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Simple Summary: Erwinia mallotivora is the causal agent of papaya dieback disease in Malaysia,
and its pathogenicity is less appreciated, especially from the molecular perspective. Our previous
investigations proved that the hrpL/rpoE gene was one of the significant differentially expressed
genes (DEGs) during early infection of E. mallotivora in papaya, suggesting this particular gene is
important for infection. In this study, an in-depth analysis was performed using bioinformatics
software on hrpL from E. mallotivora (EmhrpL) and its encoded protein (EmHrpL) obtaining crucial
information including the conserved function and sequence motif, protein structural similarity with
related homologs, and the possibility of being inhibited by a cognate inhibitor. Moreover, knockout
(insertional mutational on DNA sequence) of the hrpL gene had caused mutant E. mallotivora (∆EmhrpL)
to be avirulent in four-month-old papaya plants. Here, the conclusion was that EmHrpL is indeed
a necessary factor in E. mallotivora pathogenicity, and the findings on the potential inhibitor of this
protein are useful for future studies to formulate a papaya dieback disease management programme.

Abstract: The alternative sigma (σ) factor E, RpoE or HrpL, has been reported to be involved in stress-
and pathogenicity-related transcription initiation in Escherichia coli and many other Gram-negative
bacteria, including Erwinia spp. and Pseudomonas spp. A previous study identified the hrpL/rpoE
transcript as one of the significant differentially expressed genes (DEGs) during early E. mallotivora
infection in papaya and those data serve as the basis of the current project. Here, the full coding DNA
sequence (CDS) of hrpL from E. mallotivora (EmhrpL) was determined to be 549 bp long, and it encoded
a 21.3 kDa HrpL protein that possessed two highly conserved sigma-70 (σ70) motifs—σR2 and σR4.
Nucleotide sequence alignment revealed the hrpL from E. mallotivora shared high sequence similarity
to rpoE/hrpL from E. tracheiphila (83%), E. pyrifoliae (81%), and E. tasmaniensis (80%). Phylogenetics
analysis indicated hrpL from E. mallotivora to be monophyletic with rpoEs/hrpLs from Pantoea vagans,
E. herbicola, and E. tracheiphila. Structural analysis postulated that the E. mallotivora’s alternative σ

factor was non-transmembranic and was an extracytoplasmic function (ECF) protein—characteristics
shared by other σ factors in different bacterial species. Notably, the protein–protein interaction (PPI)
study through molecular docking suggested the σ factor could be possibly inhibited by an anti-σ.
Finally, a knockout of hrpL in E. mallotivora (∆EmhrpL) resulted in avirulence in four-month-old
papaya plants. These findings have revealed that the hrpL is a necessary element in E. mallotivora
pathogenicity and also predicted that the gene can be inhibited by an anti-σ.
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1. Introduction

Alternative RNA polymerase sigma (σ) factors (Rpo) are essential small proteins required for
translational initiation of other genes in certain pathways specifically related to stress tolerance,
bacterial–host interaction, and pathogenicity [1–4]. Lambert et al. [5] proved that Rpo is important for
specific binding of RNA polymerase to specific gene promoters and its crucial role in disease incidence
has been discussed by Helmann [6]. Prior to the initiation of gene expression of a certain pathway,
RNA polymerase recruits a sigma factor (along with a few other factors) and forms a holoenzyme
before it can bind to the gene promoter region [6].

In several Gram-negative pathogens—as reported in the Shigella, Salmonella, Erwinia, and
Pseudomonas genera—the type III secretion system (T3SS) is the major conserved infection mechanism
employed during pathogenicity [7,8]. The T3SS is a complex system where a group of hypersensitive
response and pathogenicity (hrp) genes work synchronously during a disease event. Naturally,
this system is bound to RNA polymerase transcription initiation which involves the Rpo [6,7,9].
Once initiated, the T3SS transcribes various protein elements in the hrp family complex to assemble
tiny needles known as harpins, which are used to contact host cells [10]. The secretion of effectors
through T3SS is said to occur when various proteins, lytic enzymes, and ions are transferred across the
cell membranes from the pathogen into the host cells, marking the start of an invasion [10–12].

The gene encoding an Rpo is also referred to as hrpL depending on the bacterial species [6,13].
The alternative σ factor plays a major role in regulating the T3SS gene by interacting with -10 and
-35 motifs on the promoter region of the regulated genes [14]. It was demonstrated that the HrpL
alternative σ factor activates HrpA, HrpN, and DspE effector genes in D. dadantii (formerly known
as Erwinia chrysanthemi), which is a pathogen responsible for soft rot disease in several important
crops [15,16].

Erwinia mallotivora has been identified as the pathogen that causes papaya dieback disease
in Malaysia, responsible for the decline in national papaya export for almost two decades [17].
Nevertheless, knowledge of the virulence mechanism of E. mallotivora at the molecular level is relatively
limited. In E. mallotivora, T3SS was first found from its draft genome sequence [18] and later reported
in proteomics and transcriptomics studies [19,20]. Based on these, herein is a detailed description of a
single gene associated with pathogenicity, hrpL, from E. mallotivora, which is thought to be the ‘master
control’ of the T3SS. In this article, the gene hrpL from E. mallotivora is referred to as EmhrpL and its
protein is referred to as EmHrpL.

2. Materials and Methods

2.1. Retrieval of EmhrpL Gene Sequence

The nucleotide information related to rpoE/hrpL of E. mallotivora was obtained from our previous
RNA-seq experiment [20] and the full-length coding DNA sequence (CDS) of the EmhrpL gene
was determined using the NCBI Open Reading Frame (ORF) finder (https://www.ncbi.nlm.nih.gov/

orffinder/). The hrpL CDS of E. mallotivora was then deposited at GenBank (https://www.ncbi.nlm.nih.
gov/genbank/) under accession number MK205448. The E. mallotivora draft genome data (GenBank
accession no.: JFHN01000044) reported by Ahmad-Redzuan et al. [18] were also utilised to validate the
sequence of EmhrpL.

2.2. Sequence Analysis, Gene Characterisation, and Phylogenetic Inferring of EmhrpL Gene

The CDS was searched against the database in the BLASTn program (https://blast.ncbi.nlm.nih.
gov/Blast.cgi) and a total of 18 hrpL/rpoE sequences from different Gram-negative bacteria were obtained.

https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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These sequences were aligned using Clustal W (BioEdit, Raleigh, NC, USA) and the phylogenetic
tree (Maximum Likelihood) was inferred using MEGA7 software (Pennsylvania State University,
University Park, PA, USA) with the bootstrap value set to 1000. The percentage of trees in which the
associated taxa clustered together is depicted next to the branches. The initial tree for the heuristic
search was obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of
pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach and then,
selecting the topology with superior log likelihood value.

The ExPASy translate tool (SIB Bioinformatics Resource Portal, Lausanne, Switzerland) was
employed to translate EmhrpL nucleotide to its amino acids and protein homology analysis was
done using the Protein Fold Recognition Server (Phyre2, London, UK). The Pfam database (http:
//pfam.xfam.org) and NPS@ server (https://npsa-prabi.ibcp.fr) were employed to study important
protein motifs and domains on EmHrpL. The amino acid sequence was submitted to PSORTb
version 3.0.2 (https://www.psort.org/psortb/) for the prediction of protein localisation.

2.3. Molecular Docking Analysis of EmHrpL with an Anti-σ Factor

Molecular docking of EmHrpL with anti-σ factor RseA of Escherichia coli was conducted using
ZDOCK online server version 3.0.2 (http://zdock.umassmed.edu/). The structure of EmHrpL was
predicted by SWISS-MODEL (https://swissmodel.expasy.org/) and deposited with repository number
A0A014MCI7 using the crystal structure of RNA polymerase sigma-E factor (PDB ID: 1OR7) chain A as a
template, with 25.31% sequence identity and 33% sequence similarity. The resulting EmHrpL model was
docked with the anti-σ factor RseA, represented by chain C of the 1OR7 structure, including hydrogen
bond interactions and salt bridge formations from 1OR7 as the contacting residues. Contact filtering
had removed 1986 predictions out of 2000 from ZDOCK output files. EmHrpL was set as stationary
and 1OR7_C was set to move.

2.4. Competent Cell Preparation, Construct Development, and Mutagenesis and Mutant Selection

Erwinia mallotivora with mutated hrpL gene (∆EmhrpL) was developed using the TargeTron®

Gene Knockout System (Sigma-Aldrich, St. Louis, MO, USA) according to the manufacturer’s
protocol. The knockout system is a mutagenesis system based on the group II intron of the ltrB
gene of Lactobacillus lactis. First, identification of the Lltr group II intron site within the EmhrpL
ORF was carried out using an algorithm accessible from the Sigma-Aldrich TargeTron® website
(www.sigmaaldrich.com/targetronaccess), and sets of unique primers were exclusively generated by
the program (Figure 1a). These primers were synthesised and utilised to generate a PCR fragment
(350 bp) through overlap PCR reaction (1-step assembly PCR) that later was used in the development of
a functional cassette for hrpL-targeted gene reverse splicing (Figure 1b). This generated a PCR fragment
(retargeted intron) with HindIII and BsrGI restriction sites at the 5′ and 3′ UTR region, which was
cloned into an intermediate plasmid. The plasmid was then digested with HindIII and BsrGI restriction
enzymes and subcloned into a pACD4K-C linear vector to form a final construct (p∆hrpL) that would
be ultimately used for generating the ∆EmhrpL strain. Competent cells of the E. coli DH5α strain were
transformed with the p∆hrpL plasmid and selected (for propagation) on LB agar plates containing
25 µg/mL of chloramphenicol. Purification and retrieval of all plasmid DNAs were carried out using a
NucleoBond plasmid extraction kit (Macherey-Nagel GmbH & Co., Doren, Germany).

Prior to transforming E. mallotivora with any plasmids, electrochemically competent cells were
prepared. To produce competent E. mallotivora cells, the bacteria were cultured at 37 ◦C until attaining
an optical density of 0.8 at 600 nm. Then, the cells were harvested by centrifugation at 12,000× g for
2 min and washed three times with 0.5 M sucrose and finally, suspended in 0.5 M sucrose. Plasmids
of interest were transformed into the competent cells via electroporation using Bio-Rad micropulser
(Bio-Rad) at 2.5 kV and transformed cells underwent selection on chocolate LB agar containing an
appropriate antibiotic.

http://pfam.xfam.org
http://pfam.xfam.org
https://npsa-prabi.ibcp.fr
https://www.psort.org/psortb/
http://zdock.umassmed.edu/
https://swissmodel.expasy.org/
www.sigmaaldrich.com/targetronaccess
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colonies of the wild type and knockout mutant ΔEmhrpL strains of E. mallotivora were cultured 
overnight in LB broth (one colony in 50 mL broth) and incubated (with shaking at 150 RPM) at 28 °C 
until they reached OD600 = 1.0. Artificial wounding (by pricking) of the three lowermost papaya leaves 
was carried out using sterile needles and about five mL of E. mallotivora mutant/wild-type culture 
(resuspended in 1 × phosphate-buffered saline) was sprayed to the plant part ~15 cm from the shoot. 
Plants sprayed with 1 × phosphate-buffered saline without E. mallotivora served as negative controls 
and all inoculated/sprayed plants were done in triplicates. The scorings were accomplished between 
3–30 days post-inoculation (DPI). 

Figure 1. Sequences of Targetron® unique primers and retargeted intron. (a) Unique primers were
generated by TargeTron® algorithm (www.sigmaaldrich.com/targetronaccess) and used to produce
retargeted intron for gene reverse splicing; (b) Sequence of the retargeted intron (350 bp) containing
HindIII (AAGCTT) and BsrGI (TGTACA) restriction sites generated by the three unique primers through
1-step assembly PCR.

As the TargeTron® system plasmid requires the use of a T7 promoter for targeting and mutation
of selected genes in the bacterium of interest, E. mallotivora was first transformed with pAR1219,
a pBR322-based vector, which expresses T7 RNA Polymerase under the control of the IPTG inducible
lac UV5 promoter. At this first step, the E. mallotivora-pAR1219 strain was produced. This was to
provide T7 RNA polymerase for the TargeTron® system to function once delivered into the bacterial
cell. In the second step, the E. mallotivora-pAR1219 strain was transformed again with p∆hrpL to
generate putative mutants. Putative mutants were detectable after 48 hours (temperature = 28 ◦C)
of selection on LB agar supplemented with kanamycin (50 µg/mL). To confirm intron insertion into
the hrpL, PCR was conducted on putative mutant genomic DNA using combinations of gene- and
intron-specific primers followed by DNA sequencing. All PCR conditions were as follows: initial
pre-denaturation at 94 ◦C for 2 min followed by 35 cycles of denaturation at 94 ◦C for 30 s, annealing at
52 ◦C for 30 s, and extension at 72 ◦C for 2 min.

2.5. Pathogenesis Assay of the Mutant Strain

Four-month-old plants of Carica papaya cv. Eksotika I were supplied by the Malaysian Agricultural
Research and Development Institute (MARDI) Pontian, Johor. The plants were grown in a greenhouse
under standard tropical conditions, where they received 13 h of light a day. Fresh colonies of
the wild type and knockout mutant ∆EmhrpL strains of E. mallotivora were cultured overnight in
LB broth (one colony in 50 mL broth) and incubated (with shaking at 150 RPM) at 28 ◦C until
they reached OD600 = 1.0. Artificial wounding (by pricking) of the three lowermost papaya leaves
was carried out using sterile needles and about five mL of E. mallotivora mutant/wild-type culture
(resuspended in 1 × phosphate-buffered saline) was sprayed to the plant part ~15 cm from the shoot.
Plants sprayed with 1 × phosphate-buffered saline without E. mallotivora served as negative controls
and all inoculated/sprayed plants were done in triplicates. The scorings were accomplished between
3–30 days post-inoculation (DPI).

Disease severity was scored following the study conducted by Juri et al. [21]. Disease severity
scoring was evaluated using a 5-stage scale as follows: 0—symptomless; 1—leaf vein blackening;
2—leaf vein blackening + slight wilting; 3—leaf stalk wilting; 4—stem blackening; 5—plant death.

www.sigmaaldrich.com/targetronaccess
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3. Results

3.1. Sequence Characterisation of EmhrpL Gene and Its Product, HrpL

The full EmhrpL CDS was deposited to GenBank under the accession number MK205448. The CDS
was 549 bp long and encoded 182 amino acids. Its start codon did not follow the Kozak consensus
sequence pattern (ATGG), confirming the hrpL belongs to a non-eukaryotic organism (Figure 2a).
The calculated molecular weight (MW) of the deduced amino acid was 21,295.03 Da (21.3 kDa), and it
had an overall isoelectric point (IP) of 6.19, indicating the gene product belongs to the σ24 protein
group and is slightly acidic. A sequence search of EmhrpL against the NCBI database revealed high
sequence similarity of the protein to other alternative σ factors from 18 bacterium species (Table 1)
and phylogenetic inference based on those hrpL/rpoE sequences (Figure 3) indicated E. mallotivora was
clustered together with E. tracheiphila and Pantoea vagans—pathogens that cause bacterial diseases in
cucurbits and eucalyptus, respectively [22,23].
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alignment on six closely related RpoEs/sigmas/HrpLs (Figure 4), σR2 and σR4 of EmHrpL were highly 
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using the Pfam database and NPS@ server to have the helix-turn-helix (HTH) DNA binding motif 
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Figure 2. Sequence analysis of Emhrpl open reading frame (ORF) and motif finding on its translated
protein. (a) Nucleotide sequence of EmhrpL (MK205448) and its deduced amino acids. The nucleotide
sequences for BsaBI and EcoRV restriction sites are as indicated and the two conserved σ factor motifs
on the amino acids, region R2 (red letters) and region R4 (green letters), are underlined. (b) Motif search
on GenomeNet detected only two σ regions (or motifs) on EmHrpL, indicating the σ protein belongs to
Group IV factor while (c) NPS@ server identified an HTH motif at position 149 of the amino acid (letters
in red) corresponding to σR4 of the EmHrpL. (* = termination of translation by the stop codon TGA).

The GenomeNet motif search tool (Pfam database, https://pfam.xfam.org/) revealed EmHrpL
harboured two highly conserved σ regions—σR2 and σR4 (Figure 3). Based on the amino acid sequence
alignment on six closely related RpoEs/sigmas/HrpLs (Figure 4), σR2 and σR4 of EmHrpL were highly
conserved and their calculated PIs were 11.11 and 6.78, respectively. Additionally, σR4 was verified
using the Pfam database and NPS@ server to have the helix-turn-helix (HTH) DNA binding motif
(Figure 2b,c). Protein localisation analysis through PSORTb v3.0.2 predicted EmHrpL was a cytoplasmic
protein (Table 2) and this result is consistent with the σ factor RpoE from E. coli [24,25].
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Figure 3. Molecular phylogenetic analysis of hrpL from E. mallotivora (Accession no. MK205448)
and hrpL/rpoE gene sequences from related taxa by Maximum Likelihood (ML) method. A total of
18 nucleotide sequences were obtained from NCBI to construct the phylogenetic tree of sigma factors,
and Pseudomonas carotovorum ssp. carotovorum served as an outgroup. The evolutionary history was
inferred by using the ML method based on the Tamura–Nei model. The tree with the highest log
likelihood (−2872.15) is shown.

https://pfam.xfam.org/
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Table 1. Summary of BLASTn results based on the EmhrpL sequence (Accession no. MK205448).

Description Max
Score

Total
Score

Query
Cover E Value Identity Accession

Pantoe vagans FDAARGOS 160 598 598 97% 8 × 10−167 85% CP014128.2
Erwinia tracheiphila MDcuke 576 576 100% 3 × 10−160 83% CP013970.1

Erwinia sp. Ejp617, 519 519 99% 6 × 10−143 81% CP002124.1
E. pyrifoliae EpK1/15 510 510 99% 3 × 10−140 81% CP023567.1

E. pyrifoliae DSM 12163 510 510 99% 3 × 10−140 81% FN392235.1
E. pyrifoliae WT3 510 510 99% 3 × 10−140 81% DQ180962.2

E. pyrifoliae Ep1/96 510 510 99% 3 × 10−140 81% FP236842.1
E. pyrifoliae 510 510 99% 3 × 10−140 81% AY532654.1

E. pyrifoliae Ep4/97 510 510 99% 3 × 10−140 81% AJ438881.1
E. tasmaniensis ET1/99 488 488 99% 1 × 10−133 80% CU468135.1

E. amylovora E-2 465 465 99% 1 × 10−126 79% CP024970.1
E. amylovora ATCC BAA-2158 465 465 99% 1 × 10−126 79% FR719186.1

E. amylovora CFBP1430 465 465 99% 1 × 10−126 79% FN434113.1
E. amylovora ATCC 49946 465 465 99% 1 × 10−126 79% FN666575.1

E. amylovora 465 465 99% 1 × 10−126 79% AF083877.1
E. amylovora 465 465 99% 1 × 10−126 79% U36244.1

E. herbicola pv. gypsophilae 445 445 100% 1 × 10−120 78% AF272053.1
Pseudomonas carotovorum ssp. carotovorum 109 109 73% 1 × 10−19 67% EU420066.1
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E. pyrifoliae WT3 510 510 99% 3 × 10−140 81% DQ180962.2 

E. pyrifoliae Ep1/96 510 510 99% 3 × 10−140 81% FP236842.1 
E. pyrifoliae 510 510 99% 3 × 10−140 81% AY532654.1 

E. pyrifoliae Ep4/97 510 510 99% 3 × 10−140 81% AJ438881.1 
E. tasmaniensis ET1/99 488 488 99% 1 × 10−133 80% CU468135.1 

E. amylovora E-2 465 465 99% 1 × 10−126 79% CP024970.1 
E. amylovora ATCC BAA-2158 465 465 99% 1 × 10−126 79% FR719186.1 

E. amylovora CFBP1430 465 465 99% 1 × 10−126 79% FN434113.1 
E. amylovora ATCC 49946 465 465 99% 1 × 10−126 79% FN666575.1 

E. amylovora 465 465 99% 1 × 10−126 79% AF083877.1 
E. amylovora 465 465 99% 1 × 10−126 79% U36244.1 

E. herbicola pv. gypsophilae 445 445 100% 1 × 10−120 78% AF272053.1 
Pseudomonas carotovorum ssp. carotovorum 109 109 73% 1 × 10−19 67% EU420066.1 

Figure 4. Multiple sequence alignment of deduced amino acids of E. mallotivora hrpL (MK205448),
Pantoea vagans rpoE (CP014128.2), E. tracheiphila rpoE (CP013970.1), E. pyrifoliae hrpL (AY532654.1),
E. tasmaniensis rpoE (CU468135.1), and E. amylovora hrpL (U36244.1). Boxed are the extremely conserved
sequences located on σR2 regions from six different bacterium species.



Biology 2020, 9, 323 8 of 16

Table 2. Tabulated result on prediction of subcellular localisation of HrpL using PSORTb v3.0.2 Bacterial
Localisation Prediction Tool.

Seq ID: MK205448.1

Erwinia mallotivora strain BT-MARDI RNA Polymerase Sigma Factor RpoE/hrpL

Analysis Report

Analytical Modules Prediction Details
CMSVM Unknown -
CytoSVM Cytoplasmic -

SCL-BLAST Cytoplasmic Matched 16130498: RNA polymerase, sigma 24 (sigma E)
factor [Escherichia coli K12]

SCL-BLAST Unknown -
Signal Unknown -

Localisation Scores
Cytoplasmic 9.97

Cytoplasmic Membrane 0.01
Periplasmic 0.01

Outer membrane 0.00
Extracellular 0.00

Final Prediction
Cytoplasmic 9.97

3.2. Homology of EmHrpL

To further investigate the protein conformation of EmHrpL, a series of in silico tools were
employed to generate a 3D structure. The Phyre2 protein fold recognition server had generated a list
of homologous proteins based on the submitted amino acid sequence, and the top four models are
tabulated in Table 3. Template c1or7A_ (based on the crystal structure of E. coli sigma factor E) was
selected for EmHrpL structure analysis for having the best identity percentage and 100% confidence.
The c1or7A_ PDB file was then reconstructed using Phyton Molecular Viewer (PMV 1.5.6, Schrödinger
Inc., New York, NY, USA) to visualise the 3D protein structure as in Figure 5. The generated σ

3D model comprised a conserved σ region 2 (σR2) as the N-terminal domain and a conserved σR4
domain as the C-terminal domain. These two regions, or domains, were connected by a σ linker,
and this conformation was very similar to the crystal protein structure of E. coli RpoE reported by
Campbell et al. [26]. In accordance with the previous amino acid sequence analyses, a helix-turn-helix
(HTH) motif that mediates σ factor interaction with the −35 element in the promoter region and a
cognate anti-σ factor can be visualised from the σR4 domain of the EmHrpL 3D structure.

Table 3. Homology modelling of EmhrpL from top four models (100% confidence). Primary amino
acids sequence of EmhrpL was submitted to Phyre2 and targeted with sigma factors available on PDB.

Template Alignment
Coverage Confidence %

Identity Template Formation

c1or7A_ 8–181
(95%) 100 23

PDB header: transcription
Chain: A: PDB Molecule: RNA polymerase sigmaE factor;

PDB Title: crystal structure of Escherichia coli sigmaE with the
cytoplasmic domain of its anti-sigma RseA

c4cxfA_ 7–182
(96%) 100 20

PDB header: transcription
Chain: A: PDB Molecule: RNA polymerase sigma factor CnrH;

PDB Title: structure of CnrH in complex with the cytosolic
domain of CnrY

c5wurB_ 7–181
(95%) 100 23

PDB header: metal-binding protein
Chain: B: PDB Molecule: ECF RNA polymerase sigma factor
SigW; PDB Title: crystal structure of SigW in complex with its

anti-sigma RsiW, an oxidised form

c2q1zA_ 5–180
(96%) 100 18

PDB header: transcription
Chain: A: PDB Molecule: RpoE, ECF SigE;

PDB Title: crystal structure of Rhodobacter sphaeroides SigE in
complex with the anti-sigma ChrR
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Figure 5. Predicted 3D structure of E. mallotivora’s σ factor (100% confidence) based on homology
modelling of E. coli sigma factor E (RpoE) crystal structure. The region 4 (σR4) structure possesses the
helix-turn-helix (HTH) motif as visualised.

3.3. Prediction of a Potential Inhibitor and Its Binding Affinity (Kd) with EmHrpL through PPI
In Silico Analysis

As stated, E. mallotivora HrpL protein shared conserved motifs with the E. coli σE (or RpoE); hence,
the molecular docking technique was employed to assess the probability of E. mallotivora HrpL forming
a complex with the E. coli anti-σ factor RseA. A molecular docking simulation was conducted using
ZDOCK online server version 3.0.2 to investigate the protein–protein interaction (PPI) of the two σ

factors with the said inhibitor, and the generated results are revealed in Figure 6. The highest ZDOCK
score for the EmHrpL:RseA complex was 1312.338, and the 1OR7 (RpoE:RseA) complex was also
re-docked to compare its score, which was 3316.534, 40% higher than EmHrpL:RseA score. A higher
docking score means better interaction affinity when analysed using ZDOCK. The total interface area of
the EmHrpL:RseA complex was 5223.3 Å2 with gap volume 6945.75 Å3 forming eight hydrogen bonds
and seven salt bridges. On the other hand, the 1OR7 (RpoE:RseA) complex had a total interface area of
5715.3 Å2 with gap volume 4522.50 Å3 forming 16 hydrogen bonds and seven salt bridges in between.
Based on these figures, the interface areas (Å2) in both protein complexes were not too different from
each other (5715.3 vs. 5223.3 Å2), and this indicated that the total contact area between the RseA
with HrpL is very similar to that produced by the 1OR7 complex. However, EmHrpL:RseA had a
much higher gap volume (Å3) and formed 50% less hydrogen bonds compared to 1OR7. Based on
the ZDOCK score, interface areas, hydrogen bonds, and salt bridges, the binding affinity (Kd) for
EmHrpL:RseA was estimated to be 0.8 × 10−10 M, slightly less than half of what had been determined
for the 1OR7 complex, which was 2 × 10−10 M [26,27].
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on LB agar containing kanamycin and subsequent PCR had validated the transformed cells 
containing the intron insertion based on the larger amplicon size (850 vs. 500 bp) (Figure 7b). Colony 
PCR was also conducted on E. mallotivora marker genes (E. mallotivora hrpN, isochorismate mutase, 
and hrpS) to validate the species authenticity of the ΔEmhrpL colonies (data not shown). In this study, 
the mutant E. mallotivora strain (ΔEmhrpL) was successfully generated (Figure 7a), though the number 
of retrieved colonies was very low. The steps were relatively meticulous since the bacteria needed to 
be transformed with two types of vectors, pAR1219 and pΔhrpL (pACD4K-C). 

Figure 6. Protein–protein interaction (PPI) study of molecular docking using ZDOCK protein-docking
server. Structure as with visible surface at 40% transparency and secondary structures edited in PyMOL.
(a) E.coli RNA polymerase sigma-E factor chain A (green) forming a complex with anti-σ factor RseA
chain C (orange), and (b) EmHrpL (red) bound by anti-σ factor RseA chain C (orange) with a visible
gap between the two proteins (white arrow). (c) EmHrpL without the anti-σ factor RseA viewed using
PMV with a visible surface at 0% transparency.

According to Janin et al. [28] and Erijman et al. [29], an interface area of ~1500 Å2 with at least ten
hydrogen bonds has enough enthalpy to generate a dissociation constant (Kd) of up to 10−14 M (fM),
and the smaller the Kd, the higher the binding affinity between the two substances. Erijman et al. [29]
conducted a comprehensive study on different levels of binding affinities on different PPIs based on
several types of molecular features and concluded that PPIs can be classified as high (Kd ≤ 10−9 M),
medium (10−9 M < Kd ≤ 10−6 M), and low affinity (Kd > 10−6 M). As previously mentioned, 1OR7 has
been determined to have Kd of 2 × 10−10 M, which is in the high-affinity PPI category. Based on the
PPI analysis and binding affinity levels produced by Erijman et al. [29], it is concluded that the binding
affinity for EmHrpL:RseA (0.8 × 10−10 M) is estimated to be in the high-affinity PPI, though having Kd
slightly lower than that of 1OR7.

3.4. Targeted hrpL Disruption in E. mallotivora by Using a Group II Intron (TargeTron®) System

In order to further understand how hrpL determines E. mallotivora pathogenicity in papaya,
functional characterisation of this T3SS regulator was conducted through loss-of-function mutagenesis,
and a similar gene knockout experiment targeting a different gene was conducted by Juri et al. [20].
After transformation via electroporation, putative mutant colonies were first selected on LB agar
containing kanamycin and subsequent PCR had validated the transformed cells containing the intron
insertion based on the larger amplicon size (850 vs. 500 bp) (Figure 7b). Colony PCR was also conducted
on E. mallotivora marker genes (E. mallotivora hrpN, isochorismate mutase, and hrpS) to validate the
species authenticity of the ∆EmhrpL colonies (data not shown). In this study, the mutant E. mallotivora
strain (∆EmhrpL) was successfully generated (Figure 7a), though the number of retrieved colonies was
very low. The steps were relatively meticulous since the bacteria needed to be transformed with two
types of vectors, pAR1219 and p∆hrpL (pACD4K-C).
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Figure 7. Antibiotic selection of transformed E. mallotivora cells and confirmation of hrpL disruption in
the genome by PCR. (a) Selection of putative mutants was carried out on LB agar supplemented with
kanamycin (50 µg/mL). (b) For PCR validation, hrpL gene-specific primers were used to validate the
putative mutants obtained from the selection step. The mutated strain (∆EmhrpL) has a larger gene size
due to insertion by the intron (lane 3) compared to non-mutant/wild type (lane 2). Lane 1 served as
negative control.

3.5. Mutagenesis Study Revealed Involvement of hrpL in the Pathogenicity of E. mallotivora

To investigate the involvement of hrpL in E. mallotivora pathogenicity, the ∆EmhrpL strain was
used to artificially inoculate four-month-old papaya plants and the resulting disease severity was
compared against severity produced by wild type E. mallotivora (positive control). The progression of
dieback disease severity (averaged) on papaya plants caused by ∆EmhrpL vs. wild type strain is shown
in Table 4 and it was based on the 0–5 papaya dieback disease severity score [21]. Upon infection with
the ∆EmhrpL strain, the papaya plants manifested zero symptoms during 3–12 DPI. However, the veins
of wounded leaves started to blacken (stage 1) on 16–20 DPI, indicating early entry of the mutant
E. mallotivora through the wounds. However, beyond 25 DPI, the leaf vein blackening of wounded
leaves diminished while the leaves slowly turned yellow (data not shown). On 30 DPI, the leaves
previously presenting stage 1 symptoms were completely abscised from the stem and only unwounded
leaves remained healthy and intact. At this stage, the disease severity score of these plants had reverted
to stage 0. Blackening of leaf veins (stage 1) was also observed in papaya plants infected with wild
type E. mallotivora but it manifested as early as 3 DPI. The progression of disease severity continued
from stage 2 through to stage 5 until 20 DPI, where the plants completely succumbed to the disease
and were beyond cure. It was observed that the severity and intensity of the symptoms developed by
plants sprayed with the mutant E. mallotivora strain, ∆EmhrpL, was significantly lower than that of
plants sprayed with parent/wild type E. mallotivora.
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Table 4. Summarised dieback disease severity scoring of papaya plants (in triplicates) after
being sprayed/inoculated with wild type strain, ∆EmhrpL, and negative control solution (Stage
0—symptomless; Stage 1—leaf vein blackening; Stage 2—leaf vein blackening + slight wilting; Stage
3—leaf stalk wilting; Stage 4—stem blackening; Stage 5—plant death).

Culture/Suspension

Averaged Scoring of Infection
(Disease Severity)

Day3 Day6 Day9 Day12 Day16 Day20 Day30

Wild type E. mallotivora 1 2 2 3 4 5 5

Knockout mutant, ∆EmhrpL 0 0 0 0 1 1 0

1× phosphate-buffered saline
(negative control) 0 0 0 0 0 0 0

Strain of Erwinia mallotivora Disease progression Day 3 (D3) until Day 30 (D30) post inoculation with respective
E. mallotivora strain

Wild Type (Control)
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4. Discussion

The T3SS is highly conserved in Gram-negative bacteria and a comparative study on genes from
related taxa is very useful in determining common biological features, especially on conserved functions.
The importance of hrpL and involvement of the T3SS in pathogenicity have been documented in other
phytopathogenic bacteria [30,31]. Wei and Beer [13] reported the hrpL of E. amylovora is involved in
the hrp signal transduction cascade during plant–pathogen interaction in the fire blight disease of
rosaceous plants; thus, the hrpL from E. mallotivora should have a similar role in causing infection in
papaya due to the conserved motifs identified from the nucleotide and amino acid sequences. In this
study, the sequence analyses indicated E. mallotivora HrpL (EmHrpL) belongs to an extracytoplasmic
function (ECF) protein family whose members are classified based on their generally smaller size and
the presence of only two σ regions (σR2 and σR4) [32,33]. The ECF proteins, as the name indicates,
regulate gene expressions pertaining to stresses and pathogenesis upon detection of stimuli that come
from the exterior of the cell cytoplasm [2,13,34,35]. The two highly conserved σR2 and σR4 regions
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that specified EmHrpL belong to a larger, primary sigma factor σ70 family and the absence of σR1.1
has confirmed that the protein belongs to Group IV σ factor [36,37]. According to the literature,
the two sigma regions (σR2 and σR4) are crucial for RNA polymerase DNA-specific recognition during
transcription initiation, where the σR2 is responsible for -10 promoter recognition while σR4 is involved
in -35 promoter binding during RNA polymerase interaction with the gene promoters [9,27,36,38,39].
In addition, σR2 and σR4 are the sites pairing up with a cognate anti-σ during inhibition, and this
feature has gained the main interest in this study. According to Lonetto et al. [36], these two sigma
R2 and R4 regions could be further divided into several subregions but these are not discussed in
this article.

Jovanovic et al. [40] reported that regulatory factor HrpV is able to impose negative control on
hrpL gene expression in P. syringae—a Gram-negative bacterium related to Erwinia spp.—though not
through a direct interaction. A transcriptomics study reported by Juri et al. [20] managed to identify a
set of pathogenesis-related genes during the early hours of E. mallotivora infection and hrpV was one of
the differentially expressed genes (DEGs), but the correlation of this gene with other T3SS elements
in E. mallotivora was not discussed. It was then decided to attend to a different element that has a
more direct interaction with HrpL through the σR2 and σR4 sites. There has not been any report
on HrpL σ factor from Erwinia being directly regulated, or inhibited, by a cognate anti-σ—a type of
negative regulator [41]. However, in E. coli, its σ factor RpoE (homologous to HrpL) remains inactive
and bound to a cognate anti-σ factor, RseA, inside the cytoplasm until an extracytoplasmic stimulus
triggers the release of RpoE [26]. It was also shown by Campbell et al. [26] and Tam et al. [27] that
E. coli σE (RpoE) was strongly inhibited by the anti-σ factor RseA with binding affinity (Kd) of 0.2 nM
(2×10−10 M) through the formation of σE:RseA (or RpoE:RseA) complex (PDB ID: 1OR7). Generally,
σ factors are co-transcribed with a cognate negative regulator and remain inactive by forming the σ:
inhibitor complex. The σ factors will only be released from the complex to become ECF proteins once
they receive a stimulus from the environment [6,35]. Since the anti-σ factor RseA is a small protein that
originally serves to inactivate RpoE in E. coli, its potential as an inhibitory molecule to suppress T3SS
in E. mallotivora is very appealing to research. Our previous studies on transcriptomics, proteomics,
and the draft genome were not able to identify the cognate anti-σ factor for EmHrpL [18–20]; hence,
a bioinformatics simulation had to be run to predict the bipartite interaction of E. coli RseA with the σR2
and σR4 regions on E. mallotivora HrpL. As produced by the PPI study, it was simulated that the binding
affinity of RseA to EmHrpL is comparable to that of native complex RpoE:RseA; therefore, the anti-σ
factor RseA has the potential to be used as an inhibitor to suppress the T3SS pathway in E. mallotivora
and could be incorporated for disease control approaches. In addition to this, Boldrin et al. [42]
concretely proved the inhibitory interaction of Rv1222 (RseA) on the expression of σE-dependent genes
in Mycobacterium tuberculosis, and this aligns with our result on the docking simulation.

In the final part of the experiment, further investigation was performed for the involvement
of EmhrpL in causing papaya dieback disease through a loss-of-function mutagenesis study using a
type II intron system (TargeTron®). As mentioned, it was observed ∆EmhrpL exhibited ‘weakened’
pathogenicity based on reduced symptoms in infected plants (stage 1) instead of complete nullification.
Juri et al. [19] and Abu-Bakar et al. [20] reported T3SS was not the only means of pathogenesis in
E. mallotivora; hence, hypersensitive response (HR) could still be observed, though it occurred much
later and was less aggressive compared to the control set. The possibility of the type II intron insertion
in ∆EmhrpL to be lost when the symptom appeared on 16 DPI is ruled out since this system has been
tested to be stable [43]. A mutagenesis study was done on M. tuberculosis by disrupting the σE gene,
and it was discovered that the mutant M. tuberculosis had a reduced lethality in mice [44], a finding
that resonates with our current study. Thus, it is concluded that E. mallotivora highly depends on HrpL
to cause disease in its host plant, C. papaya.

So far, E. mallotivora has been reported to infect Mallotus japonicus and Malaysian C. papaya
cultivars [17,45], while other possible hosts are unknown. Based on the present study, it is evident
that hrpL plays a pivotal role in E. mallotivora pathogenesis. To date, there is no published study on
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the HrpL/RpoE interaction with an anti-σ in plant pathogens and our work provides the preliminary
evidence of such interaction in E. mallotivora.

5. Conclusions

In this study, the phylogenetic relationship of EmhrpL with other sigma factors across many
Gram-negative pathogens has been inferred and they harbour much conserved motifs, signifying a
unified function in the pathogen-related pathway. In silico structural properties of EmHrpL protein
have been identified, and its possible interaction with an anti-σ has been simulated through molecular
docking analysis. Even though the cognate, or native, EmHrpL anti-σ is yet to be determined, there is a
conviction that EmHrpL is indeed regulated by one. Erwinia mallotivora hrpL’s important role in causing
papaya dieback disease has ultimately been confirmed in a mutagenesis study, and this information is
consistent with results produced from other studies. The outcomes of this project, especially on the
role of an anti-σ, have improved our understanding of a regulatory element related to pathogenesis in
E. mallotivora.
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