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Simple Summary: Non-alcoholic fatty liver disease (NAFLD) is a type of metabolic stress liver injury
closely related to insulin resistance (IR) and genetic susceptibility without alcohol consumption,
which encompasses a spectrum of liver disorders ranging from simple hepatic lipid accumulation,
known as steatosis, to the more severe form of steatohepatitis (NASH). In this narrative review,
we summarize the roles of gut barrier dysfunction and gut microbiota in NAFLD, including their
physiological functions, assessment methods, related mechanisms, and therapeutic approaches for
the prevention and treatment of NAFLD.

Abstract: Non-alcoholic fatty liver disease (NAFLD) is a type of metabolic stress liver injury closely
related to insulin resistance (IR) and genetic susceptibility without alcohol consumption, which
encompasses a spectrum of liver disorders ranging from simple hepatic lipid accumulation, known
as steatosis, to the more severe form of steatohepatitis (NASH). NASH can progress to cirrhosis and
hepatocellular carcinoma (HCC), posing significant health risks. As a multisystem disease, NAFLD is
closely associated with systemic insulin resistance, central obesity, and metabolic disorders, which
contribute to its pathogenesis and the development of extrahepatic complications, such as cardio-
vascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and certain extrahepatic
cancers. Recent evidence highlights the indispensable roles of intestinal barrier dysfunction and gut
microbiota in the onset and progression of NAFLD/NASH. This review provides a comprehensive
insight into the role of intestinal barrier dysfunction and gut microbiota in NAFLD, including in-
testinal barrier function and assessment, inflammatory factors, TLR4 signaling, and the gut–liver
axis. Finally, we conclude with a discussion on the potential therapeutic strategies targeting gut
permeability and gut microbiota in individuals with NAFLD/NASH, such as interventions with
medications/probiotics, fecal transplantation (FMT), and modifications in lifestyle, including exercise
and diet.

Keywords: intestinal barrier dysfunction; gut dysbiosis; probiotics; NAFLD/NASH

1. Introduction

The prevalence of non-alcoholic fatty liver disease (NAFLD) has become a significant
public health issue worldwide [1,2]. NAFLD encompasses a range of liver disorders, begin-
ning with the harmless accumulation of fats in the liver, termed steatosis, and potentially
advancing to more severe stages such as non-alcoholic steatohepatitis (NASH), fibrosis, and,
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in extreme cases, cirrhosis [3,4]. The development of concurrent problems like systemic
vascular endothelial dysfunction, atherosclerosis, and reproductive disorders is associated
with an increased risk of NAFLD [5–8]. In recent years, much research has established a
correlation between NAFLD and various non-liver systemic comorbidities, including heart
disease, type 2 diabetes, kidney problems, and neurological disorders such as depression,
anxiety, and apathy [9,10]. In 2023, three major multinational liver associations proposed
that the term metabolic dysfunction-associated steatotic liver disease (MASLD) should
replace NAFLD, and metabolic dysfunction-associated steatohepatitis (MASH) should
replace NASH, underscoring the critical role of abnormal metabolism in the pathogenies of
these conditions [11].

The progression of NAFLD is a complex phenomenon involving intricate molecular
and environmental interactions. The “two-strike hypothesis” has previously been used
to describe the development of NAFLD, where the first impact is the accumulation of
fats in the liver due to factors such as a diet high in fat, overweight/obesity, and insulin
resistance, followed by inflammatory cytokines, adipokines, mitochondrial malfunction,
and oxidative stress [12]. However, this hypothesis appears insufficient to explain the
metabolic and molecular changes occurring in NAFLD hepatocytes. The “multiple-hit”
hypothesis has emerged as a more comprehensive explanation, suggesting that multiple
factors act together to induce NAFLD in genetically susceptible populations [1,13,14]. These
factors influence the inflammatory and stress environment within hepatocytes, leading to
metabolic dysfunction. Recent research has unveiled the pivotal role of intestinal barrier
dysfunction and gut microbiota in the initiation and progression of NAFLD/NASH [15].
The concept of the “intestinal barrier” involves a complex interplay of structural and
functional mechanisms, including the gut microbiota barrier and mucus, gastrointestinal
motility and secretion, epithelial barrier, immune system (both innate and adaptive), gut
vascular system, and the liver barrier [16]. Dysfunction in any part of the intestinal barrier
is a key factor in the pathogenesis of NAFLD. However, the specific contributions of the
intestinal barrier and gut microbiota to NAFLD and the associated mechanisms are not yet
fully understood. Therefore, we conducted a comprehensive search of various electronic
databases, including g Google Scholar, PubMed, ScienceDirect and Medline, using multi-
ple keywords (NAFLD/NASH, intestinal/gut barrier, microbiota, assessment, probiotics,
TLR4, inflammation, etc.). In the review, we describe the intestinal barrier dysfunction
and assessment, as well as gut microbiota in individuals with NAFLD, supporting the
potential use of interventions targeting the restoration of intestinal barrier integrity and gut
microbiota as a treatment strategy for managing the condition.

2. Function and Composition of the Intestinal Barrier

Maintaining epithelial and endothelial barriers in various body parts, including the
gut, skin, blood vessels, respiratory tract, and the brain, is essential for human health. The
intestine represents the largest and one of the most crucial internal barriers in the body,
shielding the host from harmful substances and microorganisms within the gut lumen [17].
The gastrointestinal (GI) mucosa is a semi-permeable barrier with numerous functions,
including nutrient absorption and immune detection [18]. The intestinal barrier consists
of the gut microbiota, mucus layer, epithelial cells monolayer, and immune cells within
the lamina propria, transitioning from the innermost luminal layer to the outer basolateral
layer (Figure 1) [17]. The intestinal barrier is classified into four main categories based on
its functional classification: (1) mechanical barrier, (2) chemical barrier, (3) microbial barrier,
and (4) immune barrier [19].
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acids. Intestinal epithelial cells (IECs) form a continuous monolayer that is tightly interconnected 

through apical junctional complexes. Tight junctions (TJs) located at the apical surface regulate the 

passage of small molecules and ions. Adherens junctions (AJs) and desmosomes provide strict cell 

adhesion bonds and help maintain the integrity of the intestinal barrier. Gap junctions facilitate the 

exchange of both chemical and electrical signals between neighboring cells. Within the lamina pro-

pria reside immune cells from both the adaptive and innate immune system that play active roles 

in defending the intestinal barrier against various threats. 
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Figure 1. Schematic representation of the main components of the intestinal barrier. The intestinal
barrier is a semi-permeable structure facilitating the absorption of essential nutrients and immune
surveillance, while at the same time preventing the entry of pathogenic substances and bacteria. The
mucus layer acts as a filter-like barrier covering the intestinal epithelium, containing antimicrobial
peptides (AMPs), secretory IgA molecules (sIgA), lipopolysaccharides (LPSs), and secondary bile
acids. Intestinal epithelial cells (IECs) form a continuous monolayer that is tightly interconnected
through apical junctional complexes. Tight junctions (TJs) located at the apical surface regulate the
passage of small molecules and ions. Adherens junctions (AJs) and desmosomes provide strict cell
adhesion bonds and help maintain the integrity of the intestinal barrier. Gap junctions facilitate
the exchange of both chemical and electrical signals between neighboring cells. Within the lamina
propria reside immune cells from both the adaptive and innate immune system that play active roles
in defending the intestinal barrier against various threats.

2.1. Mechanical Barrier

The anatomical basis of the intestinal mechanical barrier derives from the connections
between the intestinal epithelial cell (IEC) layer and adjacent cells [20,21]. These connections
are critical for maintaining intestinal permeability in NAFLD. The apical junctional complex
(AJC), which includes tight junctions (TJs) and adherens junctions (AJs), is primarily
composed of neighboring cells [22]. IEC requires AJC assembly, and AJC, in turn, requires
anchoring by IEC. The two functions cannot exist in isolation, indicating that the integrity
of IEC and the stability of AJC play significant roles in regulating intestinal permeability in
NAFLD. In addition, there are also various structures for the adhesion of epithelial cells to
the lamina propria, including the hemidesmosomes and gap junctions [17].

Tight junctions (TJs), located at the apex of the AJC, are crucial for preserving intestinal
permeability. TJs are composed of membrane proteins such as Claudin, Occludin, and
Junctional Adhesion Molecules (JAMs), along with peripheral cytoplasmic proteins like
Zonula Occludens-1 (ZO-1), ZO-2, and ZO-3 [23]. The level of tight junction proteins is
inversely related to intestinal permeability [24], indicating a vital role in maintaining barrier
function. The structural stability of TJs is dependent on their anchoring to cytoskeletal
proteins. The ZO-1 protein interacts extensively with cytoskeletal proteins and is essential
for assembling and stabilizing AJC by anchoring to cytoskeletal proteins. Consequently,
alterations in TJ performance are closely associated with ZO-1 protein [25], which is com-
monly used as a marker for TJ permeability and significantly influences both the formation
and functional modifications of AJC. The positions of AJs are located below TJs and play a
vital role in maintaining the integrity of the IEC and facilitating intercellular coordination,
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thereby determining the adhesive capability of the IEC [26]. The components of AJs include
E-cadherin, γ-catenin, α-catenin, and p120-catenin, with E-cadherin playing a pivotal role
in the maintenance of AJ structures. Nano-mechanical measurements have shown that
E-cadherin is capable of detecting gaps within fibrous actin (F-actin) cytoskeletal protein
fibers, thereby facilitating the anchoring of cytoskeletal proteins and enhancing the stability
of the AJC [27]. The equilibrium between E-cadherin polymerization and dissociation is
essential for preserving cellular morphology and organization. Decreased expression of
E-cadherin has been linked to heightened hypoxia-induced IEC apoptosis, while increased
expression has been shown to have the opposite effect [28]. Disruption of the balance be-
tween E-cadherin polymerization and dissociation leads to structural changes in E-cadherin
and the disintegration of AJs [29,30], resulting in decreased intercellular adhesion, which
not only leads to cell detachment and apoptosis but also interferes with the barrier function
of TJs.

2.2. Chemical Barrier

The intestinal chemical barrier serves to protect the integrity of the intestinal lining
by preventing the intrusion of microorganisms and enzymes [31]. This barrier consists of
various components, including stomach acid secretions, mucus, mucins, bile, bile acids,
glycoproteins, mucopolysaccharides, digestive enzymes, lysozymes, and antimicrobial
peptides. Antimicrobial peptides are specialized molecules capable of eliminating microor-
ganisms while withstanding the harmful effects of host bacteria and pathogen, thereby
maintaining the integrity and function of the intestinal barrier [32]. Stomach acid is essen-
tial in separating bacteria from the digestive system and preventing microbial colonization
in the small intestine [33]. Furthermore, bile acids control the growth of cells that line
the intestines and impact the makeup of the microbial community in the gastrointestinal
tract. Through their antimicrobial properties, particularly when they are predominantly
deconjugated, bile acids modulate the functions of various microbial species in the micro-
biome, weakening bacterial integrity, especially bacterial cell membranes, and impacting
the overall population of microbiome [34].

2.3. Immunological Barrier

The digestive system is the central location where the body encounters external sub-
stances that trigger an immune response, and it is also the largest organ responsible for
immune defense. The immune defense system in the intestinal tract primarily comprises
gut-associated lymphatic tissue (GALT), which includes organized lymphoid tissues and
scattered lymphocytes throughout the intestinal wall [35]. Components of the intestine
include Peyer’s patches, lymphoid follicles associated with the mucosa, macrophages
distributed in the intestinal mucosa, T helper cells, B cells, plasma cells, and intraepithelial
lymphocytes, among other elements [35]. Secretory IgA (sIgA) is the primary component
of the intestinal immune system [36]. Lymphocytes and plasma cells, found through-
out the intestinal mucosa, are the primary sources of sIgA. Acting as the predominant
immunoglobulin in intestinal secretions, sIgA serves as a primary defense mechanism
against the invasion of pathogens. Its main functions in the intestinal tract are preventing
pathogens from adhering to the intestinal mucosal surface, neutralize toxins produced by
bacteria, neutralize viruses, enhancing the phagocytic function of cells with FC receptors,
and coordinate with complements and lysozymes for antibacterial activities. A decrease in
sIgA levels in the gastrointestinal system can weaken the immune barrier, making it more
likely for intestinal bacteria to interact with mucosal epithelial cells, facilitating bacterial
translocation and the absorption of endotoxins. Studies have indicated that excess zinc can
cause a decline in the quantity of sIgA plasma cells in rats’ intestinal mucosal lamina pro-
pria, impairing their capacity to produce and release sIgA, which ultimately leads to lower
levels of mucosal antibody sIgA and a weakened mucosal immune system [37]. This can
be considered as one of the underlying factors for intestinal infections or enteric infections.
Additionally, besides IgA, intestinal mucosal epithelial cells can release IgE and IgG, along
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with various other immunoglobulins, that have crucial functions in maintaining intestinal
humoral immunity. IgE is essential in the interaction between antigens and intestinal
mucosal absorption and is a critical factor in intestinal allergic reactions. Furthermore, IgM
plays a protective function in the intestinal mucosa and contributes to the development of
inflammatory responses and tissue damage in specific gastrointestinal disorders [38].

2.4. Microbial Barrier

Due to its unique structure and physiological role, the digestive system is the primary
organ that houses external microbial symbiosis. The symbiotic microbiota in the intestines
plays a crucial role in forming the protective barrier of the intestinal mucosa. Bacteria
and their community structure can affect the properties of the intestinal mucus barrier by
altering intestinal mucosal and systemic metabolic responses that impact human health
and disease processes. Intestinal bacteria play a vital role in creating biological barriers,
hindering the entry of harmful bacteria, and promoting the growth and maturation of the
immune system by producing various enzymes. This process also helps regulate the host’s
metabolism [39]. Bifidobacterium bifidum, for instance, contributes to breaking down
proteins, fats, and carbohydrates, and produces short-chain fatty acids, which enhance
the absorption of vitamins and minerals (such as iron and calcium), thereby boosting
sugar and other substances’ metabolism. Additionally, Bifidobacterium and Lactobacillus
can maintain normal osmotic pressure in the intestine by promoting mucin expression in
caco-2 cells and inhibiting IL-1β-induced NF-κB expression [40]. Furthermore, the gut’s
anaerobic microorganisms can break down plant fibers, producing butyric acid, which act
as an energy source for intestinal wall cells, facilitating water absorption and maintaining
proper metabolism [41]. The application of antibiotics can disrupt the anaerobic flora,
leading to an increase in intestinal oxygen content, which can promote the propagation of
Salmonella and result in a disease [42]. By addressing the underlying causes and employing
microecological agents, such as bifidobacteria, lactobacilli, etc., it is possible to significantly
improve the condition and facilitate the restoration of regular intestinal microecological
groups [43].

3. Assessment of Intestinal Barrier

The various aspects of intestinal barrier function are closely interconnected and insep-
arable, and they are closely related to the development of NAFLD. A systematic review
and meta-analysis statistically investigated the role of intestinal barrier permeability in the
pathogenesis of NAFLD. The literature included in this study regarding the detection of
intestinal barrier permeability involved a number of different methods, such as oral glucose,
51Cr-EDTA, and zonulin levels [44]. The study concluded that small intestinal permeability
was increased in patients with NAFLD and increased with the degree of hepatic steatosis.
However, there was no significant difference between patients with simple steatosis and
NASH, and it was not associated with hepatic inflammation or fibrosis [44]. Zhuang et al.
propose that intestinal permeability correlates with disease severity in NAFLD patients,
which may be valuable in predicting the efficacy of metabolic therapies in patients with
NAFLD [45]. Therefore, it is necessary to familiarize oneself with the current methods for
assessing intestinal barrier function and their main advantages and disadvantages (Table 1).



Biology 2024, 13, 243 6 of 26

Table 1. Overview of the different methods/models used for the assessment of the intestinal barrier
in NAFLD/NASH.

Methods/Models Advantages Disadvantages Reference

In Vivo

Exogenous inert
probes

Polyethylene glycols (PEG),
51Chromium-

ethylenediaminetetraacetic
acid (51Cr-EDTA),

FITC-dextran 4000,
monosaccharides,

disaccharides

(1) Non-invasive via oral
administration

(2) Multi-sugar gives an
overview of the
intestinal permeability

(1) Non-specific and easily
disturbed by multiple factors.

(2) Cannot always accurately
assess the location of intestinal
barrier dysfunction.

(3) Requires special equipment
and technology.

[43,47,49,53]

Multi-sugar [52]

Endogenous
biomarkers

Zonulin
Easily assessed by low
equipment and method
requirements

Non-specific and easily interfered
with by other factors. [43]

Calprotectin

(1) Non-invasive via
fecal testing

(2) Easy to use in
clinical trials

Independent of the hepatic
inflammatory state and fibrosis stage
of NASH.

[64,65,66]

Fatty acid binding proteins
(FABPs)

(1) Specific and sensitive
(2) Non-invasive via

urine testing
(3) Easy to use in

clinical trials

Not recommended for assessing
intestinal barrier function in NAFLD
and a low limit of detection, as well
as a short half-life time.

[67,73]

Citrulline
Higher specificityand
sensitivity to small intestinal
permeability

Mainly for small intestinal
permeability and easily interfered
with by other factors.

[75,76]

Trefoil factor 3 (TFF3) Mechanisms closely related to
intestinal barrier maintenance

Low specificity and easily interfered
with by other factors. [82]

Monoculture Caco-2 cells Simple structure, broad
applicability, and low cost

Must be cultured for a certain time
and to reach a certain density before
being used and cannot simulate the
dynamic process of the
intestinal barrier.

[93]

Co-culture
Caco-2/HT29-MTX cells

Caco-2/HepG2 cells
Caco-2/TC7 cells

More accurate replication of
the structural and functional
characteristics of the human
intestinal barrier and its
physiological environment

Strict culture conditions, complex
procedures, many uncertain factors,
limited to horizontal interactions and
cannot fully replicate the
three-dimensional barrier function of
the intestine.

[96,98,99,100]

Organoids Derived from obese/fatty liver
patients or laboratory animal

Form complex
three-dimensional structures
resembling important
histological and functional
aspects of living tissues

(1) Unstable for maintaining the
NAFLD/NASH phenotype.

(2) Gut–liver organoid co-culture
model remains elusive.

[101]

3.1. Evaluation of the Gut Barrier in a Living Organism
3.1.1. Exogenous Inert Probes

To investigate the functional integrity of the intestinal barrier using exogenous in-
ert probes, a permeability test was conducted in a living organism by administering a
solute orally, which was later excreted in urine [46]. The method involves the oral ad-
ministration of inert probes with varying molecular sizes. Currently, commonly used
probes include polyethylene glycols (PEGs) [47], monosaccharides such as mannitol and
rhamnose [48,49], 51Chromium-ethylenediaminetetraacetic acid (51Cr-EDTA) [50,51] and
FITC-dextran 4000 [52]. Sucrose, a disaccharide, is often used as an indicator of gastro-
duodenal permeability [53,54]. The technology in this field has advanced significantly,
with the current investigation utilizing a multi-sugar identification technique with five
separate sugar sensors: sucrose, lactose, l-rhamnose, erythritol, and sucralose, providing
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precise, site-specific information on gastroduodenal, small, and large intestinal permeabil-
ity compared to the disaccharides test [55]. However, despite continuous development,
this technology still has limitations and drawbacks. The advantage of this method is that
it allows the assessment of intestinal permeability in a living organism and provides an
overview of intestinal permeability. However, the drawback is that it may not always
accurately pinpoint the location of the intestinal barrier dysfunction. Additionally, various
factors can influence the assimilation, processing, and elimination of probes, requiring spe-
cialized equipment and technology [54,56]. These factors include gastrointestinal motility,
intestinal transit time, mucosal blood flow, distribution of biomarkers in the body, drug
interference, and renal function. The excretion of ingested substances in urine can also
be affected by factors such as urine volume and collection time. Therefore, meticulous
monitoring of the experiment and precise measurement of parameters are essential.

3.1.2. Exogenous Inert Probes

In the past ten years, reliable biomarkers have been developed to assess intestinal
permeability in the bloodstream, complementing traditional techniques. Zonulin (47 kDa),
produced by intestinal and hepatic cells, is currently the only known physiological mod-
ulator of intercellular TJ. Disruption of zonulin homeostasis leads to a loosened struc-
ture of the intestinal epithelial cell barrier, allowing larger protein molecules to enter the
bloodstream [57,58]. Elevated serum zonulin levels have been linked to increased gut
permeability, as evidenced by clinical studies showing higher zonulin levels in NAFLD
patients compared to healthy controls. This increase in zonulin levels is also associated
with the severity of hepatic steatosis [44]. Factors known to disrupt zonulin homeosta-
sis include alcohol-soluble proteins and gliadin proteins in wheat gluten. Additionally,
harmful microbes in the gastrointestinal tract can stimulate zonulin production, further
compromising the integrity of the intestinal epithelial cell barrier and enhancing intesti-
nal permeability [57,59]. Currently, the detection of zonulin protein primarily relies on
commercial ELISA kits.

Calprotectin, a 36 kDa protein complex that binds calcium and zinc, is an additional
biomarker for inflammation and intestinal permeability. It consists of one light chain and
two heavy peptide chains [60]. Several studies have demonstrated that fecal calreticulin
is a highly sensitive marker of inflammation in the intestines [61,62]. The assessment of
fecal calreticulin could be utilized as an initial diagnostic tool for individuals presenting
symptoms of irritable bowel syndrome or gastrointestinal issues associated with irritable
bowel syndrome. It also holds promise for screening inflammatory bowel disease and
evaluating patients with irritable bowel syndrome prior to endoscopic procedures and
NAFLD/NASH-related impairment of intestinal barrier function [63–67]. However, it has
been observed that calprotectin levels are not correlated with the inflammatory condition
of the liver and the fibrotic stage of NASH [67]. Therefore, to some extent, calpain is also
considered a potential marker for intestinal barrier dysfunction.

FABPs, also known as fatty acid binding proteins, are small proteins with a molecular
weight of 15 kDa found in the cytosol of mammalian tissue cells. Currently, at least
nine different types of FABPs have been discovered [54]. In the inteseine, FABPs are
classified into two types: intestinal type (I-FABP) and liver type (L-FABP) [68]. I-FABP is
exclusively present in the gastrointestinal tract, mainly in the cytosol of mature intestinal
epithelial cells in the small intestine, accounting for 1% to 2% of cytosolic proteins. Its
primary functions include the absorption and transport of fat molecules by the organism,
as well as the intracellular redistribution and utilization of fat molecules [68,69]. Due
to the short half-life of I-FABP, it is rapidly cleared by the kidneys once it enters the
bloodstream, leading to serum levels of I-FABP that are below the detectable limit under
normal conditions [70]. In cases of intestinal ischemia or other injuries that increase
intestinal permeability, higher levels of I-FABP in the blood are observed and subsequently
eliminated by the kidneys. Monitoring the levels of I-FABP in patients’ urine can serve
as an early indicator of damage to intestinal barrier function [71]. However, I-FABP alone



Biology 2024, 13, 243 8 of 26

exhibits high sensitivity in diagnosing specific conditions, such as neonatal strangulated
bowel obstruction or necrotizing small bowel colitis [72,73]. For instance, Lau et al. found
that plasma I-FABP levels decrease in high-fat fed rats, while I-FABP expression in the
jejunum appears to increase, indicating that I-FABP may not be an ideal marker for assessing
intestinal barrier function in non-alcoholic fatty liver disease (NAFLD) [74]. Therefore,
I-FABP may be more suitable as a marker for assessing obvious damage to the intestinal
barrier, such as gastrointestinal cancer, intestinal obstruction, necrotizing colitis, etc., and
may not be applicable in the early stages of certain diseases, such as NAFLD-associated
intestinal barrier functions.

Citrulline, a non-essential amino acid, is produced by intestinal epithelial cells, released
through the basement membrane, and enters the portal vein. It is minimally absorbed
by liver cells and primarily reabsorbed and converted into arginine by proximal renal
tubular epithelial cells upon entering the systemic circulation. The concentration of plasma
citrulline is determined by the efficiency of synthesis in intestinal epithelial cells and
conversion by proximal renal tubular epithelial cells. In individuals with normal kidney
function, the circulating citrulline level reflects the functional status of intestinal epithelial
cells. Research conducted by Crenn et al. revealed that plasma citrulline concentrations
in healthy adults typically range between 20 and 60 mmol/L. Concentrations below 20
mmol/L indicate a significant decrease in the number of intestinal epithelial cells [75],
suggesting a close relationship between plasma citrulline concentration and the severity of
impaired intestinal barrier function [76]. Supplementing with citrulline has been shown
to protect against the development of NAFLD by reducing endotoxin translocation to
the portal vein. This protective effect is thought to be mediated through the inhibition
of the inflammatory response via the TLR4 signaling pathway and increased expression
of the tight junction protein claudin-1, which enhances intestinal barrier function [76,77].
However, because citrulline is a non-protein amino acid, its levels may be influenced
by the consumption of foods rich in citrulline, such as watermelon [78]. Additionally,
certain autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, psoriasis, and
systemic lupus erythematosus can interfere with the detection of citrulline [79]. Therefore,
measuring circulating citrulline levels can be indicative of gastrointestinal dysfunction
when potential interfering factors are taken into consideration.

TFF3, also known as trefoil factor 3, belongs to the trefoil peptide family and is
consistently expressed in epithelial tissues, such as the gastrointestinal tract, forming the
first line of defense of the intestinal barrier [80]. This process relies on the proper functioning
of the tight junction (TJ) barrier and the presence of proteins like claudin-1, zona occludens-
1 (ZO-1), and occludin, which are associated with the TJ [81]. Furthermore, as additional
studies progress, TFF3 demonstrates a clear protective effect on the mucosa. Despite the
unclear understanding of its underlying mechanisms, it increasingly exhibits oncogenic
properties and potential effects on the endocrine systems [82]. Recent findings indicate that
in pathological conditions such as cancer, colitis, gastric ulcers, diabetes mellitus, and non-
alcoholic fatty liver disease [82,83], there are notable alterations in the expression profile
and biological impacts of TFF3. Indeed, TFF3 can activate various signaling pathways,
such as TLR4 [83], MAPK [84], NF-κB [85], PI3K-AKT [86], STAT3 [87], mTOR [88], and
HIF-1α [89], to repair damaged mucosa, regulate glucose and lipid metabolism, which are
associated with T2DM, NAFLD as well as other disorders.

3.2. Evaluation of the Intestinal Barrier in a Laboratory Setting

Evaluating intestinal barrier function commonly involves using different techniques in
live studies. However, these methods are often affected by numerous unidentified factors.
On the other hand, in vitro assays can eliminate the influence of these factors and offer more
objective and singular research outcomes. Therefore, in vitro assays are particularly benefi-
cial for investigating the fundamental aspects and mechanisms of intestinal physiology. It
is not only an important supplement to in vivo assays but also a key research indicator.
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3.2.1. Monoculture Models

Caco-2 cell lines are currently the most commonly used for studying intestinal barrier
dysfunction. They offer the advantages of a simple structure, broad applicability, and
low cost [90]. These cells can mimic the morphology and physiological functions of most
cells in the intestine, making them a fundamental choice for research related to gut barrier
dysfunction. In Figure 2A, the creation of the Caco-2 cell model is illustrated. The Caco-2
cells are cultured in the apical chamber of a Transwell, and during the culture period,
they grow in clusters and differentiate spontaneously. Over time, the top surface of the
cells (luminal side) develops a brush border with microvilli. The cells form tight junctions
with each other and express various transporter proteins and metabolic enzymes, and
ultimately form a layer of polarized enterocytes [91,92]. However, Caco-2 monocytes must
be cultured for a specific period and reach a certain density before being used in in vitro
gut barrier modeling studies. Generally, as the culture time and cell density increase,
the cells exhibit more structural and functional characteristics resembling those of the
small intestine. According to Xia et al. [93], once the cells demonstrate differentiation and
form complete monolayers on Transwell filter supports, the transmembrane resistance
can be monitored using a cellular transmembrane resistivity meter (TEER > 300). This
measurement helps determine whether the Caco-2 monoculture model meets the necessary
criteria for in vitro intestinal barrier modeling. Utilizing this model, Wang et al. found that
tauroursodeoxycholic acid (TUDCA) inhibits intestinal inflammation and barrier disruption
in mice with NAFLD [94]. Although the Caco-2 monoculture model is currently the most
widely used for studying intestinal barrier dysfunction, it does have limitations. This cell
model is static and cannot replicate the dynamic process of intestinal cells, lacks a mucus
layer, and is unable to efficiently express all intestinal cell transporter proteins on the
surface of the brush border microvilli. This limitation makes it challenging to closely mimic
the physiological conditions of human intestinal cells [91]. Therefore, it is crucial to develop
a more realistic in vitro cell model that closely resembles actual intestinal cells. This can be
achieved by integrating the Caco-2 monoculture model with advanced technological tools
and theoretical expertise to meet diverse research requirements.
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3.2.2. Co-Culture Models and Intestinal Organoids

Co-culture cell models have been developed to address the limitations of mono-culture
cell models. The main models currently being widely used include the Caco-2/HT29-MTX
cell co-culture model (Figure 2B) and the Caco-2/target-cell co-culture model (Figure 2C).
The Caco-2/HT29-MTX cell co-culture combines the compact cellular arrangement of
Caco-2 cells to ensure a functional cell barrier with HT29-MTX cells that secrete mucus to
form a protective layer, enhancing the barrier function [95]. Therefore, the Ca-co-2/HT29-
MTX cell co-culture model provides a more accurate representation of human intestinal
cells’ structural and functional characteristics and physiological conditions. Hoffmann P
et al. utilized the Caco-2/HT29-MTX co-culture model to investigate if pathogens release
toxins causing infectious gastrointestinal diseases [96]. A recent study demonstrated that
the Caco2/HT29-MTX co-culture model showed superior functionality in terms of fatty
acid uptake and release compared to the Caco-2 intestinal barrier, which is linked to the
pathogenesis of NAFLD [97]. However, adjustments are necessary based on the actual cell
ratios and conditions of directional culture of HT29-MTX cells, as the growth rates of the
two cell types differ during establishment, producing varying experimental outcomes [98].

The Caco-2/target-cell co-culture model is primarily used to explore the immune
response of intestinal cells and its relation to the function of the intestinal barrier. Through
the use of a Caco-2/HepG2 cell co-culture model, researchers found that alginate was less
likely to induce intracellular fat accumulation compared to glucose, maltose, trehalose and
inulin, suggesting that alginate may be more beneficial to individuals with NAFLD [99].
Camille et al. identified that the Caco-2/TC7 cell line, derived from human cells, serves
as an effective in vitro model for studying the molecular mechanisms of TICE enterocytes.
This model aids in identifying molecular targets in the gut that could potentially facilitate
cholesterol transport reversal and combat dyslipidemia associated with NAFLD/NASH
development [100]. Hoki T et al. discovered that hepatic iron accumulation in NASH
patients is mainly due to the increased expression of divalent metal transporter 1 (DMT1)
secreted by the Ca-co-2/TC7 cell lines, activating iron-regulated protein (IRP) [101]. Al-
though co-culture models can partially address the limitations of monoculture models,
they come with drawbacks such as strict culture conditions (cell ratio, specific medium
components, cell contamination), complex procedures (frequent TEER monitoring, observa-
tion and differentiation characteristics), and numerous unpredictable factors. Furthermore,
co-culture models are restricted to horizontal interactions and cannot fully replicate the
three-dimensional barrier function of the intestine.

Conversely, organoid models can overcome these limitations. Organoid technology
has emerged as a powerful tool for investigating diseases and their progression. A key
feature of organoid cultures is the presence of both stem and specialized cell lines that
spontaneously form complex three-dimensional structures resembling key histological
and functional aspects of living tissues. Organoids have been extensively utilized in drug
screening, disease modeling, and studying host–microbe interactions. However, the use of
intestinal organoids to study NAFLD/NASH has not been reported. Unlike liver organoids,
it remains uncertain whether intestinal organoids derived from obese/fatty liver patients
can maintain the NAFLD/NASH phenotype [102]. To address the challenges of using
organoid technology to study the intestinal barrier in NAFLD/NASH, there is optimism
for the development of an intestinal–liver organoid co-culture model (Figure 2D) in the
near future, which may offer significant advancements [102]. In a similar vein, through the
application of microfluidic chip technology, researchers have designed a microfluidic multi-
class organ system to investigate human liver–islet axis insulin and glucose regulation in
normal and diseased conditions [103].

4. Gut Dysbiosis and Gut–Liver Axis

Under normal circumstances, various microbial communities coexist in the gut in
specific proportions, maintaining gut microbiota homeostasis and participating in physio-
logical processes such as metabolism and immune function. Clinical research indicates that
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patients with NAFLD exhibit an imbalance in the composition and types of gut microbiota
compared to healthy individuals [104]. Transplanting gut microbiota from NAFLD patients
to germ-free mice can induce fatty livers, while transplanting gut microbiota from obese
children who have undergone dietary weight loss to germ-free mice does not cause signifi-
cant changes [105,106]. Human studies have shown an increase in the relative abundance of
Proteobacteriaceae (Proteobacteria), Enterobacteriaceae, Escherichia, and Doreia in NAFLD
patients, while Rumenococcaceae, Faecalibacterium Praeplastrum (Ruminococcaceae), Fae-
calibacterium Prausnitzii, Coprococcus, Eubacterium, Prevotella, and Anaerospacteracter
were found to decrease in relative abundance [107–110]. In rodent trials, individuals with
NAFLD showed a significant increase in Firmicutes abundance, while Bacteroidetes were
reduced [111]. Dysbiosis can lead to NAFLD through various pathways [112].

Initially, alterations in gut microbiota impact host metabolism through the production
of short-chain fatty acids (SCFAs). SCFAs are the result of colonic bacterial fermentation of
polysaccharides and include substances such as acetate, propionate, and butyrate. Experi-
mental models of NAFLD and studies involving obese individuals have shown elevated
levels of SCFAs [113,114]. These fatty acids can activate specific G-protein-coupled recep-
tors, namely GPR41 and GPR43, found in all organs involved in NAFLD development,
including adipose tissue, liver, and intestines. Activation of these receptors by SCFAs
can trigger de novo lipogenesis, cholesterol synthesis, and disruptions in glucose regula-
tion [115]. Additionally, SCFAs influence food consumption by affecting neuronal control
of hunger [116].

Another critical way in which the gut microbiota contributes to NAFLD is by directly
altering lipid metabolism. Bacteria have been found to suppress the production of fasting-
induced adipocyte factor, a key inhibitor of lipoprotein lipase (LPL). This suppression
leads to an increased release of free fatty acids from very low-density lipoprotein particles
into the liver, promoting steatosis. Research provides compelling evidence for the causal
and potential mechanisms of gut microbiota in the development of fatty liver, linking
disturbances in gut microbiota to NAFLD development [117].

A third critical pathway through which dysbiosis contributes to NAFLD development
involves compromising the intestinal barrier. This compromise facilitates the movement
of bacteria or their by-products, such as lipopolysaccharides (LPSs), into the bloodstream,
a process associated with the progression from NAFLD to non-alcoholic steatohepatitis
(NASH) in both experimental and human studies [117,118]. The breach in the intestinal
wall’s defensive layers, resulting from a breakdown in the protective mechanisms operating
at various levels of the intestinal barrier, allowing for the translocation of these microbial
elements, plays a pivotal role in advancing from NAFLD to NASH. Tight junctions (TJs)
form a selectively permeable barrier between neighboring epithelial cells [119,120], but
diet-induced obesity can disrupt their expression and arrangement, leading to increased
intestinal permeability [121]. Dysbiosis has been observed to diminish the expression of
antimicrobial peptides (AMPs) and cytokines by specific immune cells, a condition that
correlates with the onset of NASH [122]. Restoring the disrupted intestinal barrier function
and dysbiosis is a potential strategy for managing NAFLD.

Notably, clinical observations and basic research have shown that intestinal barrier
damage rarely leads to liver injury alone, but can exacerbate pre-existing liver diseases,
such as NAFLD and drug-induced liver injury. This evidence suggests the existence of
a hepatic barrier in the gut–liver axis that protects the liver from enterogenic pathogenic
factors. Moreover, people found that liver sinusoidal endothelial cells (LSECs) take up
and clear viruses, phages, microbial products, and metabolic waste. LSECs also maintain
the homeostasis of the hepatic immune environment through tolerance-inducing and anti-
inflammatory functions under physiological conditions. In contrast, under pathological
conditions, the clearance function of LSEC is impaired and triggers the pro-inflammatory
mode. Therefore, LSECs have been proposed as a hepatic barrier to the gut–liver axis,
which protects the liver against gut-derived pathogenic factors [123].
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5. Inflammation and TLR Signaling

It is now evident from numerous studies that a high blood endotoxin level is closely
associated with the development of NAFLD. According to a recent systematic review and
meta-analysis, the findings endorse using blood endotoxin levels as a significant diagnostic
biomarker for NAFLD and are applicable to identifying the disease and determining the
stage of disease progression. In addition, it also suggests that blood endotoxin levels could
indicate increased intestinal permeability in NAFLD [124]. Lipopolysaccharide (LPS), a
key component of endotoxin, plays a crucial role in this mechanism as it is found in the
outer cell wall of Gram-negative bacteria. Research indicates that individuals who are
overweight or have NAFLD exhibit abnormal proliferation in the small intestine (known as
enteric bacterial overgrowth syndrome or EBOS) compared to individuals with a healthy
weight [125]. This leads to a rise in the number of bacteria that contain lipopolysaccharide
(LPS), which can activate adenosine cyclase in the intestinal mucosa, causing damage to
epithelial cell mitochondria and lysosomes, resulting in villous cell necrosis, epithelial cell
autolysis, local intestinal mucosal damage, and increased intestinal permeability [122]. En-
dotoxin travels through the bloodstream and reaches the liver via enterohepatic circulation.
In the liver, Toll-like receptors (TLRs) in Kupffer cells or hepatocytes recognize and bind to
the endotoxin, triggering the release of various cytokines. This process activates immune-
inflammatory responses and contributes to liver inflammation and pathological damage.

TLRs are a group of pattern-specific and widely distributed receptors that play a crucial
role in the activation of the innate immune system by recognizing pathogen-associated
molecular patterns (PAMPs) as well as endogenous molecules derived from dying host
cells, known as damage-associated molecular patterns (DAMPs) [126]. When TLRs bind to
their corresponding ligands, they activate signaling pathways through the common signal
adaptor molecule Myeloid differentiation primary response 88 (MyD88), which is shared
by interleukin-1 (IL-1) receptors and all TLRs except TLR3. These events ultimately lead to
the activation of NF-κB, p38, and c-Jun N-terminal kinase (JNK), as well as the production
of inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6
(IL-6) [127]. Moreover, TLR recognition by microbial motifs enhances intestinal epithelial
barrier function by inducing the tightening of intercellular junctions, secretion of mucus
and antimicrobial peptides (AMPs), and production of reactive oxygen species (ROS) [128].
However, it has also been shown that symbiotic enterobacteria weaken the intestinal
barrier by activating the intestinal epithelial innate immune receptor TLR-2 signaling
and downregulating neuropilin-1 (NRP1) and Hedgehog signaling regulated by it in the
intestinal epithelium [129], indicating its complex roles in intestinal barriers.

To date, more than ten members of the TLR family (TLR1-10) have been identified
in mammals. These members are distinguished by their type I transmembrane proteins,
featuring an extracellular domain rich in leucine and a cytoplasmic tail accountable for
ligand recognition [126,130]. Among them, the significance of TLR4 and gut-derived
LPS in the animal model of NASH has been emphasized in numerous studies [131,132].
Additionally, translocated bacterial DNA binds to TLR9 on Kupffer cells in choline-deficient
amino acid-defined (CDAA) diet-induced NASH mice, leading to the synthesis of IL-1β,
which prompts lipid accumulation and cell death in hepatocytes while triggering the
activation of hepatic stellate cells (HSCs) to cause liver fibrosis [133]. These findings indicate
that the activation of TLR9 signaling plays a vital part in developing and advancing NAFLD
to NASH. In addition to TLR4 and TLR9, by employing a CDAA diet-induced NASH mice
model, TLR2 also has a crucial function in the progression of NASH. However, simple
hepatic steatosis induction occurs independently of TLR2 signaling [134,135], indicating
its importance in the advancement of NAFLD to NASH rather than in the early stages of
NAFLD development. These conclusions imply that the activation of TLR2, TLR4, TLR9
and MyD88 along with downstream inflammatory signaling pathways are crucial in the
development and progression of NAFLD to NASH (Figure 3).
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pathways in the development and progression of NAFLD due to gut-liver barrier dysfunction.
Pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs)
are recognized by TLRs, thereby activating NF-κB, p38, and c-Jun N-terminal kinase (JNK) signaling
pathways, which initiates the production of inflammatory cytokines, such as tumor necrosis factor-
alpha (TNF-α) and interleukin-6 (IL-6).

6. Therapeutic Strategies Targeting Gut Permeability and Gut Microbiota

NAFLD patients face an increased risk of overall morbidity and mortality, driven
primarily by liver complications, cardiovascular diseases, and cancer. The treatment and
management of NAFLD primarily target liver diseases, particularly fibrosis, which is an
important prognostic factor, Additionally, addressing metabolic comorbidities such as
obesity, type 2 diabetes, and dyslipidemia is essential. Medical conferences universally
advocate for weight loss through lifestyle modifications, including a balanced diet and
regular physical activity as the cornerstone of NAFLD treatment. Despite the challenging
nature of implementing and sustaining lifestyle changes, pharmacological interventions
should be considered for individuals with progressive disease, specifically those with non-
alcoholic steatohepatitis (NASH) and fibrosis, while taking into account safety concerns and
NAFLD comorbidities. Despite the ongoing exploration of various treatment modalities
(e.g., anti-obesity, antidiabetic, and lipid-lowering medication), no drugs have yet been
approved for NAFLD specifically.

6.1. Probiotics

According to the FAO and WHO, probiotics are living microorganisms that provide
health advantages to the host when given in adequate amounts [136], including conven-
tional probiotics (CPs) and next-generation probiotics (NGPs) (Table 2).

Table 2. Overview of the different probiotics in improving NAFLD.

Organism Effects References

Conventional probiotics (CPs)

Lactobacillus rhamnosus GG hepatic steatosis ↓ [138]

Probiotic blend (B. longum, B. lactis, and B. breve
and L. reuteri and L. plantarum)

body weight ↓
triglycerides ↓

total cholesterol ↓
LDL-C ↓and HDL-C ↑

[139]
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Table 2. Cont.

Organism Effects References

L. johnsonii BS15
intestinal permeability ↓

LPS levels ↓
liver inflammatory factors ↓

[140]

Lactobacillus paracasei N1115 hepatic steatosis ↓
the inflammatory factors ↓ [141]

Lactobacillus paracasei pro-inflammatory cytokines ↓ [142]

Saccharomyces boulardii hepatic steatosis ↓
TNF-α ↓ [143]

Akkermansia muciniphila

adipose tissue mass ↓
metabolic endotoxaemia ↓

adipose tissue inflammation ↓
insulin resistance ↓

[148]

Bacteroides SCFAs ↑ [151]

Mycobacterium anisopliae CECT 7771 body weight ↓
steatosis ↓ [152]

6.1.1. Conventional Probiotics

The predominant types of probiotics, commonly referred to as conventional probiotics
(CPs), include Lactobacillus, Bifidobacterium, Clostridium casei, Lactobacillus acidophilus,
Actinobacillus and Saccharomyces cerevisiae [137]. Jang et al. discovered that the probiotic
Lactobacillus rhamnosus GG can compete with the host for intestinal fatty acids, resulting
in the prevention of hepatic steatosis caused by a high-fat diet (HFD) [138]. The probiotic
blend reduces weight, triglycerides, total cholesterol, and LDL-C levels, while increasing
HDL-C levels, leading to a decrease in hepatic steatosis and inflammatory cell infiltration
in rats used in experiments. This ultimately reduces hepatic lipid accumulation, relieves
hepatic inflammation, and improves NAFLD [139]. A formulation based on Lactobacillus
johnsonii (L. johnsonii) BS15 has been shown to protect high-fat diet-fed NAFLD mice from
hepatic steatosis and hepatocyte apoptosis by reducing intestinal permeability, altering
gut microbiota composition, lowering LPS levels, and downregulating liver inflammatory
factors such as TNF-α [140]. Another study demonstrated that oral administration of
Lactobacillus paracasei N1115 alleviates HFD-induced hepatic steatosis and the release
of the inflammatory factor tumor necrosis factor (TNF-α), thereby slowing down the
progression of liver fibrosis [141]. In separate research, treatment with Lactobacillus
paracasei inhibited the pro-inflammatory M1 Kupffer cell response and promoted the
anti-inflammatory M2 response, resulting in a significant reduction in the expression levels
of pro-inflammatory cytokines TNF-α and Monocyte chemoattractant protein-1 (MCP-
1) [142]. Additionally, intervention with Saccharomyces boulardii, a strain of probiotic yeast,
improved hepatic steatosis in HFD-induced NAFLD rats and decreased the expression of
TNF-α [143]. According to the research, probiotics preserve the integrity of the intestinal
epithelial barrier, reduce the translocation of pathogens across the intestinal epithelial
barrier, and relieve the muscle tension disorder response caused by HFD. Consequently,
they can mitigate the effects of HFD, slow down the progression of NAFLD, and ultimately
alleviate its impact [144]. These findings are significant in advancing the utilization of
probiotics and gut microbiota as potential targets for NAFLD treatment.

6.1.2. Next-Generation Probiotics

The discovery of a new group of probiotics, called next-generation probiotics (NGPs)
such as Akkermansia muciniphila, Faecalibacterium Prausnitzii, Bacteroides uniformis,
Bacteroides xylanisolvens, Bacteroides fragilis, Eubacterium hallii and Propionibacterium
spp., has been enabled by advancements in cultivation methods, sequencing technologies,
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and bioinformatics methods. Certain members of Clostridium spp. IV, XIVa, and XVIII
have been shown to improve the management of NAFLD [145]. According to the current
studies [145,146], NGPs differ primarily from conventional probiotics in the following
several ways:

1. Strain selection: NGPs mostly derived from commensals and that belong to diverse
genera, which are selected based on advanced screening techniques, including ge-
nomics, metagenomics, and functional assays, that allow for identifying and isolating
strains with specific beneficial properties, such as enhanced colonization, improved
survival in the gastrointestinal tract, and targeted health benefits.

2. Precision and personalized approach: NGPs are designed to be more precise and
personalized in their application. They can be tailored to address specific health
conditions or individual needs, considering factors like microbiome composition,
genetic background, and lifestyle factors.

3. Mechanistic understanding: NGPs are characterized by a better understanding of
their mechanisms of action. Advances in molecular biology and omics technologies
have enabled researchers to uncover the molecular interactions between NGPs and
the host, providing insights into the underlying mechanisms through which they
exert their beneficial effects.

4. Therapeutic potential: NGPs have the potential to be used as therapeutic agents for
various diseases beyond gut health. By manipulating the gut microbiota and engaging
with the host’s immune system, they can address ailments like metabolic disorders,
inflammatory conditions, and neurological disorders.

5. Combination therapies: NGPs can be combined with other therapies, such as phar-
maceutical drugs or dietary interventions, to enhance their efficacy. This approach,
known as synbiotics, involves the synergistic interaction between NGPs and other
therapeutic agents to achieve improved health outcomes.

Therefore, NGPs have the potential to be a valuable tool for personalized medicine,
as they can target specific diseases by modulating the gut microbiota. Akkermansia
muciniphila, a bacterium that degrades mucin, is a prevalent species in the human gut
microbiota, constituting 0.5% to 5.0% of the overall bacterial population [147]. NAFLD
mice exhibit a notable decrease in the abundance of Akkermansia muciniphila compared
to wild-type mice, and interventions that enhance its abundance have shown improve-
ments in metabolic parameters [148]. Fructo-oligosaccharides, similar to prebiotics, can
elevate the levels of Akkermansia muciniphila and alleviate the dysregulation of associ-
ated diseases [149,150]. Despite not causing significant changes in the gut microbiota of
diet-induced obese mice, the use of Akkermansia muciniphila can counteract metabolic dis-
orders induced by a high-fat diet (HFD), including elevated adipose tissue mass, metabolic
endotoxemia, inflammation in adipose tissue, and insulin resistance, all of which are closely
linked to the development of NALFD/NASH. This indicates that Akkermansia muciniphila
has the potential to prevent or treat obesity and associated metabolic disorders [150]. Fur-
ther research has revealed that the primary by-products of Akkermansia muciniphila,
including propionic acid, and acetic acid, can affect the expression of genes involved in host
lipid metabolism, as well as their epigenetic regulation [151]. Similarly, Bacteroides have a
similar effect by degrading indigestible dietary fibers, producing a significant quantity of
short-chain fatty acids, primarily acetate and propionate [152]. Gauffin Cano et al. have
demonstrated that in HFD-fed mice, a single strain of Mycobacterium anisopliae CECT
7771 can reduce body weight and alleviate steatosis by reducing cholesterol levels in the
liver and serum [153]

6.2. Fecal Microbiota Transplantation

In addition to supplementing probiotics, fecal microbiota transplantation (FMT) has
emerged as a novel therapeutic approach in recent years. The procedure involves trans-
ferring the operational intestinal bacteria from a fecal sample of a healthy person into the
patient’s intestines to rebuild a healthy gut microbiota, thereby treating both intestinal and
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extraintestinal conditions. FMT has been demonstrated to effectively manage refractory
and recurrent Clostridium difcile infection (CDI) [154] and shows potential for addressing
gastrointestinal and extraintestinal disorders [155,156]. It has also been shown to alleviate
liver inflammation in a high-fat diet-induced mouse model of NASH by reducing lipid
accumulation in the liver and lowering pro-inflammatory cytokine levels in the blood-
stream [156]. Studies [157] suggest that FMT can help reduce fat accumulation in the liver
and alleviate fatty liver disease by restoring balance to gut microbiota. Furthermore, FMT
has proven to be more effective in gut microbiota reconstruction for lean NAFLD patients
compared to obese NAFLD patients [158]. However, some issues still need to be addressed
in the clinical application of FMT. Firstly, current transplant techniques can be conducted
through various routes, including nasogastric or nasoenteric tubes, upper gastrointestinal
endoscopy (esophagogastroduodenoscopy), colonoscopy, or retention enema. Nevertheless,
systematic reviews indicate that these methods have varying efficacy and are often associ-
ated with variability in the donor FMT material [159]. Therefore, further standardization
of the fecal microbiota transplantation process is necessary. Secondly, there is significant
heterogeneity in the provided FMT material. Factors contributing to this heterogeneity
include the weight of the donor feces, the volume of the preparation solution, and the
method of preparing the FMT material. It has been observed that FMT prepared with
different solvents (e.g., water, saline, milk, or other diluents) can have varying therapeutic
effects [160]. Given that FMT is a unique biological drug derived from the human body but
not classified as organ transplant, strict monitoring and preservation of donor specimens
are required for the widespread application of FMT. Moreover, there is a need for further
improvement in the relevant regulatory agencies and laws [161–163].

6.3. Lifestyle Changes
6.3.1. Exercise

In modern society, a growing number of individuals have embraced a sedentary
lifestyle, leading to a rise in the prevalence of metabolic disorders such as type 2 diabetes,
obesity, cardiovascular illness, and NAFLD. A recent study has found that regular phys-
ical activity boosts the digestive system, resulting in positive reactions and enhancing
the strength of the intestinal barrier [164]. Moderate physical activity in mice has been
shown to alleviate damage to the intestinal barrier caused by chronic stress, reduce bac-
terial translocation, and maintain intestinal permeability [165]. Research has indicated
that women who engage in regular physical activity possess a wider range of beneficial
microbial communities, including Faecalibacterium prausnitzii, Roseburia hominis, and
Akkermansia muciniphila, compared to inactive women [166]. Additional research has
uncovered that these microorganisms are recognized as butyrate producers and positively
impact maintaining the integrity of the intestinal barrier, regulating the host’s immune
system, and controlling lipid metabolism [167–169]. Similar results have been observed
in animals, with mice undergoing physical exercise exhibiting an increase in symbiotic
groups such as Bifidobacterium, Lactobacillus, and Akkermansia muciniphila [170,171].
In average athletes, moderate exercise has been associated with positive effects on health,
including decreased inflammation and intestinal permeability, as well as improvements in
body composition [172]. During exercise, a significant amount of lactates is released and
secreted into the gut, altering the pH levels. Conversely, high-intensity exercise may have
adverse effects on gut function. Following vigorous physical activity, approximately 70%
of athletes may experience symptoms such as stomach aches, nausea, and bowel irregulari-
ties [173,174]. Extended physical activity can lead to a decrease in microbial diversity, an
increase in the quantity of Helicobacter pylori, and the onset of heightened permeability
in the intestines, allowing bacteria and their harmful substances to enter the bloodstream,
triggering widespread inflammation [175,176]. Animal studies have shown that intense
acute endurance exercise can induce changes in intestinal permeability [177].
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6.3.2. Dietary Carbohydrates

The study of the impact of dietary elements on the maintenance and operation of the
intestinal barrier is gaining popularity. Carbohydrates are organic substances composed
of carbon, hydrogen, and oxygen. They are highly prevalent, exhibiting various chemical
structures and biological roles. Consumption of simple carbohydrates such as sugars like
sucrose and fructose has been observed to cause rapid changes in the microbiota, leading to
disruptions in the host’s metabolism [178,179]. Cho et al. reported that fructose-induced ni-
trosylation of intestinal barrier junction proteins results in gut leakage, resulting in hepatic
steatosis and fibrosis [180]. In contrast, complex carbohydrates, specifically polysaccharides
and dietary fiber that can be broken down by specific microbiota, act as a source of nourish-
ment for the diverse microbiota present in the gut environment. This has significant effects
on the ecology and well-being of gut microbes. [181]. Diets rich in polysaccharides are
associated with increased diversity in the gut microbial community and support the growth
of beneficial bacteria like Akkermansia, Bifidobacteria, and Lactobacillus. Additionally,
gut microbiota can utilize intermediate oligosaccharides to produce short-chain fatty acids
beneficial to the host. For instance, Dendrobium polysaccharides (DOPs) are not easily
digested and absorbed but stimulate the production of butyric acid by gut microorganisms,
particularly by Parabacteroides sp. HGS0025, resulting in improved gut health and im-
mune function [182,183]. By acting on Akkermansia muciniphila, DOPs intervention also
stimulates mucin production, ultimately enhancing intestinal barrier function [184].

6.3.3. Dietary Proteins

Dietary protein is another crucial macronutrient, and individuals must consume a
specific amount of protein daily to obtain amino acids and the necessary nitrogen to syn-
thesize tissue proteins. The relationship between protein consumption and well-being
follows a U-shaped pattern. Inadequate protein intake is associated with malnourishment,
while excessive intake beyond the acceptable threshold is linked to overnutrition-related
ailments [185]. Studies have indicated that following a protein-rich diet may decrease the
presence of microorganisms like Lachnospiraceae, Ruminococcaceae, and Akkermansia,
which could potentially contribute to the development of specific illnesses [186]. Addi-
tionally, gut bacteria can metabolize proteins, especially those found in red and processed
meats containing L-carnitine and choline. This metabolism results in the production of
trimethylamine (TMA), which is subsequently converted into trimethylamine N-oxide
(TMAO) [187]. Elevated TMAO levels are associated with a higher risk of various metabolic
disorders like NAFLD/NASH [188].

6.3.4. Dietary Fats

High-fat diets are harmful to health. According to recent reports, there is a potential
link between a diet rich in fats and the occurrence of endotoxemia and barrier dysfunc-
tion [189]. The constituents in the food interact closely with epithelial cells and serve as the
primary triggers for modifying the intestinal barrier [190]. Moreover, a high-fat diet reduces
beneficial bacteria and SCFAs, interferes with bile acid metabolism, induces inflammation,
and exacerbates further deterioration of NALFD to NASH [191].

7. Conclusions

While the detailed structure and role of the epithelial barrier have been extensively
explained, the precise collaboration and underlying mechanisms among its various con-
stituents are still not fully understood. The significance of gut barrier function is deemed
crucial, yet clinical trials are absent, and there is no supporting evidence concerning
NAFLD/NASH. On the other hand, NGPs and conventional probiotics have been found
to improve gut barrier function, but no related biopharmaceuticals have been developed
and applied in clinical settings. The next step of research should focus on clinical studies
of NAFLD, evaluating the gut microbiota function profiles and corresponding protein
metabolites, correlating them with NAFLD/NASH pathological characteristics, changes in
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gut permeability, and related mechanisms. In the end, clarifying the function and mecha-
nisms of the intestinal barrier in different phases of NAFLD can offer fresh perspectives for
treating NAFLD/NASH.
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