Vesicular Trafficking Defects, Developmental Abnormalities, and Alterations in the Cellular Death Process Occur in Cell Lines that Over-Express Dictyostelium GTPase, Rab2, and Rab2 Mutants
Abstract
:1. Introduction
2. Experimental
2.1. Cells and Culture Conditions
2.2. Creation of GFP Tagged Rab2 Cell Lines
2.3. Western Blotting
2.4. Phagocytosis, Pinocytosis, Exocytosis, and Recycling Assays
2.5. Lysosomal Visualization: LysoTracker Staining
2.6. Endosome Visualization: RITC-Dextran Loading
2.7. Development Assay
2.8. Cell Cohesion Assay
2.9. Flow Cytometry Assay
2.10. Determining Cell Viability Due to ATP Levels
2.11. Cellular Re-Growth Assay
2.12. Cell Growth Rate
3. Results and Discussion
3.1. Results
3.1.1. DdRab2 Plays a Role in the Regulation of Vesicular Trafficking
3.1.2. Rab2 Mutants Display Defects in Development and Adhesion
3.1.3. Cell Death Is Decreased in Rab2 Mutants
3.1.4. Rab2 Has an Increased Growth Rate and Ability to Re-Grow after Induced Differentiation
3.2. Discussion
3.2.1. Alterations in Endocytosis
3.2.2. Alterations in Development and Cell–Cell Cohesion
3.2.3. DdRab2 Plays a Role in Cell Death
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pfeffer, S.R. Rab GTPases: Master regulators of membrane trafficking. Curr. Opin. Cell Biol. 1994, 6, 522–526. [Google Scholar] [CrossRef]
- Schafer, W.R.; Rine, J. Protein prenylation: Genes, enzymes, targets, and functions. Annu. Rev. Genet. 1992, 26, 209–237. [Google Scholar] [CrossRef]
- Powell, R.A.; Temesvari, L.A. Involvement of a Rab8-like protein of Dictyostelium discoideum, Sas1, in the formation of membrane extensions, secretion and adhesion during development. Microbiology 2004, 150, 2513–2525. [Google Scholar] [CrossRef]
- Grosshans, B.L.; Ortiz, D.; Novick, P. Rabs and their effectors: Achieving specificity in membrane traffic. Proc. Natl. Acad. Sci. USA 2006, 103, 11821–11827. [Google Scholar] [CrossRef]
- Kypri, E.; Falkenstein, K.; de Lozanne, A. Antagonistic control of lysosomal fusion by Rab14 and the Lyst-related protein LvsB. Traffic 2013, 14, 599–609. [Google Scholar] [CrossRef]
- Harris, E.; Cardelli, J. RabD, a Dictyostelium Rab14-related GTPase, regulates phagocytosis and homotypic phagosome and lysosome fusion. J. Cell Sci. 2002, 115, 3703–3713. [Google Scholar] [CrossRef]
- Harris, E.; Yoshida, K.; Cardelli, J.; Bush, J. Rab11-like GTPase associates with and regulates the structure and function of the contractile vacuole system in Dictyostelium. J. Cell Sci. 2001, 114, 3035–3045. [Google Scholar]
- Chavrier, P.; Parton, R.G.; Hauri, H.P.; Simons, K.; Zerial, M. Localization of low molecular weight GTP-binding proteins to exocytic and endocytic compartments. Cell 1990, 62, 317–329. [Google Scholar] [CrossRef]
- Lombardi, D.; Soldati, T.; Riederer, M.A.; Goda, Y.; Zerial, M.; Pfeffer, S. Rab9 functions in transport between late endosomes and the trans Golgi network. EMBO J. 1993, 12, 677–682. [Google Scholar]
- Buczynski, G.; Bush, J.; Zhang, L.; Rodriguez-Paris, J.; Cardelli, J. Evidence for a recycling role for Rab7 in regulating a late step in endocytosis and in retention of lysosomal enzymes in Dictyostelium discoideum. Mol. Biol. Cell 1997, 8, 1343–1360. [Google Scholar] [CrossRef]
- Nouffer, C.; Balch, W.E. GTPases: Multifunctional molecular switches regulating vesicular traffic. Annu. Rev. Biochem. 1994, 63, 949–990. [Google Scholar] [CrossRef]
- Green, E.G.; Ramm, E.; Riley, N.M.; Spiro, D.J.; Golenring, J.R.; Wesling-Rensick, M. DdRab11 is associated with transferrin-containing recycling compartments in K562 cells. Biochem. Biophys. Res. Commun. 1997, 239, 612–616. [Google Scholar] [CrossRef]
- Ren, M.; Xu, G.; Zeng, J.; DeLemos-Chiarandini, C.; Adesnik, M.; Sabatimi, D.D. Hydrolysis of GTP on Rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. Proc. Natl. Acad. Sci. USA 1998, 95, 6187–6192. [Google Scholar] [CrossRef]
- Rupper, A.; Cardelli, J. Regulation of phagocytosis and endo-phagosomal trafficking pathways in Dictyostelium discoideum. Biochem. Biophys. Acta 2001, 1525, 205–216. [Google Scholar] [CrossRef]
- Bush, J.; Temesvari, L.; Rodriguez-Paris, J.; Buczynski, G.; Cardelli, J. A role for a Rab4-like GTPase in endocytosis and in regulation of contractile vacuole structure and function in Dictyostelium discoideum. Mol. Biol. Cell 1996, 7, 1623–1638. [Google Scholar] [CrossRef]
- Peranen, J.; Auvinen, P.; Virta, H.; Wepf, R.; Simons, K. Rab8 promotes polarized membrane transport through reorganization of actin and microtubules in fibroblasts. J. Cell Biol. 1996, 135, 153–167. [Google Scholar] [CrossRef]
- Imamura, H.; Takaishi, K.; Nakano, K.; Kidama, A.; Oishi, H.; Shiozaki, H.; Monden, M.; Sasaki, T.; Takai, Y. Rho and Rab small G proteins coordinately reorganize stress fibers and focal adhesions in MDCK cells. Mol. Biol. Cell 1998, 9, 2561–2575. [Google Scholar] [CrossRef]
- Hattula, K.; Furuhjelm, J.; Arffman, A.; Peranen, J. A Rab8 specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport. Mol. Biol. Cell 2002, 13, 3268–3280. [Google Scholar] [CrossRef]
- Lau, A.S.; Mruk, D.D. Rab8B GTPase and junction dynamics in the testis. Endocrinology 2003, 144, 1549–1563. [Google Scholar] [CrossRef]
- Zahraoui, A.; Joberty, G.; Arpin, M.; Fontaine, J.J.; Hellio, R.; Tavitian, A.; Louvard, D. A small rab GTPase is distributed in cytoplasmic vesicles in non polarized cells but colocalizes with the tight junction marker ZO-1 in polarized epithelial cells. J. Cell Biol. 1994, 124, 101–115. [Google Scholar] [CrossRef]
- Sheth, B.; Fontain, J.J.; Ponza, E.; McCallum, A.; Page, A.; Citi, S.; Louvard, D.; Zahraoui, A.; Fleming, T.P. Differentiation of the epithelial apical junctional complex during mouse preimplantation development: A role for Rab13 in the early maturation of the tight junction. Mech. Dev. 2000, 97, 93–104. [Google Scholar] [CrossRef]
- Marzesco, A.M.; Dunia, I.; Pandjaitan, R.; Recouvreur, M.; Dauzonne, D.; Benedetti, E.L.; Louvard, D.; Zahraoui, A. The small GTPase Rab13 regulates assembly of functional tight junctions in epithelial cells. Mol. Biol. Cell 2002, 13, 1819–1831. [Google Scholar] [CrossRef]
- Chen, Y.T.; Holcomb, C.; Moore, H.P. Expression and localization of two low molecular weight GTP-binding proteins, Rab8 and Rab10, by epitope tag. Proc. Natl. Acad. Sci. USA 1993, 90, 6508–6512. [Google Scholar] [CrossRef]
- Vadlamudi, R.K.; Wang, R.A.; Talukder, A.H.; Adam, L.; Johnson, R.; Kumar, R. Evidence of Rab3A expression, regulation of vesicle trafficking, and cellular secretion in response to heregulin in mammary epithelial cells. Mol. Cell Biol. 2000, 20, 9092–9101. [Google Scholar] [CrossRef]
- Loomis, W.F. Dictyostelium Discoideum: A Developmental System; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Chisholm, R.; Firtel, R.A. Insights into morphogenesis from a simple developmental system. Nat. Rev. Mol. Cell Biol. 2004, 5, 531–541. [Google Scholar] [CrossRef]
- Raper, K. Dictyostelium discoideum, A new species of slime mold from decaying forest leaves. J. Agr. Res. 1935, 50, 135–147. [Google Scholar]
- Ollie, R.A.; Durrieu, F.; Cornillon, S.; Loughran, G.; Gross, J.; Earnshaw, W.C.; Golstein, P. Apparent caspase independence of programmed cell death in Dictyostelium. Curr. Biol. 1998, 8, 955–958. [Google Scholar] [CrossRef]
- Cornillon, S.; Foa, C.; Davoust, J.; Buonavista, N.; Gross, J.D.; Golstein, P. Programmed cell death in Dictyostleium. J. Cell Sci. 1994, 107, 2691–2704. [Google Scholar]
- Fey, P.; Kowal, A.S.; Gaudet, P.; Pilcher, K.E.; Chisholm, R.L. Protocols for growth and development of Dictyostelium discoideum. Nat. Protoc. 2007, 2, 1307–1316. [Google Scholar] [CrossRef]
- Bush, J.; Nolta, K.; Rodriguez-Paris, J.; Kaufmann, N.; O’Halloran, T.; Ruscetti, T.; Temesvari, L.; Steck, T.; Cardelli, J. A Rab4-like GTPase colocalizes with V-H+-ATPases in extensive reticular elements of the contractile vacuoles and lysosomes in Dictyostelium discoidem. J. Cell Sci. 1994, 107, 2801–2812. [Google Scholar]
- Rivero, F.; Maniak, M. Quantitative and microscopic methods for studying the endocytic pathway. Methods Mol. Biol. 2006, 346, 423–438. [Google Scholar]
- Rodriguez-Paris, J.M.; Nolta, K.V.; Steck, T.L. Characterization of lysosomes isolated from Dictyostelium discoideum by magnetic fractionation. J. Biol. Chem. 1993, 268, 9110–9116. [Google Scholar]
- Klein, G.; Satre, M. Kinetics of fluid-phase pinocytosis in Dictyostelium discoideum amoebae. Biochem. Biophys. Res. Commun. 1986, 138, 1146–1152. [Google Scholar] [CrossRef]
- Wong, E.; Yang, C.; Wang, J.; Fuller, D.; Loomis, W.F.; Siu, C.H. Disruption of the gene encoding the cell adhesion molecule DdCAD-1 leads to aberrant cell sorting and cell-type proportioning during Dictyostelium development. Development 2002, 129, 3839–3850. [Google Scholar]
- Secko, D.M.; Siu, C.H.; Spiegelman, G.B.; Weeks, G. An activated Ras protein alters cell adhesion by dephosphorylating Dictyostelium DdCAD-1. Microbiology 2006, 152, 1497–1505. [Google Scholar] [CrossRef]
- Desbarats, L.; Brar, S.K.; Siu, C.H. Involvement of cell-cell adhesion in the expression of the cell cohesion moelcule GP80 in Dictyostelium discoideum. J. Cell Sci. 1994, 107, 1705–1712. [Google Scholar]
- Hannah, R.; Micheal, B.; Moravec, R. Cell-Titer-GLO luminescent cell viability: A sensitive and rapid method for determining cell viability. Promega Cell Notes 2001, 2, 11–13. [Google Scholar]
- Lam, D.; Levraud, J.P.; Luciani, M.F.; Golstein, P. Autophagic or necrotic cell death in the absence of caspase and Bcl-2 family members. Biochem. Biophys. Res. Commun. 2007, 363, 536–541. [Google Scholar] [CrossRef]
- Dumontier, M.; Höcht, P.; Mintert, U.; Faix, J. Rac1 GTPases control filopodia formation, cell motility, endocytosis, cytokinesis and development in Dictyostelium. J. Cell Sci. 2000, 113, 2253–2265. [Google Scholar]
- Palmieri, S.J.; Nebl, T.; Pope, R.K.; Seastone, D.J.; Lee, E.; Hinchcliffe, E.H.; Sluder, G.; Knecht, D.; Cardelli, J.; Luna, E.J. Mutant Rac1B expression in Dictyostelium: Effects on morphology, growth, endocytosis, development, and the actin cytoskeleton. Cell Motil. Cytoskeleton 2000, 46, 285–304. [Google Scholar] [CrossRef]
- Wilkins, A.; Chubb, J.R.; Insall, R.H. A novel Dictyostelium RasGEF is required for normal endocytosis, cell motility and multicellular development. Curr. Biol. 2000, 10, 1427–1437. [Google Scholar] [CrossRef]
- Fugier, E.; Salcedo, S.P.; de Chastellier, C.; Pophillat, M.; Muller, A.; Arce-Gorvel, V.; Fourquet, P.; Gorvel, J.P. The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication. PLoS Pathog. 2009, 5, e1000487. [Google Scholar] [CrossRef]
- deBarsy, M.; Jamet, A.; Filopon, D.; Nicolas, C.; Laloux, G.; Rual, J.F.; Muller, A.; Twizere, J.C.; Nkengfac, B.; Vandenhaute, J.; et al. Identification of a Brucellaspp. secreted effector specifically interacting with human small GTPase Rab2. Cell Microbiol. 2011, 13, 1044–1058. [Google Scholar] [CrossRef]
- Ayala, J.; Touchot, N.; Zahraouit, A.; Tavitian, A.; Prochiantz, A. The product of Rab2, a small GTP binding protein, increases neuronal adhesion, and neurite growth in vitro. Neuron 1990, 4, 797–805. [Google Scholar] [CrossRef]
- Norian, L.; Dragoi, I.A.; O’Halloran, T. Molecular characterization of RabE, a developmentally regulated Dictyostelium homolog of mammalian Rab GTPases. DNA Cell Biol. 1999, 18, 59–64. [Google Scholar] [CrossRef]
- Kawauchi, T. Regulation of cell adhesion and migration in cortical neurons: Not only Rho but also Rab family small GTPases. Small GTPases 2011, 2, 36–40. [Google Scholar] [CrossRef]
- Kay, R.R.; Berks, M.; Trayner, D. Morphongen hunting in Dictyostelium discoideum. Development 1989, 107, 81–90. [Google Scholar]
- Zerial, M.; McBride, H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2001, 2, 107–117. [Google Scholar] [CrossRef]
- Chun, D.K.; McEwen, J.M.; Burbea, M.; Kaplan, J.M. UNC-108/Rab2 regulates postendocytic trafficking in Caenorhabditis elegans. Mol. Biol. Cell 2008, 19, 2682–2695. [Google Scholar] [CrossRef]
- Stenmark, H.; Olkkonen, V.M. The Rab GTPase family. Genome Biol. 2001. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, Y.; Hu, T.; Guo, P.; Li, W.; Wang, X. C. elegans Rab GTPase 2 is required for the degradation of apoptotic cells. Devlopment 2008, 135, 1069–1080. [Google Scholar]
- Mangahas, P.M.; Yu, X.; Miller, K.G.; Zhou, Z. The small GTPase Rab2 functions in the removal of apoptotic cells in Caenorhabditis elegans. J. Cell Biol. 2008, 180, 357–373. [Google Scholar] [CrossRef]
- Ma, H.; Gamper, M.; Parent, C.; Firtel, R.A. The Dictyostelium MAP kinase kinase DdMEK1 regulates chemotaxis and is essential for chemoattractant-mediated activation of guanylyl cyclase. EMBO J. 1997, 16, 4317–4332. [Google Scholar] [CrossRef]
- Vithalani, K.K.; Parent, C.A.; Thorn, E.M.; Penn, M.; Larochelle, D.A.; Devreotes, P.N.; de Lozanne, A. Identification of darlin, a Dictyostelium protein with armadillo-like repeats that binds to small GTPases and is important for the proper aggregation of developing cells. Mol. Biol. Cell 1998, 9, 3095–3106. [Google Scholar] [CrossRef]
- Bozzaro, S. Assaying cell-cell adhesion. In Dictyostelium Discoideum Protocols; Ludwig, E., Rivero, F., Eds.; Humana Press Inc: Totowa, NJ, USA, 2006; pp. 449–467. [Google Scholar]
- Fransworth, C.L.; Feig, L.A. Dominant inhibitory mutations in the Mg2+-binding site of RasH prevent its activation by GTP. Mol. Cell Biol. 1991, 11, 4822–4829. [Google Scholar]
- Burstein, E.S.; Brondyk, W.H.; Macara, I.G. Amino acid residues in the Ras-like GTPase Rab3A that specify sensitivity to factors that regulate the GTP/GDP cycling of Rab3A. J. Biol. Chem. 1992, 267, 22715–22718. [Google Scholar]
- Kosta, A.; Laporte, A.; Lam, D.; Tresse, E.; Luciani, M.F.; Golstein, P. How to asses and study cell death in Dictyostelium discoideum. In Dictyostelium Discoideum Protocols; Eichinger, L., Rivero, F., Eds.; Humana Press Inc.: Totowa, NJ, USA, 2006; pp. 535–550. [Google Scholar]
- Kourtis, N.; Tevernarakis, N. Autophagy and cell death in model organisms. Cell Death Differ. 2009, 16, 21–30. [Google Scholar] [CrossRef]
- Whittingham, W.F.; Raper, K.B. Non-viability of stalk cells in dictyostelium. Proc. Natl. Acad. Sci. USA 1960, 46, 642–649. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Maringer, K.; Saheb, E.; Bush, J. Vesicular Trafficking Defects, Developmental Abnormalities, and Alterations in the Cellular Death Process Occur in Cell Lines that Over-Express Dictyostelium GTPase, Rab2, and Rab2 Mutants. Biology 2014, 3, 514-535. https://doi.org/10.3390/biology3030514
Maringer K, Saheb E, Bush J. Vesicular Trafficking Defects, Developmental Abnormalities, and Alterations in the Cellular Death Process Occur in Cell Lines that Over-Express Dictyostelium GTPase, Rab2, and Rab2 Mutants. Biology. 2014; 3(3):514-535. https://doi.org/10.3390/biology3030514
Chicago/Turabian StyleMaringer, Katherine, Entsar Saheb, and John Bush. 2014. "Vesicular Trafficking Defects, Developmental Abnormalities, and Alterations in the Cellular Death Process Occur in Cell Lines that Over-Express Dictyostelium GTPase, Rab2, and Rab2 Mutants" Biology 3, no. 3: 514-535. https://doi.org/10.3390/biology3030514
APA StyleMaringer, K., Saheb, E., & Bush, J. (2014). Vesicular Trafficking Defects, Developmental Abnormalities, and Alterations in the Cellular Death Process Occur in Cell Lines that Over-Express Dictyostelium GTPase, Rab2, and Rab2 Mutants. Biology, 3(3), 514-535. https://doi.org/10.3390/biology3030514