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Simple Summary: Diagnosing glioblastoma multiforme (GBM), solitary brain metastases (SBM),
and primary central nervous system lymphoma (PCNSL) in malignant tumors of the central nervous
system using multi-modal magnetic resonance imaging (MRI) is significantly important in helping
physicians develop treatment plans and enhance patient prognosis. In this paper, MFFC-Net is
developed and validated using deep learning methods to predict these three tumor categories from
multi-modal MRI without the manual region of interest (ROI). MFFC-Net first uses a multi-encoder
with DenseBlocks to extract deep features from multi-modal MRI. Then, the feature fusion layer
fuses the deep information between different modalities and tissues. Finally, the spatial-channel
attention module suppresses redundant new information and activates tumor classification-related
features. Compared with radiomics models, MFFC-Net demonstrated higher accuracy. In addition,
the results in the different sequences provide important references for future clinical work on MRI
image acquisition. We believe that MFFC-Net has the potential to assist in the diagnosis and treatment
of brain tumors in the future.

Abstract: (1) Background: Diagnosis of glioblastoma (GBM), solitary brain metastases (SBM), and
primary central nervous system lymphoma (PCNSL) plays a decisive role in the development of
personalized treatment plans. Constructing a deep learning classification network to diagnose GBM,
SBM, and PCNSL with multi-modal MRI is important and necessary. (2) Subjects: GBM, SBM, and
PCNSL were confirmed by histopathology with the multi-modal MRI examination (study from
1225 subjects, average age 53 years, 671 males), 3.0 T T2 fluid-attenuated inversion recovery (T2-
Flair), and Contrast-enhanced T1-weighted imaging (CE-T1WI). (3) Methods: This paper introduces
MFFC-Net, a classification model based on the fusion of multi-modal MRIs, for the classification of
GBM, SBM, and PCNSL. The network architecture consists of parallel encoders using DenseBlocks to
extract features from different modalities of MRI images. Subsequently, an L1 − norm feature fusion
module is applied to enhance the interrelationships among tumor tissues. Then, a spatial-channel
self-attention weighting operation is performed after the feature fusion. Finally, the classification
results are obtained using the full convolutional layer (FC) and Soft-max. (4) Results: The ACC of
MFFC-Net based on feature fusion was 0.920, better than the radiomics model (ACC of 0.829). There
was no significant difference in the ACC compared to the expert radiologist (0.920 vs. 0.924, p = 0.774).
(5) Conclusions: Our MFFC-Net model could distinguish GBM, SBM, and PCNSL preoperatively
based on multi-modal MRI, with a higher performance than the radiomics model and was comparable
to radiologists.

Keywords: brain tumor; classification; convolutional neural network; feature fusion

1. Introduction

Glioblastoma (GBM) is a malignant brain tumor formed as a result of mutations in
the genetic material and epigenetic mechanisms driving continuous cell cycle progression
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and mitosis in brain cells, leading to abnormal energy metabolism that supports sustained
growth [1]. Solitary brain metastases (SBM), on the other hand, refer to the highly malignant
tumors that have spread to distant organs or tissues through the bloodstream [2]. Primary
central nervous system lymphoma (PCNSL) is a rare and highly malignant non-Hodgkin
lymphoma characterized by the malignant clonal proliferation of lymphocytes, including
intracerebral lymphocytes and lymphocytes with central nervous system involvement [3].
Malignant tumors of the central nervous system (CNS) primarily consist of gliomas, menin-
giomas, pituitary adenomas, ventricular meningiomas, CNS lymphomas, and metastatic
tumors. Among these, GBM is the most common malignant primary brain tumor, account-
ing for 77–81% of all primary malignant tumors of the CNS [4]. During the progression
of their disease, between 20% and 40% of patients with systemic cancers will develop
metastases [5]. PCNSL represents approximately 6% of intracranial malignancies [6]. CNS
tumors are more prevalent in Northern Europe, and they also have a significant impact on
countries like China, the United States, and India. The high incidence of CNS tumors in
these regions represents a substantial health burden, emphasizing the need for effective
strategies in terms of prevention, diagnosis, and treatment [7]. These three classes of brain
tumors are malignant brain tumors that occur in the CNS, with typical clinical manifesta-
tions of elevated intracranial pressure and various neurological symptoms [8,9]. Due to the
similarity of conventional MRI findings among the three (as shown in Figure 1), the three
common malignant tumors occur in the central nervous system. These tumors share similar
imaging characteristics, including central necrosis, irregular or garland-like enhancement
of the tumor margins after contrast enhancement, and extensive edema surrounding the
tumor [10,11]. Conventional MRI sequences and traditional medical image analysis meth-
ods can sometimes make it challenging to differentiate between these three tumor types,
particularly for less experienced doctors. Studies have shown that when brain metastases
appear as solitary lesions without a clear history of a primary tumor, the similarity of
imaging features with high-grade gliomas can lead to misdiagnosis in approximately 40%
or more cases [12]. Additionally, while GBM and PCNSL often exhibit distinct MRI mani-
festations, there are instances where differentiation becomes difficult. For example, atypical
PCNSL tumors containing necrosis and hemorrhage may resemble GBM, while atypical
GBM tumors without necrosis and with solid appearances may resemble PCNSL [13,14].
However, there are significantly different treatments for different tumors. Early selection
of the most appropriate treatment option can greatly improve the prognosis. A portion of
patients are forced to choose surgery/puncture due to lack of a clear diagnosis, causing
unnecessary trauma and delaying the optimal treatment opportunity. Therefore, mastering
accurate identification of the three types of tumors before treatment is of significant clinical
importance for guiding clinical treatment, optimizing patient management, and improving
patient prognosis.

A B C

CE-T1WIT2-FlairCE-T1WIT2-FlairCE-T1WIT2-Flair

Figure 1. MRI images of three types of brain tumors. (A) T2-Flair and CE-T1WI of GBM; (B) T2-Flair
and CE-T1WI of SBM; (C) T2-Flair and CE-T1WI of PCNSL.

With the advancement of medical imaging and computer information technology,
Lambin et al. [15] proposed the concept of radiomics in 2012, and the analytical methods
of radiomics have been rapidly developed and applied in medical imaging-related fields.
Several researchers have used radiomics models to classify brain tumors [16,17]. They used
manual or overview regions of interest (ROIs) for feature extraction and then constructed
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classification models based on machine learning (ML) modeling methods. However, de-
scribing ROIs is a very subjective, tedious, and time-consuming task. To address this
issue, scholars have established numerous automatic segmentation models for brain tumor
ROI annotation. These models include unsupervised modeling methods [18,19], super-
vised machine learning (ML) methods [20,21], and approaches that combine the strengths
of both [22,23]. These methods, although capable of performing automatic brain tumor
segmentation, require an image preprocessing process. Deep learning (DL) is a complex
nonlinear regression method, which has developed into a new research direction in ML.
By applying DL, data features can be extracted accurately, automatically, and efficiently,
avoiding the errors that may be caused by manual segmentation, which can save manpower,
financial resources, and time. It has been applied for the qualitative diagnosis, efficacy
evaluation, and prognosis evaluation of many diseases of brain tumors [24–27]. A convo-
lutional neural network (CNN) is the most commonly used classification model in deep
learning. Due to their ability to directly learn the most relevant features related to brain
tumor ROI, as well as their adaptive ability and nonlinear representation of data, CNNs
have been widely used in multi-modal MRI-based brain tumor classification research.

In existing studies, researchers have focused on the construction of DL-based dichoto-
mous models to complete the brain tumor-assisted diagnosis model [28–30], including
the differentiation of GBM and SBM, as well as GBM and PCNSL. Few studies have been
proposed on DL in the differential diagnosis of GBM, SBM, and PCNSL. The main reason
for this may be that DL technology requires large-scale, high-quality, and standardized
medical image data as training data input. However, it is tough to obtain a lot of imaging
data on three types of brain tumors that meet the standards. Therefore, this study is based
on the standardized medical imaging database of brain tumors established by Huashan
Hospital, Fudan University, with the use of DL, to establish a triple classification predic-
tion model for GBM, SBM, and PCNSL to achieve non-invasive and accurate diagnosis of
three types of brain tumors before treatment, providing evidence for patient subsequent
treatment and buying time.

This paper presents MFFC-Net, a multi-modal MRI fusion-based model for assisting
in the diagnosis of three types of common and histologically similar malignant CNS tumors:
GBM, SBM, and PCNSL. The key contributions of this work can be summarized as follows:

• DenseBlock-based parallel multiple encoders are proposed to extract features simul-
taneously from different sequences. This allows for comprehensive representation
learning across various MRI sequences.

• A novel L1 − norm feature fusion module is introduced to enhance the interrelated
information between different tumor tissues. By improving the tumor characterization
ability of the extracted features, the model achieves more accurate tumor classification.

• The model incorporates a spatial-channel self-attentive weighting operation on both
the modal and fusion features. This operation dynamically adjusts the relationship
between the weights of different channels, enhancing the model’s expressive ability
and improving its overall performance.

By leveraging these contributions, MFFC-Net demonstrates promising potential for
assisting in the diagnosis of GBM, SBM, and PCNSL, thereby aiding in the effective man-
agement and treatment of these malignant CNS tumors.

2. Patients
2.1. Patient Enrollment and MRI Scanning Parameters

Institutional review board approval (No. KY2021-066) was obtained from Huashan
Hospital of Fudan University in this study. We accessed the relevant brain tumor medical
imaging database for the period from February 2014 to November 2022 and obtained multi-
modal MRI data from patients with pathologically confirmed GBM, SBM, and PCNSL. A
total of 1225 patients with brain tumors were ultimately included in this study, including
419 patients with GBM, 412 patients with SBM, and 394 patients with PCNSL. By statistical
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analysis, we found no statistically significant differences in the gender and age of these
patients, and the baseline characteristics of the enrolled patients are shown in Table 1.

Table 1. Baseline characteristics of enrolled patients.

Characteristic All GBM SBM PCNSL p-Value

Age (year) 53 ± 13 53 ± 11 56 ± 12 55 ± 13 0.319

Gender
Male 671 228 208 235 0.215Female 554 191 204 159

Total 1225 419 412 394
Footnotes: age is shown as the mean value ± standard deviation; all others are shown as the number of patients.
The raincloud plot of age is shown in Figure A1; p ≤ 0.05 represents the significance of comparisons. Abbreviations:
GBM = glioblastoma; SBM = solitary brain metastases; PCNSL = primary central nervous system lymphoma.

Three MRI scanners were used, including Signa HDxT 3T (GE Healthcare, Milwaukee,
WI, USA), Discovery MR750W 3T (GE Healthcare, Milwaukee, WI, USA), and Magnetom
Verio 3T (Siemens Healthineers, Erlangen, Germany). Brain MRI scanning parameters are
shown in Table 2.

Table 2. Multi-modal MRI sequence parameters.

MRI Scanner T2-Flair CE-T1WI

Signa 3T

TR = 6880 ms; TI = 1850 ms; TR = 1650 ms; TI = 720 ms;
TE = 140 ms; Matrix = 288×192; TE = 23.7 ms; Matrix = 288 × 192;

FOV = 240 × 240 mm2; FOV = 240 × 240 mm2;
Thickness = 5 mm; Thickness = 5 mm;
Interval = 1.5 mm Interval = 1.5 mm

Discovery MR750W 3T

TR = 8000 ms; TI = 2100 ms; TR = 2992 ms; TI = 869 ms;
Matrix = 256 × 256; Matrix = 320 × 320;

FOV = 240 × 240 mm2; FOV = 240 × 240 mm2;
Thickness = 5 mm; Thickness = 5 mm;
Interval = 1.5 mm Interval = 1.5 mm

Verio 3T

TR = 9000 ms; TI = 2500 ms; TR = 2000 ms; TI = 857 ms;
TE = 102 ms; Matrix = 256 × 190; TE = 17 ms; Matrix = 256×168;

FOV = 201 × 230 mm2; FOV = 201 × 230 mm2;
Thickness = 5 mm; Thickness = 5 mm;
Interval = 1.5 mm Interval = 1.5 mm

Abbreviations: MRI = magnetic resonance imaging; T2-Flair = T2 fluid-attenuated inversion recovery; CE-
T1WI = contrast-enhanced T1-weighted imaging; TR = repetition time; TI = inversion time; TE = echo time;
FOV = field of view.

2.2. Data Preprocessing

Before constructing the CNN model, all personal information included in the study
was anonymized, and a series of standardized automatic pre-processing was performed on
all MRI sequences. Firstly, we used SimpleITK (version 2.1.1.1) to resample CE-T1WI to the
same resolution as T2-Flair, ensuring that the spacing, origin, and direction of CE-T1WI
were consistent with T2-Flair. Then, the mean µ and standard deviation σ of the voxel
intensities were statistically calculated and, according to µ and σ, we adjusted the voxel
intensities to [µ − 3σ, µ + 3σ]. After that, we utilized Advanced Normalization Tools
(ANTs) (https://github.com/ANTsX, accessed on 5 October 2022) to register the T2-Flair
to CE-T1WI of the same case. Finally, maximum external square clipping of the brain mask
for each MRI slice was performed, the matrix was rescaled to 240 × 240, and each slice was
normalized to [0,255] before being fed into the DL model.

https://github.com/ANTsX
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3. Method
3.1. Classification Network Construction

We built a multi-modal MRI classification network with feature fusion named MFFC-
Net, as shown in Figure 2, and the Structure of MFFC-Net is shown in Figure A2. Data
input of the MFFC-Net was defined as multi-modality MRI images input

(
xt1ce, x f lair

)
.

Firstly, xt1ce gets the low-level features through the convolution layer of 3 × 3. Then,
f t1ce
0 proceeded high-level features extraction and acquired f t1ce

1 , f t1ce
2 and f t1ce

3 using a

single modality encoder. Similarly, x f lair obtained f f lair
0 , f f lair

1 , f f lair
2 , f f lair

3 by parallel iden-
tical encoding methods. After that, the L1 − norm strategy was used to act on f t1ce

n and
f f lair
n (n = 1, 2, 3) achieving the fusion feature f f usion, and n was the number of Dense-

Blocks of the single modality encoder. High-level features f f lair
3 , f t1ce

3 and fusion feature
f f usion were spliced together through concat operation as the final feature of the encoder

fall = concat
(

f t1ce
3 , f f lair

3 , f f usion

)
. The MFFC-Net decoder, on the other hand, consisted of

two fully connected layers and a classification Soft-max layer. Feature fall was utilized as
the input and gained a one-dimensional feature after passing through the full convolutional
(FC) layer, and then the final classification result was obtained by Soft-max.

The MFFC-Net encoder consisted of two independent modality encoders connected in
parallel to perform feature extraction on CE-T1WI and T2-Flair sequence images, respec-
tively. Each encoder was composed of three DenseBlocks connected in series, as shown in
Figure 2. Each DenseBlock contained 5 convolutional layers. In addition to feature extrac-
tion, DenseBlock (as shown in Figure 3a) was able to integrate the previous inputs. Finally,
an average pooling layer was used to reduce the number of dimensions and parameters of
the model. Eventually, the two independent modality encoders obtained the features.

The MFFC-Net decoder, on the other hand, consisted of FC and Soft-max layers. After
the feature fall was fed into the FC layer, the final classification result was output through
the final Soft-max layer. The predicted outcome for each patient was represented by the
average of the predicted values of all slices containing the tumor. The loss function L was
defined as Equation (1),

L = − 1
N

N

∑
i=1

3

∑
l=1

yl
i log(P( fall ; θ)) (1)

where i was the index of MRI slices, N was the number of MRI slices, l was the index of
pathologically confirmed tumor type (label), L was the number of label indexes (L = 3
in this paper, corresponding to GBM, SBM, and PCNSL, respectively), yl

i was the label
corresponding to the slice, θ was the parameter set of the CNN model, and P was the
output probability.

Since the parallel independent modality encoders only extracted texture and detail
information of the respective modalities of CE-T1WI and T2-Flair, they did not extract
complementary information between the two modalities (e.g., information on the relative
position and grayscale contrast between different tissues of the tumor). Inspired by Li
et al. [31], we introduced the L1 − norm fusion layer (as shown in Figure 3b) into this
study to fuse the features of two modalities at different scales. The high-level features
were unified into 30 × 30 × 128 by a resize operation. The fusion feature map f m

f usion was
calculated using Equation (2),

f m
f usion(x, y) =

K

∑
i=1

ωi×Φm
i (x, y) (2)

where ωi was the feature weight,
{

Φm
i
}K

i=1 was the feature map, and m = 128, K = 2 was
the number of modality indices for multi-modal images.
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Figure 2. The schematic workflow of MFFC-Net. The first step includes data processing including
resampling, registration, and normalization. The second step uses CE-T1WI and T2-FLAIR to
construct a DL classification model based on feature fusion. The third step evaluates the classification
results of the three brain tumors’ radiomic models, CNN models, and radiologists.

ωi(x, y) =
Ĉi(x, y)

K
∑

n=1
Ĉn(x, y)

(3)

where Ĉi was the activity level map. Alternatively, the L1 parametrization of Φ1:M
i can be

used as the activity level metric for the feature map and was obtained from Equation (4),
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Ci(x, y) =
∥∥∥Φ1:M

i (x, y)
∥∥∥

1
(4)

where the activity level map Ĉi was obtained by Equation (5),

Ĉi(x, y) =

r
∑

a=−r

r
∑

b=−r
Ci(x + a, y + b)

(2r + 1)2 (5)

where the average operator size was r × r and the fusion strategy of this paper was set as
r = 2.

Figure 3. Network architecture of the modules, (a) DenseBlock, (b) Feature Fusion module.

3.2. Model Training

The hardware environment for the model development was a workstation with
Ubuntu 20.04, Intel Xeon CPU, NVIDIA GTX 3090 GPU, and 64GB RAM. MFFC-Net
constructed through pytorch11.10 and python3.9. Adam optimizer trained the network
for 100 periods with an initial learning rate η = 10−4 and a weight decay ω = 10−5.
MFFC-Net was constructed based on T2-Flair and CE-T1WI with 5-fold cross-validation.
We partitioned the dataset into five-fold cross-validation before conducting model training
and testing. In each iteration, we used four-fifths of the data for training and reserved
one-fifth for testing. We repeated this process until all the data had been utilized for testing
purposes. To evaluate the importance of each MRI sequence, we also trained the other two
networks in the case of a single sequence to evaluate the results obtained by the different
modalities in the classification task.

3.3. Evaluation Indicators

We constructed a ML-based radiomics model by the radiomics approach we proposed
in [32]. Subsequently, the MRI images of all cases in the dataset were independently
assessed by three physicians specializing in diagnostic neuro-oncology radiology. The first
physician had 5 years of experience, the second had 10 years, and the third had 20 years
of experience. They individually examined the images and classified the tumors as GBM,
SBM, or PCNSL based on their expertise. The three radiologists were referred to as junior,
senior, and expert radiologists, respectively.

We compared the effectiveness between the radiomics model, the DL model, and the
clinician model by a confusion matrix. We utilized the ROC curve to determine the optimal
threshold point, also known as the “Cutoff”. This Cutoff value is subsequently employed
to classify the classification results, thus facilitating the classifier in achieving its optimal
performance. Results were assessed by the following metrics: accuracy (ACC), positive
predictive value (PPV), sensitivity (SEN), specificity (SPE), area under the curve (AUC),
F1-score, and net reclassification improvement (NRI). The evaluation indicator formulas
are in Appendix A.
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3.4. Statistical Analysis

This paper utilizes IBM SPSS Statistics 26.0 for statistical analysis and implements a
significance level of p < 0.05 to identify statistical differences. Various tests are employed in
the study, including the Mann–Whitney U test, Fisher exact test, Pearson chi-square test,
and DeLong test. The Mann–Whitney U test is utilized to evaluate differences in age among
two sampling groups, while the Fisher exact test is used to analyze gender differences
among patients. The Pearson chi-square test is employed to construct a model and examine
diagnostic differences between radiologists. Lastly, the DeLong test is implemented to
compare the performance of ROC curves and assess the significance of the AUC values.
Overall, the paper ensures the integrity of the analysis by utilizing appropriate statistical
tests and applying a strict significance level.

4. Results

Table 3 and Figure 4 show the results of brain tumor trichotomies for the radiomics
and DL models. Among all radiomics models constructed based on a single sequence, the
CE-T1WI-based model (CR-Model) obtained the highest ACC of 0.810. Compared to the
CR-Model, the multi-modality radiomics model (MR-Model) increased the ACC by 0.19. In
the DeLong test, no significant difference in AUC was identified between the CR-Model
and MR-Model (0.859 vs. 0.873, p = 0.208). The DL model also showed results consistent
with the performance of the radiomics model in the results obtained for single sequences.
The CE-T1WI-based model (CC-Net) obtained the highest ACC in the single sequence
DL models (ACC of 0.841 and AUC of 0.877). In contrast, the ACC of the MR-Net with
multi-modal was significantly higher than that of the CC-Net (0.890 vs. 0.841, p = 0.021).
Although MFFC-Net was not significantly different in ACC compared to MC-Net, the
MFFC-Net AUC was 0.26 higher and significantly different than MC-Net (0.942 vs. 0.916,
p = 0.032) and F1-score was 0.029 higher (0.919 vs. 0.890).

Table 3. Results of brain tumor classification for the radiomics and DL models.

Methods ACC PPV SEN SPE F1-Score AUC

FR-Model 0.730 ± 0.172 0.729 ± 0.201 0.728 ± 0.210 0.865 ± 0.087 0.727 ± 0.145 0.797 ± 0.017
CR-Model 0.810 ± 0.121 0.811 ± 0.137 0.810 ± 0.141 0.905 ± 0.051 0.809 ± 0.0.84 0.859 ± 0.027
MR-Model 0.829 ± 0.105 0.830 ± 0.124 0.829 ± 0.131 0.915 ± 0.048 0.829 ± 0.076 0.873 ± 0.033

FC-Net 0.750 ± 0.155 0.750 ± 0.167 0.750 ± 0.164 0.875 ± 0.082 0.749 ± 0.107 0.818 ± 0.030
CC-Net 0.841 ± 0.086 0.842 ± 0.107 0.840 ± 0.112 0.920 ± 0.032 0.841 ± 0.070 0.877 ± 0.014
MC-Net 0.890 ± 0.052 0.891 ± 0.083 0.889 ± 0.085 0.945 ± 0.023 0.890 ± 0.061 0.916 ± 0.077
MFFC-Net 0.920 ± 0.047 0.921 ± 0.048 0.920 ± 0.046 0.960 ± 0.015 0.919 ± 0.032 0.942 ± 0.015

T2-Flair = T2 fluid-attenuated inversion recovery; CE-T1WI = contrast-enhanced-T1 weighted imaging;
ACC = accuracy; SEN = sensitivity; SPE = specificity; AUC = area under the ROC curve; F1-score = F1-score;
FR-Model = T2-Flair radiomics-based model; CR-Model = CE-T1WI radiomics-based model; MR-Model = Multi-
modal radiomics-based model; FC-Net = T2-Flair-based network; CR-Model = CE-T1WI-based network; MR-
Net = Multi-modal-based network; MFFC-Net = Multi-modal-based feature fusion network.
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Figure 4. The Confusionmatrix and ROCs of the models. (a–g) are the confusion matrices and ROC
for different models.

We compared the classification results of GBM, SBM, and PCSNL obtained by MFFC-
Net with DenseNet [33], SENet [34], and EfficientNetV2-S [35]. The results are presented in
Table 4. We observed that while both DenseNet and SENet achieved an AUC exceeding
0.90, it was still slightly lower compared to EfficientNetV2-S, which got an AUC of 0.938.
However, our method demonstrated some improvement in ACC, PPV, SEN, SPE, and F1-
score compared to EfficientNetV2-S, despite not showing a significant difference (p = 0.512
with the DeLong test) in terms of AUC.

Table 4. The results of MFFC-Net and other state-of-the-art methods.

Methods ACC PPV SEN SPE F1-Score AUC

DenseNet 0.886 ± 0.046 0.887 ± 0.045 0.885 ± 0.042 0.943 ± 0.012 0.885 ± 0.029 0.913 ± 0.010
SENet 0.906 ± 0.048 0.907 ± 0.058 0.905 ± 0.063 0.953 ± 0.021 0.906 ± 0.050 0.930 ± 0.013
EfficientNetV2-S 0.918 ± 0.054 0.919 ± 0.060 0.918 ± 0.057 0.959 ± 0.032 0.918 ± 0.401 0.938 ± 0.015
MFFC-Net 0.920 ± 0.047 0.921 ± 0.048 0.920 ± 0.046 0.960 ± 0.015 0.919 ± 0.032 0.942 ± 0.015

Compared to clinician diagnoses (as shown in Figure 5), the MFFC-Net achieved
excellent performance with no significant difference from expert radiologists in the ACC
(0.920 vs. 0.924, p = 0.774).

As demonstrated in Figure 5, the MFFC-Net exhibited outstanding performance when
compared to clinician diagnoses. Specifically, our model achieved an accuracy (ACC) score
of 0.920, which was comparable to that of expert radiologists with no significant difference
between the two (0.920 vs. 0.924, p = 0.774). These results further validate the effectiveness
and reliability of our proposed MFFC-Net as a diagnostic tool for identifying brain tumors.

To visualize the classification weights of the DL model, we plotted the gradient-
weighted class activation mapping (Grad-CAM) to visualize the DL-based model of the
DL model for a more intuitive understanding of the ROIs of the DL model, as shown in
Figure 6. The red areas correspond to high scores in the tumor category. We found that the
MFFC-Net model focuses more on the tumor region.
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Figure 5. Comparisonresults of MFFC-Net and diagnostics of radiologists. The graph shows from
bottom to top the ACC, SEN, PPV, SPE, F1-Score, NRI, and AUC of diagnostic results obtained by the
junior radiologist, senior radiologist, expert radiologist, and MFFC-Net. n is the number of radiolo-
gists. The blue box shows the maximum boost results between MFFC-Net and radiologist diagnosed
(see Supplementary Materials Table S1 original data).
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Figure 6. Multi-modalMRI (first and second columns) and the corresponding Grad-CAM obtained by
the model (CC-Net, MC-Net, and MFFC-Net, respectively), the yellow arrows refer to brain tumors.
(a) GBM, (b) SBM, (c) PCNSL.

5. Discussion

In this paper, we developed and tested the MFFC-Net for GBM, SBM, and PCNSL
classification. MFFC-Net extracted high-level features for T2-Flair and CE-T1WI parallel
encoding, respectively. Then, a feature fusion layer was constructed to enhance the interre-
lationship information between different tumor tissues and suppress redundant features.
After completing the tumor classification task by convolution and Soft-max layers, the
deep-fused features were concatenated together. Furthermore, we compared the diagnostic
efficacy of radiomics models, DL models, and radiologists.

Among the single-sequence classification models (including the FR-Model, CR-Model,
FC-Model, and CC-Model), the efficacy of the CE-T1WI sequence-based models was su-
perior to that of the T2-Flair sequence-based models (SEN of radiomics models: 0.810
vs. 0.728, SPE of radiomics models: 0.905 vs. 0.865, AUC of radiomics models: 0.859 vs.
0.797; SEN of DL models: 0.840 vs. 0.750, SPE of DL models: 0.920 vs. 0.875, AUC of DL
models: 0.877 vs. 0.818) consistent with our clinical work experience [36,37]. It is proved
that CE-T1WI can more visually reflect the cellular anisotropy, neovascularization, de-
gree of blood–brain barrier disruption, and infiltration of surrounding tissues in brain
tumors [38,39]. However, the weak correlation between edema region features and tumor
type (as shown in Figure 6) may have led to the poor performance of the T2-Flair-based
classification model in this task.

As for the multi-modal MRI-based classification models (including MC-Net, and
MFFC-Net), the MC-Net model based on multi-modal MRI had better diagnostic efficacy
than either model based on single MRI(SEN of radiomics models: 0.829 vs. 0.728, SPE of
radiomics models: 0.915 vs. 0.865, AUC of radiomics models: 0.873 vs. 0.797; SEN of DL
models: 0.889 vs. 0.750, SPE of DL models: 0.945 vs. 0.875, AUC of DL models: 0.916 vs.
0.818). The result is consistent with the performance of radiomics-based classification of
brain tumors reported by Bae et al. [40]. To some extent, these also reflected the potential
significance and value of multi-modal MRI in radiomics and DL model construction and
clinical application. Furthermore, by Figure 6 we found that both CC-Net and MC-Net
enable the network to focus on the tumor area. MFFC-Net, on the other hand, significantly
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reduces the weight of non-tumor regions (the weight map of normal brain regions is more
blue-oriented). AUC of MFFC-Net based on fusion feature was significantly better than
MC-Model (0.942 vs. 0.916, p = 0.038), which fully indicates that the fusion of deep features,
which can better characterize the tissue relationship of tumors, suppresses redundant
features, reduces the variance of prediction, and decreases the generalization error [41].
In addition, the proposed feature fusion layer can improve the classification ability of the
DL model.

In addition, the ACC of MFFC-Net was significantly better than the junior radiologist
(0.940 vs. 0.782, p < 0.001) and senior radiologist (0.940 vs. 0.879, p = 0.017). There was
no statistically significant difference between MFFC-Net and expert radiologists in ACC
(0.940 vs. 0.943, p = 0.775). In a sense, the ACC of diagnostic imaging depends heavily
on the clinical work experience of radiologists and needs to be improved by long-term
clinical practice. And our MFFC-Net can effectively compensate for the lack of diagnostic
experience of junior radiologists. It is not the only one: Shin et al. [42] developed a
classification model using ResNet50 for multi-modal MRI and achieved AUCs of 0.889
and 0.835 in the internal and external test sets, respectively. These results were generally
consistent with those obtained by radiologists, who achieved AUCs of 0.889 and 0.857,
respectively. It can be seen that our MFFC-Net can help them improve the differential
diagnosis of three types of brain tumors and gain time for patients’ subsequent treatment.
The model also prevents patients from being forced to opt for surgery or puncture due
to the inability to confirm the diagnosis, which causes unnecessary harm, by assisting
diagnosis in a non-invasive manner.

6. Limitations

Firstly, MFFC-Net only used two sequences (T2-Flair and CE-T1WI) to construct the
model. More sequences need to be incorporated in further studies to improve the model
classification performance. Secondly, the model needs to be validated more extensively
on a larger independent dataset, and multi-center studies are still needed to validate the
robustness and generalizability of MFFC-Net. Thirdly, this study utilizes cross-validation
as a means to assess the model’s performance. However, it lacks testing on an independent
test group, which poses a limitation. Hence, we recommend incorporating an indepen-
dent test group in future studies to validate the model’s generalizability and stability. In
addition, When comparing diagnostic accuracy between MFFC-Net and clinical doctors,
it is important to note that the number of participating physicians was limited to only
three. This may have introduced a level of subjectivity to the results, which represents a
limitation of this study. Finally, a limitation of this study is that it only considers GBM,
SBM, and PCNSL, while excluding the inclusion of other histologically different types of
brain tumors. We plan to address this in our future research.

7. Conclusions

In this paper, we propose a novel deep learning model, MFFC-Net, for the three
classifications of GBM, SBM, and PCNSL. The model is based on parallel multi-channel
encoding and feature fusion, which allow us to analyze images of different modalities
effectively and efficiently. Our experiments demonstrate that MFFC-Net can achieve non-
invasive and accurate diagnosis of GBM, SBM, and PCNSL before treatment, providing
an invaluable tool for medical professionals. Furthermore, we conducted a comparison
between our model’s results and those of radiologists’ diagnoses. The findings indicate
that MFFC-Net can assist less experienced medical professionals and improve diagnostic
accuracy, which is crucial for ensuring timely and effective treatment decisions. We believe
that MFFC-Net has the potential to advance the diagnosis and treatment of brain tumors
and can be extended to other medical applications as well.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology13020099/s1, Table S1: original data.
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Abbreviations
The following abbreviations are used in this paper:

CNS Central nervous system
GBM Gliomas
SBM Solitary brain metastase
PCNSL Primary central nervous system lymphoma
MRI Magnetic Resonance Imaging
T2-Flair T2 fluid-attenuated inversion recover
CE-T1WI Contrast-enhanced-T1 weighted imaging
ML Machine learning
DL Deep learning
CNN Convolutional neural network
FC Full convolutional
BN Batch Normalization
ACC Accuracy
PPV Positive predictive value
SEN Sensitivity
SPE Specificity
ROC Receiver operating characteristic curve
AUC Area under the ROC curve
NRI Net reclassification improvement
FR-Model T2-Flair radiomics-based model
CR-Model CE-T1WI radiomics-based model
MR-Model Multi-modal radiomics-based model
FC-Net T2-Flair-based network
CR-Model CE-T1WI-based network
MR-Net Multi-modal-based network
MFFC-Net Multi-modal-based feature fusion network
Grad-CAM Gradient-weighted class activation mapping

Appendix A. Evaluation Metrics

Confusion metrics show the clear classification of the predicted class versus the
actual class. So that we can also see how many data points were wrongly classified,
as shown below:

Predicted Positive Predicted Negative

Real Positive TP TN
Real Negative FP FN
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Accuracy is the proportion of correct predictions (both true positives and true nega-
tives) among the total number of cases examined. It is given by:

ACC = (TP + TN)/(TP + TN + FP + FN) (A1)

PPV is the percentage of those who test positive that are truly positive, with an
incorrect determination being a false positive, and is able to measure the model’s ability to
misdiagnose. It is given by:

PPV = TP / (TP + FP) (A2)

Sensitivity is a metric that quantifies the number of correct positive predictions made
out of all positive predictions that could have been made. Sensitivity indicates of missed
positive predictions, which is given by the expression:

SEN = TP / (TP + FN) (A3)

Specificity is the proportion correct negative predictions made out of all negative
predictions that could have been made. Mathematically, this can also be written as:

SPE = TN / (TN + FP) (A4)

F1-score is a comprehensive evaluation metric in classification problems, which is a
weighted average of precision rate and recall rate, also known as the reconciled mean of
precision rate and recall rate, F1-score is given by the expression:

F1-score = 2 × P × R
P + R

(A5)

ROC curve and AUC. A receiver operating characteristic (ROC) curve, is a graphical
plot that illustrates the performance of a binary classifier system as its discrimination
threshold is varied. Area Under Curve (AUC) is defined as the area under the ROC curve.
It is a measure of a classifier’s ability to classify. Its physical meaning is that for any pair of
positive and negative samples, the probability that the positive score is greater than the
negative score, From the image point of view, the farther left the Abscissa is, the closer
the threshold is to 1. So, if we have a large threshold, and we have a positive score, and if
we have a negative score, then our curve is going to be a little bit to the right. So ideally,
the score of all the positive samples would come before the negative samples, so AUC = 1
would be the perfect classifier.

Appendix B. Figures

Figure A1. Raincloud plot of age.
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Layer name Input size MFFC-Net

Conv_1

16 × 240 × 240 3 × 3 , 𝑠𝑡𝑟𝑖𝑑𝑒2
BN
R𝑒𝐿𝑈

Dense block

32 × 120 × 120 1 × 1, stride1
3 × 3, stride1

2 ∗ 2 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑜𝑙𝑖𝑛𝑔, 𝑠𝑡𝑟𝑖𝑑𝑒2
× 3

64 × 60 × 60

128 × 30 × 30

Fusion block

128 × 30 × 30 𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑜𝑙𝑖𝑛𝑔
𝐹𝐶 + 𝑅𝑒𝐿𝑈

𝐹𝐶 + 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

𝑐𝑜𝑛𝑐𝑎𝑡

SE Block

384 × 30 × 30 𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑜𝑙𝑖𝑛𝑔
𝐹𝐶 + 𝑅𝑒𝐿𝑈

𝐹𝐶 + 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

Pooling
384 × 30 × 30 2 ∗ 2 Max 𝑝𝑜𝑜𝑙𝑖𝑛𝑔, 𝑠𝑡𝑟𝑖𝑑𝑒2

FC

384 × 15 × 15 𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑜𝑙𝑖𝑛𝑔
𝐹𝐶 + 𝑅𝑒𝐿𝑈

𝐹𝐶 + 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

Soft-max 1 × 64 Soft-max

Params (MB) 82.460

Flops (GB) 0.103

Figure A2. MFFC-Net Structure Parameters.
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