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Simple Summary: A fundamental scientific question—where did SARS-CoV-2 come from?—has
eluded the scientific community since it was first identified in December 2019. SARS-CoV-2/COVID-
19 is still infecting humans. Like many other viruses, SARS-CoV-2 has been regarded as an RNA virus.
However, the pathological knowledge of the cause of COVID-19 and the intrinsic drivers of virus
replications are unknown. Finding an answer can help in understanding the virus and preventing
the next pandemic. Many COVID-19 research results at the genomic level have been published in the
literature. These published results have explored the pathological causes of COVID-19 infection from
various aspects. Due to the limitations of research methodology, some published results can hardly be
cross-validated from cohort to cohort. As a result, there is still an urgent need to study the root causes
further. We aim to find an answer to the fundamental scientific question. We use a new AI algorithm
to identify critical genes at the DNA methylation level. Our results are computational with biological
implications. They are interpretable, accurate, and cross-validated. They can be reproduced from
Excel sheets using the derived formula. Our findings demand rigorous and much deeper study.

Abstract: Earlier research has established the existence of reliable interactive genomic biomarkers.
However, reliable DNA methylation biomarkers, not to mention interactivity, have yet to be identified
at the epigenetic level. This study, drawing from 865,859 methylation sites, discovered two miniature
sets of Infinium MethylationEPIC sites, each having eight CpG sites (genes) to interact with each
other and disease subtypes. They led to the nearly perfect (96.87–100% accuracy) prediction of
COVID-19 patients from patients with other diseases or healthy controls. These CpG sites can jointly
explain some post-COVID-19-related conditions. These CpG sites and the optimally performing
genomic biomarkers reported in the literature become potential druggable targets. Among these
CpG sites, cg16785077 (gene MX1), cg25932713 (gene PARP9), and cg22930808 (gene PARP9) at DNA
methylation levels indicate that the initial SARS-CoV-2 virus may be better treated as a transcribed
viral DNA into RNA virus, i.e., not as an RNA virus that has concerned scientists in the field. Such a
discovery can significantly change the scientific thinking and knowledge of viruses.

Keywords: causative effects; SARS-CoV-1; MERS-CoV; SSPE; influenza; diabetes

1. Introduction

The pathological knowledge of the cause of COVID-19 and the intrinsic drivers of virus
replications are unknown, at least at the genomic and DNA methylation levels. However,
many research papers have targeted these urgent needs [1–7]. In the literature, on the one
hand, the earlier work [8–10], with the highest possible accuracy, first discovered that the
genomic representation geometry spaces between SARS-CoV-2 (NP/OP PCR swabs) and
COVID-19 (blood samples) are significantly different at the genomic level. Using the set of
optimum interactive genomic biomarkers, the work studying vaccine effectiveness found
adverse effects in gene expressions from taking the BNT162b2 vaccine within COVID-
19-convalescent octogenarians [11]. In an unpublished circulated note within a medical
research group, adverse effects were also found in gene expressions from taking inactivated
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vaccines, using GSE189263 data [12]. On the other hand, the role of methylation in gene
expression has drawn attention in disease studies [13]. Significant empirical evidence exists
such that errors in methylation could be responsible for diseases, which has motivated
studying COVID-19 at DNA methylation levels. However, COVID-19 DNA methylation
studies are relatively sparse compared to gene transcriptomic data analysis. The following
are some examples. Balnis et al. conducted genome-wide DNA methylation analysis of
COVID-19 severity and COVID-19 free from respiratory symptoms using whole blood
samples [14]. Davalos et al. studied the DNA methylation status of whole blood samples
from pediatric COVID-19 cases and healthy control cases [3]. Konigsberg et al. studied
methylation predicting SARS-CoV-2 infection and the clinical outcomes [5]. Morselli et al.
conducted targeted DNA methylation profiling in a cohort of pneumonia patients and
unaffected individuals from peripheral blood [6]. This paper intends to identify COVID-19’s
optimum interactive DNA methylation biomarkers.

A critical characteristic of reliable DNA methylation biomarkers is that they hold
intrinsic and robust properties for different trials and cohorts. They lead to an overall
accuracy of 95% or higher among all cohorts available for testing, with some cohorts having
100% accuracy. They are independent of extrinsic characteristics. Indeed, finding such
reliable biomarkers is rather challenging. Many published gene biomarkers derived from a
single trial (cohort) cannot be applied to other trials, or sometimes only with low efficiency.
Using breast cancer diagnosis as an example, the known eight famous genes—BRCA1,
BRCA2, PALB2, BARD1, RAD51C, RAD51D, and ATM—were shown to perform with low
efficiency; see the published paper [15] and the references therein. These drawbacks raise
outstanding concerns about many published gene biomarkers, i.e., they should not be
used as biomarkers as they can mislead in the wrong direction and mask the truth. One
possible reason for the claimed biomarkers’ failure to be valid may be the limitations of the
analysis method and tools. A fundamental flaw is that the published gene biomarkers did
not exhibit interaction with each other and with the disease subtypes which are defined
in this paper, and as a result, their usefulness can be somewhat limited. In this paper, we
target finding reliable DNA methylation biomarkers.

A fundamental question—where did SARS-CoV-2 come from?—has eluded the scien-
tific community since it was first identified in December 2019. Like many other viruses,
SARS-CoV-2 has been regarded as an RNA virus [16]. A comparison study of the viral
phylogenetic trees of known pandemic coronaviruses (SARS-CoV, MERS-CoV, and SARS-
CoV-2), as well as pandemic influenza A strains (H1N1, H3N2, and H5N1), revealed that
SARS-CoV-2 is most closely related to SARS-CoV and MERS-CoV [17]. In this paper, we
found that DNA methylations’ marker genes MX1 and PARP9 identified for SARS-CoV-2
have been rooted in SARS-CoV and MERS-CoV [18–20], which indicates that the initial
SARS-CoV-2 may be better treated as a transcribed viral DNA into RNA virus due to the
likely long incubation feature of MX1 associated diseases, i.e., not as a positive-strand
RNA virus as other scientists have thought. Such a discovery can significantly change the
scientific thinking and knowledge of viruses.

In this paper, we applied a proven, powerful analytical approach to identify nearly per-
fect interactive DNA methylation biomarkers for COVID-19 [8–11,15,21–23]. The significant
contributions of this paper are six-fold: (1) A discovery of nearly perfect interactive COVID-
19 DNA methylation biomarkers that can be used in diagnoses; (2) unlike much other
research, this paper advanced the exploration of sites of interaction relationships based on
competing risk models; (3) an indication of significant differences in DNA methylation data
in identifying critical sites; (4) an indication of cg16279999 (TESC), cg00324510 (PACS1),
cg08949406 (FHIT), cg16785077 (MX1), cg24002003 (CHSY1), cg25932713, and cg22930808
(PARP9) as potential druggable targets, and that genes MND1, CDC6, ZNF282, ATP6V1B2,
IFI27, GCKR, PTAFR, and CCNI at the genomic level become potential druggable targets;
(5) different from the literature, this paper found that the initial SARS-CoV-2 is hypothe-
sized as a DNA virus with a long incubation period; (6) this new work, together with the
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existing work in the literature, systematically and accurately describe both SARS-CoV-2
and COVID-19 at the genetic level [8–11,24].

2. Method

This work is in the field of computational biology/medicine. The approach is similar
at the genomic level to our papers published in Vaccines. This paper is focused on epige-
netics biomarkers. All experimental recordings are publicly available. We describe our
computational method in this section.

In this work, we used the newly proven method of the max-linear competing logistic
regression classifier to classify confirmed COVID-19, healthy controls, and other COVID-19-
free respiratory diseases. The new method is very different from other classical statistical
and modern machine learning methods, e.g., random forests, deep learning models, and
support vector machines [11]. In addition, the new method has enhanced the interpretability
of results, consistency, and robustness, as shown in the literature on COVID-19 and several
types of cancers [8–11,15,21–23].

This section briefly introduces the necessary notations and formulas for self-containing
due to the different data structures used in this work. For continuous responses, the
literature [25–27] has dealt with max-linear computing factor models and max-linear
regressions with penalization. The max-logistic classifier has some connections to the
logistic polytomous models but with different structures [28–30]. This new innovative
approach can be classified as either an AI or machine learning algorithm. However, this
new approach has an explicit formula and is interpretable.

Suppose Yi is the ith individual patient’s COVID-19 status (Yi = 0 for COVID-19-free,
Yi = 1 for infected) and X(k)

i =
(

X(k)
i1 , X(k)

i2 , . . . , X(k)
ip

)
, k = 1, . . . , K are the beta values,

with p = 865, 859 CpG sites in this study. Here, k stands for the kth type of beta values
drawn based on K different biological sampling methodologies. Note that most published
works set K = 1, and hence the superscript (k) can be dropped from the predictors. In
this research paper, K = 5, as we have three datasets analyzed in Section 3, and in the first
dataset, there are other ARIs (Acute Respiratory Infections) patients, and in the second data
set, there are MIS-C pediatrics. Using a logit link (or any monotone link function), we can
model the risk probability p(k)i of the ith person’s infection status as:

log

(
p(k)i

1 − p(k)i

)
= β

(k)
0 + X(k)

i β(k) (1)

or alternatively, we write

p(k)i =
exp

(
β
(k)
0 + X(k)

i β(k)
)

1 + exp
(

β
(k)
0 + X(k)

i β(k)
)

where β
(k)
0 is an intercept, X(k)

i is a 1 × p observed vector, and β(k) is a p × 1 coefficient
vector which characterizes the contribution of each predictor (CpG site, in this study) to
the risk.

Considering that there have been many variants of SARS-CoV-2 and multiple symp-
toms (subtypes) of COVID-19 diseases, it is natural to assume that the epigenetic structures
of all subtypes can be different. Suppose that all subtypes of SARS-CoV-2 may be related to
G groups of CpG sites:

Φ(k)
ij =

(
X(k)

i,j1
, X(k)

i,j2
, . . . , X(k)

i,jgj

)
, j = 1, . . . , G, gj ≥ 0, k = 1, . . . , K (2)

where i is the ith individual in the sample, and gj is the number of CpG sites in the jth group.
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The competing (risk) factor classifier is defined as:

log (
p(k)i

1 − p(k)i

) = max(β
(k)
01 + Φ(k)

i1 β
(k)
1 , β

(k)
02 + Φ(k)

i2 β
(k)
2 , . . . , β

(k)
0G + Φ(k)

iG β
(k)
G ) (3)

where β
(k)
0j s are intercepts, Φ(k)

ij is a 1 × gj observed vector, and β
(k)
j is a gj × 1 coefficient

vector which characterizes the contribution of each predictor in the j group to the risk.

Remark 1. In (3), p(k)i is mainly related to the largest component CFj = β
(k)
0j + Φ

(k)
ij β

(k)
j ,

j = 1, . . . , G, i.e., all components compete to take the most significant effect.

Remark 2. Taking β
(k)
0j = −∞, j = 2, . . . , G, (3) is reduced to the classical logistic regression,

i.e., the classical logistic regression is a special case of the new classifier. Compared with black-box
machine learning methods (e.g., random forests, deep learning (convolutional) neural networks
(DNN, CNN)) and regression tree methods, each competing risk factor in (3) forms a clear, explicit,
and interpretable signature with the selected CpG sites. The number of factors corresponds to the
number of signatures, i.e., G. This model can be a bridge between linear models and more advanced
machine learning methods (black-box) models. However, (3) retains interpretability, computability,
predictability, and stability properties. Note that this remark is similar to Remark 1 in Zhang
(2021) [21].

We have to choose a threshold probability value to decide a patient’s class label in
practice. Following the general trend in the literature, we set the threshold to be 0.5. As
such, if p(k)i ≤ 0.5, the ith individual is classified as being disease-free; otherwise, the
individual is classified as having the disease.

With the above-established notations and the idea of a quotient correlation coeffi-
cient [31], Zhang (2021) [21] introduced a new machine learning classifier, smallest subset,
and smallest number of signatures (S4), for K = 1. We extended the S4 classifier from K = 1
to K = 5 as follows:

(β̂, Ŝ, Ĝ) = argminβ,Sj⊂S,j=1,2,...,G{(1 + λ1 + |Su|)∑K
k=1 ∑n

i=1(I(p(k)i ≤0.5)I(Yi=1)+I(p(k)i >0.5)I(Yi=0))

+λ2(|Su| − |Su |+G−1
(|Su |+1)×G−1 )}

(4)

where I(.) is an indicative function, p(k)i is defined in Equation (3), S = {1, 2, . . . , 865, 859}
is the index set of all CpG sites, Sj = {jj1, . . . , jj,gj}, j = 1, . . . , G are index sets corresponding
to (2), Su is the union of

{
Sj, j = 1, . . . , G

}
, |Su| is the number of elements in Su, λ1 ≥ 0 and

λ2 ≥ 0 are penalty parameters, and Ŝ = {jj1, . . . , jj,gj , j = 1, . . . , Ĝ} and Ĝ are the final CpG
set selected in the final classifiers and the number of final signatures.

Remark 3. When the S4 classifier leads to 100% accuracy, the bioequivalence and DNA methylation
geometry space can be established, which is a unique property established in (4) that does not appear
in other classifiers in the literature [9]. We further note that even with biased samples, e.g., noises, if
the performance is perfect, it is an indication of the method being powerful.

Remark 4. The case of K = 1 corresponds to the classifier introduced in Zhang (2021) [21]. The
case of K = 1 and λ2 = 0 corresponds to the classifier introduced in Zhang (2021) [8].

The data studied are publicly available. The inclusion and exclusion criteria of the
cohorts used in this study are the following: the sample sizes are larger than 20, and the
numbers of CpG sites are matched by solving Equation (4). For clinical inclusion and
exclusion criteria, readers are referred to the original study designs [3,14,32,33].

Four COVID-19 datasets to be analyzed in this study are publicly available: GSE174818 [14],
GSE193879 [3], GSE179325 [32], and GSE219037 [33]. All four datasets used the same
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platform, GPL21145 Infinium MethylationEPIC, and about 865,859 methylation sites from
whole blood samples.

GSE174818 contained peripheral blood samples from 102 COVID-19 patients compared
to 26 non-COVID-19 patients. In the second dataset GSE193879, peripheral blood samples
were recruited from 43 confirmed MIS-C patients, and 69 non-COVID-19 and 15 COVID-19
pediatric samples were obtained. The third dataset GSE179325 was a cohort of whole
blood genome-wide DNA methylation profiling from 473 RT-PCR-positive and 101 RT-
PCR-negative SARS-CoV-2 individuals. The fourth dataset GSE219037 is a methylation
assay that was performed on samples collected from 252 subjects at different time points as
part of the initial SARS-CoV-2 outbreak and later surveillance on the Marine recruits. The
data information is summarized in the following Table 1.

Table 1. Descriptions of four datasets used in the study.

Data Source COVID-19 Severity Control Size (Positive) Size (Negative) Age (Years)

GSE174818 [14] Hospitalized Hospitalized
other respiratory disease 102 26 21–89

GSE193879 [3] N/A Healthy 15 69 0.5–17

GSE179325 [32] Severe and mild Healthy 473 101 19–103

GSE219037 [33] Asymptomatic Healthy 76 96 18–28

3. Results and Interpretations
3.1. Separability between COVID-19 Patients and Non-COVID-19 Patients Presenting with
Respiratory Symptoms

Following the Monte Carlo computational procedure described in the earlier work [22],
from 865,859 methylation sites, we identified eight sites (cg16279999, cg24002522, cg00324510,
cg08949406, cg16785077, cg23933458, cg24002003, and cg24760467) with cg23933458 cor-
responding to one IncRNA gene LINC00456 to lead to 96.15% accuracy in classifying
COVID-19 patients and non-COVID-19 patients into their respective groups in the first
dataset GSE174818. Using the beta values calculated from M/(M + U) and Equations (1)–(4),
we obtained the coefficients in Equation (4). Table 2 lists the classifiers and the coefficients
of the sites.

Table 2. Performance of individual classifiers and combined max-competing classifiers using blood
sample dataset GSE174818 to classify hospitalized COVID-19 patients and other types of patients (as
control) into their respective groups. CF1 and CF2 are two different classifiers. CFmax = max(CF1,
CF2) is the combined max-competing classifier. The numbers are fitted coefficient values.

Sites Gene CF1 CF2 CFmax

Intercept −31.725 −40.3148

cg16279999 TESC 65.6839

cg24002522 ALCAM 54.1087

cg00324510 PACS1

cg08949406 FHIT

cg16785077 MX1 −26.8699

cg23933458 LINC00456

cg24002003 CHSY1 −24.6712 −12.7104

cg24760467 LZTS2 4.6904

Accuracy % 67.97 89.06 96.88

Sensitivity % 60.78 88.24 98.04

Specificity % 96.15 92.31 92.31
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In the table, the classifier CF1 in Equation (3) is defined as

−31.725 + 54.1087 × cg24002522 − 24.6712 × cg24002003 + 4.6904 × cg24760467

Then, 0.5 is the threshold for computing risk probability in the max-logistic regression
function. Other classifiers are defined similarly. CFmax is defined as the max(CF1,CF2).
We note that the threshold 0.5 can be changed to any other values between 0 and 1, and the
conclusions will not be changed.

The genes regulated by these CpG sites are listed in the Table 3 as follows.

Table 3. Descriptions of genes in Table 2.

Gene Name Gene Type Associated Diseases

TESC (Tescalcin) Protein Coding Van Den Ende–Gupta Syndrome

ALCAM (Activated Leukocyte Cell
Adhesion Molecule) Protein Coding Stork Bite and Melanoma

PACS1 (Phosphofurin Acidic Cluster
Sorting Protein 1) Protein Coding Schuurs–Hoeijmakers Syndrome and

Orthostatic Intolerance

FHIT (Fragile Histidine Triad Diadenosine
Triphosphatase) Protein Coding Renal Cell Carcinoma, Nonpapillary and

Sporadic Breast Cancer

MX1 (MX Dynamin Like GTPase 1) Protein Coding Influenza and Subacute Sclerosing
Panencephalitis (SSPE)

LINC00456 Long Intergenic Non-Protein
Coding RNA 456

CHSY1 (Chondroitin Sulfate Synthase 1) Protein Coding Temtamy Preaxial Brachydactyly Syndrome
and Brachydactyly

LZTS2 (Leucine Zipper Tumor Suppressor 2) Protein Coding

The information in Table 3 is listed at genecards.org (accessed on 22 November 2022).
Note that three CpG sites (cg00324510, cg08949406, and cg23933458) are not part of

the two individual classifiers. Instead, they will be used in Table 4 in Section 3.4. We
further note that in this COVID-19 example, the individual classifiers are only CF1 and CF2,
and only five sites are used. In the earlier work [8–10,15,21], the authors discussed their
modeling strategy to avoid overfitting the data. Using extensive Monte Carlo simulation
computation, we found that increasing the number of individual classifiers, in this case,
will not improve the accuracy and interpretability, and we adopted the final fitted model in
Table 2.

3.2. CpG Site–Site Interactions

We will now explain the CpG site–site interactions. We have two combinations (two
competing classifiers): CF1 and CF2. In CF1, three CpG sites (cg24002522, cg24002003, and
cg24760467) form a combination (signature, see also Figure 1) with the coefficient signs
of the two sites being positive while the third one is negative. In CF2, three CpG sites
(cg16279999, cg16785077, and cg24002003) form a different combination (signature), with
the coefficient signs of the two sites being negative and the other being positive. Taking
cg24002003 as an example, its coefficient strengths (−24.6712 vs. −12.7104) depend on
which combination this site falls into, i.e., how it interacts with other sites. Let us consider a
basketball team as an analogy. These five CpG sites correspond to five basketball players on
a team. The team has two main teammate combinations for scoring. A positive coefficient
associated with a player in a teammate scoring combination means that the longer the
ball-controlling time of the player, the higher chance of the team to score, and a negative
coefficient associated with a player means that the shorter the ball-controlling time of the
player, the higher chance of the team to score. In the meantime, which scoring combination

genecards.org
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is going to score? Under some scenarios, only one combination can score; and under some
scenarios, any combination can score. Figure 1 shows such phenomena. There are site–site
interactions between competing factors (CF1, CF2), e.g., through cg24002003.
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Figure 1. COVID-19 classifiers in Table 2: Visualization of site–site relationships and site risk
probabilities. Note that 0.5 is the probability threshold.

In the two sub-figures, we clearly see two different structures (signature patterns) and
the way in which patients are classified into subgroups based on individual beta values. In
Section 4.1, we further illustrate the idea of how our classifiers can classify patients into
subgroups.

3.3. Biological Implications

From Table 2, we can see that CF2 (accuracy 89.06%) performs better than CF1 (accu-
racy 67.97%). The negative coefficients reveal that the higher the rates of the methylations
of cg16786077 and cg24002003, the lower the risk of a patient being COVID-19 positive.
The lower the methylations of cg1627999, cg24002522, and cg24760467, the lower the risk
of a patient being COVID-19 positive. These observations reveal that regulations of these
sites’ methylation rates (beta values) can help prevent a patient from being infected with
SARS-CoV-2 and becoming COVID-19 positive.

3.4. Cohort-to-Cohort Cross-Validation: Separability between Pediatric COVID-19 Cases and
Healthy Controls

The results obtained in Table 2 need to be cross-validated by performing cross-
validation (CV). One way is to split the dataset GSE174818 into two sets (modeling set
and testing set) and complete the classical CV method. We note that the classical CV has
limitations given the heterogeneous population characteristics; see the discussions in later
sections. In this paper, we adopted a cohort-to-cohort cross-validation method using a
different dataset, GSE193879, to validate the identified CpG sites in Table 2.

Pediatric COVID-19 cases have drawn attention due to vaccine applicability and these
patients’ underdeveloped immune systems. This section studies multisystem inflammatory
syndrome in children (MIS-C) with or without SARS-CoV-2 infection [3]. For our purposes,
we first only targeted patients with confirmed COVID-19 and healthy controls, i.e., we did
not include the MIS-C status but focused on 69 non-COVID-19 pediatric samples and 15
COVID-19 pediatric samples. Table 4 reports the fitted max-logistic models and parameter
coefficients, followed by our interpretations.
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Table 4. Performance of individual classifiers and combined max-competing classifiers using blood
sample dataset GSE193879 to classify COVID-19+ pediatric patients and healthy controls into their
respective groups. CF1 and CF2 are two different classifiers. CFmax = max(CF1–2) is the combined
max-competing classifier. The numbers are fitted coefficient values.

Sites Gene CF1 CF2 CFmax

Intercept 35.11 −7.1311

cg16279999 TESC

cg24002522 ALCAM −42.2336

cg00324510 PACS1 22.369

cg08949406 FHIT 22.441

cg16785077 MX1 −29.4016

cg23933458 LINC00456 10.858

cg24002003 CHSY1 −56.1248

cg24760467 LZTS2

Accuracy % 90.48 91.67 92.86

Sensitivity % 73.33 66.67 100.00

Specificity % 94.20 97.10 91.30

It can be seen that CF1 values in Table 4 and those in Table 2 have different combina-
tions of sites, i.e., their site–site interactions are different between children and adults. Note
that the controls in Table 4 were healthy individuals while the control in Table 2 was other
types of respiratory diseases, which makes the comparison not direct. Nevertheless, the
coefficient signs of cg16785077 and cg24002003 in both tables are all negative, implying
that these sites’ higher methylation levels will reduce the patients’ risk of SARS-CoV-2
infection. One significant fact is that the coefficient signs of cg24002522 are reversed in the
two tables, which suggests different responses to SARS-CoV-2 infection between adults
and children and different site–site interactions depending on which sites are combined in
the classifier (team). As a result, such a phenomenon at the DNA methylation level should
be well-understood when applying vaccines to children.

Note that cg23933458 corresponds to the LINC00456 gene—Long Intergenic Non-
Protein Coding RNA (lncRNAs) 456. It can be seen that the larger the beta values of the
LINC00456 gene, the higher the risk of the patient being COVID-19+.

Figure 2 presents critical site methylation levels and risk probabilities corresponding
to different combinations in the second dataset and Table 4. Like Figure 1, it can be seen
that each plot shows a methylation signature pattern and the functional effects of the
sites involved.

With the strong performance of eight sites (identified in the first and second datasets),
the two datasets serve as a natural double validation of the findings from both datasets.
We want to point out that such a kind of validation is different from the cross-validation
commonly applied in statistical analysis and experimental validations. We argue that the
current experimental technology may not be advanced enough to validate gene–gene and
site–site interactions. Also, all experiments applied to animals may not be applicable to
humans. In the earlier work [10], we discussed that traditional statistical cross-validation
is not valid for heterogeneous population clustering and classifications. In the earlier
work [11,15,21–23], we found that the findings are intrinsic at the genomic level. They can
easily pass cross-validations from cohort to cohort. For example, in the study of genomic
biomarker heterogeneities between SARS-CoV-2 and COVID-19, genes (ABCB6, KIAA1614,
MND1, SMG1, RIPK3, CDC6, ZNF282, CEP72, ATP6V1B2, IFI27, BTN3A1, SERTAD4, and
EPSTI1) had robust and nearly perfect performance among 15 cohorts (including different
ethics, SARS-CoV-2 subvariants, e.g., omicron, breakthrough infections) with thousands
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of samples [10], which further led to a confirmation of MND1, CDC6, ZNF282, ATP6V1B2,
and IFI27 being meaningful for discovering vaccine adverse effects among COVID-19-
convalescent octogenarians [11]. Using this evidence as indirect support, it may be safe
to say that the eight sites are optimal DNA methylation biomarkers due to their intrinsic
features of site–site interactions, competing interactions of sites–subgroups, and, more
importantly, their high-performance accuracy.
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3.5. Separability between Asymptomatic Cases and Healthy Controls

The CpGs identified in Table 2 were based on hospitalized COVID-19 patients. In
this section, we study the performance of the eight CpGs on asymptomatic cases. Using a
recent public dataset GSE219037 [33], we obtained the following in Table 5.

Table 5. Performance of individual classifiers and combined max-competing classifiers using blood
sample dataset GSE219037 to classify asymptomatic Marines and healthy controls into their respective
groups. CF1 and CF2 are two different classifiers. CFmax = max(CF1–2) is the combined max-
competing classifier. The numbers are fitted coefficient values.

Sites Gene CF1 CF2 CFmax

Intercept 50.86 −78.93

cg16279999 TESC 110.32

cg24002522 ALCAM −42.02

cg00324510 PACS1

cg08949406 FHIT 52.38

cg16785077 MX1 −77.76

cg23933458 LINC00456 −0.20 23.19

cg24002003 CHSY1 −67.43

cg24760467 LZTS2 −36.30

Accuracy % 80.61 80.23 92.44

Sensitivity % 61.33 56.0 88.0

Specificity % 95.88 98.97 95.88
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We can immediately notice that the performance (accuracy, sensitivity, and specificity)
in Table 5 is similar to those in Tables 2 and 4. The CpGs (cg08949406, cg16785077, and
cg23933458) in CF1 in Tables 4 and 5 have the same coefficient signs, respectively. The CpGs
(cg23933458, cg24002003) in CF2 in Tables 4 and 5 have the same coefficient signs, respec-
tively. We note that the samples related to GSE219037 were a methylation assay performed
on samples collected from 252 subjects at different time points as part of the initial SARS-
CoV-2 outbreak and later surveillance on the Marine recruits (age 19.77 ± 2.45 years) [33].
It was a longitudinal study. We extracted the asymptomatic cases (76 cases) and healthy
controls (96 cases) for the purpose of our study. Putting Tables 2, 4 and 5 together offers
a comprehensive understanding of COVID-19 severity and age effects. Based on these
observations, we can infer that these eight CpGs are reliable biomarkers for COVID-19
biological studies.

3.6. Separability between MIS-C Patients and COVID-19+ Patients

MIS-C is a rare but serious condition associated with COVID-19, which motivates the
study of their connection to DNA methylations. We now use the eight sites in Table 2 to
study MIS-C patients and COVID-19+ patients. Table 6 lists the fitted results.

Table 6. Performance of individual classifiers and combined max-competing classifiers using blood
sample dataset GSE193879 to classify MIS-C patients and COVID-19+ patients into their respective
groups. CF1 and CF2 are two different classifiers. CFmax = max(CF1-2) is the combined max-
competing classifier. The numbers are fitted coefficient values.

Sites Gene CF1 CF2 CFmax

Intercept −27.9687 −22.7434

cg16279999 TESC

cg24002522 ALCAM

cg00324510 PACS1 24.7071

cg08949406 FHIT

cg16785077 MX1 18.5328 25.1451

cg23933458 LINC00456 1.9181

cg24002003 CHSY1 −8.986 23.7035

cg24760467 LZTS2

Accuracy % 89.66 75.86 94.83

Sensitivity % 88.37 69.77 95.35

Specificity % 93.33 93.33 93.33

In Table 6, the sensitivity corresponds to MIS-C patients, while the specificity corre-
sponds to COVID-19+ patients. It can be seen that the higher the beta values (methylation
rates) of cg16785077, cg00324510, and cg23933458, the more severe the MIS-C. The site
cg24002003 can be beneficial and harmful to MIS-C, depending on how it interacts with
other sites.

Figure 3 demonstrates the signature patterns of CF1 and CF2 in Table 6.
Note that in Table 6, only four CpG sites are used to separate MIS-C from COVID-

19+ pediatrics. Nevertheless, all three tables show the strong performance of the identi-
fied CpGs.
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Figure 3. COVID-19 classifiers in Table 6: Visualization of site–site relationships and site risk
probabilities. Note that 0.5 is the probability threshold.

3.7. Cohort-to-Cohort Cross-Validation: Separability among COVID-19 Severe and Mild Cases and
Healthy Controls

We used another dataset GSE179325 to validate the identified CpG sites in Table 2.
The dataset GSE179325 contained 113 severe COVID-19+, 360 mild COVID-19+, and

101 healthy control patients. Here we study four classification problems: (1) COVID-19+
vs. healthy; (2) severe COVID-19+ vs. healthy; (3) mild COVID-19+ vs. healthy; (4) severe
COVID-19+ vs. mild COVID-19+. They will be presented sequentially in the following
sub-sections.

For the first case (1), the performance results are listed in Table 7. Figure 4 plots the
signature patterns.

Table 7. Performance of individual classifiers and combined max-competing classifiers using blood
sample dataset GSE179325 to classify COVID-19+ patients and healthy controls into their respective
groups. CF1-3 are three different classifiers. CFmax = max(CF1-3) is the combined max-competing
classifier. The numbers are fitted coefficient values.

Sites Gene CF1 CF2 CF3 CFmax

Intercept −30.937 −12.3248 −22.4222

cg16279999 TESC 40.5278 35.5007

cg24002522 ALCAM −3.6707

cg00324510 PACS1 6.4129

cg08949406 FHIT 29.0715

cg16785077 MX1 −31.7679

cg23933458 LINC00456 6.3832

cg24002003 CHSY1 −30.5158

cg24760467 LZTS2 −14.5514

Accuracy % 28.57 71.60 48.26 79.79

Sensitivity % 13.32 68.50 38.48 78.86

Specificity % 100.00 86.14 94.06 84.16
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Figure 4. COVID-19 classifiers in Table 7: Visualization of site–site relationships and site risk
probabilities. Note that 0.5 is the probability threshold.

For the case (2), the performance results are listed in Table 8. Figure 5 plots the
signature patterns.

Table 8. Performance of individual classifiers and combined max-competing classifiers using blood
sample dataset GSE179325 to classify severe COVID-19+ patients and healthy controls into their
respective groups. CF1-3 are three different classifiers. CFmax = max(CF1-3) is the combined
max-competing classifier. The numbers are fitted coefficient values.

Sites Gene CF1 CF2 CF3 CFmax

Intercept −3.0854 −58.5936 −19.8489

cg16279999 TESC 23.3306

cg24002522 ALCAM

cg00324510 PACS1 23.3655 31.8937

cg08949406 FHIT 54.0804

cg16785077 MX1 −25.4411 −8.7879

cg23933458 LINC00456 −8.6934

cg24002003 CHSY1 −24.5055

cg24760467 LZTS2 −1.0033

Accuracy % 69.16 85.51 78.97 90.19

Sensitivity % 45.13 83.19 67.26 94.69

Specificity % 96.04 88.12 92.08 85.15
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Figure 5. COVID-19 classifiers in Table 8: Visualization of site–site relationships and site risk prob-
abilities. Note that 0.5 is the probability threshold. 
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Figure 5. COVID-19 classifiers in Table 8: Visualization of site–site relationships and site risk
probabilities. Note that 0.5 is the probability threshold.

For the case (3), the performance results are listed in Table 9. Figure 6 plots the
signature patterns.

Table 9. Performance of individual classifiers and combined max-competing classifiers using blood
sample dataset GSE179325 to classify mild COVID-19+ patients and healthy controls into their
respective groups. CF1-3 are three different classifiers. CFmax = max(CF1-3) is the combined
max-competing classifier. The numbers are fitted coefficient values.

Sites Gene CF1 CF2 CF3 CFmax

Intercept −8.6838 −1.672 −20.4306

cg16279999 TESC 22.8237

cg24002522 ALCAM

cg00324510 PACS1 5.7074 9.0597 11.1895

cg08949406 FHIT 10.1356

cg16785077 MX1 −23.5915

cg23933458 LINC00456

cg24002003 CHSY1 −17.2585

cg24760467 LZTS2 −9.3648 6.3264

Accuracy % 74.40 34.49 27.11 80.26

Sensitivity % 72.22 17.22 8.33 80.83

Specificity % 82.18 96.04 94.06 78.22
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Figure 6. COVID-19 classifiers in Table 9: Visualization of site–site relationships and site risk prob-
abilities. Note that 0.5 is the probability threshold. 
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Figure 6. COVID-19 classifiers in Table 9: Visualization of site–site relationships and site risk
probabilities. Note that 0.5 is the probability threshold.

For the case (4), the performance results are listed in Table 10. Figure 7 plots the
signature patterns.

Table 10. Performance of individual classifiers and combined max-competing classifiers using blood
sample dataset GSE179325 to classify severe and mild COVID-19+ patients into their respective
groups. CF1-3 are three different classifiers. CFmax = max(CF1-3) is the combined max-competing
classifier. The numbers are fitted coefficient values.

Sites Gene CF1 CF2 CF3 CFmax

Intercept 20.3765 46.7137 −11.3025

cg16279999 TESC −23.7059

cg24002522 ALCAM 6.9659

cg00324510 PACS1 −37.5048

cg08949406 FHIT −21.3486

cg16785077 MX1 −1.9268 −2.1241

cg23933458 LINC00456 31.2084

cg24002003 CHSY1 11.1234 11.3969

cg24760467 LZTS2

Accuracy % 34.25 66.38 64.48 77.80

Sensitivity % 14.72 59.72 58.33 77.22

Specificity % 96.46 87.61 84.07 79.65
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Figure 7. COVID-19 classifiers in Table 10: Visualization of site–site relationships and site risk prob-
abilities. Note that 0.5 is the probability threshold. 
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Interpretations of the results: Comparing Tables 7–9 with Tables 2, 4 and 5, and
Figures 4–6 with Figures 1 and 2, we see different combinations and signature patterns.
Although the platforms used the same GPL21145 Infinium MethylationEPIC platform,
there are other factors (sex, age, epidemiological and clinical variables, diet, lifestyle, etc.)
among these three cohorts. Without considering these factors as confounding variables,
the identified eight CpG sites have led to a nearly perfect performance in Tables 2, 4 and 5,
which indicate that the eight CpG sites can be used as intrinsic variables, and other factors
can be treated as extrinsic variables. When intrinsic variables lead to a nearly perfect
performance, the extrinsic variables can provide little additional useful information, i.e.,
they will not improve the classification accuracy. Based on these observations, in this paper,
we only used the eight CpG sites in this section. Tables 7–9 show a convincing performance.
Nevertheless, in general, including extrinsic variables in GSE179325 may further improve
the accuracy in Tables 7–9, which is worth further investigation. This step is not essential
for identifying critical CpG sites in this paper as the results obtained have proven to be
excellent, and we leave it for future work.

Biological implications: We first note that the coefficient signs of cg16785077 and
cg24002003 are all negative in Tables 7–9 and are consistent with those in Tables 2, 4 and 5.
On the other hand, the coefficient signs of cg16279999 are all positive in Tables 2 and 7–9,
which indicates that the higher the beta values of this CpG site, the higher the risk of the
patient being COVID-19+. In addition, the coefficient signs of cg00324510 and cg08949406
are all positive in Tables 4 and 7–9, which indicates that the higher the beta values of these
two CpG sites, the higher the risk of the patient being COVID-19+. Such a phenomenon
clearly proves two basic claims: (1) these eight CpG sites and their signature patterns
are robust and reliable DNA methylation biomarkers in studying COVID-19 infection;
(2) cg16785077, cg24002003, cg16279999, cg00324510, cg08949406, and their regulated genes
are potential druggable targets. Here, druggable targets are based on the fact that the
reversible and malleable nature of DNA methylation makes it a potential therapeutic target
and marker for risk stratification.

Next, we discuss the performance summarized in Tables 7–9. Table 8 (severe COVID-
19+ vs. healthy controls) shows that these eight CpG sites lead to an overall accuracy
of 90.19%, a sensitivity of 94.69%, and a specificity of 85.15%. Such a high performance
again shows that these CpGs are reliable DNA methylation biomarkers and robust among
different heterogeneous cohorts. Table 9 (mild COVID-19+ vs. healthy controls) shows an
overall accuracy of 80.26%, a sensitivity of 80.83%, and a specificity of 78.72%, which is
also a satisfactory performance at the DNA level as mildly symptomatic cases and healthy
controls can have more similarities in their methylation measures. On the other hand,
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such a performance is already better than many reported results in the literature. Table 7
(severe and mild COVID-19+ vs. healthy controls) shows an overall accuracy of 79.79%,
a sensitivity of 78.86%, and a specificity of 84.16%, which is close to the performance in
Table 9. Tables 8 and 9 together indicate that these eight CpG sites are critical in fighting
against COVID-19.

Note that we used eight CpGs in Table 2 to evaluate their performance in Tables 4–9
as a cohort-to-cohort cross-validation. Such new types of validations can hardly be found
in the literature. The superb performances in all cases lead us to safely infer that the eight
CpGs are reliable biomarkers.

3.8. Influenza and SSPE Indicated by CpG Site cg16785077 (MX1)

This section discusses the diseases associated with MX1: influenza and subacute
sclerosing panencephalitis (SSPE) and their possible connections to other genes.

From Table 10 and Figure 7, we see that severe COVID-19+ and mild COVID-19+ pa-
tients can share some common DNA methylation signature patterns, and as a result, it is not
easy to separate them. Nonetheless, the eight CpG sites still perform strongly, i.e., they are
informative to COVID-19 infection. The coefficient signs of cg16785077 are negative, which
coincides with Tables 2 and 4–9. This observation shows that cg16785077 (MX1) regulates
the gene expression of gene MX1, and the higher the methylation rate, the lower the risk of
a patient being COVID-19+ or the lower the severity of COVID-19 symptoms. Interestingly,
we see that the coefficient signs of cg24002003 (CHSY1) are positive in Table 10, which
is different from the corresponding coefficient signs in Tables 2 and 4–9. This observation
shows that there is a point of change for cg24002003 in terms of how its methylation rate
reflects the disease severity, and this phenomenon again shows that site–site interactions
should be the key for studying the COVID-19 DNA methylation signature patterns.

It is commonly known that COVID-19 infections share similar symptoms with in-
fluenza, especially after omicron infections. In the earlier work [10], the set of genes
(ATP6V1B2, IFI27, BTN3A1, SERTAD4, and EPSTI1) was identified at the genomic level
as a set of SARS-CoV-2 biomarkers with nearly perfect performance, based on NP/OP
swab PCR samples. Among these five genes, IFI27 has been studied in the literature, which
states that IFI27 discriminates between influenza and bacteria in patients with suspected
respiratory infections [34]. Jointly considering our new results at DNA methylation levels
and the earlier discovery of IFI27 in COVID-19 infections, it may be safe to infer that
the CpG site cg16785077 (MX1) played a role in SARS-CoV-2 transmissions and led to
influenza-like symptoms through IFI27 (NP/OP). However, such a hypothesis can take
years to verify.

As to ATP6V1B2, it is reported in the literature that de novo mutation in ATP6V1B2
impairs lysosome acidification and causes dominant deafness–onychodystrophy syn-
drome [35]. Other than this, it is not known how ATP6V1B2 affects the brain. SSPE
is a progressive neurological disorder in children and young adults that affects the central
nervous system (CNS). It is a slow and persistent viral infection related to measles with
an incubation period of up to six to eight years. Based on such observations, serious
precautions have to be taken, and it can be inferred that there is a likelihood that the CpG
site cg16785077 (MX1) may lead to SSPE symptoms through the gene ATP6V1B2. Likewise,
such a hypothesis can take years to verify.

4. Other Perspectives

Section 3 applied S4 classifiers (4) to DNA methylation beta values calculated based
on the M/(M + U) formula. In this section, we present two alternative approaches to
generate DNA methylation beta values and use them to identify CpG sites and evaluate
the performance of these sites. We only worked on the dataset GSE174818 as the data made
methylated intensities and unmethylated intensities available.
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4.1. Beta Values Calculated Using (M + 1)/(M + U + 2)

Solving S4 classifiers (4), we obtained CpGs (cg03870777, cg16279999, cg15528722,
cg24596788, cg11186858, cg24002522, cg22930808, cg25932713, and cg26301516) to lead
100% accuracies in five different combined classifiers, which are presented in the following
Table 11a–e.

Table 11. Performance of individual classifiers and combined max-competing classifiers using blood
sample dataset GSE174818 to classify hospitalized COVID-19 patients and other types of patients (as
control) into their respective groups. CF1-3 are three different classifiers. CFmax = max(CF1-3) is the
combined max-competing classifier. The numbers in (a–e) are fitted coefficient values. (f) presents
coefficient signs in (a–e). Negative signs are expressed as ‘n’, and positive signs are indicated as ‘p’.
(g) combines (a–e) to form a new combination with each individual classifier having the same and
highest accuracy.

(a)

Sites Gene CF1 CF2 CF3 CFmax

Intercept −107.538 75.7212 109.6635

cg03870777 KRT8 −63.7927

cg16279999 TESC 124.0192

cg15528722 TTC33 −5.9786

cg24596788 LOC100422212 −114.038 −69.9951

cg11186858 SEC14L1 9.1088

cg24002522 ALCAM 42.4985

cg22930808 PARP9

cg25932713 PARP9 −87.3865

cg26301516 FNDC3B 43.7713

Accuracy 83.59% 72.66% 68.75% 100%

Sensitivity 79.41% 65.69% 60.78% 100%

Specificity 100% 100% 100% 100%

(b)

Sites Gene CF1 CF2 CF3 CFmax

Intercept −0.0592 16.3317 −59.7148

cg03870777 KRT8 −73.3841

cg16279999 TESC 40.8761

cg15528722 TTC33 −10.95

cg24596788 LOC100422212 −42.3716

cg11186858 SEC14L1 21.7146

cg24002522 ALCAM

cg22930808 PARP9 −6.2028 −3.5323

cg25932713 PARP9

cg26301516 FNDC3B 35.6417 27.1637

Accuracy 82.81% 88.28% 50% 100%

Sensitivity 78.43% 85.29% 37.25% 100%

Specificity 100% 100% 100% 100%
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Table 11. Cont.

(c)

Sites Gene CF1 CF2 CF3 CFmax

Intercept 57.4536 −100.631 2.9006

cg03870777 KRT8 −83.4044

cg16279999 TESC 79.6075 52.984

cg15528722 TTC33

cg24596788 LOC100422212 −81.6208

cg11186858 SEC14L1

cg24002522 ALCAM −11.2572

cg22930808 PARP9 −13.8329

cg25932713 PARP9 −51.6332

cg26301516 FNDC3B 34.5399 41.5304

Accuracy 89.84% 58.59% 67.19% 100%

Sensitivity 87.25% 48.04% 58.82% 100%

Specificity 100% 100% 100% 100%

(d)

Sites Gene CF1 CF2 CF3 CFmax

Intercept −104.466 −10.3324 4.7928

cg03870777 KRT8 −87.6922

cg16279999 TESC 88.866

cg15528722 TTC33 −14.4221 −18.1529 −13.0186

cg24596788 LOC100422212

cg11186858 SEC14L1 19.7615

cg24002522 ALCAM 57.7129

cg22930808 PARP9

cg25932713 PARP9 −22.7502

cg26301516 FNDC3B 38.9308

Accuracy 89.84% 60.94% 89.84% 100%

Sensitivity 87.25% 50.98% 87.25% 100%

Specificity 100% 100% 100% 100%

(e)

Sites Gene CF1 CF2 CF3 CFmax

Intercept −47.6492 60.9853 −63.9485

cg03870777 KRT8 −61.9501

cg16279999 TESC 85.7758 65.8907

cg15528722 TTC33 −8.1331 −16.9343

cg24596788 LOC100422212 −138.010

cg11186858 SEC14L1

cg24002522 ALCAM 11.7749 11.7696

cg22930808 PARP9

cg25932713 PARP9
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Table 11. Cont.

cg26301516 FNDC3B 58.4412

Accuracy 89.84% 60.94% 89.84% 100%

Sensitivity 87.25% 50.98% 87.25% 100%

Specificity 100% 100% 100% 100%

(f)

Sites Gene (a) CF- (b) CF- (c) CF- (d) CF- (e) CF-
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

cg03870777 KRT8 n n n n n
cg16279999 TESC p p p p p p p
cg15528722 TTC33 n n n n n n n
cg24596788 LOC100422212 n n n n n
cg11186858 SEC14L1 p p p p
cg24002522 ALCAM p n p p
cg22930808 PARP9 n n n
cg25932713 PARP9 n n n
cg26301516 FNDC3B p p p p p p p

(g)

Sites Gene CF1 CF2 CF3 CFmax

Intercept −104.466 57.4536 4.7928

cg03870777 KRT8 −87.6922

cg16279999 TESC 88.866

cg15528722 TTC33 −14.4221 −13.0186

cg24596788 LOC100422212 −81.6208

cg11186858 SEC14L1 19.7615

cg24002522 ALCAM

cg22930808 PARP9 −13.8329

cg25932713 PARP9

cg26301516 FNDC3B 38.9308 34.5399

Accuracy 89.84% 89.84% 89.84% 100%

Sensitivity 87.25% 87.25% 87.25% 100%

Specificity 100% 100% 100% 100%

The genes regulated by these CpG sites are listed in the following Table 12.

Table 12. Descriptions of genes in Table 11.

Gene Name Gene Type Associated Diseases

KRT8 (Keratin 8) Protein Coding Cyrhosis and Hidrocystoma

TTC33 (Tetratricopeptide Repeat Domain 33) Protein Coding Mixed Fibrolamellar Hepatocellular Carcinoma

LOC100422212 (Eukaryotic Translation Initiation
Factor 3 Subunit J Pseudogene) Pseudogene

SEC14L1 (SEC14 Like Lipid Binding 1) Protein Coding Complement Component 7 Deficiency and
Phlyctenulosis

PARP9 (Poly(ADP-Ribose) Polymerase Family
Member 9) Protein Coding Lymphoma and B-Cell Lymphoma

FNDC3B (Fibronectin Type III Domain
Containing 3B) Protein Coding Urethra Clear Cell Adenocarcinoma and Urethra

Adenocarcinoma
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The information in Table 12 is listed at genecards.org (accessed on 22 November 2022).
We note that PARP9 was linked to SARS-CoV-1 and MERS-CoV in the literature [18–

20,36,37]. It has also been extensively studied in its connection to SARS-CoV-2 [5,38–42].
In particular, cg22930808 is ranked as the first in [42]. However, in this work, PARP9’s
functional effects on COVID-19 are through its interaction with other genes (sites) and its
interaction with the subgroups. We further note that PARP9 is not the whole story of the
COVID-19 disease, as its intrinsic classifier only has 68.75% accuracy. As a result, the earlier
literature research on PARP9 should be extended. More detailed discussions will be given
in what follows.

At the DNA methylation level, our work is the first to identify a set of eight sites
(cg03870777, cg15528722, cg24596788, cg25932713, cg16279999, cg11186858, cg24002522,
and cg26301516) from 865,859 sites to lead to a perfect 100% accuracy, and as a result,
they can be treated as optimum DNA methylation biomarkers. It is a known fact in
biological and medical research that finding reliable markers is challenging, mainly due to
the limitations of study methods and tools. The proven max-logistic competing models
have made such a task possible.

Given that the performance of these sites is based on their interactions, traditional
research conclusions/recommendations from individual site analysis, including pathway
analysis, can be doubtful as long as those results cannot be verified to lead to accurate results.

A natural question is whether other sites can lead to 100% accuracy. We have found
that a set of nine sites (cg03870777, cg16279999, cg15975806, cg24596788, cg11186858,
cg24002522, cg25932713, cg11036672, and cg26301516) lead to 100% accuracy. It can be
expected there will be many such combinations as long as we are allowed to include more
sites. For this reason, we only report the smallest number of sites in Table 11a–e.

Given that PARP9 was linked to SARS-CoV-1, several research papers have discovered
its potential functions in SARS-CoV-2, e.g., as a noncanonical RNA sensor for RNA viruses
in initiating and amplifying protective immunity [41]; it is worth jointly studying PARP9
together with FNDC3B and a pseudogene LOC100422212.

Besides PARP9, the three genes KRT8, SEC14L1, and ALCAM have also been linked
to COVID-19. In particular, KRT8 (cg03870777) is a marker of DATP representative im-
munofluorescence staining for pro-SPC, KRT8, and DAPI in both control and COVID-19
lung tissue [6]. SEC14L1 is anti-inflammatory, which is significantly downregulated in
COVID-19 patients [43]. On the other hand, the percentage of monocytes (CD14+) ex-
pressing the cell adhesion molecule ALCAM is strongly upregulated in SARS-CoV-2+
patients [44].

Among all three component classifiers CF1, CF2, and CF3 in Table 11a, KRT8 is a
component of CF1, both SEC14L1 and ALCAM are components of CF2, while PARP9 is a
component of CF3. These facts reveal that these genes only characterize partial information
about COVID-19 and must be combined with other genes to take functional effects. As
a result, any research conclusions made without studying site–site interactions can be
incomplete, and their usefulness can be genuinely doubtful. An analogy is that studying
trees cannot solve the problem of the forest.

Figure 8 presents critical site methylation levels and risk probabilities corresponding
to different combinations in Table 11a. It can be seen that each plot shows a methylation
signature pattern and functional effects of the sites/genes involved.

Biological implications: From Table 11a and Figure 8, we can see that increasing the
methylation levels of cg03870777, cg15528722, cg24596788, and cg25932713, and decreasing
the methylation levels of cg16279999, cg11186858, cg24002522, and cg26301516, will lower
the risk of contracting COVID-19 disease. In particular, cg25932713 (PARP9) with higher
methylation levels will benefit an individual.
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We note that this set of genes (KRT8, TESC, TTC33, LOC100422212, SEC14L1, AL-
CAM, PARP9, and FNDC3B) does not overlap with the set of genes (ABCB6, KIAA1614,
MND1, SMG1, RIPK3, CDC6, ZNF282, and CEP72) identified at the genomic level as a set of
COVID-19 biomarkers with optimum performance, based on whole blood samples [8–10].
Furthermore, these genes also do not overlap with the set of genes (ATP6V1B2, IFI27,
BTN3A1, SERTAD4, and EPSTI1) identified at the genomic level as a set of SARS-CoV-2
biomarkers with nearly perfect performance, based on NP/OP swab PCR samples [10].
Such biomarker heterogeneities can be explained as they represent different levels, i.e., the
COVID-19 DNA methylation level, COVID-19 genomic level, and SARS-CoV-2 genomic
level. Putting them all together establishes a uniformly integrated and comprehensive un-
derstanding of the infection and disease and hence can benefit the development of vaccines,
antiviral drugs, and medical treatments. Based on our limited knowledge, scientists have
not figured out how the viruses were formed and how they were transmitted from one to
another [1–7]. Our work certainly provides a completely new direction (initial virus being
a transcribed viral DNA into RNA virus) to explore.

Subgroups classified by classifiers: Using the probability threshold of 0.5, we can
further divide patients into subgroups. Clearly, patients in the same subgroup share
basic intrinsic disease medical information. Figure 9 is a Venn diagram illustrating each
classifier’s performance. There are a total of seven subgroups. In the Venn diagram, those
patients who fall in the intersections are relatively easy to be tested and confirm as positive,
while for those who only fall in one category, it is relatively hard to test and confirm
their status. Three individual classifiers can be explained as having three COVID-19 tests
using three different testing procedures (kits), and with the three tests being positive, the
probability of infection will be higher depending on the sensitivity and the specificity of
each test.

We can see in Figure 9 that about 37% (37 out of 102) of the COVID-19 patients were
confirmed by every individual classifier, i.e., all eight sites and their interactions took
effect. The status of 37% of patients is more complicated than that of other patients in the
cohort. This Venn diagram clearly reveals any individual site alone will not be an efficient
targeting point. Therefore, we have to study the site–site interactions and site–subgroup
interactions jointly.
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Finally, comparing Table 2 with Table 11a, we see that cg16279999 and cg24002522
appear in both tables, and their coefficient signs are also both positive. Such a phenomenon
again indicates that these two sites are essential in the classifications of COVID-19+ patients
and patients with other types of respiratory diseases, and lowering their methylations can
benefit patients.

4.2. Overall Performance and Interpretations

Individual classifiers in Table 11b–e can be interpreted similarly. We summarize the
coefficient signs in Table 11a–e in Table 11f.

We can immediately see that, except row cg24002522, all other rows show the same
sign of the fitted coefficients within each row. Notice that the CF2 in Table 11c has a
sensitivity of 48.04%, which indicates this classifier can only be workable for a specific
group of patients and may be replaced by other classifiers.

Changing to a different set of genes and obtaining the similar patterns in Table 11f
is very unlikely. Three sites could be adequate enough if we sought a lower accuracy of
less than 89.84%. For example, CF1 in Table 11a, and CF1 and CF2 in Table 11b are each
adequate enough. We also note that many published works have not paid attention to the
specific features of the fitted models and, hence, can be less informative. With the uniform
patterns in Table 11f the methylation sites identified in the table are indeed meaningful.

The three individual classifiers can also be interpreted as follows. As mentioned earlier,
each classifier is a test kit. As long as any of the three tests results in an individual being
positive, the individual is COVID-19 positive with 100% probability given the specificity has
been 100% in practice. Each table corresponds to a test kit manufacturer; five manufacturers
use different technological combinations.

We now use CF3 in Table 11a, CF2 in Table 11b, and CF1 in Table 11c to interpret
site–site interactions and their effects. First, note that these three classifiers share the
same genes (LOC100422212, PARP9, FNDC3B), but the sites are different: cg24596788,
cg25932713, and cg26301516; cg24596788, cg22930808, and cg26301516; and cg24596788,
cg22930808, and cg26301516 in CF3, CF2, and CF1, respectively, in their corresponding
tables. One immediate question is why CF2 (Table 11b) and CF1 (Table 11a) are fitted
differently, even though the site combinations are the same. This phenomenon is due to
the objective function in Equation (4) being locally flat in many regions, where different
solutions can lead to the same precision when combined with other classifiers. Of course,
CF2 (Table 11b) can be mathematically replaced by CF1 (Table 11c). Second, CF3 (Table 11a)
underperformed the other two classifiers in Table 11b,c due to the use of different PARP9
sites. We may think that cg22930808 (PARP9) is more informative than cg25932713 (PARP9)
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based on the performance among the above classifiers. Looking at CF3 in Table 11b, we can
see that the performance is reversed, i.e., which sites are being combined. This phenomenon
tells us that at the DNA methylation level, we need to pay attention to the site information;
simply listing a gene name is not enough. These three classifiers reveal that there are
site–site interaction effects at the DNA methylation level.

A final note of this section is that we can combine Table 11a–e to form Table 11g, with
each individual classifier having the same and highest accuracy of 89.84%.

Note that seven sites (seven genes) are used in Table 11g, while seven sites (six genes)
are used in Table 11c.

4.3. The Roles of MX1 and PARP9 in SARS-CoV-1 and MERS-CoV

In their paper, Daugherty et al. [18] found that PARP genes have a broad role in
ADP-ribosylation in host–virus conflicts. Among the 17 human PARP genes, PARP9,
PARP14, and PARP15 are the only three human genes that contain both PARP domains
and macrodomains. Macrodomains uniquely recognize, and in some cases can reverse,
protein mono-ADP-ribosylation, and the authors observed strong signatures of recurrent
positive selection throughout the macro-PARP macrodomains. It has been found that the
ADP-ribose-10-monophosphatase domains of SARS-CoV and human coronavirus 229E
(HCoV-229E) mediate resistance to antiviral interferon responses [36]. It has been found
that proteins PARP9 and MX1 are shared across SARS-CoV-2–infected PTC and DTC as well
as MERS-CoV-infected PTC [20]. Expressions of MX1 appeared in the targets of the IFN-g
pathway in response to viral infection with SARS-CoV-1 and SARS-CoV-2. However, these
two genes MX1 and PARP9 did not appear in the earlier work [8–11,24], which tested more
than 20 cohorts with thousands of sample patients and reached nearly perfect accuracy.
Nevertheless, at the DNA methylation levels, in Tables 2 and 4–10, the CpG site cg16785077
(MX1) appeared to be the most significant one, as well as PARP9 in Table 11a–f and its
connections to SARS-CoV-1 and MERS-CoV, as discussed in the literature. Most recently,
SARS-CoV-2 infection and type I interferon-driven inflammation were found to reduce
serotonin [45]. With all these observations and the finding that the reverse-transcribed
SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be
expressed in patient-derived tissues [16], we can hypothesize the following: (1) the initial
SARS-CoV-2 is a DNA virus; (2) SARS-CoV-2 rooted genes MX1 and PARP9 at the DNA
level had a long incubation period (we note that HIV has a long incubation period up to
20 years). Of course, we should not assume that all the published literature is true. These
hypotheses, including those published in the literature, have to be tested.

4.4. TQCC Transformed Methylation Performance

In Equation (4), the last part of the formula is related to the so-called tail quotient
correlation coefficient (TQCC) introduced in [31]. TQCC is a sample alternative to Pear-
son’s correlation coefficient, and these two sample-based measures are asymptotically
independent, which is a unique, appealing property in application. The values of TQCC
are between zero and one. The formula we used in this section is TQCC-beta-value = (V/N
+ N/V)/((V/N + 1) × (N/V + 1) − 1) with V = U + 1 and N = M + 1.

Solving (4) leads to Table 13.
The genes regulated by these CpG sites are listed in the following Table 14.
The information in Table 14 is listed at genecards.org (accessed on 22 November 2022).
Comparing Table 13 with Tables 2 and 11a, the thirteen CpG sites that led to 100%

accuracy in Table 13 differ from those eight CpG sites in Table 2 and eight CpG sites in
Table 11. This phenomenon is caused by how we transform (un)methylated intensities
into a value between zero and one. This is the first time we applied a monotone TQCC
transformation formula in a DNA methylation study compared with the common approach
in the literature of beta-value transformation. Note that in computing the beta-value
transformation widely used in the literature, there is no difference between 50/(50 + 50)
and 2513/(2513 + 2513), which can be a potential issue of the methodology itself.

genecards.org
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Table 13. TQCC-based beta values: Performance of individual classifiers and combined max-
competing classifiers using blood sample dataset GSE174818 to classify hospitalized COVID-19
patients and other types of patients (as control) into their respective groups. CF1-3 are three different
classifiers. CFmax = max(CF1-3) is the combined max-competing classifier. The numbers are fitted
coefficient values.

Sites Gene CF1 CF2 CF3 CF4 CF5 CFmax

Intercept −32.2284 6.8728 −33.4684 13.8944 −15.4975

cg02434330 PYCARD −46.0883

cg03926906 −58.3508

cg20608348 SPON2 −127.171

cg25634004 DENND1B 28.2635 39.2045

cg03044471 TOLLIP −62.2568

cg22894824 PAM −130.721 −169.084

cg08028503 RP11-
326C3.11 36.021

cg12252979 −10.929

cg18679416 −15.8555

cg03587597 LY6E 55.1923

cg24265195 DYSF 28.0894

cg13753515 SIGLEC1 −78.4003

cg07133321 LIMD1 −39.6183

Accuracy % 69.53 24.22 67.19 53.91 71.88 100.00

Sensitivity % 61.76 4.90 58.82 42.16 64.71 100.00

Specificity % 100.00 100.00 100.00 100.00 100.00 100.00

Table 14. Descriptions of genes in Table 13.

Gene Name Gene Type Associated Diseases

PYCARD (PYD And CARD Domain Containing) Protein Coding Familial Mediterranean Fever and Osteomyelitis

SPON2 (Spondin 2) Protein Coding Pharyngitis

DENND1B (DENN Domain Containing 1B) Protein Coding Asthma and Childhood-Onset Asthma

TOLLIP (Toll Interacting Protein) Protein Coding Tick Paralysis and Acute Vascular Insufficiency
of Intestine

PAM (Peptidylglycine Alpha-Amidating
Monooxygenase) Protein Coding Menkes Disease and Spinal Muscular Atrophy

LY6E (Lymphocyte Antigen 6 Family Member E) Protein Coding Acute Promyelocytic Leukemia

DYSF (Dysferlin) Protein Coding Miyoshi Muscular Dystrophy 1 and Muscular
Dystrophy, Limb-Girdle, Autosomal Recessive 2

SIGLEC1 (Sialic Acid Binding Ig Like Lectin 1) Protein Coding Rheumatoid Arthritis and Arthritis

LIMD1 (LIM Domain Containing 1) Protein Coding Lung Cancer and Breast Cancer

The question will be which set of CpG sites in Tables 2, 11 and 13 is more reliable
given their high performance (nearly perfect) in classifications. Such a question needs to be
further addressed. However, it may take years to figure out as it requires lab experiments
to test all the identified sites and their functions, which is beyond the scope of this paper.
Instead, we applied the sites in Table 11a to datasets GSE193879 and GSE179325 and found
that the overall performance of these eight sites is lower than the performance of the eight
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sites listed in Table 2. From this observation, in Section 5, we will focus our discussions
and conclusions based on those eight sites in Table 2. However, other CpGs in Tables 11a–e
and 13 are worth further consideration and investigation.

4.5. Driver Genes for Maturity-Onset Diabetes of the Young

In Sections 4.1 and 4.2, we demonstrated two different data processing methods and
showed that the outcomes were different, although they all led to nearly perfect accuracies.
Such results raise urgent scientific questions: (1) whether or not the analytical outcomes are
reliable; (2) if they are, which one is the best, i.e., the best of the best; (3) mathematically,
whether or not they are equivalent; (4) practically, which one is more preferable by the field.

For (1), the analogy is “All roads lead to Rome”, though some of them take a long
time to complete. For (2), we need to set some criteria first and then decide. In the
earlier work [21], the authors showed that their method can lead to a miniature set while
others may not. For (3), in our earlier work [9], we showed a mathematical equivalence
and biological equivalence between different data collection schemes. A mathematical
equivalence will be useful for identifying reliable biomarkers while a biological equivalence
will be useful for developing antiviral drugs. For (4), it truly depends on the available
technology and the knowledge domain. Table 11f clearly shows that our model is reliable
and informative.

In addition to DNA methylation analysis, we conduct a new study at the genomic level
beyond the earlier COVID-19 research work [8–11]. We note that the genes identified in this
section cannot directly connect to the CpG sites identified in Section 3. This section aims to
demonstrate that our model (3)–(4) can outperform AI, ML, and probability algorithms and
lead to better and stronger results, which indirectly justify the optimality of our findings in
Section 3. We want to note that many published results are useful and insightful; however,
the problem comes from the analysis methods researchers applied, i.e., although researchers
had excellent research designs, suboptimal results were attained due to the limitation of the
analytical approaches used. In this section, we use a real data application to demonstrate
what has been missed in the published work.

The etiology of severe forms of COVID-19, especially in young patients, remains a
salient unanswered question [46]. The researchers used Integrative AI, ML, and proba-
bilistic programming to distinguish non-critical and critical patients with COVID-19 and
identified ADAM9 as a driver of disease severity and a candidate therapeutic target. A
causal network treated RAB10, MCEMP1, MS4A4A, GCLM, and ADAM9 as five putative
driver genes. Directly applying our model Equation (4) to these five genes and the dataset
GSE172114 [46], we found that our model produced better-performing results than the
results reported in the paper [46]. We obtained an overall accuracy of 98.55% with a
sensitivity of 100% and a specificity of 95.65%, which demonstrates that these five genes
are informative in young COVID-19 patients and that our model (4) has advantages over
other models even if the same data is used; as a result, we can conclude that analytical
methods matter.

In the earlier work [8–10], the five genes (ABCB6, KIAA1614, MND1, RIPK3, and
SMG1) led to 100% accuracy and established the geometry of genomic space. The dataset
GSE172114 contains 15,957 genes, much less than the number of genes in datasets we used
in the earlier work. GSE172114 does not contain KIAA1614 and MND1, so we cannot test
the performance of the five genes (ABCB6, KIAA1614, MND1, RIPK3, and SMG1) using this
dataset GSE172114.

More interestingly, we found from the GSE172114 dataset the gene GCKR (Glucoki-
nase Regulator) can be more informative than ADAM9 as GCKR leads to 100% accuracy
combined with only four other genes with different combinations: (1) GCKR, PTPN12,
HNRNPLL, RN7SKP80, and PRR13; (2) GCKR, PTPN12, HNRNPLL, TLK1, and RN7SKP80;
(3) GCKR, PAOX, NDUFV1, RP11-351I24.1, and RP4-568C11.4. Many such combinations
will lead to 100% accuracy if five or more genes are allowed. Between (1) and (3), GCKR is
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the common gene, which shows GCKR is in the center of gene combinations and interacts
with other genes to take effect.

More importantly, as reported at genecards.org (accessed on 22 November 2022),
diseases associated with GCKR include “fasting plasma glucose level quantitative trait
locus 5 and maturity-onset diabetes of the young”, which is a severe issue in the young.
We justify our findings in what follows.

Let us consider the three genes GCKR, HNRNPLL, and METTL9 and their combina-
tions. The information for the other two genes is listed here. HNRNPLL (Heterogeneous
Nuclear Ribonucleoprotein L Like) is a protein-coding gene. Among its related pathways is
translational control. METTL9 (Methyltransferase Like 9) is a protein-coding gene. Diseases
associated with METTL9 include autosomal recessive deafness 22.

Table 15 reports the performance of the three genes.

Table 15. Performance of individual classifiers and combined max-competing classifiers using
blood sample dataset GSE172114 to classify critical COVID-19 young patients and non-patients
(as control) into their respective groups. CF1-4 are four different classifiers. CFmax = max(CF1–2)
or CFmax = max(CF3–4) is the combined max-competing classifier. The numbers are fitted coeffi-
cient values.

CF1–CF2 Combination CF3–CF4 Combination

Gene CF1 CF2 CFmax CF3 CF4 CFmax

Intercept −30.4307 −19.207 −12.7685 −9.7796

GCKR 4.0816 −0.1638 8.401

HNRNPLL 3.9282 4.1291 3.5237

METTL9 0.0892 1.6781

Accuracy% 86.96 85.51 98.55 86.96 84.06 98.55

Sensitivity% 82.61 78.26 100.00 82.61 76.09 100.00

Specificity% 95.65 100.00 95.65 95.65 100.00 95.65

Clearly, we can see that these three genes GCKR, HNRNPLL, and MEYYL9 performed
as well as the five genes RAB10, MCEMP1, MS4A4A, GCLM, and ADAM9 in the paper [46].
With these observations, the function of GCKR demands a deeper understanding of COVID-
19 effects in critical young patients.

5. Discussion and Conclusions
5.1. Discussion

Many COVID-19 research results at the genomic level have been published in the
literature. These published results have explored the pathological causes of COVID-19
infection from various aspects. Due to the limitations of research methodology, some of
the published results can hardly be cross-validated from cohort to cohort. One exception is
that the earlier work [8–10] cross-validated thirteen genes across fourteen cohort studies
with thousands of patients, heterogeneous ethics, ages, and geographical regions and
showed interpretable, reliable, and robust results. The work at the genomic level was a
comprehensive study with nearly perfect performance. We did not find any other method
that led to 100% accuracy in the literature, not to mention interpretability. In the literature,
MX1 (cg25888371) and PARP9 (cg22930808) combined with eight other genes (i.e., a total
of 10 genes) to reach an overall 78.4% accuracy [42] which is much lower than 89.84% in
CF2 in Table 2 with MX1 (cg16785077) combined with only two other genes (i.e., a total
of three genes). In addition, many studies have focused on only a single cohort whose
representativeness cannot be assessed.

Many published results have studied the functional effects of genes based on single
gene expression value changes. They lack an interaction effects study, mainly due to the

genecards.org
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limitations of the research methods. Using the cg16785077-regulated gene MX1 as an
example, in CF2 in Table 2, it must be jointly studied with another two genes TESC and
CHSY1, to fully understand its functional effects on COVID-19, as it does not appear in CF1.

Since COVID-19 started in December 2019, many genes have been reported to be linked
to various diseases. However, they lack mathematical proof or biological equivalence. They
just happened to be significant in one cohort study. For example, SARS-CoV-2 entering
the brain [47], COVID-19 vaccines complicating mammograms [48], memory loss and
‘brain fog’ [49], and COVID-19 endothelial dysfunction causing erectile dysfunction [50],
amongst other symptoms, have been reported. From our findings, cg16785077 (MX1) may
provide a clue for brain-related COVID-19 symptoms; cg08949406 (FHIT) may lead to an
answer about breast cancer-related COVID-19 symptoms; cg24002003 (CHSY1) may be
informative for temtamy preaxial brachydactyly syndrome- and brachydactyly-related
COVID-19 symptoms.

In the literature, the gene MX1 has been reported to affect our response to COVID-
19+ [5,42,51–57]. MX1 becomes a potential druggable target [51]. We want to note that MX1
did not appear in the genomic biomarkers with optimum performance for SARS-CoV-2 and
COVID-19, though it is regulated by cg16785077 found in this study. Note that multiple sites
can regulate a gene, e.g., MX1 can be regulated by 188 CpG sites. In addition, from Table 2,
we can see that cg16785077 only appears in CF2, i.e., not in CF1, which tells us that there is
a larger portion of COVID-19+ which is not caused by or related to cg16785077 (MX1).

Recall that the earlier work dealt with genomic biomarkers [8–10,24], and identified
genes (ABCB6, KIAA1614, MND1, SMG1, RIPK3, CDC6, ZNF282, and CEP72) at the ge-
nomic level as a set of optimally performing interactive COVID-19 biomarkers based on
whole blood samples and genes (ATP6V1B2, IFI27, BTN3A1, SERTAD4, and EPSTI1) at the
genomic level as a set of optimally performing interactive SARS-CoV-2 biomarkers based
on nasopharyngeal (NP) and oropharyngeal (OP) PCR swab samples. The genes listed in
Table 2 in this paper are TESC, ALCAM, PACS1, FHIT, MX1, LINC00456, CHSY1, and LZTS2,
which are biomarkers at the DNA methylation level or epigenetic level and are different
from those optimally performing biomarkers at the genomic level or RNA-seq level. We
used basketball players on a team to explain the site–site interactions among sites. In the
earlier work [9,10], we used the same analogy to interpret gene–gene interactions. Consid-
ering the fundamental differences between DNA and RNA in terms of their functions, we
can consider, on a basketball team, cg16279999 (TESC), cg24002522 (ALCAM), cg00324510
(PACS1), cg08949406 (FHIT), cg16785077 (MX1), cg23933458 (LINC00456), cg24002003
(CHSY1), and cg24760467 (LZTS2) as coaches, managers, trainers, and team doctors, while
considering ABCB6, KIAA1614, MND1, SMG1, RIPK3, CDC6, ZNF282, CEP72, ATP6V1B2,
IFI27, BTN3A1, SERTAD4, and EPSTI1 as players. Each gene (site) has a specific role on the
team, and they interact. This analogy and the analogies used in earlier sections can help
some readers understand the model and site–site interactions, though they do not provide
insightful biological implications.

At the genomic level, MX1 may trigger diseases like influenza and subacute sclerosing
panencephalitis (SSPE), a progressive neurological disorder in children and young adults
that affects the central nervous system (CNS); SSPE can have up to a 6- to 8-year- long
incubation period for youngsters, which can be the most significant concern for COVID-19
infection. Therefore, urgent efforts are needed to investigate this potential. In addition,
other symptoms listed in Section 3.2 are also urgent.

As to MX1 becoming a potential druggable target, the site cg16785077 should be the
true druggable target. In addition, the genes MND1, CDC6, ZNF282, ATP6V1B2, IFI27, and
GCKR at the genomic level become potential druggable targets [10].

A combination of cg16785077 (MX1), ATP6V1B2, and IFI27 can explain many COVID-
19 infection symptoms, e.g., influenza-like symptoms (omicron symptoms), and ‘brain
fog’. However, the connections of reported diseases in the literature to COVID-19 are not
confirmed due to the infection, and the diseases may not be relevant. Our findings can
certainly provide useful clues. Again, we should not assume all published literature is
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true. Many published papers are based on correlation studies. Our new study should
not be regarded as a correlation study for the following reason: the identified reliable
and nearly perfectly performing DNA methylation biomarkers established a mathematical
equivalence between the disease and the site–site interactions. A mathematical equivalence
can reveal what a result may be, which can be more informative than unreliable and
non-proven published causative studies. Furthermore, ‘causal’ implies invariance, and
a mathematical equivalence shows that our new results are invariant. In other words, if
an invariance cannot be established, the claimed causal relationships are doubtful. Based
on these observations, it can be inferred that our findings at the DNA methylation level
are mostly closed to the cause of COVID-19 disease regardless of whether or not all the
published literature is true.

All the findings reported in this paper are based on experimental results from pub-
lished work. One may argue that the conclusions from this paper are too strong to believe.
Additional experimental validations are needed. The methodology applied in this paper
may not be implementable in new experiments as site–site interactions have never been
discussed in any biological literature. On the other hand, a question arises: should we
believe published results that may not be cross-validated from different cohort studies,
though they were based on experiments? We can definitely question many published
results from experiments due to the limitation of analysis methods, where as a result, they
may be misleading.

Classical logistic regression models have been widely used as a benchmark and
baseline in medical data modeling and inference. However, Teng and Zhang [58] have
pointed out it has a fundamental flaw as it does not directly specify relative treatment
effects in the model, and as a result, misleading results have been reported in the literature.
A more robust model, called AbRelaTEs, was introduced in [58], and the classical logistic
regression becomes a special case of AbRelaTEs. In scientific research, we first compare
the accuracies and then the computational time when applying multiple candidate models.
When the accuracies from different models are significantly different, reporting the results
from models with lower accuracies becomes meaningless unless we study the properties of
the models. In this regard, we do not compare the max-logistic regression with the logistic
regression. Interested readers can find many published works using logistic regressions.
Section 4.5 demonstrated a real data example where the max-logistic regression outperforms
AI algorithms, machine learning, and probabilistic algorithms. Based on these observations,
we argue that the max-logistic regression should be considered as a baseline model and a
benchmark model in terms of accuracy.

In medical research, another issue is to avoid overfitting the data, and cross-validation
has been applied to many studies. However, as pointed out in [9], cross-validations
should be applied to homogeneous datasets. When data are collected from heterogenous
populations, i.e., subtypes in this paper, regular cross-validations will lead to wrong variable
selections and miss the most important critical CpG sites and genes. Nevertheless, suppose
one really wants to apply cross-validations to the max-logistic regressions in this dataset,
given its specificity being 100% accurate. In that case, any 50–50 split of datasets will still
lead to 100% specificity and at least 94% sensitivity. The reason is that the S4 classifier in
Equation (4) has been mathematically proved to reach the smallest set of genes [21], the
strongest property in the variable selection literature. For this reason, we do not apply the
classical cross-validations to our model fitting. Instead, we apply an even more challenging
cross-validation procedure: cohort-to-cohort cross-validations. It can be expected that many
published works may fail or have very low accuracies when applied to cohort-to-cohort
cross-validations. We note that cohort-to-cohort cross-validations are still rather sparse in
the literature, and we refer interested readers to the earlier works [10,11,15,21–23].

Different from many research papers that considered biological heterogeneity, e.g.,
the stage of disease, treatment protocol, and inter-individual variation factors as well as
demographic and baseline clinical characteristics like ethnicity, age, and sex, as well as
containing an absence of pre-pandemic controls and their unknown health status, this
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paper only focused on DNA methylations CpG sites. In our opinion, those heterogeneities
are extrinsic variables; they can provide additional information when studying the severity
and duration of the disease. However, the CpG sites are intrinsic factors, and as long
as they reach nearly perfect prediction powers, the extrinsic variables can provide little
additional information. Interested readers are referred to published work for research on
heterogeneity, epigenetic clocks, and surface contamination [59,60].

Many published medical research papers do not report the fitted explicit coefficients
and interpret the coefficients and the meaning of their associated positive and negative
signs, which leave the results in the dark. We reported and interpreted all fitted coefficients,
as in Table 2 and the formula below. We also used different trials and datasets to justify the
fitted coefficients. We note that the fitted signs of the coefficients are the most important
parts of scientific reasoning. However, many published research papers should have paid
more attention to this critical issue and cohort-to-cohort validations.

It is usual to see epigenetic changes [61], including DNA methylation changes, in the
host (patient) blood and solid tissue after the infection of DNA/RNA viruses and bacteria,
which may be partially attributed to the systemic inflammation brought by the host–virus
interaction and anti-infection immunity. In our work, our hypotheses are based on CpG
site–site interactions and site–subtype interactions with nearly perfect accuracy. We note
that the existing literature has seldom addressed these features and, more importantly,
has lacked convincing accuracies. In the literature, we discussed earlier that PARP9 and
MX1 had been linked to COVID-19. Figure 10 plots beta values of cg25932713 (PARP9) and
cg16785077 (MX1).
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In Figure 10, individual beta values clearly cannot distinguish severe, mild, and
healthy cases. Such a phenomenon again confirmed that CpG site–site interactions are the
key to uncovering the truth. We further note that in GSE174818, all patients are hospitalized
patients with either COVID-19 or other respiratory diseases. As a result, the CpG sites
identified are COVID-19-specific.

In their model of methylation clocks, the authors [33] identified cg26312951 (MX1)
and cg00959259 (PARP9) to be effective. These two CpGs are different from the CpGs in
Tables 2 and 11a. This phenomenon needs further studying.

We have shown that pediatric COVID-19 cases have different DNA methylation
signatures from adults. As a result, treatments for children should be evaluated with
additional care.

Finally, methylation analysis can provide more comprehensive and detailed infor-
mation, particularly in understanding the interplay between viral infection and the host
genome. Notably, recent studies have reported associations between DNA methylation
changes and the worsening of SARS-CoV-2 infection [32,62]. Additionally, this method has
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shown promise in identifying mild cases [32], predicting outcomes [14,63], and assessing
treatment strategies [64], thus offering valuable insights for personalized medicine. The aim
of our research was to identify epigenetic changes associated with COVID-19 symptoms or
infection status and to explore the causality of the disease.

5.2. Conclusions

Our work is the first to study COVID-19 site–site interactions at the epigenetic level.
We discovered a miniature set of nearly perfect interactive COVID-19 DNA methylation
biomarkers. Unlike much other research, this paper advances the exploration of site
interaction relationships based on competing risk models. We indicate significant differ-
ences in DNA methylation data in identifying critical CpG sites. We identify cg16279999
(TESC), cg00324510 (PACS1), cg08949406 (FHIT), cg16785077 (MX1), cg24002003 (CHSY1),
cg25932713, and cg22930808 (PARP9) as potential diagnostic and druggable targets. In
addition, the genes MND1, CDC6, ZNF282, ATP6V1B2, IFI27, and GCKR at the genomic
level become potential druggable targets [10]. Here, potential druggable targets mean
that these CpG sites are either over-methylated or under-methylated, or their site–site
interactions undergo changes, and the genes are either over-expressed or knocked down, or
the gene–gene interactions undergo changes, which point toward directions for developing
antiviral drugs.

This new work, together with the earlier work [8–11,24], systematically and accurately
describes both SARS-CoV-2 and COVID-19 at the genetic level.

We have discussed that the sites (genes) at the DNA methylation level are different
from optimum genomic biomarker genes at the genomic level. We hypothesize that the
initial SARS-CoV-2 was a DNA virus and then was transcribed to an RNA virus. Such
findings open the door to understanding the pathology of the SARS-CoV-2 infection and
COVID-19 disease.

It would be more significant if the interactions between methylation and phosphory-
lation, ubiquitination, acetylation, and their respective interactions in epigenetics could
be studied. It is worth studying how the impact of COVID-19 would change in actively
differentiating cells vs. terminally differentiated cells based on the CpG interactions. In
addition, pathway analysis merits further study. We leave these aspects for a future project
once relevant data can be obtained.

Finally, the most innovative work in this paper are the site–site interactions, gene–gene
interactions, and site–gene interactions, which have been missed in published papers that
applied other non-interactive variable analysis methods.
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