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Simple Summary: Neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and Huntington’s
diseases, cause immense suffering to patients and their families. Despite an urgent need for therapies,
they are still lacking, partly due to an incomplete understanding of the mechanisms involved. For
example, it is unknown why specific brain regions are affected while others are not, a feature known as
selective vulnerability. A better understanding of how certain regions resist disease, while others fail,
could lead to new therapies. This review discusses ten studies that analyze gene expression changes in
specific brain cell types as they respond to the early stages of four types of neurodegenerative disease.
It concludes with a summary of recurring themes that address questions about the mechanisms
behind selective vulnerability.

Abstract: Neurodegenerative diseases (NDs) manifest a wide variety of clinical symptoms depending
on the affected brain regions. Gaining insights into why certain regions are resistant while others are
susceptible is vital for advancing therapeutic strategies. While gene expression changes offer clues
about disease responses across brain regions, the mixture of cell types therein obscures experimental
results. In recent years, methods that analyze the transcriptomes of individual cells (e.g., single-
cell RNA sequencing or scRNAseq) have been widely used and have provided invaluable insights
into specific cell types. Concurrently, transgene-based techniques that dissect cell type-specific
translatomes (CSTs) in model systems, like RiboTag and bacTRAP, offer unique advantages but have
received less attention. This review juxtaposes the merits and drawbacks of both methodologies,
focusing on the use of CSTs in understanding conditions like amyotrophic lateral sclerosis (ALS),
Huntington’s disease (HD), Alzheimer’s disease (AD), and specific prion diseases like fatal familial
insomnia (FFI), genetic Creutzfeldt–Jakob disease (gCJD), and acquired prion disease. We conclude
by discussing the emerging trends observed across multiple diseases and emerging methods.

Keywords: Huntington’s disease; Alzheimer’s disease; prion disease; amyotrophic lateral sclerosis;
RiboTag; bacTRAP; scRNAseq; snRNAseq

1. Introduction

Imagine the fright of finding yourself in an unknown room, surrounded by unfamiliar
people with unknown intentions, with no memory of how you got there. Imagine the
frustration of not being able to control your body movements enough to get dressed.
Imagine feeling so tired that you hallucinate, but nonetheless cannot obtain rejuvenating
sleep. People with NDs face these challenges as their health gradually declines until their
premature death. NDs not only have societal and economic consequences but also bring
intense personal suffering. Sadly, the search for treatments is hindered by our limited
knowledge of the diseases’ underlying molecular mechanisms.

NDs are widely thought to be caused by the misfolding of specific proteins that
eventually clump together into aggregates. Although the disease-causing proteins are
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widely expressed, they tend to damage specific regions, a phenomenon known as selective
vulnerability. Some of the proposed mechanisms explaining selective vulnerability include
how the misfolded proteins or aggregates spread through the brain, how brain regions are
connected in neural networks, and how protective or detoxifying proteins are regionally
distributed [1–6]. A better understanding of these and other mechanisms could open new
avenues for therapeutic discoveries. For over two decades, researchers have investigated
changes to gene expression as an indicator of how vulnerable and resistant regions respond
to disease. Given the diverse cell types in each region, analyzing them individually can
enhance our understanding selective vulnerability. Among many tools for cell-specific
studies in brain tissues, this article emphasizes CSTs in mouse models, which have given
valuable ND insights, yet lack comprehensive reviews. While CST studies of single cell
types are informative [7–9], this review is focused on studies including multiple cell types,
especially neurons. In some instances, the discussion is supplemented with results from
scRNAseq-based experiments.

In this review, our objective is to contrast vulnerable cells with cells that are not
vulnerable, which we call resistant. In the clinical neurology setting of the ND field the
term “resistant” is often used in the context of the seemingly similar term “resilient”.
Definitions of these terms and examples of their proper use have been proposed to limit
confusion [10]. In short, resistance refers to brains that do not contain pathology (often
defined as protein aggregates) despite being old enough to, while resilience refers to brains
that function normally despite containing pathology [10]. This convention is quite useful
when considering NDs at the whole-brain level [11–16]. However, at the cellular level, the
presence of aggregates within a cell does not always mean it is unhealthy or not functional,
and the absence of aggregates does not mean a cell is healthy. Moreover, some NDs produce
extracellular aggregates. Should a healthy cell near an extracellular aggregate be considered
resistant or resilient? Furthermore, a cell may change its expression of certain genes in
response to the erosion of the neuronal network it functions in, but still be a healthy cell. Is
that cell resistant or resilient. . .or both? These are important questions and results from the
studies described in this review could be useful to improve our understanding of them.
However, debating these distinctions would greatly expand the length of this review. To
streamline this review, we classify cells as vulnerable if they die or exhibit phenotypic
changes, such as a reduction or loss of expression of genes that mark that cell type, and
classify all other cells as resistant.

The first section contrasts CST methods with the more widely used scRNAseq and
single nuclei RNAseq (snRNAseq) methods. Section two examines two ALS-focused CST
studies: one juxtaposing neurons and glia, the other comparing two similar neuron types
with differing vulnerability. The third section delves into studies on three prion diseases,
exploring how a single protein affects different brain areas based on the misfolding trigger.
In the fourth section on HD, one study utilizing bacTRAP in a mouse model and snRNAseq
in both mouse and human is compared to another standalone snRNAseq study. A third HD
study used RiboTag to analyze a brain region typically considered to be resistant. The fifth
section covers AD: one study used bacTRAP in a novel way and its results are compared to
human snRNAseq studies. Table 1 contains the experimental details of the key studies in
this review. The concluding section identifies recurring themes, offering some potential
answers to the questions raised in Box 1.
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Table 1. Details of the studies in the focus of this review.

PMID Authors Disease Method Model or Source Investigated Brain Region and Cell Types

26621731 Sun et al., 2015 ALS bacTRAP loxSOD1G37R Spinal cord: motor neurons, astrocytes and
oligodendrocytes

35320722 Moya et al., 2022 ALS bacTRAP SOD1G93A Motor cortex, layer 5b: Colgalt2+ and Gprin3+
motor neurons

35960762 Kaczmarczyk et al., 2022 acquired prion RiboTag RML model of mouse-adapted scrapie, 10 and
18 weeks after infection

Hemibrain: astrocytes and Gad2+, vGluT2+, PV+ and
SST+ neurons

36192034 Bauer et al., 2022 gCJD and FFI RiboTag KI-3F4-CJD and KI-3F4-FFI mice, age 9 months
cerebellum: Gad2+ and vGLuT2+ neurons

cerebrum: Gad2+, vGluT2+, PV+ and SST+ neurons

26900923 Langfelder et al., 2016 HD Bulk RNAseq
Allelic series HdhQ KI mice (Q20, Q80, Q92, Q111,
Q140, Q175) at 2, 6, and 10 months striatum, cortex

Q175, 6 months various brain and peripheral tissues

32681824 Lee et al., 2020 HD

bacTRAP Allelic series HdhQ KI mice: Q20, Q50, Q111, Q170,
3 or 6 months

striatum: dSPNs, iSPNs, astroglia,
cholinergic interneurons

bacTRAP zQ175DN KI-mice, 3 or 6 months striatum: dSPNs, iSPNs, astroglia,
cholinergic interneurons

snRNAseq zQ175DN KI-mice, 3 or 6 months striatum

snRNAseq human postmortem, HD grade 2–4 caudate, putamen

34011527 Malaiya et al., 2021 HD snRNAseq zQ175DN KI-mice, aged 14–15 months striatum

36670467 Bauer et al., 2023 HD RiboTag HdhQ200 KI-mice, aged 9 months
cerebellum: Gad2+ and vGLuT2+ neurons

cerebrum: Gad2+, vGluT2+, PV+ neurons

32603655 Roussarie et al., 2020 AD bacTRAP
wild-type mice, aged 5, 12, and 24 months excitatory neurons in hippocampal CA1, CA2, CA3,

and DG, and cortical ECII, S1 and V1.

APP/PS1 Tg mice (Borchelt model) 6 months excitatory neurons in ECII

31042697 Mathys et al., 2019 AD snRNAseq human postmortem, early and late stages of
AB neuropathology prefrontal cortex

33432193 Leng et al., 2021 AD snRNAseq human postmortem, early and late stages of
tau neuropathology entorhinal cortex and superior frontal gyrus
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Cells undergoing stress, particularly in the context of disease, often change their
expression of certain genes, a feature we call a response. A very simple way to compare
how different cell types respond to ND is to compare the number of differentially expressed
genes (DEGs). However, comparisons of the number of DEGs should only be made within a
study, since there are important differences between studies, such as disease stage, statistical
thresholds, and statistical power. It is also important to recognize that a small change in a
highly expressed gene may still be impactful. Furthermore, the basal expression levels of
genes may affect their vulnerability without changing in response to disease, for example,
protective factors that are naturally high in a certain cell type. Nonetheless, it remains
uncertain whether vulnerable cells exhibit more DEGs than their resistant counterparts,
thereby serving as a marker for them, a question that this article seeks to address.

Finally, there is an inherent assumption of disease mechanism conservation between
human and mouse models, although the conservation is not complete. One must be
mindful that human samples are typically collected at the terminal stage of disease (or
post-mortem), after severe degeneration has occurred, and with varying time intervals
between death and the removal of brain tissue. In contrast, mouse studies often probe
earlier disease stages with minimal degeneration and no postmortem delay. Therefore, if
changes evident in mouse studies are not found in human tissues, it is not just a potential
variation between species; another plausible reason could be that these changes are masked
in studies of advanced-stage human samples.

Box 1. Questions addressed in the gene expression studies.

1. How does a specific cell type respond to different diseases?
2. Is there a consistent gene expression response in vulnerable cells?
3. Do resistant cells exhibit any response? If so, is this response conserved?
4. Do pathways consistently exhibit the same response across cells (e.g., always increase)?
5. Does a particular misfolded protein elicit uniform responses across various cell types?
6. Is there a consistent cell-type response to various forms (e.g., mutants) of a single misfolded
protein?
7. Given NDs result from misfolded proteins, is the unfolded protein response (UPR) more pro-
nounced in vulnerable or resistant cells during early stages?
8. Can the number of DEGs or type of DEGs (e.g., based on function, pathway, etc.) indicate
vulnerability?
9. Do gene expression changes indicate gene expression dysfunction?
10. Do vulnerable cells or regions exhibit higher levels of the disease-causing protein compared to
resistant ones?

2. Methods for Cell Type-Specific Gene Expression Analyses

The primary CST methods are RiboTag [17] and bacTRAP [18,19]. RiboTag uses Cre
recombinase to direct the expression in cell types of interest, where an HA-tagged variant
of Rpl22 (large subunit ribosome protein 22) is expressed from its native location in the
genome. In contrast, bacTRAP uses a bacterial artificial chromosome (BAC) vector to
express a GFP-tagged Rpl10a (large subunit ribosome protein 10a) from a random location
in the genome. We have previously discussed the nuances between the two methods [20],
but here we consider them practically equivalent and collectively categorize them as
CST methods.

Essentially, CST methods function by capturing epitope-tagged ribosomes using
antibodies. Employing transgenic methods, ribosomes are tagged because the epitope-
tagged ribosome protein integrates into ribosomes during assembly (Figure 1). Transgenesis
lets researchers focus the expression of the tagged ribosomes in select cell types, where
they function normally and translate mRNAs into proteins. The epitope tags facilitate the
immune capture of the ribosomes and their associated mRNAs from brain homogenates
(Figure 1). This design offers several advantages:

1. Tagged ribosomes are present only in target cells, providing an efficient separation of
desired mRNAs from those of unwanted cell types.
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2. The captured mRNAs reflect the cell’s translatome, and thus provide insights into the
proteins being synthesized by the cell [21].

3. The method is compatible with frozen tissues, limiting batch variation between samples.

An alternative to CST methods is scRNAseq, where cells from a tissue are physically
separated and the transcriptome of each cell is analyzed. Popular methods encapsulate
cells in oil droplets, acting as micro-reaction chambers for converting mRNA to cDNA
(Figure 2). The process includes the marking of each transcript (i.e., each molecule) to
control for amplification artifacts, to assign each transcript to a specific cell (barcoding),
and the conversion of each mRNA into cDNA (Figure 2). Due to their unique barcodes, the
products from all cells are pooled before final amplification.

A key step in scRNAseq is isolating single cells, which is especially challenging for
neurons in the brain, where fine processes such as dendrites and synapses are easily lost.
Several dissociation methods exist that use physical or enzymatic dissociation mechanisms,
but they can bias the sample quality and obscure mRNA level measurements. snRNAseq
serves as a good alternative to scRNAseq, since nuclei are less prone to enzymatic and phys-
ical isolation artifacts than whole cells. Furthermore, snRNAseq has the advantage of being
suitable for fixed and frozen samples, enabling studies of archived postmortem human
brain samples, which are not possible with scRNAseq where fresh tissue is required. Several
studies have shown significant similarity in transcriptomic analyses between scRNAseq
and snRNAseq [22–25], although microglial activation genes were depleted in snRNAseq
compared to scRNAseq studies in AD [26]. Furthermore, a comparison of different tissue
dissociation protocols found differences in cell composition and further demonstrated the
potential for biases in scRNAseq and snRNAseq [27]. For example, twice the number of
genes per cell were detected with snRNAseq compared to scRNAseq [27]. A systematic
analysis comparing different tissue dissociation protocols, cell lysis, sequencing, and data
analysis led to the establishment of a toolbox that provides guidelines for customizing
sc/snRNAseq protocols [28].

How do CST and sc/snRNAseq compare? Both methods face challenges with con-
tamination from unintended cells [21]. CST analyzes a mix of related cell types, but
captures approximately 15,000 genes per cell type, approaching the maximum number
expected, since many genes are expressed only in certain organs or cell types. In contrast,
sc/snRNAseq retrieves fewer genes but from distinct cells. A critical drawback of CST is
the demand for artificial gene expression, usually delivered via transgenesis, rendering
it unsuitable for human postmortem brain samples. A summary of the advantages and
disadvantages of these methods is included in Table 2.

Table 2. Comparison and contrast of CST and scRNAseq/snRNAseq.

Feature CST scRNAseq/snRNAseq

Typical number of genes
detected in ND studies 15,000 to 18,000 1000 to 8000

Cell populations Mix of related cells Unmixed individual cells

Transgene-dependent Yes No

Functional with frozen
tissue Yes scRNAseq = no; snRNAseq = yes

RNA biotype studied Translatome mRNA transcriptome
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Figure 1. (A) In RiboTag mice, the native Rpl22 gene has been engineered such that activation with
Cre recombinase, expressed in specific cell types, results in the expression of Rpl22 fused with an
HA epitope tag (cyan flag) specifically in those cells. Before Cre activation, the tagged exon 4 (ex4)
is not expressed (ex4*). (B) A variant of this method employs a viral vector that delivers a RiboTag
transgene that is also activated by Cre. The bacTRAP mice are practically the same as RiboTag mice
regarding the capture of tagged ribosomes and are thus not shown. (C) illustrates the workflow,
commencing with the homogenization of brain tissue, the capture of tagged ribosomes (marked
with cyan-colored bubbles) with antibody-labeled paramagnetic beads, and then their subsequent
analysis via RNA-seq (next-generation sequencing) and bioinformatics. (D) demonstrates a typical
validation experiment wherein the purification of RiboTag-labeled ribosomes expressed in specific
cell types (top label on each chart) results in the enrichment of marker genes of the desired cells
and the depletion of markers of off-target cells (marker gene classes are on the left of each chart).
For example, activation by Cre in cells expressing Slc1a3 (astrocyte marker) in the cerebellum or
cerebrum (top two violin plots) facilitates the enrichment of astrocyte genes and the depletion of
genes from neurons and other glial cells. Lower charts show the results when Cre is expressed
by Cx43 (astrocytes), Gad2 (GABAergic neurons), PV (parvalbumin neurons), SST (somatostatin
neurons), and vGluT2 (glutamatergic neurons). Marker gene classes include SST, PV, Panneur
(pan-neuronal), Oligo (oligodendrocytes), Micro (microglia), Glut+PV (PV-expressing glutamatergic
neurons), Glut (glutamatergic neurons), GABA+PV (PV-expressing GABAergic neurons), GABA
(GABAergic neurons), and Astro (astrocytes). The Slc1a3 data were published in [29] and the rest were
published in [30]. Mouse and neuron shapes were generously provided by https://smart.servier.com
(accessed on 12 January 2024) under a CC 3.0 license.
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Figure 2. Workflow for scRNAseq and snRNAseq analyses. From the top down, cells of different
types are marked in different colors. Cells or cell nuclei are gently dissociated and subjected to a
device that orders them into a single file (left side, colored dots), and then merges each cell or nucleus
with a single oil droplet (grey bubbles on the right) that carries barcodes that are unique to each
droplet. The droplets are then pooled, amplified, and sequenced together, which diminishes batch
effects. Features and similarities of each cell are then compared using t-SNE (t-distributed stochastic
neighbor embedding) plots.

3. CST Studies of ALS

ALS primarily targets subsets of motor neurons (MNs) in the motor cortex, brainstem,
and spinal cord [31]. While most ALS cases are sporadic, there are many cases driven
by mutations in several genes, of which the first to be discovered was superoxide dismu-
tase 1 (SOD1) [32]. Interestingly, different SOD1 mutations can have different effects on
its enzymatic function and aggregation propensity, leading to mutation-specific disease
changes [33]. This, and the fact that historically SOD1 was the first gene associated with
ALS, led to the production of several thoroughly studied SOD1 mutant mouse lines [34,35].

The first application of CST in ND was with bacTRAP [36] in the loxSOD1G37R random
integration mouse model of ALS [37], focusing on the MNs, astrocytes, and oligodendro-
cytes of spinal cords. Most of the study focused on the disease onset stage, marked at



Biology 2024, 13, 67 8 of 22

8 months of a disease progression that reaches its terminal stage at 13.5 months. Transgene
expression levels were measured and compared to the endogenous mouse SOD1 gene;
mutant SOD1 was overexpressed 17-, 8-, and 21-fold in MNs, astrocytes, and oligoden-
drocytes, respectively. The authors then measured gene expression changes and found
that MNs, the cells known to be most affected, had the highest number of DEGs at 260
(85% were increased), versus 108 for astrocytes, and 23 for oligodendrocytes. Of the MN
DEGs that were increased, 10% had pathway features related to synaptic structures and cell
junctions [26]. Genes related to the unfolded protein response (UPR) were also upregulated,
along with the diminished expression of genes associated with ribosome biogenesis. This
shift in gene expression might represent the cells’ adaptive strategy to reduce protein
synthesis, potentially serving as a defense mechanism to counteract the detrimental effects
of SOD1G37R misfolding. Notably, the study did not find alterations in mitochondrial genes,
in contrast to other studies discussed later in this review, where changes to ribosome and
mitochondria biogenesis appear to be coupled. Nonetheless, it is noteworthy that there
were 10 times more DEGs in MNs than in oligodendrocytes at this disease onset stage.
According to the authors, the disparity in the number of DEGs, with MNs showing a high
count and oligodendrocytes a considerably lower one, suggests that the disease begins in
MNs and subsequently impacts oligodendrocytes as it progresses [26].

A more recent study of ALS employed bacTRAP to reveal differences between vul-
nerable and resistant MNs in layer 5b of the motor cortex [28] using SOD1G93A transgenic
mice [29]. New bacTRAP lines were created with promoters that were specifically active
in layer 5b, based on anatomical data. Interestingly, two of the new mouse lines, built
into BAC transgenes of Colgalt2 and Gprin3, both expressed the bacTRAP protein in layer
5b of the motor cortex (M1). The bacTRAP-expressing neuronal populations had similar
morphology and size, and both projected to the pons region of the brainstem, but Gprin3+

neurons also projected to the spinal cord. Importantly, with similar transgene expression
levels in both cell types, by the time SOD1G93A transgenic mice reached 110 days of age,
approximately 40% of the Gprin3+ neurons died. Meanwhile, there was no noticeable
decline in the number of Colgalt2+ neurons. This striking difference could be attributed to
their intrinsic gene expression patterns. Gprin3+ neurons, even at baseline, exhibited an
elevated propensity for oxidative phosphorylation but were notably lacking in genes that
safeguarded against oxidative damage, and the SOD1G93A transgene may have exaggerated
this imbalance [28].

When expressing the SOD1G93A transgene, Gprin3+ neurons underwent dramatic gene
expression changes, particularly increasing their expression of an array of mitochondrial
proteins, potentially amplifying oxidative damage through the increased production of
hazardous oxidation catabolites [28]. It is hard to envision how this potentially dangerous
response could be beneficial to these vulnerable neurons, but it is also improbable that
this coordinated response is random. Also increased were genes encoding ribosomal
proteins, and a similar coordination between ribosome and mitochondria biogenesis has
been reported in HD [30]. Due to the high energetic expense required to generate ribosomes,
it is logical for the biogenesis of ribosomes and mitochondria to be coordinated [31]. In
this context, it could be that the primary response was to increase ribosome biogenesis,
leading to the increased need for mitochondrial biogenesis and metabolic activity that
doomed these neurons. Interestingly, the Colgalt2+ MNs also increased the expression of
both mitochondrial and ribosomal proteins, but the increase was smaller in scale (about
30% less) and their higher baseline of protection from oxidative damage likely enabled
them to fare much better than Gprin3+ neurons. Notably, both neuron types decreased
their expression of genes related to synapse and axon morphogenesis, with a larger effect
in the Gprin3+ neurons. The authors concluded that intrinsic properties of the Colgalt2+

MNs (i.e., the higher baseline expression of antioxidant genes) determined their resistance.
To summarize the results from the ALS section, the first study [36] indicated that the

biogenesis of ribosomes decreased in the most susceptible cells, despite no concurrent
decrease in mitochondrial biogenesis. This reduction was accompanied by a pronounced



Biology 2024, 13, 67 9 of 22

activation of the unfolded protein response (UPR). The second study [38] compared two
neuron types that are strikingly similar. While the more susceptible neurons exhibited
tenfold more differentially expressed genes (DEGs) than their resistant counterparts, the
overall genetic alterations were similar. These changes in gene expression seemed to align
with specific molecular pathways, most notably increased ribosome and mitochondrial
biogenesis. It is important to note that when this analysis took place, 40% of Gprin3+ MNs
had already succumbed. Hence, the observed changes in gene expression might either
represent the adaptive strategies of the surviving neurons or be attributed to a change
in the compared populations. Nonetheless, a consistent theme from both studies is that
even the more resistant cells can exhibit as much disease-causing protein expression as
the vulnerable ones, and the highest DEG counts typically arise in the latter. Interestingly,
while the UPR was prominent in the first study, it was absent in the second, even when
numerous neurons in the latter were evidently under stress.

4. CST Studies of Prion Diseases

Prion diseases are another class of rare neurodegenerative diseases. While they are
most infamous for cases caused by infection (e.g., “mad cow” disease) from misfolded
forms of the prion protein (PrP), they can also be caused by the inheritance of mutations in
the gene encoding PrP (Prnp) or from spontaneous PrP misfolding [4]. Although rare in
humans, acquired prion diseases (i.e., those caused by infection) are a problem in farmed
sheep and goats in Europe and in wild cervids in North America [39,40], a problem that
is emerging in Northern Europe with new properties [41,42]. The diseases’ infectious
nature was exploited to develop some of the first mouse models of neurodegenerative
diseases. Work on rodent models made biochemical purifications of the infectious agent
possible and led to the discovery of PrP, and in turn, PRNP [43,44]. This led to the discovery
that multiple inherited neurodegenerative diseases including fatal familial insomnia (FFI),
genetic Creutzfeldt–Jakob disease (gCJD), and Gerstmann–Straussler–Scheinker syndrome
(GSS), are caused by certain mutations in PRNP [45–47]. Prion diseases cause damage
in specific brain regions depending on the disease subtype [4,48,49]. Furthermore, the
shapes of PrP aggregates and the abundance and size of spongiform degeneration “holes”,
a hallmark of prion diseases, also vary according to the disease subtype. Interestingly, PV+

neurons, a subset of GABAergic inhibitory neurons, were reported to be highly vulnerable
to prion diseases in humans and rodents [50–52], though less severely affected in FFI [48].
To uncover how different neurons respond to different misfolded conformers of the same
protein, we recently reported studies that we have performed using RiboTag for the pre-
onset disease stages of an acquired prion disease [30] and two genetic prion diseases [53].
Another study of acquired prion disease used a Cre-dependent TRAP method but detected
changes only at the terminal stage [54]. Similarly, a scRNAseq study that focused on a
near-terminal disease stage has been reported [55]. Although these reports provided novel
insights into disease mechanisms, the results were focused on terminal disease stages,
unlike all other studies described in this review, and thus will not be considered further.

In the first RiboTag study, we analyzed the translatome profiles of astrocytes and four
neuron subtypes during a very early disease stage of acquired prion disease, 10 weeks
of a 23-week disease course, long before neuropathological and electroencephalography
changes were detected [30]. The disease model employed mice expressing wild-type PrP
from the endogenous Prnp gene and the disease process was triggered by an injection
of infectious prions. Surprisingly, PV+ neurons showed essentially no response (three
DEGs). Neurons expressing somatostatin (SST), another subset of GABAergic neurons
mostly non-overlapping with PV+ neurons, also showed essentially no response (one DEG).
Interestingly, the broader category of GABAergic neurons revealed a more pronounced
response, identifying 83 DEGs primarily associated with the circadian rhythm network
and mitochondrial proteins. Glutamatergic excitatory neurons had a tempered response,
with 38 DEGs primarily related to the cytoskeletal network, with a particular emphasis
on spectrins. Of all the cells studied, astrocytes had the most marked response, revealing
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139 DEGs. The majority of these were associated with the downregulation of ribosome
and mitochondrial proteins. Notably, during these early stages of the disease, the UPR
was not activated in any cell types, but it was evident when the disease reached clinical
onset. Given that astrocytes displayed the highest number of DEGs, a question arises: were
the astrocytes the most impacted, or were they simply adjusting to a changing brain? A
more recent bacTRAP study of non-diseased mice offers some perspective [56]. This study
revealed that astrocytes adjust to neuronal activity by amplifying ribosome production,
which in turn augments translation near neuronal synapses. The ribosome changes were
also accompanied by increases in mitochondrial proteins, and both increases and decreases
in cytoskeletal proteins. Piecing these findings together, it is conceivable that reduced
neuronal activity in certain GABAergic and/or glutamatergic neurons caused by prion
disease would diminish the demands of translation in astrocytes, triggering a reduced
expression of ribosomal and mitochondrial proteins. In such a scenario, the high number
of DEGs in the astrocytes would not necessarily reflect a cell type being negatively affected,
but rather signify an adaptive response to surrounding changes.

In the second study, we examined mouse models of FFI and gCJD, also at a pre-onset
stage (9 months old) [53]. The mice were engineered to express mutations linked to FFI or
gCJD by manipulating the mouse’s endogenous gene, resulting in knock-in (KI) mice [57,58].
These models were previously reported to primarily target the thalamus (FFI, [57]) and
hippocampus (gCJD, [58]), regions that are rich in glutamatergic neurons. Both models also
targeted the cerebellum, albeit less severely. Like the acquired prion disease study above,
the inherited prion disease study used RiboTag with the same neuronal Cre lines, but
separately examined the cerebellum and the remaining cerebrum. The data were revealing:
like in the first study, PV+ neurons essentially did not respond, with only two or three DEGs
in gCJD and FFI, respectively. Yet, a surprise came from the SST+ neurons, which exhibited
a robust response, with 153 DEGs for gCJD and an even more significant 684 DEGs for FFI.
A network analysis indicated that coordinated changes were induced by mTOR signaling,
resulting in the increased synthesis of ribosomal and cytoskeletal proteins. Notably, this
mTOR activity was absent in the previously discussed acquired prion study. Like in the
acquired prion study, UPR was not triggered in either the FFI or gCJD models. However,
since only the pre-onset stage was analyzed, the possibility of UPR manifesting at a later
disease stage cannot be excluded. Compared to the acquired prion study, glutamatergic
neurons in the genetic prion study had an even milder response (in the cerebrum, three
DEGS in gCJD and 11 in FFI; in the cerebellum, two DEGS in gCJD and 19 in FFI). This
was particularly interesting since GABAergic neurons express about half as much PrP as
glutamatergic neurons, yet in both studies GABAergic neurons registered more DEGs. This
result indicates that expression levels of a disease-causing protein do not strictly determine
a neuron’s vulnerability.

A summary of the prion disease studies leads to several important conclusions. Since
in both studies PrP was expressed from the native gene in its endogenous locus, PrP
expression pattern differences cannot account for the different results reported in the two
studies. Therefore, the first conclusion is that the same protein can unleash different gene
expression responses within a specific cell type, depending on how the protein misfolds.
Second, different cell types respond to the same misfolded protein form differently. Third,
since glutamatergic neurons expressed PrP more highly than all other cell types studied,
their mild response during prion disease suggests the most affected cells do not necessarily
express the protein the highest. Fourth, vulnerable cell types (i.e., PV+ neurons) can have
a very mild response with surprisingly few DEGs. Fifth, the UPR is not always induced
during the early stages of ND.

5. CST Studies of HD

HD is caused by the expansion of a CAG repeat in exon 1 of the huntingtin (HTT) gene,
which is translated into a polyglutamine tract. While repeat lengths of 6 to 35 CAGs do
not cause disease, repeats of 36 to 39 CAGs are linked to HD with incomplete penetrance,
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and repeats with 40 or more CAGs cause HD with high penetrance at an average age of
40 years [59–61]. Early HD neuropathology is characterized by the selective degeneration
of GABAergic medium spiny neurons (SPNs) of the striatum, which constitute around
95% of all striatal neurons, while other striatal cell types are usually spared [62,63]. Striatal
SPNs can be further subdivided into two main subtypes based on their expression of
dopamine receptors (Drds). Drd2-expressing SPNs of the indirect pathway (iSPN) show
higher vulnerability than Drd1-expressing SPNs of the direct pathway (dSPN) [64]. This
interplay of the regional and cell type-specific vulnerability of neurons to mutant Htt
(mHtt) is a subject of great interest in the HD field, but our understanding of the underlying
mechanisms remains incomplete. Fortunately, recent studies employing bacTRAP, RiboTag,
and snRNAseq methods have provided new details of cell type-specific responses to mHtt,
as elaborated in the following section.

Since HD is strictly genetic, it is reasonable to assume that there is a common molecular
mechanism in all patients, and knowledge derived from studies of genetically engineered
mice may be relevant for HD patients. The first genetic mouse model with a disease-
relevant phenotype, the R6/2 model, was generated by injecting a fragment of the mutant
HTT gene from a human with HD into the pronucleus of a fertilized mouse oocyte, where
it integrated into a random location [65]. These mice develop a severe neurodegenerative
disease that leads to death in young adult mice, at approximately 20% of their normal
lifespan. In pursuit of a more accurate model, researchers employed another strategy:
a long CAG repeat was inserted into the mouse Htt gene in its native location in the
genome, resulting in KI mice. This has been performed by multiple labs with one of the key
differences between models being that some included various amounts of human DNA
sequences [66–68], whereas others used only the mouse Htt sequence [69,70]. Although
these seemingly subtle differences can impact disease severity, the strongest determinant of
severity is the length of the CAG repeat, where 150 to 200 triplets result in mild neurological
disease, even at an advanced age, with little neuronal loss and only subtle markers of
neurodegeneration. Despite these apparent shortcomings, the KI models cause gene
expression changes detectable in crude tissue lysates reminiscent of those detected in
similar preparations of human HD samples [71], offering valuable insights into the disease’s
molecular mechanisms.

5.1. Vulnerable and Resistant SPNs Have Surprisingly Similar Responses to mHtt

Here we focused predominantly on the results from three recent studies using CST and
snRNAseq to examine gene expression changes in KI mouse models of HD. The first study,
by Lee et. al., employed the bacTRAP method to scrutinize changes in cell type-specific
translatomes within the striatum [72]. This was conducted in an allelic series of HD KI
mice, with a gradient of CAG lengths between 20 and 170 repeats [68], as well as in the
similar zQ175DN model [66,67]. This study further used snRNAseq to analyze the features
of striatal nuclei from zQ175DN mice as well as from humans with different degrees of HD
severity, ranging from over 50% to nearly 100% SPN loss. We then discuss results reported
by Malaiya et al. [73], who performed snRNAseq on striata from zQ175DN mice. Last, we
compare these findings to a recent study conducted in our lab [74], wherein RiboTag was
used to analyze cell type-specific expression changes in the cerebrum and cerebellum of
pre-symptomatic HdhQ200 KI mice.

The cell type-specific analysis of gene expression changes using both bacTRAP and
snRNAseq data revealed a high overlap in DEGs between dSPNs and iSPNs, which was
conserved across HD models and prominent in human samples [72,73]. bacTRAP-derived
translatome data revealed that while iSPNs showed consistently more DEGs, as may be
predicted for more vulnerable neurons, more than 50% of dSPN DEGs were also differen-
tially expressed in iSPNs [72]. When comparing bacTRAP and bulk RNA data from KI
mice striata [71], iSPNs had the highest similarity. This suggests that, in the early stages,
iSPNs contribute significantly to the overall gene expression changes witnessed in the
total striatum [72]. Corroborating these insights, Malaiya et al.’s snRNAseq study revealed
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minimal pronounced differences between the SPN subtypes [73]. Shared DEGs between
both SPN subtypes exhibited similar shifts in both direction and magnitude. Together, this
suggests that the selective vulnerability of iSPNs versus dSPNs might not stem from differ-
ential gene expression changes [67]. Strengthening these findings, the congruence between
human and mouse snRNAseq results and the bacTRAP data was evident [66,67]. This
validates the credibility of the bacTRAP findings and indicates that a significant portion of
gene expression changes originates at the transcription level.

Notably, the snRNAseq analysis of zQ175DN striatal tissue from both studies iden-
tified a third cluster of spiny neurons, which the authors proposed represents a recently
characterized SPN subtype dubbed “eccentric” medium spiny neurons [75]. These SPNs
are marked by their distinct expression of Otof, Pcdh8, Cacng5, Casz1 [75], and Col11a1 [76]
and generally showed similar DEGs to dSPNs and iSPNs, including the downregulation
of striatal markers and genes related to synaptic function [72,73], but they also showed
opposing directionality in several DEGs [72]. These findings of a novel cell type highlight
an important advantage of snRNAseq over CST methods.

5.2. Functional Enrichment in Medium Spiny Neurons

Functional analysis of zQ175DN bacTRAP DEGs revealed both overlapping and SPN
subtype-specific pathway changes [72]. Both SPN subtypes showed strong similarities in
enriched KEGG pathways among their downregulated genes, including pathways related
to dopaminergic synapse, long-term potentiation, circadian entrainment, and amphetamine
addiction. dSPN-specific pathways included autophagy and circadian rhythm. In contrast,
the pathway enrichment analysis for upregulated genes indicated a more cell type-specific
response. dSPNs exhibited an enrichment of ND-related pathways, ER protein processing,
and proteasome, whereas iSPN-specific upregulated genes were enriched for synapse-
related pathways, choline metabolism, the regulation of the actin cytoskeleton, and Relaxin
and Erb signaling pathways.

5.3. mtRNA Release and Innate Immune Response Activation as Potential Mechanisms
Underlying the Selective Vulnerability of iSPNs

A remarkable discovery by Lee et al. was the elevated levels of mitochondrial-encoded
RNA (mtRNAs) in both iSPNs and dSPNs, as shown by both bacTRAP and snRNAseq
data sets [72]. Since mtRNA is typically confined to the mitochondria and not associated
with ribosomes, the authors argue that the capture of mtRNAs by bacTRAP suggests
that there is mitochondrial dysfunction that causes the release of mtRNA into the cytosol,
where it attaches to cytosolic ribosomes. Supporting the idea that this is not merely a
technical artifact, the amount of mtRNA captured was related to age and CAG repeat
length in a manner that positively correlates with increased toxicity. Furthermore, cytosolic
mtRNA was more pronounced in iSPNs, confirming a disease-specific phenomenon. This
phenomenon was also paired with the reduced expression of genes linked to the oxidative
phosphorylation pathway and the activation of the innate immune sensor protein kinase
R (PKR) in iSPNs, alongside the elevated expression of interferon-responsive genes. With
previous studies suggesting that mtRNAs can activate immune responses by binding to
PKR [77,78], Lee et al. postulated a sequence in which mHtt causes cytosolic mtRNA
buildup, leading to an immune response initiated by its direct interaction with PKR.

In the same study, large amounts of extra-mitochondrial mtRNAs in the iSPNs and
dSPNs of human HD samples were also detected using snRNAseq. While oxidative
phosphorylation-related genes were also downregulated in this data set, this was observed
in both SPN subtypes, unlike the iSPN-specific changes observed with bacTRAP data.
The authors proposed that this may be due to regulation of oxidative phosphorylation
genes at a translational level [79] which would not be detected in snRNAseq. Another
plausible reason is that the mouse data were derived from young (barely affected) tissues
while the human samples were much more severely affected, with a high proportion of
neurons already dead. Interestingly, the bacTRAP data of dSPNs showed an enrichment of
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oxidative phosphorylation pathway genes among upregulated DEGs. The authors propose
that this, together with a delayed increase in mtRNA in dSPN, may play a role in the
selective vulnerability of iSPNs versus dSPNs [72]. However, Malaiya et al.’s snRNAseq
study opted to exclude nuclei with mtRNA reads, concerned these might be technical
artifacts [73]. Therefore, additional experiments to specifically detect mtRNA release
in vivo are warranted.

5.4. Loss of Neuronal Identity in the Striatum

An important finding across these HD striatal studies was the early downregulation
of striatal marker genes, indicating a loss of cellular identity. A previous analysis of bulk
striatal mRNA indicated that striatal markers, and in particular iSPN-specific genes, showed
a strong negative association with CAG repeat length [71]. The cell type-specific translatome
and transcriptome analyses by Lee et al. further revealed that the downregulation of striatal
marker genes (Scn4b, Arpp21, Gpr6, Pde10a) occurred not only in SPNs, but in most striatal
cell types including astroglia, oligodendrocytes, and cholinergic interneurons, which are
generally resistant to HD [72]. The authors suggested this may be due to mHtt affecting
common regulators in these cell types [72]. Similarly, Malaiya et al. found a pronounced
downregulation of pan-striatal and SPN-specific marker genes (Ppp1r1b, Pde10a, Rgs9)
using snRNAseq in all SPN subtypes [73]. The authors further identified the cell type-
specific identity modules of co-expressed genes, using an adapted approach of weighted
gene co-expression network analysis [73]. This revealed that, besides the downregulation
of identity module genes in their respective cell types, cell identity genes were aberrantly
upregulated in incorrect cell types. This included the upregulation of SPN identity genes
in astrocytes and oligodendrocytes and vice versa. The number of identified iSPNs was
further reduced by approximately 30% in 14–15-month-old mice, despite the absence of
neuronal death at this disease stage, which the authors attributed to a loss of cell identity
markers rather than a loss of neurons [73].

5.5. Predicted Regulators of Gene Expression Changes in HD

It was previously shown that HTT facilitates PRC2 activity [80], promoting cell fate
specification. Consequently, a proposed mechanism of HD is that mHTT induces the de-
repression of non-MSN genes and genes associated with neurodegenerative processes [81].
Supporting this idea, the CAG-dependent downregulation of several transcription and
chromatin factors, including the PRC2 component Ezh2, was found as early as 2 months in
RNAseq data of whole striata from KI mice [71]. Furthermore, a comparison of snRNAseq
and PRC2 chromatin-histone immunoprecipitation data found an enrichment of PRC2
target genes in several cell type-specific modules [73]. These PRC2-regulated modules
showed progressive, age-related dysregulation and ectopic expression patterns in HD mice,
leading the authors to propose that the loss of function of PRC2 in HD is an underlying
mechanism affecting cell identity maintenance in all striatal cell types [73]. Based on
bacTRAP-derived expression changes in KI mice, PRC2-related genes were among the
top predicted regulators of downregulated genes in both SPN types and corticostriatal
projection neurons [72]. Additional predicted top regulators for DEGs shared between SPN
subtypes included several genes previously implicated in HD, including the transcriptional
regulators Crem, Creb1, and histone demethylase Kdm5b for shared upregulated DEGs,
and Wt1 [82] and Rarb (retinoic acid receptor beta) [83] for shared downregulated DEGs.
Predicted regulators with SPN subtype-specific roles included Vdr and Foxo3 for dSPN-only
upregulated genes, and Wt1 for iSPN-only upregulated genes [72].

5.6. RiboTag Analysis of a Brain Region less Vulnerable to HD

In the third analysis of HD, we applied RiboTag to study 9-month-old HdhQ200
knock-in model mice [69,70], but in this case with a focus on the cerebellum [74], which was
performed in parallel with the FFI and gCJD study described earlier [53]. The cerebellum
was of interest since Purkinje cells (GABAergic neurons) are vulnerable in HD, whereas
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granule cells (glutamatergic neurons) are resistant [84–87]. The remaining part of the brain,
sans the olfactory bulb, was also studied and referred to as the cerebrum. GABAergic
and glutamatergic neurons were studied in both regions, whereas PV+ neurons were also
studied in the cerebrum samples [74].

First, the expression of Htt was measured across eight brain regions and it was de-
termined that the striatum had very low expression levels, second only to the cerebellum,
indicating that vulnerable regions are not susceptible due to their high expression of mHtt.
Next, differential gene expression analyses of RiboTag-captured mRNAs revealed that,
in the cerebrum, GABAergic neurons had the most DEGs, with 62. Interestingly, despite
the cerebrum containing numerous brain regions, the gene expression changes had many
similarities to the striatum-focused studies described above, including decreases in synaptic
protein genes and striatal cell type markers such as Penk, Drd1, and Drd2 [74]. The detection
of these apparent striatum-originating signals was likely facilitated by the fact that the
striatum had a very high density of RiboTag-expressing neurons (approximately 95%),
whereas other regions had 20% or fewer neurons expressing RiboTag. Interestingly, in
the cerebellum glutamatergic neurons had 626 DEGs compared to only 12 in GABAergic
neurons. The low number of DEGs in glutamatergic cerebellar neurons from CJD (2) and
FFI (19) indicates that the large number seen in HD was not simply due to the high ho-
mogeneity of cerebellar granule cells. Since granule cells are thought to be resistant, at
least compared to Purkinje cells, the concept that the number of DEGs is indicative of a
neuron type’s sensitivity is once again contradicted. However, some of the changes are not
expected to be made by healthy neurons. For example, cyclin D1 (Ccnd1), a gene whose
activation in neurons often precedes apoptosis, was one of the most differentially expressed
DEGs. Furthermore, PRC1-related genes, overlapping but with some distinction to PRC2,
were implicated as causing many of the granule cell DEGs, implying there is a similar
responding mechanism in vulnerable striatal neurons and resistant cerebellar neurons.
Importantly, this strong response in granule cells was not detected in the FFI and CJD cere-
bella described earlier, indicating that it was not a general response to neurodegeneration
but specific to polyglutamine toxicity. Notably, in contrast to the prominent detection of
mitochondrial-encoded RNAs in the bacTRAP study, the RiboTag study did not report
such a finding in any cell type.

Taken together, the results from these studies of HD suggest that a loss of cell identity
affects nearly all striatal neuron types, even at pre-symptomatic stages, and the loss of
function of PRC2 underlies many of these gene expression changes. Interestingly, vul-
nerable and resistant SPN subtypes showed very similar gene expression changes across
studies and methods. Finally, the number of DEGs may not always be indicative of a cell’s
vulnerability. While in the striatum there were more DEGs in iSPNs than dSPNs, in the
cerebellum there was a surprisingly high number of DEGs in the resistant granule neurons
but very few DEGs in GABAergic neurons, which includes the vulnerable Purkinje neurons.

6. CST Studies of AD

AD diminishes cognition and memory by attacking brain regions linked to those
functions, especially the cornu ammonis 1 (CA1) region of the hippocampus and layer
II of the entorhinal cortex (ECII) [88,89]. The locus coreuelus is also affected very early
and with a high impact [90–93], but is understudied, possibly since its connection to cog-
nition and memory, the most studied clinical features of AD, is not well established. As
with other NDs, AD neuropathology is marked by the aggregation of specific proteins.
Amyloid beta (AB) peptides, typically consisting of 40 or 42 amino acids, are derived
from proteolysis of the amyloid precursor protein and clump together into extracellular
amyloid plaques when their stoichiometric balance is perturbed [94–96]. Similarly, the
microtubule-associated protein tau forms aggregates that are toxic. Tau has six typical
isoforms due to alternative splicing, with zero, one, or two inserts at the N-terminus, while
its C-terminal half typically contains either three or four repeating units (3R and 4R, re-
spectively) of microtubule-binding domains [2,97]. Furthermore, tau is subject to multiple
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post-translational modifications including acetylation, ubiquitylation, and phosphoryla-
tion [2]. The imbalance of 3R/4R ratios and the subsequent aggregation and modification
results in intracellular tau aggregates known as neurofibrillary tangles (NFTs), which are
widely thought to be toxic in AD and related tauopathies [2,98,99]. While amyloid plaques
appear to precede NFTs, they tend to be widespread and not selective, whereas the location
of NFTs more closely correlates with neuronal loss [2,89,100].

We conclude our review by considering three studies on AD [101–103], focusing most
on a study where bacTRAP was used in a unique way for AD [101]. In short, rather than
focusing on comparisons between diseased and control animals, the authors focused on
defining the characteristics of vulnerable and resistant neurons as they aged. This was a
clever strategy, since most cases of AD are not genetic and are thus difficult to model in mice.
However, advanced age is the leading risk factor for non-genetic forms of AD and can be
conveniently controlled in mouse studies. The bacTRAP data were subsequently integrated
with human data to develop a computational model that revealed neuronal structural
changes and a connection with alpha-synuclein (A-syn) [101]. The AD section ends with
two snRNAseq analyses of patient brains that revealed changes to myelination [102] and
identified a novel marker of vulnerable neurons [103].

To generate new knowledge about selective vulnerability in AD, bacTRAP mice were
generated to selectively study two types of vulnerable neurons, namely excitatory neurons
in CA1 and ECII, as well as five types of resistant neurons, including excitatory neurons in
the CA2, CA3, and dentate gyrus of the hippocampus, and excitatory neurons in visual and
somatosensory cortical areas [101]. Translatome signatures were created for each neuron
type in non-diseased mice at 5, 12, and 24 months of age, with the rationale that aging can
inform about AD mechanisms, since it is an age-dependent disease. These signatures were
validated by comparing each, one by one, to the transcriptome signatures of 205 human
brain regions. Remarkably, neuronal signatures for each of the seven mouse regions most
closely matched the signatures of the corresponding human region. The authors then built
new computational models to combine the mouse signature data with human genome-
wide association study (GWAS) data based on NFT pathology that had been sculpted
with algorithms to include cell type-specific functional network information. They then
created a new test data set composed of bacTRAP-derived translatomes of ECII neurons
in 6-month-old mice genetically engineered to generate AB plaques [104] (the authors
studied only this cell type in the context of the disease). This analysis detected 1936 DEGs
compared to non-transgenic controls. Contrary to many of the studies described above, the
ribosomes were not changed, but rather several cytoskeletal and synaptic proteins were
altered, similar to some of the previous studies described above. Beyond the cytoskeletal
changes seen in many NDs, this study also yielded a potential explanation for a connection
between A-syn aggregates and AD, as explained below.

Since the computational model included GWAS data tied to the NFT burden in AD
patients, the authors were well-positioned to detect genes involved in tau processing.
Indeed, they found that PTBP1 (polypyrimidine tract binding protein 1) regulates tau
splicing and its dysregulation causes an imbalance in 3R/4R tau levels. Interestingly,
PTBP1 also regulated A-syn. A-syn is most infamous for its prominent role in a range of
NDs known as synucleinopathies, including Parkinson’s disease, Lewy body dementia, and
multiple systems atrophy. However, it was also previously associated with AD [105,106],
although the molecular mechanism was poorly understood. A study by Roussarie et al.
implicates A-syn’s established role at the synapse, where the neuronal cytoskeleton is
most dynamic, as the key to its connection to AD [101]. The authors concluded that
high vulnerability may be anchored in ECII neurons because their processes are highly
dynamic, which can easily become unbalanced with age or an AB plaque burden, leading
to tau imbalance, toxic NFT formation, and its eventual spread to secondarily vulnerable
regions [2,89,100].

Interestingly, the snRNAseq studies revealed different information about selective
vulnerability in AD [102,103]. In one of the first such studies of the prefrontal cortex,
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it was concluded that early in disease there are many cell type-specific gene expression
changes, especially downregulations, but the differences become diminished as the disease
progresses [102]. Furthermore, pathways related to myelination, in both oligodendrocytes
and neurons, were prominently affected [102]. In a later study using snRNAseq from
human samples [103], it was determined that RORB (Retinoic acid receptor-related Orphan
Receptor B), a protein best characterized for its role in cortical development [107–109],
served as a highly useful marker to identify specifically those neurons in ECII that are
most vulnerable [103]. It was determined that these RORB+ cells in ECII have very similar
signatures as a cell type in the superior frontal gyrus that is also vulnerable. Histological
experiments revealed that vulnerable RORB+ cell types had at least two broadly different
morphologies in both regions, indicating that cell shape alone (and thus probably also firing
properties) is not sufficient to distinguish vulnerable from resistant cells. Interestingly, in
both snRNAseq studies, inhibitory neurons showed little, if any, vulnerability [102,103].

Thus, through these three studies of AD, we have learned that functional weaknesses
include the neuronal cytoskeleton and myelination, and that RORB is an excellent marker of
vulnerable neurons. While these impressive results do not mean the selective vulnerability
problem of AD is solved, they do outline the direction for additional experimentation.
Indeed, all of these experiments neglected the locus coeruleus, which has NFTs even before
ECII, the degeneration of which has been demonstrated to trigger the degeneration of
hippocampal and cortical areas [90–93]. Using bacTRAP or RiboTag in RORB+ neurons
in multiple regions, especially ECII, CA1, and the locus coeruleus, may build on the
foundational knowledge provided by the studies reviewed here.

7. Conclusions
Notable Trends

In our survey of CST studies, we noticed some interesting trends. For example, the
expression level of a disease-causing protein is often high in resistant cells or regions and
low in vulnerable cells or regions, indicating that selective vulnerability is not simply a
result of how highly the misfolded protein is expressed (both ALS studies [26,28], both
prion studies [30,53], and the Bauer et al. HD study [74]). Furthermore, we highlighted
examples of how a single misfolded protein can impact specific cell types in unique ways
(all the CST studies), and that different variants of a protein can affect a single cell type
differently (the prion studies [30,53], see also [110]). An unexpected result was that the
UPR is often not activated in the early stages of ND. This suggests that the UPR is activated
only late in NDs and that therapies aimed at controlling the UPR may not help during early
disease stages. Interestingly, cell identity genes are consistently changed in HD. This could
be caused by the diminished maintenance of mature, fully differentiated neurons, giving
the impression of cell cycle reentry, which is also reported in HD and other NDs. Although
not unexpected, excitatory neurons appear more vulnerable to certain NDs (ALS and AD),
while inhibitory neurons appear more vulnerable to others (HD and prion diseases).

Perhaps the most striking trend is that multiple ribosome proteins often change in the
same direction. Sometimes they are increased, while in others they are decreased, and this
happens in vulnerable and resistant cell types. What could be the purpose? One obvious
reason is a change in mTOR signaling, but, in some cases, ribosome proteins changed
without changes to mTOR. An alternative hypothesis is that cells make these changes
to adjust their intracellular crowding, which would in turn modulate the mechanical
properties of the cells [111,112]. This would be an interesting mechanism to complement
the changes to structural proteins such as actin and spectrins, which were also observed
multiple times.

At the beginning of this review, we pondered the meaning of cell types having few or
many DEGs. Through this survey, we saw that the most vulnerable neurons do not always
have the most DEGs (e.g., PV neurons in prion diseases had very few DEGs), although they
did in other contexts (e.g., ALS and HD). We also saw that when resistant cells respond
to a disease, the DEGs or pathways often overlap with those in the vulnerable neurons.
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Furthermore, there was a wide range of the number of DEGs within and across studies.
In the introduction, we listed several technical explanations for why the number of DEGs
can vary across studies, but there could also be a biological reason. When a molecular
pathway has lots of components, it may require many DEGs to thoroughly change its output.
Likewise, a pathway with a few components may need a few DEGs to change its output,
but such a pathway may still be important. Furthermore, if a certain pathway is engaged
by different cell types, each cell type may manipulate different genes in that pathway
with the same overall effect. Focusing on specific genes would miss the similarities of the
responses between the two cell types. Therefore, while the number of DEGs is convenient
for a cursory description of a certain cell type’s response, a determination of the pathways
in which these DEGs participate is needed for a deeper understanding.

In many papers, DEGs are described as being caused by the “dysregulation” of
gene expression, implying that the changes are the result of a “dysfunction” of gene
regulation. However, if gene expression regulation was dysfunctional, it would not result in
coordinated changes and genes would not pass statistical testing for differential expression
(i.e., no DEGs). Therefore, affected neurons with gene expression “dysfunction” would
likely show very few DEGs and the DEGs would be random, unlikely to participate in
a common molecular pathway. Moreover, gene expression dysfunction would not lead
to conserved changes between different studies or between humans and mouse models.
Importantly, this review has described examples of similar gene expression responses
between different studies (i.e., in the HD section) or different models within a study
(i.e., the FFI and gCJD study). Therefore, these are programmed responses and not the
breakdown of gene expression control. It is easy to envision that DEGs in resistant neurons
were changed as a protective response. The same logic could be applied to vulnerable
neurons, where the response was protective but not sufficient for full protection. In support
of this conjecture, we described examples where vulnerable and resistant neurons had
similar changes (the HD studies and the second ALS study [38]). This is important because
an understanding of whether changes are protective or harmful is needed to apply the
results of these studies to therapeutic development.

8. Future Directions

There has been a swift evolution in sc/snRNAseq techniques. A pioneering develop-
ment in this domain is the Scissor algorithm (Single-Cell Identification of Subpopulations
with Bulk Sample Phenotype Correlation) [102]. This tool was designed to merge and corre-
late bulk RNAseq data with scRNAseq information. The utility of Scissor is underscored by
its capacity to harness phenotype data from bulk RNA, subsequently pinpointing relevant
individual cells. This facilitates the nuanced identification of cell subgroups that might be
pivotal drivers of diseases.

While technologies like CST and sc/snRNAseq offer deep insights, they come with
limitations, notably the loss of spatial context due to tissue processing. Addressing this
gap are innovative methods collectively termed spatial transcriptomics. These techniques
have the capacity to detect a vast array of transcripts from tissue samples in a parallel
manner. An intriguing adaptation of this approach specifically targets the translatome [103].
While these cutting-edge tools can identify up to 5000 genes, they demand significant
computational power and advanced equipment—surpassing the requirements for CST
or sc/snRNAseq [103]. The technical complexities of these methods might explain their
limited application in ND studies so far.

Diving deeper into specialized methodologies, bacTRAP and RiboTag stand out for
their unique capability to selectively capture the mRNAs associated with ribosomes, offer-
ing a real-time snapshot of protein synthesis. However, the spectrum of gene expression
regulation is broad, and to fully grasp its nuances other layers of its control warrant explo-
ration. A case in point is the study of miRNAs from MNs in SOD1G93A mice [104], which
was conducted using miRAP—a method reminiscent of RiboTag [105,106]. Unlike Ribo-
Tag, which uses an epitope-tagged ribosomal protein, miRAP employs an epitope-tagged



Biology 2024, 13, 67 18 of 22

Argonaute2, targeting the RNA-induced silencing complex. From this work, miRNA-218
emerged as a potential marker for resistant MNs, but how it connects to translatome alter-
ations remains unknown. However, such an analysis, plus the study of other levels of gene
expression, is possible with Tagger mice [113]. In Tagger mice, RiboTag is expressed in par-
allel with three additional proteins, including an epitope-tagged Argonaute2, a fluorescent
protein targeted to the nucleus, and an enzyme that activates a uracil analog to timestamp
newly synthesized RNA molecules [113].

In concluding this forward-looking review, it is evident that leveraging the power
of bacTRAP, RiboTag, and Tagger, among other tools, will substantially expand our un-
derstanding of NDs. These tools are poised to unravel the intricate dynamics of selective
vulnerability and resistance in neurons, charting a course toward the development of
transformative therapeutic interventions.
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