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Simple Summary: The challenges and expenses associated with accessing pedigree information
pose a clear technical weakness that impedes the widespread adoption of selective breeding schemes
in aquaculture. In large offspring populations, such as fish, using a small number of markers can
substantially reduce the cost of parentage assignment. Theoretically, it is feasible to calculate the
smallest parentage marker set from a given marker pool by exhaustively enumerating all possible
marker combinations when full parental genotypes are known. However, the sheer number of
markers can render the exhaustive method impractical. To address this, we have developed an
online software that utilizes exhaustive and greedy algorithms to identify the smallest possible
parentage marker set for closed populations. The tool was tested and proven to be effective in
narrowing down the number of markers, thus providing technical support for large-scale parentage
assignment applications.

Abstract: Parentage assignment is a genetic test that utilizes genetic characteristics, such as molecular
markers, to identify the parental relationships within populations, which, in commercial fish farming,
are almost always large and where full information on potential parents is known. To accurately
find the true parents, the genotypes of all loci in the parentage marker set (PMS) are required
for each individual being tested. With the same accuracy, a PMS containing a smaller number of
markers will undoubtedly save experimental costs. Thus, this study established a scheme to screen
low-redundancy PMSs using the exhaustive algorithm and greedy algorithm. When screening
PMSs, the greedy algorithm selects markers based on the parental dispersity index (PDI), a uniquely
defined metric that outperforms the probability of exclusion (PE). With the conjunctive use of the two
algorithms, non-redundant PMSs were found for more than 99.7% of solvable cases in three groups
of random sample experiments in this study. Then, a low-redundancy PMS can be composed using
two or more of these non-redundant PMSs. This scheme effectively reduces the number of markers
in PMSs, thus conserving human and experimental resources and laying the groundwork for the
widespread implementation of parentage assignment technology in economic species breeding.

Keywords: parentage allocation; mixed families; parentage marker set; fish; molecular marker

1. Background

Parentage assignment can trace the parents of an offspring by the genotypes of molec-
ular markers in them based on Mendel’s laws. It is commonly employed to differentiate
families in forensics and economic species breeding, especially farmed fish breeding [1–3].
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Economic fish usually lay large numbers of eggs [2], which are fertilized in vitro. This prop-
erty makes it easy to artificially construct dozens or even hundreds of full-sib or half-sib
families during a breeding season. For fish, if multiple families are reared separately, it is
difficult to ensure that they are all in the same water and feeding conditions, so contempo-
rary group effects may obscure family differences. In contrast, the polyculture of fish in the
same pond and the differentiation of families through parentage testing would make the ex-
periment more rigorous. Thus, it is an important application for fish breeders to accurately
trace the parents of offspring based on the markers’ genotypes of the closed population and
subsequently obtain accurate pedigree information for downstream analysis. Obviously,
an efficient parentage marker set (PMS) with fewer markers can significantly reduce the
cost of assigning thousands of offspring [4]. Moreover, fewer markers may improve the
accuracy of parentage assignment [5].

The probability of exclusion (PE) [6,7], including the derived cumulative probability
of exclusion (CPE) [8,9], is usually used to access the ability of marker(s) and filter PMSs.
As the name suggests, PE is an estimate of the proportion of non-parents/non-parental
pairs excluded by a single marker using the population genetic parameters. CPE can be
thought of as the multiplication of PE values, indicating the exclusion ability of a set of
markers. However, CPE cannot fully reflect the true power of multiple markers [1]. For
example, if two linked markers both with high PE are adopted for parentage assignment,
the CPE value will significantly increase but the actual parental exclusion ability does not
improve. The software P-LOCI [10] was developed for this linkage problem to obtain a
highly efficient PMS.

Obviously, the CPE does not take into account the interaction of parental exclusion
ability among markers. The non-independent markers may falsely increase the CPE value,
and then the cooperating parental exclusion effect of independent markers may also be
ignored. The marker interaction information is discarded during the PE/CPE calculation.
However, the marker cooperation effects are undoubtedly valuable for selecting of the most
efficient marker combinations to reduce the cost of parentage assignment.

Other than PE, most parentage assignment software can also simulate numerous
offspring genotypes based on candidate parent information to calculate the successful
assessment rate of PMS [11]. Extending this strategy, if we simulate all possible genotyping
combinations of the given markers across the offspring of all candidate parent pairs,
theoretically, the smallest PMS that can determine all full-sib family parent pairs can safely
be found by an exhaustive method of all marker combinations with a PMS size from 1 to all.
A PMS that is just sufficient to distinguish all parent pairs is called a “non-redundant PMS”
in the following section of the paper. The “minimum PMS” is the smallest one of all non-
redundant PMSs for a population. In addition, if the given markers are not sufficient, the
parental pairs and the corresponding simulated offspring with indistinguishable genotypes
will also be found to guide the collection of new markers.

There are two key components to achieve the conception, i.e., a genotype matrix of
all possible simulating offspring and a suitable algorithm to find non-redundant/low-
redundancy PMSs. The genotype matrix of all simulated offspring is generated by using
all potential parents’ correct genotypes of given markers, which are called full parental
genotypes. For the artificial populations used in aquatic breeding, which often follow the
factorial mating designs, such as the North Carolina (NC) II population, the candidate par-
ent pools usually cover all potential parents, providing the possibility of simulating all pos-
sible offspring [4]. However, in natural populations, the candidate parent pools are usually
samples of the entire adult population, making the full parental genotyping challenging.

On the other hand, the appropriate algorithm depends on the order of magnitude
of the given markers. Different types of markers have different orders of magnitude.
The currently widely used genetic markers for parentage assignment are microsatellite
(also known as simple sequence repeat, SSR) [12,13] and single-nucleotide polymorphism
(SNP) [3,14,15]. Due to the differences in detection methods and the polymorphisms, the
size of a given SNP set, typically in the thousands, is always several orders of magnitude
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larger than that of an SSR set, which is typically less than a hundred. The exhaustive
method can theoretically list all combinations of markers from the given marker pools and
evaluate the parentage assignment capacity. However, there is no doubt that the number of
marker combinations increases exponentially with the number of given markers, which in
turn makes it impossible to obtain results in an affordable time. For the SNP sets that are
always generated by next-generation sequencing with large sizes, the exhaustive method is
not applicable, and the development of other low-complexity algorithms is needed.

Although a non-redundant PMS can be computed based on the above strategy, in
actual testing, the marker genotyping issues, such as incorrect or missing genotyping, can
seriously affect the success of parentage assignment. The robustness of a non-redundant
PMS is undoubtedly poor. Merging multiple non-redundant PMSs into a low-redundancy
PMS is an effective strategy to tolerate the genotyping problems and improve the success
rate of parentage assignment.

Thus, we developed a PMS calculation software (v1.0.0) based on all simulated off-
spring genotypes from full parental genotyping, which combines exhaustive and greedy
algorithms to adapt different sizes of the given marker set and implements the low-
redundancy PMS computation centered on the minimum PMS members. The effective-
ness of the two algorithms has been verified using simulated and real datasets. The
software was developed in Python 3 and a user-friendly web version is also online
(http://bioinfo.ihb.ac.cn/pmseeker, accessed on 28 January 2024).

2. Materials and Methods
2.1. Algorithm and Scheme
2.1.1. Basic Definition

We define P =
{

P1, P2, . . . , Pp
}

as the candidate parents and PiPj (or Pi×j) as the parent
pair consisting of Pi and Pj and also their offspring set. M = {M1, M2, . . . , Mn} is defined
as the given marker set, and G =

(
Gi,j

)
is the allele vector (i.e., genotype) for the ith

candidate parent on the jth marker. The genotype of parent Pi on marker Mm is denoted as
Gi,m = {Gi1, Gi2}, i.e., parent Pi has two alleles Gi1 and Gi2. Analogously, the genotype of
Pj is denoted as Gj,m =

{
Gj1, Gj2

}
. According to Mendel’s law of segregation, all possible

genotypes of offspring of parent pair Pi×j are as follows:

Gi×j,m =
{{

Gi1, Gj1
}

,
{

Gi1, Gj2
}

,
{

Gi2, Gj1
}

,
{

Gi2, Gj2
}}

The genotype set does not contain repeated elements, which means that the size of
Gi×j, m varies from 1 to 4. For example, for a marker with 3 alleles (A, B, C), AA × BB gives
AB, AA × BC gives AB, and AC, AB × AB gives AA, AB, and BB, while AB × AC gives
AA, AC, AB and BC.

2.1.2. Exhaustive Algorithm

The exhaustive algorithm for PMS screening must take into account all genotypes
that various combinations of parents can theoretically produce, as well as all marker
combinations of different sizes ranging from 1 to all, to determine whether the simulated
offspring with any genotype vector can be completely traced back to the single parent
pair according to Mendel’s laws. It traverses all the combinations (Ci

n) of i (i = 1, 2, 3, . . ., n)
markers in this way and must compute X = ∑ n

i=1Ci
n times. If a PMS has not been obtained,

then it traverses the marker combinations of size i + 1 until all the combinations are
exhausted (pseudo-code in Supplementary Section S4 Algorithm S1).

The PMSs produced by the exhaustive approach are referred to as “exhaustive-PMSs”
in the following section of the study. The exhaustive algorithm outputs only non-redundant
PMS(s) in ascending order of the PMS size. The first output must be the global best solution
(the minimum PMS) and there may be multiple minimum PMSs. The PMSs checked by
the exhaustive algorithm can definitively distinguish every offspring when the genotyping
errors in the experiment operations are not taken into account. If there is no solution,

http://bioinfo.ihb.ac.cn/pmseeker
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the program will also output the indistinguishable parent pairs to guide the addition of
new markers.

2.1.3. Multiway Tree-Based Greedy Algorithm

In order to describe the tree structure in detail, N represents the node, and
Nl =

{
Nl, 1, Nl,2, . . . Nl,n

}
represents all nodes at the l-th layer, where Nl,i represents the

i-th node in the l-th layer. Sl,i is used to store the set of parent pairs in node Nl,i, nl,i is used
to denote the number of parent pairs in the node Nl,i, and Tl denotes the number of nodes
contained in the l-th layer. When Sl,i contains multiple parent pairs, Nl,i is called a branch
node; if there is only one parent pair in Sl,i, Nl,i is a leaf node.

Theoretically, the algorithm will converge quickly if all sets of parent pairs in the same
layer are similar in size. Therefore, we used the sum of the mean and standard deviation
to measure the degree of dispersion of parent pairs (Parental Dispersion Index, PDI). The
calculation formula is as follows:

PDIm = meanm + SDm

where

meanm =
1

T(l+1)

T(l+1)

∑
i=1

n(l+1),i

SDm =

√√√√ 1
T(l+1)

T(l+1)

∑
i=1

(
n(l+1),i − meanm

)2

The PDI of marker Mm is the sum of the average and standard deviation of the number
of parent pairs in the remaining child nodes N(l+1),i, excluding all leaf nodes and repeated
branch nodes that contain the same set of parent pairs after all parent pairs in Nl are
genotyped by the marker Mm. The smaller PDI indicates the more nodes generated by
parent pairs in Nl and the smaller difference in the number of parent pairs in each node of
N(l+1), which means that the marker has a better effect in distinguishing N(l+1),i.

A specific marker will finally differentiate all parent pairings after layer-by-layer
screening. It has now reached the bottom of the tree structure, where each node is a leaf
node and there are no more branch nodes, and the PDI has now reached its minimal value
of 0.

The program screens markers by creating a multiway tree. All candidate parent pairs
make up the root node. With the first layer of the tree, different markers can be used to
produce the nodes of the next layer of the tree. The optimal next layer is chosen as the new
layer with the lowest PDI, and the associated marker is added to the final PMS. By looping
in this manner until all child nodes of some layer are leaf nodes, the whole multiway tree is
retrieved, and the local optimal PMS is obtained (pseudo-code in Supplementary Section S4
Algorithm S2 and Figure 1). Additional PMSs can be generated after removing one or
more PMS markers from the given marker set and reapplying the greedy algorithm on the
shrunken set. In the following section of the paper, PMSs obtained by the greedy algorithm
will be referred to as “greedy-PMSs”, which are usually of very low redundancy.

2.1.4. Scheme to Constitute a Low-Redundancy PMS

By utilizing the non-redundant or very low-redundancy PMSs generated through
exhaustive and/or greedy algorithms, a new PMS with low redundancy can be constructed
simply by combining the first two output PMSs. The number of PMSs to be merged can
also be artificially adjusted according to the experimental needs.
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to be distinguished, namely the branch node; the gray node is the leaf node.

2.2. A Comparative Study on the Running Time of the Two Methods

We simulated mixed populations of 5 various sizes and utilized SNP markers, the
most prevalent dimorphic marker in the genome, to generate given marker sets in order
to compare the efficacy of the two algorithms with varied numbers of given markers
and families. Each set was made up of the optimal SNP sets and background markers.
The sets with a modest number of markers (>20) are used to investigate the efficacy of
the two algorithms, while the sets with a large number (>100) are used to investigate
the greedy algorithm. Specific simulation and operating methodologies are detailed in
Supplementary Section S1.

2.3. PMS Screening Based on Real Molecular Markers

Microhaplotype marker is a novel genetic marker consisting of a group of adjacent
SNPs and has potential applications in parentage assignment [16,17]. To better capture
genome-wide marker properties, we chose 225 microhaplotype markers dispersed across
the grass carp genome [18] as the given marker set (dubbed “MF2016 Marker Set”). These
markers were genotyped in five grass carp parents, which were used to generate an NCII
population (3♂× 2♀) in 2016. We screened the PMSs for this closed population and analyzed
the performance of both algorithms independently under the conditions of known and
unknown gender of the candidate parents.

We conducted three different experiments on the 225 markers, each with 1000 groups
of given markers, each with 10 markers randomly picked from the MF2016 Marker Set.
The greedy-PMSs were compared in terms of success rate, result agreement rate, num-
ber of markers, and associated statistics, with the exhaustive-PMS being used as the
optimal solution.

2.4. Application in a Real Case

To investigate to what extent genotype errors and missingness affect the parentage
assignment efficacy of greedy-PMSs, we used the practical datasets of the Mexican gray
wolf from Andrews, Adams, and Cassirer [19], the only applicable study we could find.
These datasets provide (1) authentic correspondences of parent–child trios and (2) authentic
genotypes and observed genotypes of both SSR and SNP markers. After generating
PMSs from the marker sets, parentage testing was performed using CERVUS 3.0 [20]
and COLONY 2.0 [21], respectively, and the results were filtered using specified criteria
according to the application scenarios of the program. Supplementary Section S3 contains
the detailed procedures.
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3. Results

We evaluated the running times of the two algorithms using simulation data and
analyzed the PMSs obtained by the two algorithms using markers from the real genome.
To evaluate the greedy-PMSs’ performance and to identify potential difficulties in actual
applications, we used real data from Mexican gray wolves for parentage assignment.

3.1. A Comparative Study on the Running Time of the Two Algorithms

Apparently, the computational effort is determined by the number of given markers
and the number of families involved. We set the running time threshold to 5000 s, which is
sufficient to show the change in each algorithm, and then generated a series of datasets in
silico to test the time efficiency of the algorithms in scenarios with different numbers of
markers and families (Supplementary Section S1). The results revealed that the exhaustive
algorithm was constrained by the quantity of given markers. The running time (>5000 s)
expired when the number of given markers reached 19 and the family number reached 10.
The greedy method, on the other hand, has no restriction on the number of given markers.
When the number of given markers was low, the exhaustive algorithm outperformed the
greedy algorithm. However, after the number of given markers reached 17, the greedy
algorithm began to outperform in terms of speed. In fact, the greedy algorithm’s running
time was proportional to the number of markers (Figure S1 in Supplementary Section).
As a result, even with a huge number of markers, the greedy algorithm can screen out
PMS quickly.

3.2. PMS Screening Based on Real Molecular Markers
3.2.1. Summary of the Solution Acquisition Rate

When compared to simulated data, real data typically contain more complicated
noise, which can reduce the efficacy of screened markers. Thus, we employed 225 genuine
molecular markers from the MF2016 marker set in three concurrent studies, each sampling
1000 sets of markers as given marker sets. Parental gender information is frequently
overlooked throughout the reproduction process, resulting in an increase in the potential
number of families and, ultimately, affecting the required PMS. In order to match the
practical application, we performed PMS screening on the MF2016 marker set with and
without parental gender information. Using exhaustive-PMSs as the gold standard, we
investigated the greedy algorithm’s PMS-screening efficacy under various situations.

For clarity, we used the following definitions: The minimum PMS is called an optimal
solution. A solution with a greedy-PMS that partially overlaps with any optimal solution is
called an intersection solution. A solution that includes any non-redundant PMS as a subset
is a redundant solution. In all simulated datasets of known and unknown genders, the
greedy algorithm could also find a solution where the exhaustive algorithm had a solution
(Table 1). However, the greedy-PMS can be a non-redundant solution or a low-redundancy
solution. If a redundant PMS is obtained, the exhaustive algorithm can be used with it to
remove redundant markers and obtain a non-redundant PMS. After de-redundance, the
optimal solution rate of the greedy algorithm reached 99.71%.

3.2.2. Comparison of the Efficacy of PDI, PIC, and PE

Using the same datasets, we calculated the PDI, PIC, and PE of 225 real molecular
markers (Supplementary Section S3 details the calculation method), as well as the relation-
ship between the three indexes. The lack of parents’ gender information made the genotype
combinations of simulated offspring more complex and the PMS more difficult to find, but
regardless of gender, the association between PIC and PE was very strong and both were
inversely related to PDI (Table 2), with the correlations between the three being highly
significant (p < 2.2 × 10−16).
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Table 1. Summary of resoluble set rate and optimal solution obtaining rate with and without
gender information.

Gender Group
Both Algorithms Greedy Algorithm

ResS Number ResS Rate (%) OS Number OS Rate (%) RedS Number Rate of OS
and RedS (%) IS Number

Known

1 326 32.6 319 97.85 4 99.08 3
2 349 34.9 334 95.7 15 100 0
3 351 35.1 341 97.15 10 100 0

Sum 1026 34.2 994 96.88 29 99.71 3

Unknown

1 146 14.6 142 97.26 4 100 0
2 145 14.5 139 95.86 5 98.62 1
3 153 15.3 139 90.85 14 100 0

Sum 444 14.8 420 94.59 23 99.77 1

Note: This test is based on simulated data and 225 genuine molecular markers from the MF2016 marker set of
grass carp. Abbreviations in the table are as follows: ResS, resoluble set; OS, optimal solution; RedS, redundant
solution; IS, intersection solution.

Table 2. Spearman correlation coefficients between statistics when the parents’ gender was known
or unknown.

r (Gender Known) r (Gender Unknown)

PIC vs. PE 0.9886 0.9886
PDI vs. PIC −0.7783 −0.8738
PDI vs. PE −0.7913 −0.8766

Note: This test is based on the same data used for Table 1.

To examine the efficacy of PMS screening utilizing the greedy algorithm with PDI,
PIC, and PE as indicators, we employed the above randomly sampled data to screen the
PMS. The number of markers in PMSs acquired by PE and PIC is three to five times that
of PMSs obtained by PDI, and the range of variance is wider (Figure 2). In consequence,
as compared to PIC and PE, utilizing PDI as the indicator can remove redundant markers
more effectively and achieve a more optimized PMS.

The horizontal axis represents the number of markers contained by the exhaustive
method (the optimal solution), and the vertical axis represents the number of markers
produced by the greedy algorithm. The cases of known gender are shown on the left, and
the cases of uncertain gender are shown on the right. The data in the lower right corner of
each figure is the rate of obtaining the optimal solution under the current situation. For
example, “96.88%” indicates that when the gender is known, the rate of achieving the
optimal solution is 96.88% using PDI as the greedy algorithm’s indicator.

In the PMSs generated by two algorithm sets with and without gender information,
we estimated the average PIC and CPE values of PMSs, which are used to assess the
polymorphism and effectiveness of parentage assignment for a certain marker set (Table 3).
According to the results, the number of markers in greedy-PMSs and the number of markers
in minimum PMSs are approximately the same. The average PIC of the PMSs obtained by
the two algorithms was approximately 0.61, and the CPE was approximately 0.91 (gender
known) and 0.97 (gender unknown).

Table 3. Summary of the indicators of PMSs in resoluble sets (mean ± SD).

Indicators
Gender Known Gender Unknown

Exhaustive Greedy Exhaustive Greedy

Marker number 2.6686 ± 0.6051 2.6998 ± 0.6321 3.6306 ± 0.7593 3.6847 ± 0.7920
Average PIC 0.6012 ± 0.0844 0.6141 ± 0.0823 0.6138 ± 0.0739 0.6231 ± 0.0711

CPE 0.9078 ± 0.0507 0.9143 ± 0.0478 0.9665 ± 0.0214 0.9698 ± 0.0180
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3.3. Application in a Real Case

With the use of the dataset from Andrews, Adams, and Cassirer [20], we were able
to determine the accuracy of parentage assignment in real circumstances by employing
greedy-PMSs. We screened two greedy-PMSs and combined them to generate the third
PMS as a low-redundancy marker set (methods in Supplementary Section S3). These
three sets of PMS were used to conduct parentage assignment through CERVUS 3.0 and
COLONY 2.0, respectively (Table 4).

Both CERVUS and COLONY correctly identified the parents for all offspring without
problematic markers, indicating a high effectiveness of the greedy-PMSs. Using SSR PMSs,
these two tools also achieved very good accuracy rates in the offspring with one false or
missing marker, and only two offspring were not assigned parents by CERVUS (PMS “S1-
1”). As for SNP PMS, genotype errors showed a significant negative impact on parentage
assignment. When the size of a greedy-PMS did not exceed 6, both tools failed with a
single false marker in most cases, with the only exception that COLONY succeeded on
PMS “45-2”.

Using a low-redundancy PMS pooled from two greedy-PMSs, the test was successful
for all but three cases with incorrect parents assigned: an offspring with one erroneous
marker out of nine markers in PMS “1-1+2” (only CERVUS failed), and one offspring
missing half the markers in PMS “45-1+2” (both tools failed). These results suggest that
modestly increasing the redundancy of a PMS can effectively eliminate the negative impact
of missing genotypes and genotype errors.
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Table 4. Summary of the parentage assignments for Mexican gray wolf (data set from Andrews [19])
using CERVUS 3.0 and COLONY 2.0 in the case of genotype error and genotype missing.

PMS † Number/Candidate
Number

Average
PIC CPE

CERVUS
Accuracy
Rate (%)

COLONY
Accuracy
Rate (%)

Failures on Genotype Error ‡ Failures on Missing Genotype §

Offspring CERVUS COLONY Offspring CERVUS COLONY

S1-1 3/22 0.669 0.9611 16 (88.89) 18
(100.00) 2 2 0 0 - -

S1-2 4/22 0.6754 0.9871 18
(100.00)

18
(100.00) 1 0 0 1 0 0

S1-1+2 5/22 0.6817 0.9962 18
(100.00)

18
(100.00) 2 0 0 1 0 0

1-1 4/999 0.3023 0.6613 14 (82.35) 13 (76.47) 3 3 3 3 0 1

1-2 5/999 0.3309 0.7705 17
(100.00)

17
(100.00) 0 - - 2 0 0

1-1+2 9/999 0.3182 0.9223 16 (94.12) 17
(100.00) 3 1 0 5 0 0

4-1 6/326 0.3682 0.8573 15 (88.24) 14 (82.35) 1 1 1 5 (3) ¶ 1 (3) 2 (3)

4-2 5/326 0.3652 0.8000 17
(100.00)

17
(100.00) 0 - - 3 0 0

4-1+2 11/326 0.3668 0.9714 17
(100.00)

17
(100.00) 1 0 0 6 (4, 2) 0 0

45-1 6/201 0.3690 0.8587 14 (82.35) 15 (88.24) 1 1 1 5 (3) 2 (3) 1 (3)
45-2 6/201 0.3733 0.8609 15 (88.24) 16 (94.12) 1 1 0 4 (3) 1 (3) 1 (3)

45-1+2 12/201 0.3712 0.9802 16 (94.12) 16 (94.12) 2 0 0 6 (6, 2, 2) 1 (6) 1 (6)

475-1 6/111 0.3662 0.8557 16 (94.12) 16 (94.12) 1 1 1 4 (3) 0 0

475-2 6/111 0.3705 0.8589 17
(100.00)

17
(100.00) 0 - - 4 (3) 0 0

475-1+2 12/111 0.3719 0.9273 17
(100.00)

17
(100.00) 1 0 0 6 (4, 3, 2) 0 0

Note: †. PMS S1 corresponds to the dataset MSAT, while PMSs 1, 4, 45, and 475 correspond to the datasets
MAF1 (MAF > 0.1), MAF4 (MAF > 0.4), MAF45 (MAF > 0.45), and MAF475 (MAF > 0.475), respectively. ‡. For
CERVUS 3.0, except PMS 1-1+2 for which CERVUS returned a wrong parent pair for one offspring (MGW_1352),
all identification failures were that CERVUS could not identify an offspring to any parent pair. For COLONY
2.0, except PMS 1-1 for which COLONY returned wrong parent pairs for MGW_1352 and MGW_1354, failures
were all attributed to the inability to identify any parent pair for MGW_1346. §. All identification failures in this
column were that the best parent pair identified by both CERVUS and COLONY was not the true parent of the
offspring. ¶. The number in parentheses indicates the number of markers with genotype errors/missing in one
offspring (number 1 is omitted). Here, “5(3)” means that each of the 5 offspring has 3, 1, 1, 1, and 1 marker(s) with
genotyping problems, respectively.

3.4. The PMSeeker Online Tool for PMS Screening

The process of PMS screening has been implemented as an online tool, PMSeeker
(http://bioinfo.ihb.ac.cn/pmseeker, accessed on 28 January 2024), which is freely available
to the public. A simple and clear interface is provided for users to upload data and set
parameters. In particular, the default option for the algorithm is “Recommended”, which
means that the greedy algorithm will be applied first to obtain a greedy-PMS, and if
applicable, the exhaustive algorithm will be further used on the greedy-PMS to remove
possible redundant markers. The results include a base PMS and a set of recommended
redundant markers from other PMSs, no more than twice as many as in the base PMS.
Users can use the base PMS and any number of markers in the redundancy set to form a
low-redundancy PMS.

4. Discussion

As a non-redundant/low-redundancy PMS calculation software, PMSeeker (v1.0.0)
uses full parental genotypes to simulate the whole offspring genotype combinations for the
PMS filtering. It implements two algorithms: the exhaustive one for small given marker
sets such as SSRs, and the greedy algorithm for huge given marker sets such as SNPs. Here,
we evaluated the attributes of the two algorithms and discovered some concerns that need
to be considered in real-world applications during the study process.

4.1. The Advantages and Disadvantages of the Two Algorithms and the Efficacy
of Their Combination

To find the optimal sets of markers, the exhaustive method goes through all possible
marker combinations and all conceivable (or provided) parent pairs one by one. The

http://bioinfo.ihb.ac.cn/pmseeker
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computational complexity reaches O(N! ∗ p), where p is the number of all possible families,
and N is the number of given markers. N is the main factor that causes the exponential
growth in computational complexity. As a result, the exhaustive algorithm is unsuitable for
scenarios with a large number of given markers. When N = 19 in our test, the running time
of virtually all simulations exceeded 5000 s (Supplementary Section S1).

Additionally, the greedy algorithm screens the layer’s local optimal marker based
on PDI. Each optimal solution must cross all the markers a maximum of M times. That
is, the computational complexity is O(M ∗ N ∗ p), where M denotes the total number of
markers contained in the final PMS. During the actual computation process, when the tree
structure is constructed, the number of parent pairs to distinguish in each child node of
the new layer is smaller than the number of original parent pairs. Meanwhile, the greedy
algorithm merely needs to filter the remaining potential markers one by one to find the
marker with the lowest PDI. The two aspects outlined above significantly minimize the
time required for calculation while screening PMSs. Due to the advantages listed above, the
greedy algorithm is well suited for scenarios involving a high number of given markers.

In contrast to the exhaustive method, the greedy algorithm seeks the local optimal
solution, with an optimal solution rate of more than 90% (Table 1). After screening the
greedy-PMS with the exhaustive approach, the rate increased to 99.7%, demonstrating that
the combination of the two methods is more efficient than utilizing the greedy algorithm
alone in obtaining the ideal PMS. Although this is not as good as utilizing the exhaustion
algorithm exclusively, this combination is unquestionably a strong strategy in many cir-
cumstances where the number of given markers collected from the entire genome is large
and the exhaustive algorithm cannot be employed directly.

4.2. Comparison of the Statistics Used in PMS Screening

Currently, screening procedures for PMS can be loosely classified into two groups
based on the sorts of markers. For molecular markers with medium and high polymor-
phisms, molecular markers with high polymorphisms are recommended as much as pos-
sible. Thus, statistics referring to polymorphisms, such as PIC [22,23] and PE [7], are
utilized, which primarily indicate the discriminability of a single marker for individuals.
For low-polymorphism SNP markers, it is primarily to eliminate comparable markers
(based on linkage disequilibrium) and markers that are not sufficiently authentic (based on
Hardy–Weinberg balance, MAF, etc.).

With the application backdrop of parentage assignment in mind, we created a statistic,
PDI, that is utilized to represent the discriminability for candidate parent pairs of one
marker. The greater the discriminability, the lower the value. The relationship between
PDI, PIC, and PE of 225 markers in the real marker collection was compared (Table 2). The
findings revealed that PIC and PE were substantially positively related (r = 0.988), but PDI
was negatively and less correlated with the two (r ≈ −0.8). The correlation between PDI
and PIC/PE was stronger in the absence of parental gender information, indicating that
when parental gender information is missing, PDI is closer to distinguishing individuals,
and higher polymorphic markers may be required to separate parent pairs. This makes
sense: a lack of parental gender information will increase the number of families, where
appropriate inclusion of highly polymorphic markers is conducive to obtaining PMSs.

PDI evaluates the degree (the average value of the parent pairs in each subgroup) and
the uniformity of division (standard deviation) when a marker divides one group of parent
pairs into numerous subgroups, directly and precisely measuring the discriminability of
the marker. As a result, the optimal solution obtaining rate with PDI as the indicator is
substantially greater than the rate with PIC and PE (Figure 2), implying that the greedy
algorithm has a significantly stronger de-redundancy ability with PDI as the indicator than
with PIC and PE. In conclusion, as compared to PIC and PE, PDI can further reduce the
number of markers found in PMS and is better suited for screening PMS.

The key indicators utilized in parentage assignment for a PMS include the overall
average PIC, CPE of the marker set, and so on. On the basis of this, we investigated the
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distribution of these markers in the aforementioned resoluble sets (Table 3). In published
papers, the polymorphisms of PMS are usually high (about 0.7), and the CPEs are frequently
above 0.999 [8,24–29]. The average PIC of PMSs obtained by our approach, however, is
about 0.61, and the CPE value is less than 0.97. The primary explanation for this disparity
is that we acquired considerably fewer markers in the PMS (approximately 3) than those in
other studies (all above 10), making the calculation of CPE more vulnerable to markers with
lower PE. In the real dataset, a similar result is also displayed (Table 4). This demonstrates
that whether the CPE value is large enough does not fully correspond to how successful
the PMS is, as Vandeputte, Rossignol, and Pincent [1] described.

4.3. Effectiveness, Problems, and Solutions in Practical Applications

Ideally, a non-redundant PMS or very low-redundancy greedy PMS would be sufficient
to accomplish parentage assignments in a given population at a very low cost. However,
the reality is always far more complex; missing genotypes and genotyping errors are often
unavoidable and must be carefully considered. Naturally, redundant markers are needed
to handle this situation. Then, how many and which markers to use remains a question.
That is why we propose this low-redundancy PMS scheme based on exhaustive-PMS
and/or greedy-PMS.

It is important to recognize that PDI-based PMS calculations may not be suitable for
markers with ungenotyped sample(s) in the parental pool. However, when it comes to
SNPs, parental genotypes are consistently obtained from high-throughput sequencing, and
the abundance of SNPs enables the acquisition of a sufficient number of candidate markers
without encountering genotyping failures. Moreover, in the case of SSRs, the experimental
remediation of several missing marker genotypes can be achieved at a reasonable cost. This
further enhances the feasibility of employing our method in parentage assignment studies.

4.3.1. The Efficacy of the Low-Redundancy Scheme

To assess the efficacy of our scheme in actual applications, we searched public data
for datasets with known parent–child correspondences and the genotypes of SSR/SNP
markers in each individual [5,8,20,26,30–33] and found only one study [19] that met all the
requirements. Thus, we used five datasets from this study for testing. As shown in Table 4,
our scheme significantly reduced the number of markers included in a PMS, typically
screening three to six markers from hundreds of candidates as a greedy-PMS. This is low
even when doubling the number of markers in a low-redundancy PMS. Such a small PMS
will vastly reduce the cost of parentage assignments.

As we expected, every parent–child relationship was correctly identified using a sin-
gle greedy-PMS if all involved markers were correctly genotyped. Using greedy-PMSs,
CERVUS and COLONY failed on most offspring with genotype errors and a small per-
centage of cases with missing genotypes (Table 4). However, if low-redundancy PMSs
based on two greedy-PMSs were used, only CERVUS failed on an offspring with one
genotype error, and both tools failed on an offspring with six missing genotypes. These
results indicated that the low-redundancy PMS scheme can well balance the cost and
performance of parentage assignment. In fact, using a small number of markers brings
additional advantages, for example, we can have a wider choice of genotyping instruments,
and perhaps older non-high-throughput assays (such as Sanger sequencing) can be used
even more to facilitate more accurate genotyping of SSR/SNP markers.

4.3.2. The Different Impacts of Two Types of Problematic Markers

We evaluated the effect of missing genotypes and genotype errors on the accuracy
of parentage assignments. As mentioned above, parentage assignments with a single
greedy-PMS failed in most cases involving even just one genotype error. But the situation
with missing genotypes is obviously different. It is not uncommon for a test to succeed in
the absence of a small number of markers in a greedy-PMS, while many failures are caused
by the loss of multiple markers, even as much as half of the PMS (Table 4). It is clear that
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genotype errors are more likely to produce failures, whereas missing genotypes have a
much smaller influence than genotype errors. This fact suggests that we should employ
stricter criteria when genotyping markers to reduce erroneous genotypes. Measures that
can be considered to reduce genotype errors include the following: For SSR markers, it
is recommended to carefully check the genotype of each marker or use the leave-one-out
method to troubleshoot conflicting markers in the PMS; for SNP markers, it is recommended
to use targeted sequencing or an SNP array to directly perform accurate SNP genotyping.

4.3.3. The Different Efficacies of SSR and SNP

The characteristics of the marker will also have an impact on our screening scheme
for PMS. Genotyping error of PMS markers has a significant impact on the efficacy of
parentage assignment. The effect of allelic error varies by marker type. A single allelic error
has less of an effect on SSRs that have multiple complex alleles than on SNPs, which are
mostly dimorphic.

In our tests, the two SSR greedy-PMSs and the low-redundancy PMS consist of 3,
4, and 5 markers, respectively. While CERVUS was unable to assign parents to the two
offspring with incorrect genotypes using the three-marker PMS (“S1-1”), it succeeded when
using either the four- or five-marker PMS. This result implied that simply adding a few
SSR markers can greatly improve fault tolerance. For the sake of reliability, we suggest that
a low-redundancy SSR PMS should be constructed by supplementing the base greedy-PMS
or exhaustive-PMS with half its number of additional markers.

For SNP, an allele error may completely reverse its meaning and role in identification,
leading to erroneous conclusions. As we saw in Table 4, one genotype error in the six-
marker greedy-PMSs was misleading in almost all cases, but the low-redundancy PMSs
with twice the markers effectively diminished its negative effect. Therefore, we propose
that the low-redundancy SNP PMS should contain twice as many markers as the base
greedy-PMS or exhaustive-PMS.

Given the devastating impact of SNP genotype errors on the success rate of parentage
assignment, ensuring the accuracy of SNP markers is paramount. The marker’s own MAF
value can be utilized to filter some SNP sites with random genotyping errors in the targeted
population. The higher the MAF, the more accurate the SNP loci obtained. We recommend
that the SNP loci with genotypes missing in sequencing data be eliminated and a significant
number of potentially erroneous markers be removed by filtering MAF values and using
other approaches [33]. Following that, the remaining high-accuracy SNP markers can be
utilized to screen PMS using the greedy algorithm, followed by the exhaustive algorithm.

4.3.4. About the Software Tools for Parentage Assignment

Although this study was designed to screen for low-redundancy PMSs, which do
not rely on certain parentage assignment software tools, it is instructive to see if there is
evidence that low-redundancy PMSs perform better with some specific software. While
there are a number of tools for assigning parentage using genetic markers, we do not have
many options for our testing, as most of them either used obsolete types of markers or
are no longer maintained, for example, PAE [34], Sequoia [35], and FAP [36]. In particular,
FAP seems suitable for our application scenario, as it can identify marker loci that are
consistently associated with parental allocation errors and should be removed from the
PMS. Unfortunately, we could not find any download sources or even contact the authors.
Therefore, we used CERVUS 3.0 and COLONY 2.0, the two most commonly used tools.

In our tests, COLONY performed slightly better with erroneous markers, but CERVUS
had one less failure due to missing markers. In fact, it is hard to simply say which is better.
CERVUS (version 3.0) is a pairwise likelihood-based software for single-dyad assignment,
while COLONY takes into account the likelihood of an entire pedigree configuration (multi-
ple dyads). Accordingly, COLONY is more computationally demanding and more efficient
in using genetic markers than CERVUS [22,37]. Therefore, we suggest that COLONY is
often a better choice for parentage assignments to a small number of offspring based on
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PMSeeker-generated markers. Additionally, since COLONY tends to specify unsampled
parents if the sampled parents do not match some cluster of some offspring [37,38], the
option “candidate parents are all sampled in the pool” should be set for the closed popula-
tion with PMSeeker applied. If the number of offspring is very large (>10,000), COLONY
may take much more time (3 days vs. 30 min, Karaket and Poompuang [39]) and CERVUS
is recommended.

4.4. Scalability of the Scheme

The scheme developed in this study was initially designed to minimize the number of
markers used in parentage assignment in fish breeding under the conditions that (1) the
parents together with offspring make up a closed population, (2) all candidate parents have
been genotyped, and (3) the species applying this scheme are diploid. So, it is possible to
be utilized in PMS screening for a wider range of species as long as the scenario meets the
conditions mentioned above. For instance, parentage assignment has been widely used in
diploid livestock breeding [5,8,19,24,32,40,41], where repeated use of artificial insemination
leads to inaccurate pedigree records [42]. So, the scheme developed in this study has the
ability to reduce the cost of parentage assignment, ensuring accuracy, in the same way as
the fish breeding.

5. Conclusions

An innovative online software, PMSeeker, has been developed to facilitate the process
of parentage assignment. PMSeeker utilizes complete parental genotypes to simulate
various combinations of offspring genotypes for PMS filtering, with the goal of obtaining
non-redundant or low-redundancy PMS(s). Depending on the size of the given marker
set, PMSeeker employs two algorithms: the exhaustive algorithm for smaller sets and the
greedy algorithm for larger sets. The exhaustive algorithm, although computationally
slower, ensures the acquisition of the best possible PMS(s). On the other hand, the greedy
algorithm significantly enhances computational speed, albeit with a slight compromise in
the likelihood of obtaining the absolute best PMS(s). However, regardless of the algorithm
used, the non-redundant or low-redundancy PMS obtained through PMSeeker consistently
demonstrates excellent accuracy in parentage assignment, as evidenced by both simulated
and real data. Overall, PMSeeker presents a valuable tool for researchers and practitioners
in the field, offering efficient and reliable parentage assignment results through its advanced
computational algorithms.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biology13020100/s1. The Supplementary Material file contains
information about the comparative study on the running time of the two algorithms, the application
in a real case, and the analysis of the polymorphism and exclusion probability.
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