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Simple Summary: Currently, gliomas still stand as one of the global health concerns due to its resistance
to treatment strategies, resulting in poor survival rate and high mortality despite sustained efforts.
Even though chemotherapeutic and targeted drugs for glioma exist, its heterogeneity per grade and
cell origin poses as a significant contributing factor to its negative response to treatment. With this, our
study utilized a systems biology approach to investigate correlations between various grades of glioma
using DNA microarray profiles of samples that contain pilocytic astrocytoma, oligodendroglioma,
anaplastic astrocytoma, and glioblastoma multiforme gene expression data. The highly preserved gene
clusters (modules) and their corresponding hub genes were identified, which provided further insights
into the signaling pathways and cellular processes involved. Drug repurposing was also performed
based on the upregulated and downregulated hub genes. This approach determined potential drug
candidates that are known to have mediating effects on the signaling pathways, thereby highlighting
the possibility of the gene network as a potential therapeutic avenue.

Abstract: Gliomas have displayed significant challenges in oncology due to their high degree of
invasiveness, recurrence, and resistance to treatment strategies. In this work, the key hub genes
mainly associated with different grades of glioma, which were represented by pilocytic astrocytoma
(PA), oligodendroglioma (OG), anaplastic astrocytoma (AA), and glioblastoma multiforme (GBM),
were identified through weighted gene co-expression network analysis (WGCNA) of microarray
datasets retrieved from the Gene Expression Omnibus (GEO) database. Through this, four highly
correlated modules were observed to be present across the PA (GSE50161), OG (GSE4290), AA
(GSE43378), and GBM (GSE36245) datasets. The functional annotation and pathway enrichment
analysis done through the Database for Annotation, Visualization, and Integrated Discovery (DAVID)
showed that the modules and hub genes identified were mainly involved in signal transduction,
transcription regulation, and protein binding, which collectively deregulate several signaling path-
ways, mainly PI3K/Akt and metabolic pathways. The involvement of several hub genes primarily
linked to other signaling pathways, including the cAMP, MAPK/ERK, Wnt/β-catenin, and calcium
signaling pathways, indicates potential interconnectivity and influence on the PI3K/Akt pathway
and, subsequently, glioma severity. The Drug Repurposing Encyclopedia (DRE) was used to screen
for potential drugs based on the up- and downregulated hub genes, wherein the synthetic progestin
hormones norgestimate and ethisterone were the top drug candidates. This shows the potential
neuroprotective effect of progesterone against glioma due to its influence on EGFR expression and
other signaling pathways. Aside from these, several experimental and approved drug candidates
were also identified, which include an adrenergic receptor antagonist, a PPAR-γ receptor agonist, a
CDK inhibitor, a sodium channel blocker, a bradykinin receptor antagonist, and a dopamine receptor
agonist, which further highlights the gene network as a potential therapeutic avenue for glioma.
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1. Introduction

Glioma is a type of brain tumor that originates from glial cells. A common type
of glioma, astrocytoma, emerges from astrocytes, cells that primarily provide structural
support to neurons and regulate the blood–brain barrier. Astrocytomas are often consid-
ered to be more aggressive than other types of glioma due to their high cell proliferation,
invasiveness, and recurrence [1]. Astrocytomas can be further classified based on WHO
grades of increasing malignancy: Grade I: pilocytic astrocytoma (PA); Grade II: diffuse
astrocytoma (DA); Grade III: anaplastic astrocytoma (AA); and Grade IV: glioblastoma mul-
tiforme (GBM) [2]. On the other hand, oligodendrogliomas are less-common gliomas that
originate from oligodendrocytes, which produce and maintain the myelin sheath around
the neuronal axons for nerve signal transmission. Like astrocytomas, they are classified
based on WHO grades, wherein oligodendroglioma (OG) is Grade II and anaplastic oligo-
dendroglioma (AO) is Grade III [3]. They are noted for their specific genetic alterations that
affect their prognosis and treatment, specifically 1p/19q codeletion, as these alterations are
usually present in both grades; in contrast, different grades of astrocytomas contain key sets
of genetic alterations [2,4]. Despite their differences, astrocytomas and oligodendrogliomas
may share similar genetic alterations and clinical symptoms [5].

Along with surgery and radiation therapy, chemotherapeutic and targeted drugs,
particularly temozolomide and bevacizumab, are used as treatment for glioma [6]. Several
studies have also indicated the use of inhibitors for the epidermal growth factor receptor
(EGFR) due to the strong involvement of the downstream PI3K/Akt pathway in glioma
cell proliferation [7,8]. However, resistance against temozolomide and the toxicity of
bevacizumab have been documented [9,10], while EGFR inhibitors tend to struggle in pen-
etrating the blood–brain barrier [11]. Hence, the poor prognosis of the five-year survival
rate of patients with GBM has not improved significantly despite sustained efforts [12,13].
As a result, systems biology approaches, which excel in identifying gene network hubs that
play central roles in regulating overall cellular processes, are currently being considered.
One of these approaches is the weighted gene co-expression network analysis (WGCNA),
which is used to characterize the patterns of gene association found in the gene expression
data of several diseases. This method enables identifying potential therapeutic targets
linked to particular biological processes or illnesses by categorizing genes into modules
according to their expression profiles, offering a new point of view for the comprehensive
understanding of the molecular foundations of related diseases. Furthermore, the iden-
tification of hub genes in the modules can also be done to provide insight into the main
pathways and processes that are mutated. Lastly, these hub genes can then be subjected to
drug repurposing techniques, which has emerged as a novel approach in the field of drug
discovery due to its potential to save time and costs, as it enables the screening of approved
and experimental drugs that can interfere with the mutated genes.

In this study, gene expression datasets for four different grades of glioma, repre-
sented by PA (GSE50161), OG (GSE4290), AA (GSE43378), and GBM (GSE36245), were
acquired from the Gene Expression Omnibus (GEO) and were then used to perform a
meta-analysis approach through WGCNA to determine highly conserved modules among
all the datasets. Four such modules were identified and then subjected to functional an-
notation and pathway enrichment analysis, where it was found that they were highly
involved in signal transduction, transcription regulation, protein binding, and metabolic
changes. In each module, the protein–protein association network and key hub genes were
determined, which further allowed for screening of potential already-existing drugs. With
this bioinformatics approach, this study aims to offer further insights for understanding
the pivotal points at which different glioma grades align genetically to pave the way for
the enhancement of existing treatment strategies or the development of novel ones.
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2. Materials and Methods
2.1. Dataset Acquisition and Preparation

The microarray gene expression datasets were sourced from the National Center for
Biotechnology Information: Gene Expression Omnibus (NCBI GEO) [https://www.ncbi.
nlm.nih.gov/geo/ accessed on 7 December 2023] online database for WGCNA analysis.
The datasets gathered contained expression data taken from primary tumor samples of
patients diagnosed with pilocytic astrocytoma (PA), oligodendroglioma (OG), anaplastic
astrocytoma (AA), and glioblastoma multiforme (GBM). Furthermore, only the datasets
carried out through GPL570-HG-U133 Plus 2 Affymetrix Human Genome U133 Plus 2.0
Array were selected in order to prevent inconsistencies arising from probe design, normal-
ization issues, and batch effects [14–16]. This initial screening resulted in the exclusion of
datasets for diffuse astrocytoma (DA) and anaplastic oligodendroglioma (AO) from further
investigation. A total of 113 samples were obtained. Table 1 summarizes the details and
distribution of samples for the four tumor types.

Table 1. Summary of GEO Datasets.

Accession No. GSE50161 GSE4290 GSE43378 GSE36245

Condition Pilocytic Astrocytoma Oligodendroglioma Anaplastic
Astrocytoma

Glioblastoma
Multiforme

Type Expression Profiling by Array
Platform GPL570-HG-U133 Plus 2 Affymetrix Human Genome U133 Plus 2.0 Array
Source Primary Brain Tumor Samples

No. of Samples 14 36 19 44

All screened raw data underwent background correction, quantile normalization, and
log-2 transformation through the robust multi-array average (RMA) method in the affy
package in Bioconductor using R [http://www.bioconductor.org accessed on 19 December
2023]. A boxplot of expression values and sample clustering dendrograms were generated
to visually inspect the resulting data for outliers. After pre-processing, control probes
were removed to eliminate non-biological variation and focus on the samples containing
primary tumor expression. Then, the expression data were filtered to select the genes whose
mean and variance throughout all the samples in each dataset were higher than the 20%
percentile cut-off. Probe IDs were converted into gene symbols through the AnnotationDbi
function using the hgu133plus2.db database for biological interpretation and analysis.
Lastly, only the probes that were present in all datasets were used, and samples with
no values after log-2 transformation were filtered out using the WGCNA R package’s
goodSamplesGenesMs function.

2.2. Weighted Gene Co-Expression Network Analysis (WGCNA)
2.2.1. Scale-Free Network Approximation

Using the pickSoftThreshold function of the WGCNA R package, a plot of the scale-
free topology fit versus power index (1–20) was generated. The soft-thresholding power (β)
was then selected as the lowest power for which the scale-free topology criterion is satisfied.
In a scale-free topology, the distribution of gene degrees (number of gene connections)
follows the power-law distribution. This is often evaluated based on how well the co-
expression network conforms to the linear relationship between log of connectivity and log
of connectivity probability—by plotting the scale-free topology fit versus soft-thresholding
power and selecting the power at which the scale-free topology fit reaches a plateau or a
reasonably high value that indicates a good fit [17]. Hence, an approximate straight-line
relationship was plotted using the values for soft connectivity (k) to evaluate the chosen
soft-thresholding power.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductor.org
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2.2.2. TOM-Based Network Construction and Module Identification

Using Pearson’s correlation with the network type “signed,” the adjacency matrices
were generated for network construction. The Topological Overlap Measure (TOM) dis-
similarities were then calculated using the soft-thresholding power to raise the adjacency
matrices. This allowed the emphasis of the strong correlations and the downweighting of
weak correlations in performing fast hierarchal clustering of genes using the flashClust func-
tion. To produce gene dendrograms using the highly correlated genes, the hclust function
was used to perform hierarchal clustering based on the distance matrix of the expression
profiles with the “average” method. Gene modules were identified based on hierarchal
clustering through the cutreeHybrid function, in which the deep split parameter was tested
from 0 to 3 for branch splitting sensitivity [18]. Stable modules that remain consistent
across different values of a deep split parameter indicate that the clustering algorithm has
accurately identified significant clusters within the datasets, while varying results would
suggest additional validation of the parameters used, such as the soft-thresholding power.

2.2.3. Module Preservation Analysis

Module preservation analysis measures the extent to which the connectivity patterns of
the reference network are preserved in other networks to evaluate the biological relevance
of the gene modules across different diseases or disease states. The modulepreservation
function from the WGCNA R package was used to analyze gene co-expression network
preservation of PA, OG, AA, and GBM modules qualitatively and quantitatively with the
network type “signed,” the number of permutations set to 100, and a minimum module
size of 30 genes. After then, the eigengene-based connectivity (kME), a measure of the
correlation between the expression profile of each gene and its gene co-expression network,
was calculated to identify the genes within each module using the moduleEigengenes func-
tion. Module membership was associated to the correlation between the gene expression
profile and its module eigengene.

2.3. Functional Annotation and Pathway Enrichment

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was
used to perform functional annotation clustering on the modules of interest [19]. Within
DAVID Gene Ontology (GO), the databases for biological processes (BP), cellular compo-
nents (CC), and molecular functions (MF) were utilized. This database contains information
on the basic features and activities of the provided genes based on the proteins they en-
code. The classification stringency was set to medium, and only significant GO terms
(p adj. < 0.05) that have enrichment scores greater than 1.3 were chosen for analysis. For
pathway enrichment analysis, searches through the Kyoto Encyclopedia of Genes and
Genomes (KEGG) were performed. KEGG terms that scored significantly and clustered
with the selected GO terms were then used to provide details on the overall functions of
the modules of interest [20].

2.4. Identification of Protein-Protein Interaction (PPI) and Hub Genes

In generating PPI networks, genes within each of the highly preserved modules were
considered for potential associated protein–protein interactions through the Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING) database [21]. PPI networks with a
minimum interaction score of 0.7 (high confidence) were built for each module of interest.
The generated networks were then imported into Cytoscape to find hub genes based on
degree centrality using the Cytohubba feature, which measures the number of interactions
that the gene has within the network that correlates with its essentiality [22,23]. In this
case, the top 10 genes with the highest interactions within the modules were considered
hub genes.
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2.5. Signature-Based Drug Repurposing

The top 10 hub genes identified based on their degree centrality were first classified as
either being “upregulated” or “downregulated” using GEO2R [https://www.ncbi.nlm.nih.
gov/geo/geo2r/ accessed on 23 December 2023] prior to searching for potential drugs. The
Drug Repurposing Encyclopedia (DRE) webserver was used to search for available drugs
that can be repurposed based on their transcription profiles from the Molecular Signatures
Database (MSigDB) and Connectivity Map (CMap) [24,25]. The groups of upregulated
and downregulated genes were submitted for drug repurposing tests based on molecular
signature screening. Experimental drugs without an indicated mechanism of action were
excluded from the analysis, and only candidates with false discovery rates (FDR) of less
than 0.05 were considered.

3. Results
3.1. Weighted Gene Co-Expression Network Analysis (WGCNA)
3.1.1. Data Pre-Processing and Approximation of Scale-Free Networks

After the data preparation and filtering stages (Figure A1), a total of 25,466 genes
remained. All samples for each dataset were included in the weighted gene co-expression
network analysis, as no significant outliers were identified based on the sample clustering
dendrograms of the datasets in Figure A2. Figure 1 shows the variation of the scale-free
topology fit index versus the soft threshold (β) values ranging from 1 to 20. At β > 10,
it can be observed that the index across all the datasets has stabilized and has steadily
plateaued onwards. This indicates that the scale-free topology fit for β > 10 is not any more
significantly affected by the increase in power and that a robust scale-free structure has
been achieved. With this, it was decided that the scale-free topologies for all datasets would
be approximated as β = 10. The approximation of the optimal soft-thresholding power for
the scale-free topology fit is crucial, as it guarantees robustness, efficiency, and resilience to
errors of the gene network. Lower soft-thresholding power leads to denser gene networks
with more connections, supporting the selection of the least power at which the network
indices have stabilized. This ensures that the resulting modules will contain biologically
relevant relationships between genes.
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Figure 2 shows the corresponding log-log plot for the GBM dataset, constructed by
plotting the connectivity frequencies corresponding to each value of connectivity at a
soft-thresholding power of 10. This dataset exhibited the most accurate representation of
a scale-free network by achieving the highest R2 value of 0.9 among the datasets, which
suggests that gene co-expression networks derived from this dataset are more likely to
have related expression patterns, features, or information for confident interpretation of
the network regarding its biological significance. Hence, the GBM dataset was used as the
reference dataset for WGCNA.
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3.1.2. TOM-Based Network Construction and Module Identification

Several approaches to conducting meta-analysis through WGCNA exist, one of which
involves designating a single dataset as a reference and then projecting the module eigen-
genes of other datasets onto this reference. The choice of the reference dataset plays a crucial
role in determining the network’s robustness, considering factors such as the dataset’s
sample size, scale-free network approximation, and the resolution of clustering in the gene
dendrograms based on the TOM gene dendrograms [22]. Following these criteria, the GBM
dataset was chosen as the reference for the meta-analysis, and the identified modules are
shown in Figure 3. Aside from this, it aligns with the fact that GBM is the end stage of
glioma, which makes it suitable to be referenced to glioma datasets of lower grades, as it
may indicate modules that are involved in glioma progression from the initial and latter
stages. It can be observed from the sensitivity plots that the same sets of modules remained
despite the increasing sensitivity, which may be due to strong correlation of the genes, hav-
ing fewer significant gene clusters, or both (Figure S1). All in all, WGCNA identified a total
of 21 gene co-expression modules classified arbitrarily by different colors: green-yellow
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(270), gold (100), red (492), midnight blue (140), yellow (1215), purple (327), tan (265), cyan
(180), light green (80), light cyan (119), black (409), magenta (351), pink (323), gray60 (108),
light yellow (32), green (1135), brown (1775), salmon (256), turquoise (2500), gray (2500),
and blue (2500). These modules serve as clusters of related genes that exhibit coordinated
expression patterns across the glioma grades, which can provide further insights into the
underlying molecular foundations and regulatory networks in glioma.
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to the portion of the dendrogram directly above.

3.2. Module Preservation Analysis

The preservation of the modules identified within the gene co-expression network
of GBM was assessed in the datasets for PA, OG, and AA using the Z-summary score,
which measures the connectivity of the modules that indicate the gain of preservation; a
higher Z score indicated better preservation. As shown in Figure 4, there are few significant
variations between the preserved modules across the datasets. In addition, most modules
retain their relative position in the graphs but with more modules surpassing the threshold
per dataset, as demonstrated by the increase in the Z-score values of the modules from
the PA to the AA datasets. Biologically, this incidence is consistent with the severity of
glioma, since the module eigengenes projected on the GBM dataset reflected increasing
preservation from PA to AA, demonstrating the similarity of genes towards GBM. It may
also be speculated that this relates to glioma progression. This results in the AA dataset
having the highest number of significantly preserved modules, although only the modules
with preservation scores higher than Z = 10 across all datasets—represented by the green,
yellow, brown, and gray modules—were identified as modules of interest since the analysis
specifically focused only on shared networks across the different glioma grades.

In addition, the analysis of module membership included the application of kME
(eigengene-based connectivity) to measure the connectivity of each gene within a specific
module. This was determined by calculating the correlation between the gene’s expression
profile and the module eigengene, which functions as a representative expression profile
for that module [26]. After that, the genes in each module were ranked according to their
kME values in each dataset (Figure S2). The genes with the highest maximum rank across
all datasets were chosen for the subsequent functional annotation and pathway enrichment
analysis. Such genes consistently showed strong correlation within the particular modules
across different glioma grades, indicating their critical roles in the biological processes that
these modules represent.
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Figure 4. Module preservation analysis performed on the gene co-expression modules from the GBM
network in (a) pilocytic astrocytoma, (b) oligodendroglioma, and (c) anaplastic astrocytoma datasets.
The modules in the yellow partition pertain to highly preserved modules (Z > 10); green, yellow,
brown, and gray exhibited high preservation in all datasets.

3.3. Functional Annotation and Pathway Enrichment

The DAVID webserver was used to cluster functional annotations based on the top
genes in each module. For each module, the top-enriched Gene Ontology (GO) terms
are shown in Figure 5a–c. Figure 5d shows KEGG pathways that were prioritized only if
they were enriched in the same cluster as the top GO keywords. Significant enrichment
scores were found in several clusters, which were noteworthy since they included links to
the progression of glioma. Particularly, the green and brown modules were involved in
changes in signaling pathways directly affecting metabolism, while the yellow and gray
modules mainly affect transcription regulation. All modules were involved in protein
binding. These findings may indicate that the green and brown modules are linked with the
same or closely related metabolic pathways, as they both operate in the plasma membrane.
On the other hand, pathway enrichment results have shown the involvement of the yellow
and gray modules in the PI3K/Akt pathway, although possibly in different processes since
the gray module could be operating in a specific cytoplasmic organelle as compared to the
yellow module, which was indicated to be in the free cytoplasm.
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3.4. Identification of Protein–Protein Interaction Networks and Hub Genes

PPI networks were built for each module of interest using the STRING database to
further investigate any possible connections between the different proteins corresponding
to the genes within the discovered modules. To guarantee the accuracy of the anticipated
interactions, a high confidence level of 0.7 was established [21]. In order to determine
probable hub genes, each PPI network was imported into Cytoscape, and its network and
gene (node) scores were calculated. In Cytoscape, CytoHubba was used to rank the genes
within each network through the topological algorithm degree centrality, and the ten genes
with the highest rankings for each network were considered as hub genes (Figure 6). The
color of the genes represents the ranking of the hub genes, with the strongest red being
the highest ranking. These identified hub genes require further analysis to determine their
possible roles in the main pathways and processes associated with glioma due to their high
interaction scores within the PPI networks of their corresponding modules, which indicates
their crucial role in the gene network.

3.5. Signature-Based Drug Repurposing

In order to search for drugs that can reverse the expression of the top 10 hub genes
from each module, transcriptional and molecular signatures were analyzed through the
DRE webserver. Table 2 lists the top therapeutic candidates obtained together with the
relevant mechanisms of action. Consideration was given to the top five potential drug
candidates with the lowest false discovery rate (FDR) and Tau values, as compounds with
low FDR tend to produce fewer false positive drug discovery results, and compounds with
more negative Tau values induce more effective gene expression changes, countering the
provided gene signature. For the upregulated hub genes, norgestimate, phentolamine,
GW0742, olomoucine, and ambroxol were the top-ranked therapeutic candidates, whereas



Biology 2024, 13, 206 10 of 26

ethisterone, noscapine, nomegestrol, carmoxirole, and oxcarbazepine were the most promis-
ing drug candidates for the downregulated hub genes.
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Table 2. Top five drug candidates for the upregulated and downregulated hub genes.

Expression Genes Drug Mechanism Tau FDR

Upregulated

KRAS, CCNB1, BUB1B, KIT,
TP53, EGFR, ATM, EXO1,
GNAS, CDC20, TOP2A,

HSP90AA1, FN1, H3C12,
GRIN2B, GRB2, CCNA2, CDK1,
CALM1, CALML3, CAMK2A,
CREB1, TNF, AKT1, CTNNB1,

and ITGAM

Norgestimate
Phentolamine

GW0742
Olomoucine
Ambroxol

Progesterone receptor agonist
Adrenergic receptor antagonist

PPAR receptor agonist
CDK inhibitor

Sodium channel blocker

−99.8
−99.7
−99.5
−99.4
−99.3

7.75 × 10−3

6.53 × 10−3

5.05 × 10−4

7.01 × 10−3

8.35 × 10−3
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Table 2. Cont.

Expression Genes Drug Mechanism Tau FDR

Downregulated
CD4, CACNA1C, CACNG2,
CD2, PRKACA, PRKACB,

TLR4, and CD8A

Ethisterone
Noscapine

Nomegestrol
Carmoxirole

Oxcarbazepine

Progestogen hormone
Bradykinin receptor antagonist

Progestogen hormone
Dopamine receptor agonist

Sodium channel blocker

−99.7
−99.6
−99.5
−99.5
−99.5

2.36 × 10−3

6.22 × 10−5

7.89 × 10−4

7.40 × 10−3

9.94 × 10−3

4. Discussion
4.1. Gene Co-Expression Modules across the Datasets

The WHO categorized the different grades of glioma based on histological features,
molecular characteristics, and clinical behaviors. The vast heterogeneity of gliomas per
grade and cell origin is one of the significant factors contributing to its difficulty responding
well to treatment [27]. Through WGCNA, this study focused on identifying points at which
the distinct glioma grades align genetically, since several studies have demonstrated the
effectiveness of this approach in determining highly correlated genes in related diseases
from a systems biology point of view [28–30]. Furthermore, it is able to determine pathways
involved in disease networks due to its ability to investigate the interplay among the highly
preserved genes. These reasons supported the use of WGCNA to elaborate the disease
network present in different glioma grades, represented by PA, OG, AA, and GBM datasets.
Since the module eigengenes of other datasets were projected onto the GBM dataset, it can
be speculated that the increasing trend in the module preservation analysis from the PA
dataset to the AA dataset (Figure 4) was related to the fact that GBM is at the highest severity
of the disease. This can also be observed in Figure A3, where the ranked connectivity of
GBM across the datasets increases from the PA dataset to the AA dataset. With the recent
discovery of the possible lineage conversion of oligodendroglioma to astrocytoma [31], the
network’s relation to glioma progression was further investigated. Figure 7 shows the top
KEGG pathways per module (Table A2) that may potentially serve as pivotal points of
glioma progression, as it demonstrates the increasing preservation of modules per glioma
grade with reference to GBM. It is important to note that the modules that did not reach the
threshold of high preservation (z > 10) may still induce effects in other signaling pathways
depending on the PPI networks. Particularly, the deregulation of the PI3K/Akt pathway is
known to cause changes in MAPK/ERK, calcium signaling, and cAMP signaling pathways;
Ras and Rap1 proteins are known regulators of the MAPK/ERK pathway [32–36]. On the
other hand, metabolite biomarkers in neurodegenerative diseases have been discovered
in recent studies, showing their connection to metabolic pathways [37,38]. Moving on,
high preservation of the Wnt/β-catenin signaling pathway in AA suggests its tendency to
migrate [39], and the deregulation of the mRNA surveillance pathway poses challenges
in neurodegeneration [40]. Lastly, phosphatidic acid is known to regulate the PI3K/Akt
signaling pathway through mTOR [41]. Hence, it can be hypothesized that there are
existing synergistic processes, cross-talks, or even signal amplification events involved in
these pathways, which may be relevant to glioma progression. This study may open new
avenues for future explorations in glioma research for studies involving computational,
wet laboratory, and clinical experimentations.

However, only the co-expression modules green, yellow, brown, and gray were highly
preserved in all the datasets and subjected to further analysis. The functional annotation
and pathway enrichment analysis was able to deduce that the green and brown modules
are primarily associated with signal transduction deregulation in metabolic pathways,
while the yellow and gray modules are mainly involved with cell proliferation of glioma,
specifically the PI3K/Akt pathway (Tables A3–A6).
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4.2. Module Hub Genes and Their Protein Functions
4.2.1. Involvement of PI3K/Akt Pathway and Other Signaling Pathways

The hub genes of each highly preserved module have been identified and are listed
along with their protein functions in Table A1. Notably, the EGFR gene was present across
the green, brown, and gray modules while retaining its high interaction score, implying
the strong involvement of the PI3K/Akt pathway, as implied by the pathway enrichment
results. It has been seen as an important signaling pathway in the progression of low-grade
to high-grade glioma since it is commonly upregulated through several types of genetic or
post-translational mutations [42]. With this, many have made use of EGFR inhibitors, as
most of the EGFR mutations in cancer cells cause overactivation of the PI3K-Akt pathway.
However, the lack of blood–brain barrier permeability posed as its major obstacle [43,44].
Aside from EGFR, AKT1 was also included in the upregulated hub genes, indicating the
pathway’s relevance to the present study. Overexpression of the AKT1 gene has been one of
the common characteristics of glioma cells, as it promotes viability and malignancy [45]. On
the other hand, the PRKACA and PRKACB genes that may indirectly inhibit the activation
of the PI3K/Akt pathway through the cAMP signaling pathway were downregulated. This
is consistent with the need to prevent apoptosis and ensure the survival of the gliomas.
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The inclusion of hub genes primarily involved in other signaling pathways that affect
the PI3K/Akt pathway further supports the existing pathway interconnectivity in glioma.
It was found that KRAS and GRB2 in the MAPK/ERK signaling pathway were upregulated
across the datasets. Recent studies have indicated the strong cooperativity between the
PI3K/AKT and MAPK/ERK signaling pathways in glioma progression due to them being
regulators of cell proliferation [32,34]. Aside from this, the CTNNB1 and FN1 genes in
the Wnt/β-catenin signaling pathway were also upregulated. The relationship between
the Wnt/β-catenin and PI3K/Akt signaling pathways has been known to induce glioma
malignancy [39]. Lastly, it was observed that the calcium signaling pathway is significantly
involved, represented by the CACNA1C, CACNG2, CALML3, CALM1, and CAMK2A hub
genes. Its dysregulation affects the PI3K/Akt pathway by increasing calcium influx, which
further activates biological processes such as growth, gene expression, and neurotransmitter
release, and it is claimed that the calcium signaling pathway is another relevant factor
contributing to the motility and invasion of gliomas [33,46].

4.2.2. Deregulation of Cellular Processes in Glioma

Several upregulated hub genes relating to DNA repair have been observed in the gray
module, such as EXO1, H3C12, and ATM. In cancer cells, the upregulation of genes involved
in DNA repair may indicate increased DNA damage that may possibly be due to genomic
instability, increased replication stress, and resistance to DNA-damaging therapies [47].
Specifically, high expression of ATM gene has been shown to be linked with radio-resistance
of glioma [48]. On the other hand, upregulated hub genes in the yellow module partake
mainly on cell cycle regulation. The TP53 gene, which encodes for the p53 protein, which is
a main regulator of both the cell cycle and DNA repair and replication, was found to be
upregulated across the datasets. It functions by inducing the expression of DNA repair
genes while inhibiting cell cycle progression in response to DNA damage to ensure genomic
integrity, although cancer cells normally observe upregulated expression of TP53 due to
mutations that enable them to become chemo-resistant [49]. In general, the upregulation of
genes involved in the cell cycle may promote cell cycle progression, genomic instability,
and enhanced proliferation, which could have an impact on the behavior of tumors and
their response to therapeutics. Across the modules, hub genes that are involved in immune
response were also observed. Among these, genes that code for clusters of differentiation
proteins such as CD4, CD2, and CD8A were found to be downregulated and observed in
the green module, while CD8A was also present in the brown and gray modules. The
downregulation of these genes may indicate the impairment of immune surveillance and
effector functions of T cells and natural killer cells that overall modulate immune responses
against anomalies, including tumors. Figure 8 shows a graphical summary of the hub
genes and the potential cellular processes affected due to their involvement in glioma.
Furthermore, the involvement of specific hub genes in several cellular processes supports
the existing pathway interconnectivity.

4.3. Metabolic Reprogramming of Glioma Cells

Collectively, the presented results indicate that the gene network constructed is pri-
marily involved with metabolic reprogramming of glioma, as the modules were found to
be concerned with the PI3K/Akt and metabolic pathways. Metabolic reprogramming is a
major hallmark in glioma, as it is when tumor cells alter their metabolism into aerobic gly-
colysis to generate the necessary energy to invade surrounding cells and adapt to different
microenvironments [50,51]. Aside from metabolizing glucose for energy production, cancer
cells are able to utilize lipids as raw materials for energetic currency [52]. In particular, the
green and brown modules were highly involved with metabolic pathways and operate
in cytosol, which aligns with malignant glioma cells also being dependent on fatty acid
oxidation [53,54]. Furthermore, these metabolic changes are known to be regulated by phos-
phoinositide 3-kinase/protein kinase (PI3Ks), the main ligand for the PI3K/Akt pathway,
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as it can directly regulate the TCA cycle, wherein increased PI3K activation also increases
AKT activity, which promotes citrate conversion to acetyl-CoA for fatty acid synthesis [51].
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4.4. Signature-Based Drug Repurposing

The involvement of several signaling pathways affecting the PI3K/Akt pathway cre-
ates avenues into which therapeutics may be introduced. Through the DRE webserver,
potential drug candidates were screened, as shown in Table 3, along with their correspond-
ing pathways and affected processes based on their mechanism of action. Norgestimate,
ethisterone, and nomegestrol are synthetic progestin hormones that mimic the effects of
progesterone to activate physiological responses through binding with progesterone recep-
tors [55–57]. The influence of sex hormones on glioma progression was observed in women,
who are otherwise less likely to develop glioma than men but who become more prone to
developing glioma after menopause due to decreased estrogen production [58–60]. Proges-
terone, on the other hand, can indirectly modulate estrogen production by interfering with
estrogen receptor activity or releasing gonadotropins through feedback mechanisms [61].
Despite producing pro-tumorigenic effects at low doses, high doses of progesterone have
demonstrated therapeutic effects against GBM by downregulating the activity of proges-
terone receptor B (PR-B), a protein that promotes tumor cell growth, or through alteration of
detoxification mechanisms, stress, immune response, and glucose metabolism [62–67]. Fur-
thermore, a significant decrease in the expression levels of EGFR, Akt, phospho-Akt, mTOR,
and phospho-mTOR has been observed following high doses of progesterone, indicating
its potential attenuating effect against GBM through the PI3K/Akt and metabolic path-
ways [68–70]. Aside from this, progesterone has a known regulatory effect in the significant
signaling pathways previously mentioned, in cAMP, MAPK/ERK, Wnt/β-catenin, and
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calcium signaling pathway in other types of cancer [71–74], which further demonstrates
that the use of synthetic progestin hormones against glioma progression can be a potential
area of interest.

Table 3. Potential drug candidates and their corresponding pathways or processes impeded.

Drug Status Pathway/Process Reference

Norgestimate Approved PI3K/Akt Pathway [68–70]
Phentolamine Approved cAMP Signaling, MAPK/ERK, and PI3K/Akt Pathway [75,76]

GW0742 Experimental Lipid Metabolic Pathways [77,78]
Olomoucine Approved Cell Cycle [79]
Ambroxol Approved Calcium Signaling Pathway [80]

Ethisterone Approved PI3K/Akt Pathway [68–70]
Noscapine Approved Calcium Signaling Pathway [81]

Nomegestrol Approved PI3K/Akt Pathway [68–70]
Carmoxirole Experimental cAMP Signaling Pathway [82,83]

Oxcarbazepine Approved Calcium Signaling Pathway [80]

Phentolamine, an adrenergic receptor antagonist drug, also scored significantly, along
with other approved and experimental drugs, as shown in Table 2. Previous studies
have shown the regulating effect of adrenergic receptor antagonist drugs against cancer
initiation and progression due to their influence on the cAMP/PKA, MAPK/ERK, and
PI3K/Akt pathways [75,76]. Another drug candidate is GW0742, as its potential modulating
effect towards fatty acid oxidation has become an area of interest for cancer treatment
research [77,78]. A CDK inhibitor, olomoucine, was also included as a potential drug
candidate due to its regulation of the cell cycle. CDK inhibitors promote cell cycle arrest and
apoptosis and decrease cell proliferation in glioma [79]. Ambroxol and oxcarbazepine were
found to be possible drug candidates due to their disrupting effect on the depolarization
process and ion homeostasis, in which calcium signaling is also affected [80]. On the other
hand, noscapine, a bradykinin receptor antagonist, also interferes with the calcium signaling
pathway by reducing calcium production and, subsequently, glioma cell migration [81].
Lastly, a dopamine receptor agonist, carmoxirole, was included due to its potential to
modulate cAMP production, with dopamine receptor D1 inhibiting GBM tumorigenicity
and dopamine receptor D2 modulating GBM survival and death [82,83].

5. Conclusions

The present study was able to successfully determine the four highly conserved mod-
ules in different glioma grades that were represented by PA (GSE50161), OG (GSE4290),
AA (GSE43378), and GBM (GSE36245). Through WGCNA, the top 10 hub genes per
module were identified and used to screen for potential drug candidates. Furthermore,
the functional annotation and pathway enrichment analysis paved the way for deducing
the complex molecular basis for glioma, focusing on the PI3K/Akt pathway, signal trans-
duction deregulation, and metabolic reprogramming. Based on the hub genes, several
signaling pathways associated with the PI3K/Akt pathway, such as the cAMP signaling
pathway, MAPK/ERK, Wnt/β-catenin, and calcium signaling, have also been deregulated,
which often results in metabolic reprogramming. The involvement of several signaling
pathways in deregulating the PI3K/Akt pathway and vice versa further indicates the
possible interconnection of signaling pathways in glioma severity. The synthetic progestin
hormones norgestimate and ethisterone were the top drug candidates identified in the
transcriptional signature-based drug repurposing approach. Aside from these, several
experimental and approved drug candidates have also been identified, including an adren-
ergic receptor antagonist, a PPAR-γ receptor agonist, a CDK inhibitor, a sodium channel
blocker, and a bradykinin receptor antagonist, which further demonstrates that the gene
network is a potential therapeutic avenue for glioma. Our study posts limitations since all
were conducted in silico; however, the theoretical data presented can be used as a platform
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to explore avenues in designing drug cocktails or drug candidates for glioma. Furthermore,
this study provides insights on the interconnectivities of molecular signaling, which can be
further evaluated using wet laboratory experimentations.
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Figure A3. Ranked expression plots and ranked connectivity plots for dataset comparison: (a,b) PA
vs. OG; (c,d) PA vs. AA; (e,f) OG vs. AA; (g,h) GBM vs. PA; (i,j) GBM vs. AA; and (k,l) GBM vs. OG.
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Table A1. Summary of module hub genes and their protein functions obtained from the GeneCards
database (www.genecards.org (accessed 27 December 2023)) [84].

Gene Protein Function Module/s

EGFR epidermal growth factor receptor activates MAPK and PI3K/AKT pathways;
promotes cell proliferation and survival Green, brown, and grey

CD8A CD8 subunit alpha
binds to MHC class I; facilitates T cell-
mediated cytotoxicity against infected or
transformed cells

Green, brown, and grey

CALML3 calmodulin like 3
regulates calmodulin-dependent signaling;
potential roles in intracellular
calcium homeostasis

Green and brown

PRKACA protein kinase cAMP-activated catalytic
subunit alpha

phosphorylates target proteins; involved in
cAMP signaling; regulates various
cellular processes

Green and grey

CACNA1C calcium voltage-gated channel subunit
alpha1 C

mediates calcium ion influx; regulates
neuronal excitability and cardiac function Brown

CAMK2A calcium/calmodulin dependent protein kinase
II alpha

regulates synaptic plasticity and
memory formation Brown

PRKACB protein kinase cAMP-activated catalytic
subunit beta

involved in cAMP signaling; regulates various
cellular processes Brown

CACNG2 calcium voltage-gated channel auxiliary
subunit gamma 2

modulates channel function; regulates calcium
ion influx and neuronal excitability Brown

KRAS KRAS proto-oncogene, GTPase activates MAPK pathway; regulates cell
proliferation, survival, and differentiation Brown

TNF tumor necrosis factor regulates inflammation, apoptosis, and
immune cell functions Brown

GRIN2B glutamate ionotropic receptor NMDA type
subunit 2B

mediates synaptic transmission; regulates
synaptic plasticity, learning, and memory Brown

ITGAM integrin subunit alpha M regulates immune cell adhesion, migration,
and phagocytosis Green

HSP90AA1 heat shock protein 90 alpha family class A
member 1 assists in protein folding and stabilization Green

GRB2 growth factor receptor bound protein 2 links receptor tyrosine kinases to Ras/MAPK
pathway activation Green

TLR4 Toll-like receptor 4 detects lipopolysaccharides; activates innate
immune responses Green

CD4 CD4 molecule binds to MHC class II; facilitates antigen
recognition and T cell activation Green

CD2 CD2 molecule regulates immune cell interactions; facilitates T
cell adhesion and co-stimulation Green

CALM1 calmodulin 1
modulates calcium-dependent signaling
pathways; regulates cellular responses to
calcium ions

Grey

EXO1 exonuclease 1 involved in DNA mismatch repair and
recombination; maintains genomic stability Grey

KIT KIT proto-oncogene, receptor tyrosine kinase
activates PI3K/AKT and MAPK pathways;
regulates cell proliferation, survival,
and differentiation

Grey

CREB1 cAMP responsive element binding protein 1 binds to cAMP response elements; regulates
gene expression in response to cAMP signaling Grey

GNAS G-protein alpha subunit activates adenylyl cyclase; regulates cellular
signaling pathways via GPCRs Grey

ATM ATM serine/threonine kinase
regulates DNA damage response; activates cell
cycle checkpoints and DNA
repair mechanisms

Grey

H3C12 H3 clustered histone 12 packaging and organizing of DNA
into nucleosome Grey

FN1 fibronectin 1 mediates cell adhesion and migration;
regulates tissue remodeling and repair Yellow

www.genecards.org
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Table A1. Cont.

Gene Protein Function Module/s

AKT1 AKT serine/threonine kinase 1
activates mTOR and other downstream
pathways; regulates cell survival, growth,
and metabolism

Yellow

BUB1B BUB1 mitotic checkpoint serine/threonine
kinase B

regulates chromosome alignment and
segregation; ensures genomic stability during
cell division

Yellow

CCNA2 cyclin A2 forms complexes with CDKs; regulates G1/S
and G2/M transitions of the cell cycle Yellow

CTNNB1 catenin beta 1 component of adherens junctions; regulates
cell-cell adhesion and Wnt signaling pathway Yellow

CDC20 cell division cycle 20
facilitates ubiquitination and degradation
of cell cycle regulators; controls
mitotic progression

Yellow

TP53 tumor protein p53
activates DNA repair or apoptosis in
response to DNA damage; regulates cell
cycle checkpoints

Yellow

CCNB1 cyclin B1 forms complexes with CDK1; regulates the
G2/M transition of the cell cycle Yellow

TOP2A DNA topoisomerase II alpha regulates DNA topology during replication
and transcription; targeted in cancer therapy Yellow

CDK1 cyclin dependent kinase 1 forms complexes with cyclins; regulates cell
cycle transitions and mitotic entry Yellow

Table A2. Top KEGG pathway analysis results in identified modules obtained from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (https://www.genome.jp/kegg (accessed 27
December 2023)) [20].

Module Term Count Adj. p-Value

Green hsa01100 metabolic pathways 194 1.4 × 10−3

Brown hsa01100 metabolic pathways 172 1.3 × 10−2

Yellow hsa04151 PI3K/Akt signaling pathway 59 6.3 × 10−4

Gray hsa04151 PI3K/Akt signaling pathway 56 2.9 × 10−3

Purple hsa04020 calcium signaling pathway 65 2.8 × 10−13

Tan hsa04015 Rap1 signaling pathway 29 2.0 × 10−2

Cyan hsa04020 calcium signaling pathway 51 3.6 × 10−7

Black hsa04020 calcium signaling pathway 55 3.9 × 10−9

Magenta hsa04014 Ras signaling pathway 34 9.2 × 10−4

Pink hsa04024 cAMP signaling pathway 45 8.1 × 10−6

Salmon hsa04010 MAPK signaling pathway 52 6.1 × 10−6

Turquoise hsa04010 MAPK signaling pathway 38 1.3 × 10−2

Blue hsa04020 calcium signaling pathway 68 1.9 × 10−10

Gray60 hsa04010 MAPK signaling pathway 53 1.2 × 10−5

Midnight Blue hsa04151 PI3K/Akt signaling pathway 51 4.2 × 10−3

Red hsa04115 p53 signaling pathway 21 1.4 × 10−5

Light Cyan hsa05022 pathways of neurodegeneration-multiple diseases 59 2.3 × 10−2

Green-yellow hsa03015 mRNA surveillance pathway 31 8.8 × 10−9

https://www.genome.jp/kegg
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Table A2. Cont.

Module Term Count Adj. p-Value

Light Yellow hsa04310 Wnt signaling pathway 25 9.8 × 10−3

Light Green hsa05200 pathways in cancer 75 1.2 × 10−3

Gold hsa04072 phospholipase D signaling pathway 26 5.1 × 10−3

Table A3. Top GO and pathway analysis results in brown module obtained from the Gene Ontology
Consortium (http://www.geneontology.org (accessed 27 December 2023)) and the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) database (https://www.genome.jp/kegg (accessed 27 December
2023)) [20,85].

Category Term Count Adj. p-Value

BP

GO:0007165 signal transduction 150 7.8 × 10−5

GO:0035556 intracellular signal transduction 69 4.4 × 10−6

GO:0006468 protein phosphorylation 64 3.1 × 10−5

GO:0006508 proteolysis 62 2.5 × 10−4

GO:0007268 chemical synaptic transmission 56 9.4 × 10−11

CC

GO:0005886 plasma membrane 667 3.8 × 10−29

GO:0016020 integral component of membrane 588 4.4 × 10−12

GO:0005737 cytoplasm 559 9.7 × 10−5

GO:0005829 cytosol 543 2.0 × 10−4

GO:0016020 membrane 424 1.9 × 10−12

MF

GO:0005515 protein binding 1192 5.4 × 10−4

GO:0005524 ATP binding 180 1.1 × 10−4

GO:0042802 identical protein binding 174 6.4 × 10−2

GO:0005509 calcium ion binding 105 5.3 × 10−6

GO:0004712 protein serine/threonine/tyrosine kinase activity 68 1.4 × 10−5

KEGG

hsa01100 metabolic pathways 172 1.3 × 10−2

hsa05200 pathways in cancer 68 9.3 × 10−3

hsa05022 pathways of neurodegeneration-multiple diseases 60 2.0 × 10−2

hsa04020 calcium signaling pathway 49 2.1 × 10−6

hsa04010 MAPK signaling pathway 48 4.3 × 10−4

Table A4. Top GO and pathway analysis results in green module obtained from the Gene Ontology
Consortium (http://www.geneontology.org (accessed 27 December 2023)) and the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) database (https://www.genome.jp/kegg (accessed 27 December
2023)) [20,85].

Category Term Count Adj. p-Value

BP

GO:0007165 signal transduction 181 4.7 × 10−10

GO:0030154 cell differentiation 89 1.1 × 10−3

GO:0007155 cell adhesion 87 3.6 × 10−7

GO:0045087 innate immune response 83 2.6 × 10−4

GO:0006915 apoptotic process 75 4.2 × 10−3

CC

GO:0005886 plasma membrane 719 1.0 × 10−37

GO:0005737 cytoplasm 630 4.9 × 10−11

GO:0016020 integral component of membrane 595 3.3 × 10−10

GO:0005829 cytosol 569 4.2 × 10−5

GO:0016020 membrane 431 2.6 × 10−11

http://www.geneontology.org
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Table A4. Cont.

Category Term Count Adj. p-Value

MF

GO:0005515 protein binding 1256 3.3 × 10−7

GO:0042802 identical protein binding 214 4.2 × 10−6

GO:0005524 ATP binding 172 4.2 × 10−3

GO:0005509 calcium ion binding 118 1.0 × 10−8

GO:0042803 protein homodimerization activity 93 2.3 × 10−3

KEGG

hsa01100 metabolic pathways 194 1.4 × 10−3

hsa05200 pathways in cancer 82 1.6 × 10−4

hsa04010 MAPK signaling 56 1.5 × 10−5

hsa04020 calcium signaling 53 7.3 × 10−7

hsa04151 PI3K/Akt signaling pathway 51 1.6 × 10−2

Table A5. Top GO and pathway analysis results in gray module obtained from the Gene Ontology
Consortium (http://www.geneontology.org (accessed 27 December 2023)) and the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) database (https://www.genome.jp/kegg (accessed 27 December
2023)) [20,85].

Category Term Count Adj. p-Value

BP

GO:0045944 positive regulation of transcription by RNA polymerase II 160 3.9 × 10−6

GO:0007165 signal transduction 158 2.0 × 10−4

GO:0000122 negative regulation of transcription by RNA polymerase II 116 9.2 × 10−3

GO:0045893 positive regulation of DNA-templated transcription 97 1.6 × 10−4

GO:0007155 cell adhesion 85 5.9 × 10−6

CC

GO:0005737 cytoplasm 628 7.0 × 10−9

GO:0005886 plasma membrane 619 5.8 × 10−12

GO:0005829 cytosol 596 1.3 × 10−6

GO:0005634 nucleus 588 2.7 × 10−2

GO:0016020 integral component of membrane 521 6.2 × 10−2

MF

GO:0005515 protein binding 1307 8.6 × 10−9

GO:0046872 metal ion binding 288 2.3 × 10−2

GO:0005524 ATP binding 217 1.1 × 10−9

GO:0005509 calcium ion binding 110 5.5 × 10−6

GO:0004712 protein serine/threonine/tyrosine kinase activity 78 1.3 × 10−7

KEGG

hsa04151 PI3K/Akt signaling pathway 56 2.9 × 10−3

hsa04010 MAPK signaling pathway 49 7.3 × 10−4

hsa04020 calcium signaling pathway 48 2.0 × 10−5

hsa04015 Rap1 signaling pathway 38 4.4 × 10−4

hsa04024 cAMP signaling pathway 36 5.5 × 10−3

Table A6. Top GO and pathway analysis results in yellow module obtained from the Gene Ontology
Consortium (http://www.geneontology.org (accessed 27 December 2023)) and the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) database (https://www.genome.jp/kegg (accessed 27 December
2023)) [20,85].

Category Term Count Adj. p-Value

BP

GO:0045944 positive regulation of transcription by RNA polymerase II 155 2.3 × 10−6

GO:0000122 negative regulation of transcription by RNA polymerase II 120 4.8 × 10−4

GO:0045893 positive regulation of DNA-templated transcription 103 9.5 × 10−7

GO:0006355 regulation of DNA-templated transcription 103 6.9 × 10−2

GO:0006915 apoptotic process 99 4.0 × 10−9

CC
GO:0005829 cytosol 681 3.1 × 10−29

GO:0005634 nucleus 679 7.3 × 10−19

GO:0005737 cytoplasm 623 1.5 × 10−13

http://www.geneontology.org
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Table A6. Cont.

Category Term Count Adj. p-Value

CC
GO:0005654 nucleoplasm 554 8.4 × 10−36

GO:0016020 membrane 475 1.1 × 10−24

MF

GO:0005515 protein binding 1396 3.1 × 10−46

GO:0046872 metal ion binding 268 7.0 × 10−2

GO:0005524 ATP binding 232 1.3 × 10−15

GO:0042802 identical protein binding 227 4.2 × 10−9

GO:0003723 RNA binding 223 5.1 × 10−15

KEGG

hsa04151 PI3K/Akt signaling pathway 59 6.3 × 10−4

hsa05200 pathways in cancer 53 2.7 × 10−3

hsa04141 protein processing in endoplasmic reticulum 48 3.1 × 10−10

hsa05205 proteoglycans in cancer 44 7.7 × 10−6

hsa04010 MAPK signaling pathway 44 2.5 × 10−2
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