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Abstract: Adipose tissue homeostasis depends on interactions between stromal cells, adipocytes, and
the cytokines and chemokines they produce. The gp130 cytokine, oncostatin M (OSM), plays a role in
adipose tissue homeostasis. Mice, lacking the OSM receptor (OSMR) in adipocytes (OsmrFKO mice),
exhibit derangements in adipose tissue, insulin sensitivity, and immune cell balance. Here, we describe
a possible role for the chemokine stromal-derived factor 1 (SDF-1) in these alterations. We treated
3T3-L1 adipocytes with OSM and observed a suppression of SDF-1 gene expression and protein
secretion, an effect which was partially blunted by OSMR knockdown. However, OsmrFKO mice also
exhibited decreased SDF-1 gene and protein expression in adipose tissue. These contrasting results
suggest that the loss of adipocyte OSM–OSMR signaling in vivo may be indirectly affecting adipokine
production and secretion by altering OSM target genes to ultimately decrease SDF-1 expression in the
OsmrFKO mouse. We conclude that adipocyte OSM–OSMR signaling plays a role in adipose tissue
SDF-1 production and may mitigate its effects on adipose tissue homeostasis.
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1. Introduction

Interactions between stromal vascular cells (SVCs) and adipocytes are crucial for the maintenance
of white adipose tissue (WAT) homeostasis. The chronic, low-grade inflammatory state associated with
obesity is characterized by WAT leukocyte infiltration and alterations in the physiological cytokine
milieu that favor pro-inflammatory adipokine production and disruption of the stem cell niche. These
effects, in combination, can negatively affect overall WAT function and metabolism [1–8].

We have previously focused on the pro-inflammatory WAT adipokine, oncostatin M (OSM),
and how its signaling may regulate tissue homeostasis and immune cell balance [9,10]. OSM belongs
to the gp130 family of cytokines and regulates a variety of cellular and biological processes in a
cell-type-dependent manner [11–13]. Unlike any other gp130 cytokine, OSM has its own specific
receptor (oncostatin M receptor; OSMR) that heterodimerizes with gp130 to mediate OSM effects [14],
which occur via JAK-STAT or ERK pathway activation [15–20]. We have demonstrated that, in WAT,
SVCs—not adipocytes—produce OSM in conditions of obesity [9,21]. Another group has published
data to indicate OSM can be expressed in adipocytes, but we are consistently unable to detect OSM
in either cultured adipocytes or adipocytes isolated from mouse adipose tissue [9,21–23]. However,
we and others have shown that adipocytes do express OSMR [9,10,21,24], which suggests that adipocyte
OSM–OSMR signaling may play a role in WAT homeostasis.

We have generated mice with an adipocyte-specific deletion of OSMR (called OsmrFKO mice) [9].
Chow-fed OsmrFKO mice exhibit epididymal adipose tissue (eWAT) insulin resistance and increased
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eWAT CD45+ leukocyte infiltration, compared to floxed littermates [10]. When challenged with a
high-fat diet (HFD), OsmrFKO mice exhibit systemic insulin resistance and increased eWAT pro-fibrotic
and pro-inflammatory gene expression [9]. We have not observed any significant differences in fat
mass or food intake in OsmrFKO mice on either diet [9,10]. Although our previous data suggest that
adipocyte OSM–OSMR signaling may have an important role in the maintenance of WAT immune
balance and homeostasis, the mechanisms responsible for this homeostatic role remain unclear.

The alpha chemokine, stromal-derived factor 1 (SDF-1; also known as CXCL12), plays a critical
role in hematopoietic stem cell trafficking, homing, and retention, as well as in the accumulation of
immune cells positive for the SDF-1 receptor, CXCR4, in injured or inflamed tissues [25]. Recent reports
have highlighted the adipose tissue SDF-1–CXCR4 axis in obesity and diabetes. One report postulated
that SDF-1 may serve to desensitize adipocytes to insulin [26] and another suggested that SDF-1
modulates angiogenesis in obesity [27]. In addition, a role has been proposed for SDF-1-mediated
endothelial cell–stromal interactions, in the maintenance of the physiological adipose tissue cytokine
milieu [28]. Direct effects of OSM on SDF-1 expression have been described [29–33], although these
studies were not conducted in adipocytes. Here, we provide evidence that adipose tissue SDF-1 levels
are affected by the loss of adipocyte OSMR signaling in vivo, and that SDF-1 may have a role in
OSM-regulated adipose tissue homeostasis.

2. Materials and Methods

2.1. Animals and Diets

Male floxed oncostatin M receptor (Osmrfl/fl) and OsmrFKO mice, generated as previously
described [9], were obtained from our existing colony. Briefly, Osmrfl/fl mice (stock #011081),
from Jackson Laboratories, and adiponectin-cre mice, from an in-house colony, were crossed to create
the adipocyte-specific OSMR knockout mouse (OsmrFKO) and littermate floxed controls (Osmrfl/fl).
Mice were housed in a temperature-controlled (22 ◦C ± 2 ◦C) and humidity-controlled (45–55%) room
under a 12-h light–dark cycle and were allowed ad libitum access to food and water. Mice were fed a
high-fat diet (D12451; 45% fat; Research Diets) or a breeder chow diet (Purina LabDiet #5015; LabDiet,
St. Louis, MO, USA), as indicated, for 20 weeks, at which time eWAT was collected for gene and protein
expression analyses. Mice were 24–26 weeks old when tissues were collected. As previously reported,
no differences in body weight or fat mass were observed between genotypes [9,10]. Where indicated,
tissue was dissociated into adipocytes and SVCs, as previously described, [9,10] and gene expression
analyses were performed as described below. All studies were approved by the Pennington Biomedical
Research Center Institutional Animal Care and Use Committee (protocol #961P).

2.2. 3T3-L1 Adipocyte Culture and Treatment

Murine 3T3-L1 adipocytes were grown to two days post-confluence and differentiated as
previously described [9,10]. Cells were treated for 2–48 h with 0.5 nM OSM (R&D Systems, Minneapolis,
MN, USA) or vehicle (0.1% bovine serum albumin in phosphate-buffered saline), as indicated. Media
was removed after treatments were completed and saved for analysis. Cell monolayers were washed
with PBS and harvested in a buffer containing 150 mM NaCl, 10 mM Tris (pH 7.4) 1 mM EDTA, 1 mM
EGTA, 0.5% IGEPAL CA-630, 1% Triton X-100, 1 mM PMSF, 1 µM pepstatin, 50 trypsin inhibitory
milliunits of aprotinin, 10 µM leupeptin, 1 mM 1, 10-phenanthroline, 0.2 mM sodium orthovanadate,
and 100 µM sodium fluoride or RLT buffer (Qiagen, Germantown, MD, USA), for protein and RNA
extraction, respectively. The cell suspensions were subjected to a freeze–thaw cycle at −80 ◦C, passed
through a 20-gauge needle five times, and clarified via centrifugation at 13,000× g for 10 min at 4 ◦C.

2.3. Transient Transfection of 3T3-L1 Adipocytes

Fully differentiated murine adipocytes were transiently transfected with siOsmr or a non-targeting
vector, as previously reported [9]. Briefly, cells were trypsinized, resuspended in DMEM+10% fetal
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bovine serum without antibiotics, counted, and re-plated into 6-well (protein) or 12-well (RNA) plates
at a final concentration of 1.16 × 105 cells per cm2. A transfection cocktail containing Dharmafect
DUO Transfection Reagent (Dharmacon/Horizon Discovery Group, Lafayette, CO, USA), OptiMEM
culture medium (Thermo Fisher, Waltham, MA, USA), and siOsmr or non-targeting siRNA (On-Target
Plus Smartpool, Dharmacon; final concentration = 100 nM), was then added to the cells. Cells were
incubated for 24 h and media were changed to DMEM + 10% FBS without antibiotics. After an
additional 24 h, media were changed to DMEM + 1% fetal calf serum without antibiotics, and OSM or
vehicle treatments were initiated. Media was removed after treatments were completed and stored for
later analyses. Cells were washed with PBS and harvested for protein or RNA extraction.

2.4. Gene Expression Analyses

Total RNA was isolated from cell monolayers using the RNeasy Mini Kit (Qiagen) and from
eWAT homogenates using the RNeasy Lipid Tissue Mini Kit (Qiagen), as previously described [9,
10]. RNA concentrations were quantified using a NanoDrop ND-1000 UV–Vis Spectrophotometer.
Reverse transcription was performed using the High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Foster City, CA, USA) with 2 µg of RNA. Quantitative PCR was then performed
using the SYBR Premix with ROX Plus (Takara Bio, Mountain City, CA, USA) with 4 ng of cDNA and
run on the Applied Biosystems 7900HT system with SDS 2.4 software (Applied Biosystems). Thermal
cycling conditions were as follows: 2 min at 50 ◦C, 10 min at 95 ◦C, 40 cycles of 15 s at 95 ◦C, and 1 min
at 60 ◦C; dissociation stage: 15 s at 95 ◦C, 15 s at 60 ◦C, and 15 s at 95 ◦C. All target genes were
normalized to Ppia (peptidyl prolyl isomerase A), Nono (non-POU domain containing octamer-binding
protein), and Ubb (ubiquitin B). The primers used appear in Table 1 below.

Table 1. Primers used for qPCR.

Gene Name Forward Reverse

Sdf1/Cxcl12 GAGCCAACGTCAAGCATCT CCACTTTAATTTCGGGTCAATGC
Timp1 ACCTGATCCGTCCACAAACA GGGGTGTGCACAGTGTTTCC
Ppia CCACTGTCGCTTTTCGCCGC TGCAAACAGCTCGAAGGAGACGC
Ubb CCAGTGGGCAGTGATGG GCTTACCATGCAACAAAACCT

Nono CATCATCAGCATCACCACCA TCTTCAGGTCAATAGTCAAGCC
Osmr CGTTCCCCTGTGAGGCCGAG TCCTCCAAGACTTCGCTTCGGG

2.5. Immunoblotting

Protein concentrations of cell lysates, tissue homogenates, and media samples were quantified
using the BCA Kit for Protein Determination (Sigma-Aldrich, St. Louis, MO, USA). A total of
50–100 µg protein per well were loaded on 5% or 10% polyacrylamide gels and transferred to 0.45 µm
nitrocellulose membranes (Bio-Rad, Hercules, CA, USA). Membranes were probed and imaged using
standard immunoblotting techniques, as previously described [9,10,21]. Proteins were detected using
a horseradish peroxidase-conjugated secondary antibody (Jackson ImmunoResearch, West Grove,
PA, USA) and SuperSignal West Pico PLUS reagents (Thermo Fisher). Anti-STAT5A (E289; ab32043;
rabbit monoclonal) and OSMRβ (AF662; goat polyclonal) antibodies were purchased from Abcam and
R&D Systems, respectively.

2.6. ELISA and Cytokine Arrays

SDF-1 levels in cell culture media were assessed with a Mouse CXCL12/SDF-1 alpha Quantikine
ELISA Kit (catalog number MCX120; R&D Systems), according to manufacturer instructions.
Cytokine protein expression levels in eWAT (n = 6 per genotype) were assessed using a Proteome
Profiler Mouse Cytokine Array Kit, Panel A (catalog number ARY006; R&D Systems), according to
manufacturer instructions.
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2.7. Statistical Analyses

Data were analyzed using GraphPad Prism software (Version 8). Differences between groups
were calculated using Student’s t-tests. Results were considered significant when p < 0.05.

3. Results

We have previously reported insulin resistance and adipose tissue inflammation in OsmrFKO

mice on high-fat or chow diets [9,10]. Direct effects of OSM signaling on SDF-1 expression have been
reported [29–33], and recent publications have highlighted a role for adipose tissue SDF-1 in obesity
and metabolic disease [26,27]. Given these previous findings, we sought to examine the effects of a loss
of adipocyte OSM signaling on adipose tissue SDF-1 expression, using in vitro and in vivo models.

3.1. Effects of In Vivo OSMR Deletion on Adipose Tissue SDF-1 Expression

Interestingly, SDF-1 gene expression was decreased in eWAT from chow-fed OsmrFKO mice
when compared to floxed controls, although this decrease was not significant (Figure 1a). Osmr gene
expression was significantly decreased in the eWAT of HFD-fed OsmrFKO mice (Figure 1b), thereby
confirming the knockout in these mice. In the eWAT of HFD-fed OsmrFKO mice that was dissociated
into adipocytes and SVCs, Sdf1 gene expression was significantly lower in the adipocytes, but not the
SVCs, of OsmrFKO mice (Figure 1c). SDF-1 protein expression levels were also significantly lower in the
eWAT of HFD-fed OsmrFKO mice when compared to controls (Figure 1d). These results suggest that the
regulation of adipose tissue SDF-1 in the OsmrFKO mouse occurs, in part, at the level of the adipocyte,
and that adipocyte OSMR signaling plays an indirect role in the regulation of SDF-1 expression.

Figure 1. Stromal-derived factor 1 (SDF-1) expression is decreased in epididymal adipose tissue (eWAT)
from OsmrFKO mice. Gene expression was analyzed in (a) eWAT from chow-fed OsmrFKO or floxed
Osmr (control) mice (n = 6–8/genotype). (b) Osmr knockdown confirmation in eWAT from high
fat diet-fed mice (n = 6–8/genotype). (c) Fractionated eWAT from high-fat-diet-fed OsmrFKO mice
(n = 2–3 pooled samples/genotype containing tissue from 2–3 mice per sample) and expression levels
were normalized to Ppia. (d) Protein levels of various cytokines and chemokines were assessed in
eWAT from OsmrFKO and control mice fed a high-fat diet (n = 6/genotype). Black bars = control (floxed)
animals; gray bars = OsmrFKO. * p < 0.05, **** p < 0.001 vs. floxed controls.
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3.2. Effects of OSM Administration on SDF-1 Expression in 3T3-L1 Adipocytes

Previous reports indicate that OSM induces SDF-1 gene and protein expression in various cell
types and tissues including mouse heart, mouse mesenchymal stem cells, human cardiomyocytes,
and human fibroblasts, but not in adipocytes [29–33]. Since we observed decreased SDF-1 expression
in the eWAT of OsmrFKO mice, we assessed whether OSM could modulate adipocyte SDF-1 expression.
Surprisingly, we found a significant and sustained suppression of Sdf1 expression by OSM in fully
differentiated 3T3-L1 adipocytes. In this study, where cells were treated with OSM for time periods
varying from 2–48 h, Sdf1 expression was significantly decreased by OSM in a time-dependent manner,
with a maximal reduction in expression observed at the 24 h time point (Figure 2a). The effects of
OSM on the expression of the tissue inhibitor of metalloproteinases 1 (Timp1), a known OSM target,
were examined as a positive control (Figure 2b).

Figure 2. Oncostatin M (OSM) suppresses adipocyte Sdf1 expression in a time-dependent manner. Fully
differentiated 3T3-L1 adipocytes were exposed to 0.5 nM OSM for 2 h, 8 h, ~12 h (overnight; O/N),
24 h, or 48 h. Gene expression was then analyzed and expression levels were normalized to a numerical
average of three housekeeping genes (Ppia, Ubb, and Nono). (a) Effects of 0.5 nM OSM on Sdf1 expression
in 3T3-L1 adipocytes; (b) Effects of OSM on Timp1 expression in 3T3-L1 adipocytes (shown as a positive
control). Black bars = vehicle-treated cells; gray bars = OSM-treated cells. ** p < 0.01, *** p < 0.001,
and **** p < 0.0001 vs. vehicle control. This experiment was performed twice.

3.3. Effects of OSM Administration on SDF-1 Expression in OSMR-Deficient 3T3-L1 Adipocytes

To assess the direct involvement of OSM signaling in decreasing Sdf1 expression, we knocked
down OSMR in 3T3-L1 adipocytes and, subsequently, treated cells with OSM for 24 h. Indeed,
OSM-treated cells, transfected with a scrambled siRNA sequence, exhibited the expected diminution
in Sdf1 expression, while cells transfected with siOsmr actually exhibited a slight increase in Sdf1
expression (Figure 3a). Since SDF-1 is a secreted protein, we also assessed its levels in cell culture
media from the knockdown experiments. Interestingly, in cells with intact OSMR expression, OSM
significantly suppressed SDF-1 secretion. However, in cells lacking OSMR, the suppression of SDF-1
secretion by OSM was blunted (Figure 3b). These results suggest that OSM signaling suppresses
adipocyte SDF-1 expression at the gene and protein levels, and that this effect depends on OSMR.
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Figure 3. Oncostatin M receptor (OSMR) is required for Sdf1 suppression in adipocytes. Fully-
differentiated 3T3-L1 adipocytes were transfected with siOsmr or a non-targeted control siRNA; 48 h
after transfection, cells were exposed to 0.5 nM OSM for 24 h. Gene expression was then analyzed
and expression levels were normalized to a numerical average of three housekeeping genes (Ppia, Ubb,
and Nono). (a,b) Efficiency of OSMR knockdown. (c) The suppressive effect of OSM on Sdf1 expression
is lost with OSMR silencing. (d) Effects of OSMR knockdown on SDF-1 secretion into culture media.
In panels (a,b), black bars = vehicle-treated cells; gray bars = OSM-treated cells. KD = knockdown.
** p < 0.01 and **** p < 0.0001 vs. vehicle controls. # p < 0.05, ## p < 0.01, and #### p < 0.0001 vs. NTC.
In panel (d), a = p < 0.001 vs. NTC; b = p < 0.01 vs. NTC; c = p < 0.05 vs. NTC + OSM. This experiment
was performed twice.

4. Discussion

Interactions between adipocytes and SVCs play a role in regulating adipose tissue homeostasis,
partly by producing cytokines and chemokines to regulate immune cell balance. We have previously
reported that OsmrFKO mice, with no differences in body weight or fat mass, exhibit insulin resistance
and eWAT inflammation [9,10]. When OsmrFKO mice are fed a chow diet, insulin resistance is confined
to the eWAT level; but when challenged with a high-fat diet, they develop systemic insulin resistance
and increased eWAT inflammation [9,10]. Here, we report that some of these phenotypic effects are
associated with altered eWAT SDF-1 gene and protein expression.

Previous studies have demonstrated that OSM induces SDF-1 expression, at both the gene and
protein levels, in a variety of cell types [29–33]. In our studies, we did not observe increases in SDF-1
with OSM treatment in vitro; instead, we observed suppression of SDF-1 expression. A very recent
study of mouse lung reports decreased SDF-1 gene and protein expression upon administration of
an OSM-encoding adenoviral vector [34]. Our current results demonstrate that OsmrFKO mice exhibit
decreased Sdf1 gene expression in epididymal adipocytes and decreased SDF-1 protein expression
in whole eWAT. In an attempt to further assess the cell autonomous effects of OSM–OSMR signaling
on adipocyte SDF-1 expression, we treated 3T3-L1 adipocytes with OSM. We observed that OSM
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decreased Sdf1 expression in a time-dependent manner, and that this effect was partly dependent on
adipocyte OSMR expression. In 3T3-L1 adipocytes lacking OSMR, SDF-1 gene expression and protein
secretion were increased, compared to OSM-treated control cells. However, in eWAT adipocytes from
OsmrFKO mice, SDF-1 gene expression and protein expression levels were significantly decreased.
These contrasting in vitro and in vivo results strongly suggest that the decreased SDF-1 expression in
our knockout mice was not due to a direct effect of OSM, but may instead be due to an OSM target
gene (or genes) in adipocytes whose regulation is altered by the OSMR knockdown. It is likely that
this target gene(s) may alter adipokine production, secretion, and signaling to other adipose tissue
stromal cells.

A recent report indicates that adipocyte-specific SDF-1 knockout mice are more insulin-sensitive
than their floxed littermates, an effect that may result from the loss of the insulin-desensitizing autocrine
actions of adipocyte-derived SDF-1 [26]. In this study, it was suggested that stromal cell-derived SDF-1
is responsible for the classic chemotactic effects of the protein [26]. Another study demonstrated a
robust increase of SDF-1 in the WAT of obese mice. The systemic administration of an antagonist
to CXCR4 (the SDF-1 receptor) in these mice reduced adipose tissue macrophage accumulation and
inflammation, and improved whole-body insulin sensitivity [35]. In that report, the authors concluded
that SDF-1 was required for the establishment of obesity-induced adipose tissue inflammation and
systemic insulin resistance. In contrast to these reports, we observed increased insulin resistance and
eWAT inflammation [9,10] associated with decreased SDF-1 expression (Figure 1) in our OsmrFKO mice.
These observations support the assertion that the effects on SDF-1 observed in this mouse model are
likely an indirect result of alterations in other chemokines and cytokines. Notably, the previous data
described here, along with our current data, were obtained from male mice. Given the known in vitro
effects of OSM on the estrogen receptor [36], it will be important to conduct similar studies including
female mice.

Since we have previously shown that OSM itself is elevated in eWAT in our knockout mice [9,10],
the actions of OSM on non-adipocyte cells may be enhancing (or negating) the production of a factor
that is altering adipocyte SDF-1 production and secretion. The differences observed in SDF-1 expression
between our in vitro and in vivo studies may be attributable to the lack of stromal cells in the in vitro
experiments. SDF-1 is produced by several cell types, thus it is possible that adipocyte SDF-1 secretion
may act in a paracrine manner to partially regulate adipose stromal cell SDF-1 production. Taken
together, our current results, along with previous results from our lab and others, suggest that adipocyte
OSM–OSMR signaling may serve as a homeostatic regulator of adipose tissue SDF-1 levels. However,
the mechanisms underlying: (1) OSM-induced SDF-1 suppression in adipocytes in vitro; (2) decreased
SDF-1 expression in adipose tissue of OsmrFKO mice; and (3) whether similar effects occur in female
mice, remain unclear. Future studies will focus on elucidating these mechanisms, as they could further
contribute to our understanding of how cytokine signaling between SVCs and adipocytes contribute
to the maintenance of adipose tissue homeostasis.

5. Conclusions

In this study, we demonstrated that OSM suppresses SDF-1 gene expression and protein secretion
in cultured adipocytes, and that OsmrFKO mice also exhibit decreased adipose tissue SDF-1 gene and
protein expression. These results suggest that OSMR mediates decreased adipocyte SDF-1 expression
both in vitro and in vivo, but that differing mechanisms govern this regulation. We conclude from
these results that adipocyte OSM–OSMR signaling is a regulator of adipose tissue SDF-1 levels.
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