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Simple Summary: Prions are novel infectious agents that consist only of protein. It is known that
in the same host species, different strains of prion can occur that differ by the cells that are infected
and killed. The mechanism responsible for these observations is only beginning to be understood.
Two main ideas, which are not mutually exclusive, may provide a framework to understand strain
targeting. The first possibility is that as prions spread throughout the CNS they reach strain-specific
populations of cells that trigger cell death. The second mechanism is that prions exist in two distinct
forms, a replicative form that switches to the production of a toxic form that results in the destruction
of cells and the eventual onset of clinical signs of disease. Both neurons and glia may participate in
both of these possibilities. The relative contributions of each mechanism have yet to be determined.

Abstract: Prion diseases are caused by the disease-specific self-templating infectious conformation of
the host-encoded prion protein, PrPSc. Prion strains are operationally defined as a heritable phenotype
of disease under controlled conditions. One of the hallmark phenotypes of prion strain diversity is
tropism within and between tissues. A defining feature of prion strains is the regional distribution of
PrPSc in the CNS. Additionally, in both natural and experimental prion disease, stark differences in
the tropism of prions in secondary lymphoreticular system tissues occur. The mechanism underlying
prion tropism is unknown; however, several possible hypotheses have been proposed. Clinical
target areas are prion strain-specific populations of neurons within the CNS that are susceptible to
neurodegeneration following the replication of prions past a toxic threshold. Alternatively, the switch
from a replicative to toxic form of PrPSc may drive prion tropism. The normal form of the prion
protein, PrPC, is required for prion formation. More recent evidence suggests that it can mediate
prion and prion-like disease neurodegeneration. In vitro systems for prion formation have indicated
that cellular cofactors contribute to prion formation. Since these cofactors can be strain specific,
this has led to the hypothesis that the distribution of prion formation cofactors can influence prion
tropism. Overall, there is evidence to support several mechanisms of prion strain tropism; however, a
unified theory has yet to emerge.

Keywords: prion disease; prion strain; prion neurodegeneration

1. Introduction

Prion diseases are inevitably fatal neurodegenerative diseases of animals that affect
several species [1]. Prion diseases of animals include bovine spongiform encephalopa-
thy (BSE or ‘mad cow’ disease), scrapie of sheep and goats, chronic wasting disease
(CWD) that affects captive and free-ranging cervids, camel prion disease and transmis-
sible mink encephalopathy (TME) of ranch-raised mink [2,3]. Prion diseases of humans
include Gerstmann–Sträussler–Scheinker (GSS) disease, fatal familial insomnia (FFI), and
Creutzfeldt–Jakob disease (CJD) [4]. Prion diseases are unique in biology in that they
can occur in three etiologies. First, prions can exist as a sporadic disease with no known
genetic or environmental basis. Second, prion disease can occur in familial forms that
correspond to mutations in the host-encoded prion protein (PrPC) [5]. Third, under natural
or experimental conditions, prions can be transmitted between individuals via numerous
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routes of infection including per os, inhalation and scarification of the dermis [6,7]. Prions
can be zoonotic, as evidenced by the interspecies transmission of BSE to several species
including Sapiens [8,9].

The transmissible agent of prion diseases is unique in biology and is composed of
only protein [10,11]. The enrichment of prion infectivity led to the identification of a
protein, PrPSc, that was the major constituent of preparations that contained high levels
of prion infectivity [12]. This protein, PrPSc, is resistant to degradation by proteases and
insoluble in detergents. Subsequent studies determined that PrPSc was encoded by the
host protein, PrPC, eliminating a viral origin [13]. These observations led to the prion
hypothesis that PrPSc is the infectious agent of prion diseases [14]. Subsequent studies
reconstituting infectious prions from minimal non-infectious components confirmed the
prion hypothesis [15–20]. Prion formation occurs when PrPSc encounters PrPC and through
an unknown mechanism can direct a global rearrangement of alpha helical structures
present in PrPC to parallel in-register intermolecular beta sheet structures in PrPSc [21–24].
The fragmentation of the growing PrPSc fibril provides new free ends of PrPSc to engage
in subsequent rounds of binding and converting PrPC to PrPSc [25]. This process can be
recapitulated in vitro using protein misfolding cyclic amplification (PMCA), leading to the
exponential propagation of PrPSc and prion infectivity [26,27].

Prion diseases exhibit strain diversity. Prion strains are operationally defined by
heritable differences in the phenotype of disease under carefully controlled transmission
conditions [28]. The phenotype of disease can include incubation period, clinical signs,
distribution and intensity of neuropathology and tropism of PrPSc. Tropism can include
strain-specific differences in tissues infected, and within a given tissue, strain-specific
differences in region or cell type where prions are detected [29–32]. While strains are best
characterized in rodents, prion strain diversity has been observed in natural host species
including Sapiens [33,34]. While initially difficult for the prion hypothesis to provide a
mechanism to explain prion strain diversity [35,36], a wealth of indirect evidence supports
the hypothesis that strain-specific differences in the conformation of PrPSc encode prion
strain diversity [37–42]. Recent evidence using cryo electron microscopy has revealed that
PrPSc from two distinct murine prion strains, which share the same primary amino acid
sequence of PrP, have distinct structures of PrPSc [43,44]. This direct evidence provides
the most compelling evidence to date that the conformation of PrPSc encodes for prion
strain diversity. The relationship between the strain-specific conformations of PrPSc and
the phenotype of disease is, however, poorly understood.

The neuropathology of prion infection includes spongiform degeneration, reactive
gliosis, and neuronal death in the absence of a cellular inflammatory infiltrate. Spongi-
form degeneration is caused by the development and merging of interneuronal vacuoles
that is observed in nearly all prion diseases and may be a consequence of the unfolded
protein response dysregulation phosphoinositide kinase PIKfyve [45]. However, in some
instances, spongiform degeneration is not a prominent feature of prion infection [46,47].
Prion diseases are characterized by the activation of both astroglia and microglia [48–50].
Astrocytes can support prion formation, and the role of astrocytes in neurodegeneration is
becoming increasingly clear [51]. The restriction of PrPC expression to astrocytes can result
in prion formation in these cells; however, they do not undergo activation and neurode-
generation, and the development of clinical signs of prion infection is not observed [52].
These recent findings are consistent with previous work showing that brain grafts that
express high levels of PrPC in a PrP−/− host undergo prion formation and the histological
changes associated with prion infection, while PrPSc from the graft that entered the PrP−/−

brain failed to cause neurodegeneration or glial activation [53]. Importantly, the pattern of
reactive astrocytes is strain specific in a large cohort of murine-adapted prion strains [54].
The incubation period of prion infection corresponds to the degree of astrocyte activation
and the fact that inhibition of the unfolded protein response in astrocytes can prevent
neuronal loss [55,56]. Overall, these observations suggest that PrPC plays a critical role
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in neurodegeneration and that the interplay between neurons and glia is an important
determinant in the outcome of disease.

2. Prion Strain Targeting

Neuropathological changes and PrPSc deposition patterns can vary based on prion
strain, in part due to cellular targeting to a preferred neuronal subset. Different strains
exhibit different cellular tropisms, evidenced by a multitude of studies. While many
human prion strains cause a preferential and marked loss of PV+ neurons, fatal familial
insomnia spares this subset within both the hippocampus and temporal cortex while
also helping to mediate the loss within the frontal cortex [57]. PrPSc deposition patterns
have been examined to differentiate between prion strains. Experiments on cultured
organotypic cerebellar slices displayed strain-specific PrPSc deposition patterns [58]. In
addition, patterns of PrPSc deposition from sheep infected with various prion strains have
been used to reliably distinguish between various prion strains [59]. Genotype may also
play a role in the degree of PrPSc deposition seen within these strain-specific patterns.
Polymorphisms, associated with FFI, that confer longer disease duration tend to extend
PrPSc deposition to areas of the brain outside of those affected in those with a shorter
duration of disease [60]. Taken together, these experiments highlight the preferential
cellular targeting of prion strains to certain areas within the brain, evidenced by strain-
specific PrPSc deposition profiles.

Prion strain-specific differences in tissue tropism are observed. Prion conversion and
deposition occurs in secondary lymphoreticular system tissues but has also been observed
in other locations (e.g., skeletal muscle, fat) [61–70]. The extraneural distribution of PrPSc

is not observed in all prion diseases and can differ based on prion strain. Sheep naturally
infected with classic or Nor98 (atypical) scrapie have differences in the distribution of
PrPSc in the spleen and lymph nodes [71,72]. A similar phenomenon is observed in
hamsters infected with either the hyper (HY) or drowsy (DY) strains of hamster-adapted
transmissible mink encephalopathy (TME) [37,73]. A widespread distribution of PrPSc is
observed in HY TME-infected animals with the robust accumulation of PrPSc in the spleen,
lymph nodes and skeletal muscle [62,74]. In contrast, prion infectivity and PrPSc is not
detected in extraneural tissues in DY TME-infected animals [75]. This failure to establish
infection is not due to a failure of prion transport as inoculum DY PrPSc can cross the
epithelium and reach draining lymphatics following extranasal infection and the spleen
following intraperitoneal infection [29]. Additionally, the spleen contains all the necessary
components for DY TME formation as the spleen can support DY PrPSc formation in vitro
during protein misfolding cyclic amplification [29]. Overall, strain-specific differences in
prion tropism occur; however, the mechanism(s) are poorly described. The remainder of
the review will explore potential mechanisms to explain prion tropism.

3. Clinical Target Areas

Clinical target areas (CTAs) are hypothesized to be areas of the brain that, when
reached by PrPSc, lead to the development of clinical signs and ultimately the death of
the host [76]. The time between the onset of prion replication within the brain and the
development of clinical signs is known as the replication phase. The targeting of prions to
CTAs determines the length of the replication phase within the brain; CTAs constitute a
minority of the neurons within the brain and are strain specific as prion strains can differ in
the clinical presentation of disease (Figure 1A). Altering the route of inoculation altered the
length of the replication phase, suggesting that the pathway to a proposed CTA may vary
in complexity [76,77].
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in cell death may be strain and cell type specific. Created with BioRender.com. 
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ing i.p. inoculation suggests a more direct pathway to CTAs from the midthoracic cord 
compared to the pathways following i.c. inoculation. Consistent with this observation, the 
intraspinal inoculation of mice with 139A prions showed a shorter replication phase com-
pared to i.c. inoculation, indicating a potential difference in the complexity of the neuronal 
pathway to the CTA available with a given inoculation site [77]. While the targeting and 
formation of PrPSc that results in neurodegeneration within the CTA determines the onset 
of clinical signs, prion spread to non-CTA regions is hypothesized to contribute to prion 
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generation precedes the onsets of clinical signs of disease, this means that either spongi-
form degeneration per se does not lead to clinical signs, or that spongiform degeneration 

Figure 1. Models of prion strain-specific targeting and neurodegeneration. (A) Strain-specific
distribution of prion neuropathology may be due to differences in prion spread when population
of neurons are reached and destroyed. Here, a short incubation period strain reaches the clinical
target areas earlier compared to a long incubation period strain, resulting in regional differences
in neuropathology. (B) At the cellular level, prion formation may start with a replicative form that
plateaus, resulting in the production of a toxic prion species. The level needed for the toxic species to
result in cell death may be strain and cell type specific. Created with BioRender.com.

Prions spread along defined neuroanatomical pathways following various inocula-
tion routes independent of prion strain. Neuroinvasion, following peripheral routes of
inoculation (e.g., intraperitoneal, per os), establish infection in follicular dendritic cells
in the spleen and visceral lymph nodes and continued along autonomic nerves before
reaching the midthoracic spinal cord [66,67,76,78–86]. Intralingual muscle inoculation pro-
vided the first evidence for retrograde axonal transport independent of prion strain, with
spread retrograde axonal transport via the hypoglossal nerve to the hypoglossal nucleus
and subsequent transsynaptic transport to the nucleus of the solitary tract [87]. Building
upon these findings, the direct inoculation of the sciatic nerve with three different hamster-
adapted prion strains indicated they all used retrograde axonal transport along the same
four descending motor tracts: reticulospinal, vestibulospinal, rubrospinal and corticospinal
tracts [88,89]. These observations suggest that prion strain targeting CTAs is not due to
differences in prion transport in the CNS. The strain-specific differences in neuropathol-
ogy and PrPSc deposition may be due to differences in the progression of the spread of
PrPSc due to strain-specific differences when the CTAs are reached. Strain-independent
retrograde axonal transport is also observed with other non-PrPSc prion-like diseases such
as Parkinson’s disease and amyotrophic lateral sclerosis. Murine wild-type α synuclein
(α Syn) fibrils and human E46K α Syn fibrils, associated with Parkinson’s disease, both
underwent retrograde axonal transport along vestibulospinal and rubrospinal descend-
ing motor tracts following sciatic nerve inoculation [90]. The sciatic nerve inoculation of
mutant SOD1 brain homogenates into transgenic mice expressing G58-SOD1:YFP resulted
in the retrograde axonal transport of pathology along three descending motor tracts: the
reticulospinal, vestibulospinal and rubrospinal tracts [91].

Differences in the duration of the asymptomatic replication phase of prions in the CNS
are influenced by the route of infection. The prion replication phase in the CNS following
intraperitoneal (i.p.) inoculation is shorter compared to the replication phase following
intracerebral (i.c.) inoculation [92]. The shorter replication phase observed following i.p.
inoculation suggests a more direct pathway to CTAs from the midthoracic cord compared
to the pathways following i.c. inoculation. Consistent with this observation, the intraspinal
inoculation of mice with 139A prions showed a shorter replication phase compared to i.c.
inoculation, indicating a potential difference in the complexity of the neuronal pathway
to the CTA available with a given inoculation site [77]. While the targeting and formation
of PrPSc that results in neurodegeneration within the CTA determines the onset of clinical
signs, prion spread to non-CTA regions is hypothesized to contribute to prion infectivity
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titers and the distribution of spongiform degeneration [76]. As spongiform degeneration
precedes the onsets of clinical signs of disease, this means that either spongiform degenera-
tion per se does not lead to clinical signs, or that spongiform degeneration in combination
with another neurodegenerative event precipitates the onset of clinical signs of disease.
Since it is hypothesized that the clinical signs associated with prion disease are a result of
the replication and pathology only found within the CTAs, the route of infection thus may
alter the pathways available to CTAs after neuroinvasion and therefore the duration of the
replicative phase of disease.

4. Replicative vs. Toxic forms of PrPSc

Two distinct forms of PrPSc, a replicative form and a toxic form, are hypothesized
to determine the onset of clinical signs of prion disease. The uncoupled replication and
toxicity hypothesis describes two distinct phases of prion pathogenesis [93]. The first phase
is characterized by the exponential accumulation of PrPSc that eventually plateaus. The
plateau in PrPSc abundance is reached prior to the onset of clinical signs of prion infection.
The second phase confers toxicity that is mediated by a toxic form of PrP, termed PrPL. The
toxic effects associated with this form of PrP are thought to occur only after surpassing
a toxic threshold (Figure 1B). Thus, the initial rapid propagation of replicative PrPSc is
not responsible for toxicity, and toxicity occurs after the formation of PrPL to necessary
threshold saturations.

The formation of PrPL is hypothesized to be the result of off-target or intermediate
forms of PrPSc. Compared to PrPSc, PrPL may have reduced self-templating activity, there-
fore requiring an increased time to accumulate to toxic levels. This hypothesis predicts that
the rate of PrPL formation is influenced by the rate of PrPSc conversion and maturation [94].
With the increased conversion of PrPSc, more intermediates are generated, including PrPL.
Fluctuations in isoforms occur in two phases, with synaptic alterations and neuropatho-
logical changes occurring after an increase in PK-sensitive isoforms generated in phase
2 [95]. The hypothesis of defined toxic thresholds is bolstered by the findings that similar
levels of PrPSc must be reached for clinical disease to progress in phase 2, regardless of PrP
expression [95]. PrPL may have a different conformation from PrPSc as both enriched PrPSc

preparations and the sarkosyl treatment of RML-infected brain homogenates eliminated
toxicity while maintaining prion infectivity. Collectively, these results are consistent with a
toxic and replicative form of PrPSc.

Observations in animals during the subclinical phase of disease may provide support
for the uncoupled replication and toxic forms of PrPSc hypothesis. Animals with subclinical
prion disease replicate PrPSc and can live a normal life span in the absence of clinical signs,
including ataxia [96]. Subclinical prion disease occurs in mice inoculated with the hamster
strain Sc237 as these mice were able to replicate PrPSc to high levels but failed to exhibit
clinical signs of disease [97]. In addition, inoculation with low-dose inoculums of mouse
strains into mice overexpressing PrPC induced a subclinical disease state. Interestingly,
in this study comparison of terminally ill high-titer inoculated and subclinical low-titer
inoculated mice displayed similar levels of PrPSc within the brain stem [98]. If the rate of
formation of PrPL is decreased in subclinical disease due to species barrier effect or slowed
replication, a small amount of PrPL formed may undergo sufficient maturation into PrPSc,
thus preventing clinical disease by eliminating the source of toxicity. In both instances,
the propagation of PrPSc alone was not able to induce clinical symptoms, suggesting that
another toxic mechanism is required to elicit irreversible clinical signs and terminal disease.

Factors, in addition to PrPL, may be involved in the development of clinical prion
disease. A prediction of the replicative and toxic PrP hypothesis is that the initial sites of
neuroinvasion would be the first areas of the CNS to reach a plateau in infectivity, followed
by the accumulation of PrPL resulting in the onset of clinical signs of disease. This pattern,
however, is not observed following extraneural routes of inoculation, where the initial site
of neuroinvasion does not correspond with the development of clinical signs of disease [99].
For example, the inoculation of the sciatic nerve with HY TME prions results in the detection
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of PrPSc in ventral motor neurons (VMNs) in the lumbar spinal cord ipsilateral to the side
of prion inoculation within 2 weeks postinfection [87,100]. From VMNs, PrPSc spreads
along known neuroanatomical pathways until the onset of clinical signs 8 weeks later. The
replicative vs. toxic PrP hypothesis would predict that hind limb motor deficits ipsilateral
to the side of prion inoculation would be the first clinical sign of disease as VMNs are the
first cell type infected and would first produce PrPL. What is observed, however, is clinical
signs of hyperexcitability and cerebellar ataxia that is indistinguishable from other routes
of infection [87,100]. A similar relationship between the initial deposition of PrPSc in VMNs
and clinical disease is observed following the sciatic nerve inoculation of DY TME with
animals developing clinical signs of progressive lethargy and not hind limb motor deficits.
These observations constrain the properties of PrPL. First, as hind limb motor deficits are
not observed, either PrPL is not produced in VMNs or PrPL is not toxic for VMNs. Second,
as HY- and DY TME-infected animals have distinct clinical signs that occur independent
of the route of infection, strain-specific forms of PrPL that affect different populations of
neurons are required [7,62,75,101]. Additionally, synaptotoxic forms of PrPSc, presumably
PrPL, are observed early during the pathogenesis of disease, prior to the plateauing of
infectivity titers [102]. Overall, these observations suggest that host factors, in addition to
PrPL reaching local toxic thresholds, contribute to prion disease development.

5. Role of PrPC in Neurotoxicity

PrPC is a cell surface protein that is anchored to the cell membrane by a glycosylphos-
phatidylinositol (GPI) anchor [13,103,104]. During prion formation, conversion occurs
as PrPSc uses available PrPC as a substrate [22]. PrPSc serves as a template to misfold
PrPC into the pathogenic and misfolded form, PrPSc. Two forms of PrPC exist, C1 and C2,
resulting from the proteolytic cleavage of PrPC. C1 is the soluble, C terminal fragment
of PrPC which has undergone α cleavage between amino acid residues 111/112, which
eliminates the amyloidogenic region of residues 106–126 [105,106]. The C1 fragment is
present in the brains of both healthy and prion-infected animals. While mice expressing
C1 alone inoculated with RML failed to develop prion disease, mice co-expressing C1
and WT PrPC resulted in a prolonged incubation period and the slower accumulation of
PrPSc [107]. These experiments provided evidence for a potential protective role of the
C1 fragment, as it cannot be used as a substrate for PrPSc formation. In contrast, C2 is
the insoluble form of PrP that is associated with β cleavage. C2 retains the PrP residues
associated with the amyloidogenic region and is found only in the brains of prion-infected
animals [105,106]. Therefore, while α cleavage may play a protective role in prion disease,
β cleavage is associated with either PrPSc or PrPC and potentially contributes to disease.

The expression of PrPC is required for prion propagation. This is evidenced by both
Prnp0/0 and Prnp0/+ mice inoculated with mouse adapted scrapie. While PrP−/− mice
fail to develop prion disease and pathology, PrP−/+ mice have an increased incubation
period when compared to WT mice [108]. Importantly, in PrP−/+ mice, an extended period
of a prion infectivity plateau is observed, suggesting that PrPC plays a role in the onset of
neurodegeneration and clinical signs of disease [108]. Conversely, the overexpression of
PrPC shortens the incubation period of prion disease; however, it is unclear if this is due
to an increased tempo of prion conversion or increased susceptibility to neurodegenera-
tion [109–112].

Alterations in PrPC levels occur during prion infection. A downregulation in PrPC

occurs prior to a plateau in infectivity in WT mice inoculated with RML prions [113,114].
This decrease in available substrate for conversion is hypothesized to result in a decrease
in the rate of PrPSc formation. The plateau effect observed in PrPSc abundance was also
observed in PMCA experiments, where it was shown that a higher quantity of PrPC and
lower quantity of PrPSc leads to an increase in the replication rate of PrPSc, while the inverse
is true when a higher quantity of PrPSc and lower quantity of PrPC is used [114]. Overall,
alterations in the abundance of PrPC associated with prion disease may drive the plateau
of infectivity seen in this proposed first phase of prion pathogenesis.
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The expression of PrPC is required for the development of prion neuropathology. To
investigate the role of PrPC expression and neurotoxicity, neural explants overexpressing
PrPC were engrafted into the brains of PrP−/− mice. The intracerebral inoculation of
these mice with RML prions did not result in the development of clinical signs of prion
infection. It did, however, result in the development of prion formation and associated
neuropathology in the graft expressing PrPC and not in the PrP−/− brain regions. Impor-
tantly, PrPSc produced in the engrafted brain migrated into the PrP−/− regions but did
not result in observable neuropathological changes [53]. As neuropathology is observed
in the engrafted PrPC-expressing brain regions, it should contain both the replicative vs.
toxic forms of PrPSc; therefore, both forms should migrate into the PrP−/− brain region.
However, neuropathological changes are absent in the PrP−/− brain region, leading to the
inference that if PrPL is escaping from the explant, it is devoid of its toxic properties in the
absence of PrPC. This experiment highlights the necessity of PrPC in neurodegeneration
and its potential role as a mediator of neurotoxicity.

Regions within PrPC may play a role in mediating prion neurodegeneration. The
central region (CR) of PrP has been identified as a crucial region in the maintenance of
the neuroprotective function of PrPC. In the absence of CR, residues 105–125, neurode-
generative phenotypes, are present in transgenic mice [115]. Deletions of the CR induce
spontaneous ionic currents [116,117]. Experimentation with anti-PrP antibodies directed
specifically towards the globular domain of PrPC found the majority to cause neurotoxi-
city in COCS. One such antibody, POM1, causes neuronal loss in vitro and in vivo [117].
ICSM18, a globular domain antibody that binds to an epitope of PrPC that overlaps the
epitope of POM1, was also found to induce neurotoxicity in vivo [118]. The flexible N ter-
minal region is hypothesized to play a role in the mediation of toxic effects associated with
prion disease [117]. In experiments involving the comparison of hippocampal neuronal
culture systems expressing PrPC with deletions in the N terminal region (∆23–31) and WT
PrPC, the toxic effects associated with PrPSc application were eliminated in the absence of
this N terminal region [119]. Antibodies to the N terminal region, POM2, can neutralize the
toxic effects associated with both RML prion disease as well as globular domain ligands in
cerebellar organotypic culture slices [120]. The role of the N terminal region in toxicity is
highlighted by cells expressing PrP(N)-EGFP-GPI, where spontaneous ionic currents are
induced [121]. These experiments illustrate the interplay between key regions of PrPC that
function in either neuroprotective or neurodegenerative capacities and the influence of
PrPC and PrPSc interactions on these functions.

PrPC can act as a toxic mediator in prion-like diseases. PrPC functions as one of
the receptors for oligomeric amyloid β, Aβo, which is associated with Alzheimer’s dis-
ease [122]. The binding of Aβo to PrPC initiates a toxic signaling pathway that culminates
in neurodegeneration. The inhibition of long-term potentiation is blocked in both Prnp0/0

hippocampal slices treated with synthetic Aβo, as well as WT hippocampal slices pre-
treated with anti-PrP antibodies [122]. In vivo studies of Alzheimer’s disease transgenic
mice revealed that while Aβ can still accumulate in mice lacking PrPC, axonal degenera-
tion as well as impairments in memory and spatial learning are not observed [123]. The
activation of Fyn, a Src family kinase, by the binding of Aβ to PrPC initiates a signaling
pathway resulting in the synaptic dysfunction associated with NMDA receptors. With
a specificity for Aβo, the binding of Aβo to PrPC activates Fyn, which in turn leads to
an initial phosphorylation of a subunit of NMDA receptors, NR2B, which increases the
amount of NMDA on the cell surface, ultimately leading to excitotoxicity [124]. This is not
observed in neurons lacking the expression of PrPC, Fyn or in neurons treated with anti-PrP
antibodies prior to Aβo exposure. Thus, this evidence collectively provides evidence for
the necessity of PrPC expression in mediating the toxic effects of Aβo binding.

6. Cellular Cofactors and Prion Formation

The formation of PrPSc is aided by cellular co-factors. Prion formation is recapitulated
by PMCA, leading to the production of infectious prions that maintain the strain properties
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of the initial input prion strain [27,125–127]. This system has been used to investigate
the requirements for prion formation and has found that phosphatidylethanolamine (PE)
and RNA facilitate prion formation in vitro. PMCA conversion of three prion strains that
contained PE as the cofactor resulted in the three strains converging into a single strain
that was indistinguishable from them and that also differed from the parental strain [128].
Since the information for prion strain diversity is encoded in the conformation of PrPSc, the
cellular co-factors have been hypothesized to play a role in tropism. This system had iden-
tified strain-specific requirements in cellular co-factors for efficient in vitro formation. For
example, differences in the effect of RNA in the formation of PrPSc correspond with prion
strain, suggesting that cellular cofactors can influence the rate of prion formation [129–131].
As the rate of prion formation must exceed prion clearance, the distribution of cellular
co-factors may influence prion tropism [29]. The role of strain-specific cofactors in PrPSc

tropism in neurons and glia is unclear, as the currently identified co-factors may have a
ubiquitous distribution [128,132–135].

7. Conclusions

Prion strain diversity is operationally defined by differences in tropism within and be-
tween tissues, with the regional distribution of PrPSc in the CNS being especially important
(Figure 1). While the precise mechanism of prion tropism is unknown, the axonal transport
of prions to clinical target areas may direct prions to populations of neurons and glia that
contribute to disease pathology. Once there, the transition of a replicative form of PrPSc to
that of a lethal form of PrPSc may trigger pathology. Additionally, strain-specific cellular
cofactors may add further nuance to prion strain tropism.
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