998.

52. Hyndman, R.J. Moving Averages. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer:
Berlin/Heidelberg, Germany, 2011.

53. Simonoff, J.S. Smoothing Methods in Statistics, 2nd ed.; Springer: New York, NY, USA, 1996.
54. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms;

Cambridge University Press: Cambridge, UK, 2014.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Epidemic Modelling via Wavelet Theory and Machine Learning
	Wavelets
	Epidemic-Fitted Wavelets and Modelling

	Epidemic-Fitted (EF) Wavelets
	Gaussian EF Wavelets
	Log-Normal EF Wavelets
	Further Examples of EF Wavelets
	Choosing Suitable EF Wavelets

	Data-Driven Numerical Forecasts
	The Log-Normal Wavelet Model
	Data and Smoothing
	Projections and Validations for the Czech Republic, France, Germany and Italy
	Projections from 25 October 2020 
	Updated Projections from 9 November 2020

	Projections for Federal States in the United States

	Comparing with Other Methods
	Conclusions and Outlook
	References

