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Simple Summary: Phytoestrogens are compounds derived from plants that have a similar structure
to human sex hormones. This has led to the observation that phytoestrogens have comparable effects
to these hormones in our cells. Some beneficial effects of phytoestrogens include the improvement
of menopausal symptoms and the prevention of several diseases. In fact, the consumption of soy
and soy foods among the Asian population has been associated with a decrease in the incidence of
some types of tumors. However, there are some concerns about whether these compounds may also
have harmful effects, such as interfere with cancer treatments. In this review, we collect data on the
reported effects of phytoestrogens alone or in combination with anti-cancer treatments and discuss
the controversy around using these compounds.

Abstract: Phytoestrogens are a large group of natural compounds found in more than 300 plants.
They have a close structural similarity to estrogens, which allow them to bind to both estrogen
receptors (ER), ERα and ERβ, presenting a weak estrogenic activity. Phytoestrogens have been
described as antioxidant, anti-inflammatory, anti-thrombotic, anti-allergic, and anti-tumoral agents.
Their role in cancer prevention has been well documented, although their impact on treatment
efficiency is controversial. Several reports suggest that phytoestrogens may interfere with the effect
of anti-cancer drugs through the regulation of oxidative stress and other mechanisms. Furthermore,
some phytoestrogens could exert a protective effect on healthy cells, thus reducing the secondary
effects of cancer treatment. In this review, we have studied the recent research in this area to find
evidence for the role of phytoestrogens in cancer prevention and therapy efficacy.
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1. Introduction

Phytoestrogens are naturally occurring compounds in plants and are characterized by a close
structural similarity to estrogens. This allows them to act as weak estrogenic factors and interfere
with hormonal signaling. Several reports suggest that phytoestrogens may have a positive effect on
the prevention of menopausal symptoms, type 2 diabetes, cardiovascular disease, obesity, and cancer.
These health benefits are presumably linked to their anti-inflammatory, anti-tumoral, anti-allergic,
antioxidant, anti-thrombotic, and hepatoprotective properties [1]. The interest in phytoestrogens and
cancer began after the observation that the consumption of soy and soy-derived foods was correlated
with a decreased incidence of breast [2], ovarian [3], and prostate cancer [4]. In fact, the levels
of genistein, the main soy isoflavonoid, and other phytoestrogens in plasma are inversely correlated to
the risk of developing several types of cancer [5–8].

Phytoestrogens have been extensively tested in vitro and in vivo as anti-cancer treatments,
although they have also been studied as adjuvant treatments to improve the response to chemotherapy,
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hormonotherapy, and radiotherapy. However, some studies alert that phytoestrogen consumption
may interfere with cancer treatments and be harmful to patients. In this review, we analyze the
current knowledge of the anti-tumoral properties of phytoestrogens and discuss their potential use
as agents for cancer prevention and treatment. For this, we have searched the Pubmed (https:
//pubmed.ncbi.nlm.nih.gov/), Google Scholar (https://scholar.google.es/), and Scopus databases (https:
//www.scopus.com/home.uri) for articles regarding phytoestrogens and cancer from the last 25 years
(1995–2020). To study the combination of phytoestrogens and anti-cancer treatments, especially the last
six years (2014–2020) were considered. We also searched clinical trial databases to include those trials,
finished or ongoing, using phytoestrogens for cancer patients.

2. Phytoestrogen Structure and Classification

Even though phytoestrogens are a large and heterogenic group, all of them are characterized by a
phenolic ring and two hydroxyl groups (Figure 1), which are crucial for the binding to the estrogen
receptors (ER). The agonist or antagonist properties of phytoestrogens depend on their phenolic
group [1]. Based on their structure, phytoestrogens are classified into three main classes, which include
flavonoids, lignans, and stilbenes [9,10].
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2.1. Flavonoids

Flavonoids present the typical structure C6-C3-C6, with two aromatic rings (benzene A and B)
joined together by a chain of 3 carbons cycled through an atom of oxygen (Figure 1) [11]. Flavonoids are
commonly divided into several sub-classes, based on the connection position of the B and C rings, as well
as the degree of saturation, oxidation, and hydroxylation of the C ring (Figure 1). This subclassification
includes isoflavonoids (isoflavones and coumestans), flavones, flavonols, flavan-3-ols (or catechins),
flavanones, chalcones, and anthocyanins [1,11–14].

Isoflavonoids are compounds derived from plant metabolism, and their structure consists of a
3-phenylchroman skeleton. They are also divided into two major groups, isoflavones, and coumestans.
Isoflavones are flavonoids in which the B ring is linked to the heterocyclic ring at the C3 instead of
the C2 position (Figure 1) [15]. Genistein and daidzein constitute up to 90% of isoflavones found in
soybeans [16], and formononetin and biochanin A are mainly found in red clover. Isoflavones can be
found in their free form or in their esterified forms [15]. Coumestans, the other subclass of isoflavonoids,
have a 1-benzoxolo(3,2-c)chromen-6-one structure formed by a benzoxole fused with a chromen-2-one.
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One of the most studied coumestans is coumestrol, considered an endocrine disruptor, as it has
the potential to bind to both ERs with similar affinity as estradiol, affecting the estrogenic signaling
cascade [17]. Although the estrogenic activity of coumestrol is weaker than that of estradiol, it is 30 to
100 times greater than that of other isoflavones [18], due to the position of its two hydroxy groups,
which match estradiol. This chemical structure also gives coumestrol the ability to inhibit aromatase and
3α-hydroxysteroid dehydrogenase [19], which are involved in the synthesis of steroid hormones [20].

Flavones are another type of flavonoids with a double bond between C2 and C3 (Figure 1).
Furthermore, the C3 position does not have any substitution, and C4 is oxidized [21,22]. Luteolin and
apigenin are the main compounds in this group. Due to its structure, luteolin is a strong inhibitor of
xanthine oxidase, one of the main sources of ROS production [23]. On the other hand, apigenin is thought
to protect cells against oxidative damage by enhancing mitochondrial function [23]. Furthermore,
flavones may induce cell cycle arrest and DNA damage in some cell types, and specifically, apigenin
may trigger apoptosis by inducing the activity of p38 kinase [24].

Flavonols are characterized by a 3-hydroxyflavone skeleton and are classified by the position of their
phenolic group (Figure 1). Quercetin and kaempferol are the most predominant flavonols in plants [14].
Catechins or flavanols are mainly found in tea, vinegar, peach, and pome fruits. Epicatechin is an
abundant polyphenol in unfermented cocoa beans, and it is thought to be responsible for the main
health effects of cocoa. Another widely studied catechin is epigallocatechin gallate (EGCG), which is
formed by the ester of epigallocatechin and gallic acid and is present in green tea. Both catechins have
been associated with antioxidant and chemopreventive effects in several cell lines [25,26].

Flavanones are found in all citric fruits, and their chemical structure differs from flavones in
the saturation of the C ring, with a saturated double bond between positions 2 and 3 (Figure 1) [12].
Naringenin is the most studied flavanone and contributes to limit lipid peroxidation and protein
carbonylation by increasing antioxidant defenses [27]. Isoxanthohumol and 8-prenylnaringenin are
also flavanones found in hop (Humulus lupulus), and they are also widely studied for their anti-cancer
effects [28]. 8-prenylnaringenin has been identified as the most potent phytoestrogen and binds to
both ERs [29], and inhibits aromatase [30]. Chalcones also belong to the flavonoids class and have a
common 1,3-diaryl-2-propen-1-one skeleton, named chalconoid (Figure 1). The most studied chalcone
is xanthohumol, also present in hop plants, and it possesses antibacterial and anti-cancer effects [31].
Finally, anthocyanins are the most abundant flavonoids in fruits and vegetables [32]. They are formed
by a flavylium cation (2-phenylbenzopyrilium), which links hydroxyl (-OH) and/or methoxyl (-OCH3)
groups. Various anthocyanins have been described, and mainly six are found in vegetables and fruits:
pelargonidin, cyaniding, delphinidin, petunidin, peonidin, and malvidin [33].

2.2. Lignans

Lignans are another class of phytoestrogens commonly found in grains, nuts, coffee and tea,
cocoa, flaxseed, and some fruits [34]. The chemical structure of lignans consists of two phenylpropane
groups linked by a β-β’ bond, which is formed by a C-C bond between the central atoms of their
side chains (position 8 or β) (Figure 1) [35–38]. Some studies report that these phytoestrogens are
capable of mimicking the antioxidant effects of some hormones without any associated deleterious
effects [35,39,40]. Importantly, gut bacteria are responsible for the metabolization of lignans and
produce enterodiol and enterolactone. Thus, the beneficial health effects of lignans may be conditioned
to each individual’s microbiota [41].

2.3. Stilbenes

Finally, stilbenes are an important group of nonflavonoid phytoestrogens with a polyphenolic
structure with a 1,2-diphenylethylene nucleus (Figure 1) [42]. The most studied stilbene is resveratrol,
a compound with two phenolic rings connected by a styrene double bond. This compound can occur
in trans- and cis-isoforms, being the trans-isoform the most predominant one [43]. Resveratrol is
found in a wide variety of dietary foods, including grapes, wine, nuts, and berries [44,45], and in fact,
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is considered a key compound in the French Paradox [46]. Several in vitro and in vivo studies report
that resveratrol has anti-cancer properties, as well as antioxidant, anti-aging, anti-inflammatory and
anti-pathogen effects [43–45,47,48].

3. Mechanism of Action of Phytoestrogens and Cancer Prevention

It has been established that phytoestrogens interact with ERs, activating the transcription of several
target genes. This results in the increase of the levels of antioxidants enzymes, such as superoxide
dismutase (SOD), catalase (CAT), and glutathione peroxidase (Gpx), as well as an improvement of
mitochondrial function [49–51]. Phytoestrogens also bind to G-protein-coupled estrogen receptor 1
(GPER/GPR30) and exert non-genomic effects [52–54] (Figure 2).
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Phytoestrogens also have ER-independent effects. For instance, genistein and resveratrol can act
as tyrosine kinase inhibitors, altering the activity of some downstream kinases [55]. Moreover, some
studies also report an epigenetic mechanism for some phytoestrogens and the involvement of miRNA
expression [56–58], and the modulation of chromatin structure [53,59]. However, they are mostly known
as potent antioxidants, protecting cellular structures from ROS, such as epicatechin [25] or lignans [35],
although the in vivo effects of these are much greater, due to the conversion into their active metabolites,
enterolactone and enterodiol [60]. Furthermore, some studies report that at high concentrations,
phytoestrogens may have an oxidant effect and induce cell death. This effect has been described
for several compounds, including genistein [61–64], resveratrol [65,66], and xanthohumol [67–69].
Resveratrol is one of the most studied phytoestrogens, and several clinical trials have been developed
to test its potential as a anti-cancer treatment [44,47,70], and some analogs are being designed [42,43].

These mechanisms of action have been associated with the chemoprevention potential of
phytoestrogens. For instance, in Asian populations, soy consumption correlates with a lower incidence
of prostate and breast cancer, which has been attributed to the presence of genistein in soy [71].
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Genistein has a higher affinity for ERβ (87%) than for ERα (4%), and ERβ has been reported to have
a protective effect against malignant transformation. In this regard, the chemoprevention effect of
genistein may depend on the ERα/ERβ ratio [15,72–74].

Other phytoestrogens have been less widely studied, although they also show potential as
chemopreventive agents. Quercetin may reduce the incidence of esophageal and stomach cancers,
although this protection has not been observed for lung cancer [14,75–77]. There is also evidence for mild
protection against gastrointestinal cancers associated with the consumption of tea flavanols [78]. Also,
most epidemiological studies about lignans suggest that their intake reduces the risk of premenopausal
breast cancer and possibly of postmenopausal breast cancer [39].

4. Phytoestrogens as Cancer Treatment

4.1. Phytoestrogens and Hormonal Therapy

The development and growth of some types of cancer are influenced by endocrine hormones,
such as estrogens, progesterone, or androgens. Hormonal therapy is the main choice of treatment for
these hormone-dependent cancers, which are breast, prostate, and uterine cancers [79]. This treatment
consists of a specific modulator of the hormone receptor, which blocks its downstream signaling pathway.
Tamoxifen (TAM) is one of the most commonly used drugs in hormonal therapy.

Controversial results are described for the combination of hormonotherapy with phytoestrogens.
These different results could be explained, in part, because phytoestrogens may produce different
effects in cancer cells depending on their Erα/ERβ ratio and the different affinity for these two receptors.
Our group has reported that combining genistein and TAM increases the anti-tumor activity of this
treatment in T47D cells (low ERα/ERβ ratio), while this combination decreases ROS production in
MCF-7 cells (higher ERα/ERβ ratio) and increases cell viability [72]. Moreover, genistein seems to have
an antagonizing effect on aromatase inhibitors for breast cancer at physiological concentration [80].
Constantinou et al. [81] reported that a diet combining daidzein and TAM results in increased
protection from breast carcinogenesis in rats, although the combination with genistein antagonizes
this chemopreventive effect. Tonetti et al. [82] also reported that genistein and daidzein antagonize
TAM in vitro. On the other hand, a later study analyzing combining equol, a daidzein metabolite,
and 4-hydroxy-tamoxifen, the bioactive metabolite of TAM, concluded that this strategy increases
apoptosis and TAM efficacy in MCF-7 breast cancer cells [83]. The treatment with apigenin also
shows the potential to overcome TAM resistance in SKOV3 ovarian cancer cells [84]. Interestingly,
Zhang et al. [85] recently reported that rats that receive the combination treatment of TAM and genistein
do not show any improvements; however, if the consumption of genistein starts at prepubertal or adult
age, it shows a beneficial effect.

4.2. Phytoestrogens and Chemotherapy

Chemotherapy can be classified depending on the mechanism of action of each drug. This includes
alkylating agents, anti-metabolites, topoisomerase inhibitors, mitotic inhibitors, and targeted therapies,
among others. The development of resistance to these drugs is the main limitation of chemotherapy.
The combination of chemotherapeutic agents with phytoestrogens has been studied to overcome
resistance to treatment. There are controversial results, and very few clinical studies have been fully
developed to this date, since most of them have been canceled, due to their lack of effectiveness.

Alkylating agents include platin-based therapies, such as cisplatin and oxaliplatin, and other drugs,
such as dacarbazine. These agents form adducts in DNA and interfere with DNA repair mechanisms,
eventually stopping cells from dividing. They are used to treat blood cancers, sarcomas, and lung,
bladder, breast, and ovarian cancers [86]. The effects of combining phytoestrogens and alkylating
agents seem to be dependent on the type of cancer. Genistein may help to overcome resistance to
cisplatin in gastric cancer [87] and could contribute to reducing the dose of cisplatin used for BxPC-3
pancreatic cancer cell line by blocking the cisplatin-induced activation of NF-κB [88]. However,
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other studies report that genistein and daidzein show an antagonizing effect in combination with
cisplatin in medulloblastoma, breast, and colon cancer cells [89,90].

Other phytoestrogens also show the potential to increase the efficacy of alkylating agents in several
studies. The combination of cisplatin with apigenin seems to inhibit cell proliferation in breast cancer
cell lines and decreases telomerase activity, limiting one of the mechanisms to escape apoptosis and
induce metastasis [91]. Another study found that apigenin increases the efficacy of cisplatin in B16-BL6
melanoma cells in vivo, significantly reducing tumor volume in mice [92]. Resveratrol, in combination
with cisplatin in SW620 and HT-29 colon cancer cells, results in lower cell viability compared to
the treatment alone [93], while the combination with oxaliplatin increased its anti-tumor activity in
SW480 and SW620 cells [94]. Quercetin also improves the response of lung cancer cells to cisplatin,
although this effect was not attributed to an increase in antioxidant enzymes [95]. On the other hand,
Sharma et al. [96] reported that this combination increased oxidative stress and cytotoxicity in HeP2
laryngeal carcinoma cells. On the contrary, for ovarian cancer, only the combination of cisplatin and
kaempferol had success in overcoming cisplatin resistance in OVCAR-3 cells, while apigenin, genistein,
and quercetin showed no improvement [97]. EGCG may also potentiate the anti-tumor activity of
cisplatin in ovarian cancer cells [98].

Some phytoestrogens do not have any influence on the activity of cisplatin, but show other
beneficial effects. For instance, cotreatment of formononetin and cisplatin inhibits apoptosis in kidney
epithelial cells by suppressing ROS production, suggesting a protective effect against secondary
effects [99]. Furthermore, treatment with biochanin A before cisplatin treatment triggers the activation
of the Nrf2 pathway, resulting in a protective effect against nephrotoxicity, which is a common
complication of cisplatin treatment [100].

Mitotic inhibitors usually act by binding to tubulin or by inducing microtubule disassembly,
preventing mitosis. These drugs include docetaxel, paclitaxel, or vincristine, and are used to treat breast,
lung, and blood cancers [86]. In B-cell tumors, the cotreatment of resveratrol and paclitaxel in vitro
synergistically increases apoptosis, suggesting a sensitizing effect that could reduce the dose of
paclitaxel [101]. Öztürk et al. [102] also showed this synergistic effect in glioblastoma cancer cells,
which increased ROS production and induced apoptosis. EGCG also increases the efficacy of docetaxel
and paclitaxel in prostate cancer cells [103] and the activity of paclitaxel in breast cancer cells and
in vivo [104]. Another study showed that isoxanthohumol may also be a potential coadjuvant
for melanoma, as it improves the anti-cancer activity of paclitaxel both in vivo and in vitro [105].
A pretreatment of genistein for 24 h also shows a sensitizing effect on docetaxel in BxPC-3 pancreatic
cancer cell line, inhibiting NF-κB signaling, and triggering apoptosis [88].

Anti-metabolites are commonly used drugs to treat leukemias and solid tumors, such as breast,
ovarian, and intestinal tract cancers. The most used are 5-fluorouracil (5-FU) and gemcitabine, and they
interfere with DNA and RNA synthesis, as they substitute the usual metabolites [86]. Several reports
have studied resveratrol in combination with 5-FU. Our group has previously reported that treatment
with resveratrol in combination with 5-FU increases oxidative stress in colon cancer cells and shows
higher cytotoxicity compared to the 5-FU alone [65,93]. Moreover, combining resveratrol with 5-FU
is also effective in a model on murine liver cancer, allowing a reduction of the administered dose
of 5-FU [106], and in B16 melanoma cells in vitro and in vivo [107]. Resveratrol can also sensitize
pancreatic cancer cells to gemcitabine in vitro and in vivo [108]. Frampton et al. [109] also reported
that resveratrol increases the anti-tumor effect of both 5-FU and gemcitabine in cholangiocarcinoma
cell lines.

Genistein has been shown to increase the cytotoxic effect of gemcitabine in different cancer
types, presumably overcoming chemoresistance by suppressing the Akt/NF-κB pathway induced
by chemotherapy, as shown in osteosarcoma cells [110], ovarian cancer cells [111], and in a mouse model
of pancreatic cancer [112]. Genistein has also shown the potential to synergize with 5-FU in pancreatic
cancer cells and in in vivo models [113]. Finally, Tang et al. [114] reported that EGCG also increases the
activity of gemcitabine in pancreatic cancer cells.
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Topoisomerases are the enzymes responsible for the uncoiling of DNA during DNA replication.
Irinotecan, topotecan, and etoposide are the most used topoisomerase inhibitors in clinical practice to
treat lung, ovarian and gastrointestinal cancers, as well as some leukemias [86]. Several studies have
reported an improvement of the cytotoxic activity of these drugs in combination with phytoestrogens.
For instance, a combination of etoposide and resveratrol results in lower cell viability in SW620 and
HT-29 colon cancer cells compared to the chemotherapy treatment alone [93]. Guo et al. [115] recently
showed that the combination of daidzein with topotecan results in lower cell viability both in vitro
and in vivo, as well as a reversal of resistance to chemotherapy.

Anti-tumor antibiotics act by interfering with the enzymes involved in DNA replication or causing
strand breakage. The most common include daunomycin, doxorubicin, and epirubicin. These drugs
are commonly used to treat soft tissue sarcomas and hematological cancers, as well as some types
of carcinoma, although a major setback of these drugs is their cardiotoxicity [86]. Doxorubicin is
probably the most studied drug in combination with phytoestrogens, and contradictory results have
been obtained. Rigalli et al. [116] showed that treatment of genistein in MCF-7 and MDA-MB-231
breast cancer cell lines increases their chemoresistance to doxorubicin. Another study showed that this
combination does not improve the cytotoxic activity of doxorubicin in MCF-7 cells [117]. However,
Xue et al. [118] reported that genistein-treated cells overcome their resistance to doxorubicin.

The combination of EGCG with doxorubicin produces synergistic effects inhibiting metastasis
and cell proliferation in prostate cancer cells and in vivo [119]. Reedijk et al. [120] also showed that
catechins may increase the anti-tumor activity of doxorubicin in hepatocarcinoma cell lines and in a
mice model. Du et al. [121] showed that luteolin increases the efficacy of doxorubicin and decreases its
secondary effects by increasing the antioxidant capacity of serum, while Staedler et al. [122] reported
the same results with the combination of doxorubicin and quercetin. The combination of kaempferol
with doxorubicin increases ROS production and cell death, increasing the efficacy of the drug in
glioblastoma cells [123]. In acute myeloid leukemia cells resistant to doxorubicin, treatment with
resveratrol for 24 h seems to overcome drug resistance and increase apoptosis [124]. Resveratrol has also
been described to protect from doxorubicin-induced cardiotoxicity [45]. Formononetin also increases
the sensitivity to doxorubicin in some glioma cell lines, although in this case, the antioxidant activity
was not tested [125]. The combination of doxorubicin with biochanin A also results in a synergistic
effect inhibiting cell proliferation of osteosarcoma cells [126].

Dash and Konkimalla [127] recently reported that the encapsulation in liposomes of biochanin
A and doxorubicin increases the uptake of chemotherapy in COLO205 doxorubicin-resistant colon
cancer cells and increases their sensitivity to the drug. The encapsulation of genistein and doxorubicin
also shows potential for metastatic prostate cancer [128].

Exposure of Caco-2 cells to 8-hydroxydaidzein, a daidzein derivative that is produced in the liver,
increases ROS levels and the sensitivity of these cells to epirubicin, as evidenced by the p53-induced
cell cycle arrest and triggering of apoptosis [129]. Somjen et al. [130] performed an in vivo study where
they conjugated another derivative of daidzein with daunomycin, improving the efficiency of the
drug in ovarian cancer, and showed less secondary effects, such as weight loss in mice. Trichostatin A
(TSA) is also an antibiotic used as chemotherapy for prostate, breast, and gastrointestinal cancer.
This compound can inhibit histone deacetylases in mammalian cells. The combination of TSA with
genistein significantly reduces the viability of Hep-2 laryngeal cancer cells [131] and A549 lung cancer
cells [132].

Finally, targeted therapies include small molecules and antibodies that target some proteins or block
signaling pathways in cancer cells. The most studied include sunitinib, bortezomib, and sorafenib [133].
Genistein seems to contribute to enhancing the effect of sorafenib in hepatocellular carcinoma
in vivo [134]. On the contrary, Rigalli et al. [135] reported that genistein, at concentrations of 1 and
10 µM, induces a higher resistance of HepG2 hepatocellular carcinoma cells to sorafenib.

Resveratrol is also a promising adjuvant for this type of therapy. Ivanova et al. [136] recently showed
that combining resveratrol with some targeted drugs, such as barasertib, synergistically increases
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ROS production and apoptosis in leukemic cells, while leaving normal lymphocytes unaltered.
Moreover, resveratrol also improves the efficacy of sorafenib in MCF-7 breast cancer cells by increasing
ROS production and apoptosis [137]. The combination of sorafenib and biochanin A in some
hepatocarcinoma cell lines also results in synergistic effects increasing cell death [138], and formononetin
has been reported to increase the cytotoxic effect of sunitinib in vivo [139]. Finally, navitoclax (ABT-263)
is an experimental drug currently in evaluation for solid tumors and non-Hodgkin’s lymphoma.
The combination of Navitoclax and apigenin synergistically enhanced the effect of this drug in several
colon cancer cell lines and suppressed tumor growth by 70% in xenograft mice, without observing a
worsening of secondary effects [140].

Some anti-cancer compounds can be classified into prodrugs. These molecules have little or
no effect until they are metabolized and converted into their active form. This strategy is often
used to overcome problems with drug bioavailability, and more recently, with tissue-selective
distribution [141,142]. Phytoestrogens themselves have been considered as prodrugs. Some examples
are lignans, which, as mentioned before, are metabolized into their active compounds by gut bacteria;
daidzein and formononetin, metabolized into equol also by intestinal bacteria; apigenin and kaempferol,
converted into luteolin and quercetin [143,144], respectively, and activation of chalcones by the action
of the cytochrome P450 enzyme [145]. Several strategies to develop prodrugs of phytoestrogens
are currently under study and are reviewed elsewhere [146,147]. Furthermore, some studies have
analyzed the combination of phytoestrogens with other prodrugs. For instance, the combination
of genistein and a prodrug of vitamin D synergistically decreases the proliferation of prostate and
breast cancer cells in vitro [148]. Daidzein has also been used in combination with a prodrug based
on allicin, to specifically target ovarian cancer cells in an animal model [149]. Di et al. [150] showed that
a combination of a specific antibody targeting prostate cancer cells, glucuronidase, and enterolactone
glucuronide could decrease the dose of docetaxel used. Finally, another study developed a new
potential prodrug based on benzimidazole combined with chalcones with comparable or higher
effectivity than cisplatin in breast and ovarian cancer cells in vitro [151].

Even though the combination of phytoestrogens and chemotherapy shows some promising effects
in vitro and in some in vivo models, the clinical studies that have been carried out reported little
significant improvements. For instance, a phase II study testing the addition of genistein to gemcitabine
and erlotinib treatments for pancreatic cancer patients reported no improvement in the anti-tumor
activity of these drugs, although the combination was well tolerated [152]. Another phase I clinical
study showed that the combination of a derivative of genistein and gemcitabine may be beneficial
for some specific pancreatic cancer patients [153]. This may open the door to the development of
drugs based on the structure of phytoestrogens with some modifications to make them potential
coadjuvant treatments.

4.3. Phytoestrogens and Radiotherapy

Ionizing γ-radiation is the major choice for radiotherapy, although it has adverse effects, such as
immunosuppression, inflammation, epigenetic modulation, necrosis, and secondary carcinogenesis
induction, among others. These secondary effects are mainly due to the induction of ROS production,
which leads to cellular oxidative damage [154]. Since phytoestrogens have antioxidant properties,
they have been studied as radioprotective compounds for non-tumor cells. However, other studies
support that high doses of some phytoestrogens may act as pro-oxidant molecules, thus increasing the
sensitivity of cancer cells to radiotherapy. The most studied phytoestrogens as radiosensitizers and
radioprotectors are genistein and resveratrol, although there are reports on the effect of other compounds.

In HL-60 leukemia cells, treatment with genistein induces cell cycle arrest and ROS production,
which renders cells more sensitive to γ-radiation. At the same time, genistein has a protective effect
against radiation on normal lymphocytes [155]. This radiosensitizing effect was also reported for
prostate cancer cells and in in vivo experiments [156]. Genistein and daidzein also show potential
as radiosensitizers in PC-3 prostate cancer cells in vitro and in vivo [157]. Resveratrol has been
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described to improve sensitivity in melanoma cells [158], prostate cancer cells [159], and cervical cancer
cells [160,161]. Finally, naringin, a glycone form of naringenin usually found in citrus fruits, has shown
potential as a radioprotector in mice, particularly in the spleen, one of the most sensitive organs
to radiation. A pretreatment with naringin may protect cells from radiation-induced oxidative damage
by increasing the expression and activity of antioxidant enzymes and suppressing the activation
of NF-κB, thus attenuating the adverse effects of radiotherapy [162].

Table 1 summarizes all the positive, neutral, and negative effects described for the combination of
phytoestrogens and different choices of anti-cancer treatment.

Table 1. Summary of the described effects of phytoestrogens in combination with anti-cancer therapies.

Phytoestrogen Treatment Combination Cancer Type Effect Reference

Apigenin

Tamoxifen Ovarian Cancer + [84]

Ciaplatin Breast and Ovarian Cancer,
Melanoma +/N.E. [91,92,97]

Navitoclax Colon Cancer + [140]

Biochanin A

Doxorubicin Osteosarcoma, Colon Cancer + [126,127]

Sorafenib Hepatocarcinoma + [138]

Cisplatin Kidney Cells S.E. improvement [99,100]

Catechins Doxorubicin Hepatocarcinoma + [120]

Daidzein

TAM Breast Cancer − [82]

Cisplatin Medulloblastoma, Breast,
and Colon Cancer − [89,90]

Topotecan Breast Cancer + [115]

Epirubicin Colon Cancer + [129]

Daunomycin Ovarian Cancer +, S.E. improvement [130]

Radio Prostate Cancer + [157]

EGCG

Oxaliplatin Ovarian Cancer + [98]

Docetaxel, paclitaxel Prostate and Breast Cancer + [103,104]

Gemcitabine Pancreatic Cancer + [114]

Doxorubicin Prostate Cancer + [119]

Equol TAM Breast Cancer + [83]

Formononetin

Sunitibib Breast Cancer + [139]

Doxorubicin Glioma + [125]

Cisplatin Kidney Cells S.E. improvement [99,100]

Genistein

Tamoxifen Breast Cancer +/− [72]

Fadrozole (Aromatase
Inhibitor) Breast Cancer − [80]

Tamoxifen Breast Cancer +/− [81,82]

Cisplatin Gastric and pancreatic Cancer + [87,88]

Docetaxel Pancreatic Cancer + [88]

Cisplatin Medulloblastoma, Breast,
Ovarian, and Colon Cancer −/N.E. [89,90,97]

Gemcitabine Osteosarcoma, Ovarian and
Pancreatic Cancer + [110–112]

5-FU Pancreatic Cancer + [113]

Doxorubicin Breast Cancer −/+/N.E. [116–118]

Doxorubicin Prostate Cancer + [128]

TSA Lung and Laryngeal
Carcinoma + [131,132]

Sorafenib Hepatocarcinoma +/− [134,135]

Radio Leukemia and Prostate Cancer +, S.E. improvement [155–157]
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Table 1. Cont.

Phytoestrogen Treatment Combination Cancer Type Effect Reference

Isoxanthohumol Paclitaxel Melanoma + [105]

Kaempferol Cisplatin Ovarian Cancer + [97]

Kaempferol Doxorubicin Glioblastoma + [123]

Luteolin Doxorubicin Breast Cancer + [121]

Naringin Radiotherapy Splenocytes S.E. improvement [162]

Quercetin
Doxorubicin Breast Cancer + [122]

Cisplatin Ovarian Cancer, Lung,
and Laryngeal Carcinoma + [95–97]

Resveratrol

Cisplatin Colon Cancer + [93]

Etoposide Colon Cancer + [93]

Oxaliplatin Colon Cancer + [94]

5FU
Colon and Liver Cancer,

Melanoma,
and Cholangiocarcinoma

+ [65,93,106,107,109]

Paclitaxel B-cell Malignancies,
Glioblastoma + [101,102]

Gemcitabine Pancreatic Cancer and
Cholangiocarcinoma + [108,109]

Doxorubicin Acute Myeloid Leukemia +, S.E. improvement [45,124]

Barasertib Leukemia + [136]

Sorafenib Breast Cancer + [137]

Radiotherapy Melanoma, Prostate,
and Cervical Cancer + [158–161]

Phytoestrogens are ordered alphabetically. + indicates an increase in efficacy of the anti-cancer treatment; − indicates
interference with the anti-cancer treatments; N.E., no effects; S.E. improvement, side effects improvement.

5. Conclusions

Phytoestrogen consumption has been associated with a reduction in cancer incidence, and they are
studied as promising chemopreventive compounds. Apart from interfering with the normal signaling
pathways of estrogens and modulate gene expression, phytoestrogens are also potent antioxidants,
modulate normal protein activity, and regulate epigenetics (Figure 3). This way, phytoestrogens have
the potential to limit cell proliferation in different types of tumors.

Furthermore, phytoestrogens may sensitize cancer cells to anti-cancer treatments, including
hormonotherapy, chemotherapy, and radiotherapy. Some reports also show that phytoestrogens
could also protect normal cells from the secondary effects without affecting the efficacy of treatment.
However, further research and clinical studies must be carried out to evaluate the true potential of
phytoestrogens as an option for cancer therapy, establish the optimal concentration and which patients
could benefit from it, and ensure their safety. Until now, most clinical studies regarding phytoestrogens
and cancer have been canceled, due to a lack of effect. In this regard, several investigations are focused
on designing analogs or strategies, such as encapsulation, to improve the efficacy of phytoestrogen as
treatments or coadjuvants for some types of cancer.
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