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Simple Summary: Developmental programming is now an area of considerable interest throughout
the biomedical research community as it is now well accepted that challenges during fetal and early
neonatal life program the trajectory of the development and function of multiple systems across the life
span. There is now also compelling evidence that developmental programming alters the trajectory of
aging, beginning early in life. The present study links mitochondrial function to molecular signaling
pathways that regulate life span and to the aging process; it demonstrates the role and importance
of mitochondria in the predisposition to developing a fatty liver. The overall message we wish to
emphasize is that hepatic aging in offspring caused by maternal obesity in rats involves changes in the
mitochondrial function pathways that result in fatty livers. These processes show sexual dimorphism
as they occur in males and females at different ages. These findings throw new light on the mechanisms
that underlie the well-established sexual dimorphism in aging. We hope this paper will be a stimulus
to similar studies on other tissues.

Abstract: We investigated whether maternal obesity affects the hepatic mitochondrial electron transport
chain (ETC), sirtuins, and antioxidant enzymes in young (110 postnatal days (PND)) and old (650PND)
male and female offspring in a sex- and age-related manner. Female Wistar rats ate a control (C) or
high-fat (MO) diet from weaning, through pregnancy and lactation. After weaning, the offspring
ate the C diet and were euthanized at 110 and 650PND. The livers were collected for RNA-seq and
immunohistochemistry. Male offspring livers had more differentially expressed genes (DEGs) down-
regulated by both MO and natural aging than females. C-650PND vs. C-110PND and MO-110PND
vs. C-110PND comparisons revealed 1477 DEGs in common for males (premature aging by MO) and
35 DEGs for females. Analysis to identify KEGG pathways enriched from genes in common showed
changes in 511 and 3 KEGG pathways in the male and female livers, respectively. Mitochondrial
function pathways showed ETC-related gene down-regulation. All ETC complexes, sirtuin2, sirtuin3,
sod-1, and catalase, exhibited gene down-regulation and decreased protein expression at young and old
ages in MO males vs. C males; meanwhile, MO females down-regulated only at 650PND. Conclusions:
MO accelerates the age-associated down-regulation of ETC pathway gene expression in male offspring
livers, thereby causing sex-dependent oxidative stress, premature aging, and metabolic dysfunction.

Keywords: maternal obesity; aging; RNA-seq; liver; mitochondria; oxidative phosphorylation

Biology 2023, 12, 1166. https://doi.org/10.3390/biology12091166 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology12091166
https://doi.org/10.3390/biology12091166
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0003-0390-7305
https://orcid.org/0000-0002-3267-4793
https://orcid.org/0000-0002-3435-497X
https://orcid.org/0000-0003-0397-6810
https://orcid.org/0000-0001-8410-6280
https://orcid.org/0000-0002-0362-9117
https://doi.org/10.3390/biology12091166
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology12091166?type=check_update&version=2


Biology 2023, 12, 1166 2 of 22

1. Introduction

Obesity is considered a global pandemic and a worldwide public health issue [1]. In
recent decades, the proportion of women of reproductive age who are overweight and obese
has increased significantly, as has the incidence of obesity during pregnancy [2,3]. Human
and controlled animal studies have shown that maternal obesity has detrimental lifelong
consequences on offspring by programming their cells, tissues, and organs, as well as their
structures and functions. Maternal obesity programs offspring metabolic disorders through
several mechanisms, including metabolic, hormonal [4–7], and epigenetic changes [8,9], as
well as through oxidative stress [10,11], a commonly proposed mechanism for liver injury
and the progression of age-related diseases [10]. Non-alcoholic fatty liver disease (NAFLD)
is the most prevalent form of liver disorder and is considered a global epidemic. Obese
young children and adults are more likely to develop early liver diseases [12,13].

There is evidence that the onset of a fatty liver in offspring may occur early in devel-
opment [14,15]. Moreover, maternal obesity accelerates the onset of offspring metabolic
and liver dysfunction and shortens life span [10,16,17].

We have reported that maternal obesity programs premature metabolic aging in
offspring in a sex-dependent manner, possibly due to increased oxidative stress, changes in
steroid hormones, cardiovascular changes, and other functional alterations [10]. In most
cases of programming by maternal obesity, such as NAFLD, we, and others, have observed
a sexual dimorphism of outcomes as the male offspring of obese mothers exhibit more
pronounced NAFLD characteristics (physiological, biochemical, histological, and gene
changes) than the females [4,10].

Aging is a complex and dynamic biological process that, over time, causes a variety
of structural, functional, molecular, and cellular damage, thereby increasing the risk of
multiple diseases [18]. Cellular senescence, including telomere shortening and genomic and
mitochondrial DNA damage, is a major cause of aging, and plays an important role in the
progression of NAFLD and other liver diseases [19–21]. Mitochondrial dysfunction, such
as a decreased oxidative capacity and increased reactive oxygen species (ROS) production,
has been proposed as a cellular and molecular hallmark of aging [22,23].

Mitochondria are highly sensitive to their environmental conditions and undergo
adaptations during the development of NAFLD diseases. Thus, mitochondrial alterations
are implicated in liver aging and fatty liver diseases [24–30]. Mitochondrial dysfunction
has been proposed as a central process in the development of liver disease programmed
by maternal obesity [31]. Offspring of obese rodent mothers exhibit elevated oxidative
stress and mitochondrial dysfunction in both fetal and young adult livers [32–35]. Some
studies have evaluated the effects of maternal obesity programming on mitochondrial gene
expression in offspring livers [15,36–38]. However, few studies have examined the extent
to which these changes persist until old age. There is a need to determine whether adverse
outcomes can be caused by aging and/or by maternal diet.

In the current study, RNA-seq was used to determine the difference in transcriptome
changes between the male and female offspring of obese mothers at the young age of 110
and the old age of 650PND. We also measured protein products for key genes with altered
expressions. We focused on the liver mitochondrial oxidative phosphorylation pathway in
the young and old male and female offspring of control and obese mothers. Importantly, in
our rat colony, the offspring of the control mothers (normally fed and normal weight) lived
for ~850 days; whereas, the offspring of the obese mothers did not live for much longer
than 650PND.

We hypothesized that maternal obesity: (1) produces sex-specific age-related liver
transcriptome changes in offspring; (2) leads to offspring liver dysfunction by impairing
antioxidant defenses and mitochondrial function; and (3) causes offspring hepatic mito-
chondrial electron transport chain (ETC) gene down-regulation, leading to an increase in
reactive oxygen species (ROS) concentrations and liver damage.
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2. Materials and Methods
2.1. Animals

The Animal Experimentation Ethics Committee of the Instituto Nacional de Ciencias
Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico (ethical approval
code, CINVA 271 and 1868) approved all procedures, which are in accordance with the
ARRIVE criteria for reporting animal studies [39,40]. Female albino Wistar rats were born
and raised in the INCMNSZ animal facility, which is accredited by the Association for
Assessment and Accreditation of Laboratory Animal Care International (AAALAC) and
follows its standards. The rats were kept at 22–23 ◦C under controlled lighting (lights on
from 07.00 to 19.00 h) with free access to food and water.

2.2. Experimental Design

First, 120-day-old female Wistar rats were randomly mated with proven fertile non-
littermates to produce the founder generation (F0) of mothers. The F0 litters were adjusted
to ten pups at birth (day 0), with at least four females [41]. At weaning (21 days old) F0
females were randomly assigned to one of the two experimental groups: control (F0C) or
maternal obesity (F0MO) groups to be fed either a standard laboratory chow diet or a high-
fat diet (HFD). The C diet consisted of standard laboratory chow (Zeigler Rodent RQ22-5,
Gardners, PA, USA) containing 22.0% protein, 5.0% soy oil fat, 31.0% polysaccharide, 31.0%
simple sugars, 4.0% fiber, 6.0% minerals, and 1.0% vitamins (w/w) (physiological fuel
3.4 kcal/g). The HFD was produced in the INCMNSZ’s specialized dietary facility, with
23.5% protein, 20.0% lard, 5.0% soy oil fat, 20.2% polysaccharide, 20.2% simple sugars, 5.0%
fiber, 5.0% mineral mix, 1.0% vitamin mix (w/w), and physiological fuel 4.8 kcal/g.

At 120 days, 10 female rats from the F0C group and 20 from the F0MO group were
mated overnight (up to 5 days) with non-experimental males to produce offspring. Daily
vaginal smears were obtained and the day a sperm plug was found was designated as day
0 of conception. To ensure similar pregnancy conditions, this study excluded litters with
fewer than 9 or more than 14 pups. In addition, to achieve offspring homogeneity, on the
second PND, all offspring litters studied were adjusted to 10 pups, with equal numbers of
males and females whenever possible (C and MO). This adjustment to litter size had no
effect on the metabolic variables as the litter size was considered normal.

2.3. Care and Maintenance of Offspring to Study for Developmental Programming
and Aging Interactions

Our studies have routinely been conducted at 110PND, to obtain data at a young adult
life stage, and at 650PND, to obtain data at a mature aged adult life stage. The litters were
weaned at 21PND and males and females were divided into separate cages at weaning.
After weaning, all offspring ate a control diet until the end of the experiment (110 and
650PND). There was no mixing of litters or sexes from different age groups. The offspring
were maintained in this situation until PND50, after which, no more than 4 rats were placed
in one cage. After 110PND the number was reduced to a minimum of 2 or a maximum
of 3 per cage, as previously reported. All females at 110PND were evaluated during the
diestrus phase of the ovarian cycle.

2.4. Offspring Tissue Collection

One male and one female from different litters were euthanized at 110 and 650PND
by exsanguination through aortic punctures under isoflurane general anesthesia; this was
conducted by the same experienced person under identical conditions at each timepoint
(light period (12:00 to 14:00 h) and 6 h of fasting). Thus, the males and females evaluated at
the two ages were groups of siblings. For each age group, the livers were dissected, cleaned,
and weighed. The right inferior lobes were fixed in 4% paraformaldehyde and embedded
in paraffin for immunohistochemical analysis. The left lobes were stored at −70 ◦C for
RNA-seq analysis. We report data with the following number of animals per group and sex:
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110PND—males: C n = 6, MO n = 5; females: C n = 6, MO n = 5; 650PND—males: C n = 6;
MO n = 6; females: C n = 6 and MO n = 6.

2.5. RNA Extraction and cDNA Library Preparation and Sequencing

Liver tissue samples (10–20 mg) were homogenized with the BioSpec BeadBeater
(BioSpec products, Bartlesville, OK, USA) and RNA was extracted using the Qiagen
miRNeasy mini kit (Qiagen, Hilden, Germany), according to the manufacturer’s instruc-
tions. RNA quantity and quality were determined using a Nanodrop spectrophotometer
(Nanodrop Technologies, Wilmington, DE, USA). RNA was stored at −80 ◦C until it was
used. cDNA libraries were generated from 1 µg of total RNA using an Illumina TruSeq
RNA LS Sample Preparation kit v2, according to the manufacturer’s instructions (Illumina,
San Diego, CA, USA). The Agilent DNA 1000 was used to evaluate the quality and fragment
size of the final individual cDNA libraries. The sequencing libraries were quantified using
the KAPA Library Quantification kits for Illumina platforms. The libraries were normalized
to 10 nM and diluted to 20 pM before loading on the cBot 2X100; the Illumina HiSeq 2500
sequencer was used for paired-end sequencing.

2.6. Bioinformatic Analysis

Output demultiplexed reads were exported to Partek Flow for analysis. Read FASTQ
files were trimmed for quality to Phred 30 at each end. STAR aligner v2.3.1j was used to
align trimmed reads to the Rattus norvegicus genomic reference (RGSC 5.0/rn5). Gene and
transcript abundance were quantified against the rn5 RefSeq annotation and transcript
abundance was normalized for all samples as a dataset using the Reads Per Kilobase
per Million mapped reads (RPKM) values of all Refseq genes. To identify the functional
pathways related to maternal obesity programming–aging interactions, we evaluated the
differentially expressed genes (DEGs) between 650PND and 110PND in the male and
female livers of the C and MO groups using pairwise comparisons with Partek Flow
(Partek®, St. Louis, MO, USA). Genes were filtered based on >1 fold change (FC) and a
nominal p-value of <0.05 (Student’s t-test). All DEGs were mapped to the KEGG database
(Kyoto Encyclopedia of Genes and Genomes) and searched for principal mitochondrial
function-related pathways.

2.7. KEGG Pathway Analysis

The Web Gestalt application (WEB-based Gene SeT AnaLysis Toolkit) was used to
perform analyses for enrichment KEGG pathways; the statistical significance p-value
cutoff was set at 0.05 [42]. The KEGG is an online bioinformatics analysis system for
over-represented pathways [43].

2.8. Liver Immunohistochemical (IHC) Analysis

Each liver’s right inferior lobe was dissected, sectioned longitudinally, and immedi-
ately fixed in 4% paraformaldehyde in a neutral phosphate saline buffer. Following a 24 h
fixation period, liver sections were dehydrated with ethanol at increasing concentrations
from 75 to 95% and were then embedded in paraffin.

IHC analysis was carried out using the avidin–biotin complex (ABC) IHC method.
Liver sections (4 µm) were deparaffinized, hydrated, and quenched for endogenous perox-
idase with 0.3% hydrogen peroxide in PBS at room temperature for 30 min. To perform
antigen retrieval, slides were placed in citrate buffer at pH 6.0 (ImmunoDNA Retriever
Citrate, BioSB, Inc., Santa Barbara, CA, USA) and heated in a pressure cooker for 5 min.
The sections were then incubated overnight at room temperature. The following primary
antibodies were used for IHC analysis: anti Atp5f1, 1:500 (goat polyclonal SC-162552, Santa
Cruz Biotechnology, Dallas, TX, USA); anti Ndufa10, 1:500 (mouse monoclonal SC-376357,
Santa Cruz); anti Cox5a, 1:100 (mouse monoclonal SC-376907, Santa Cruz Biotechnol-
ogy); anti Sdhc, 1:1000 (rabbit polyclonal SC-67256, Santa Cruz Biotechnology); anti Sirt-2,
1:1000 (mouse monoclonal SC-28292, Santa Cruz Biotechnology); anti Sirt-3, 1:300 (rabbit
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polyclonal SC-99143, Santa Cruz Biotechnology); anti Sod-1, 1:1000 (rabbit polyclonal SC-
11407, Santa Cruz Biotechnology); Catalase, 1:600 (rabbit polyclonal SC-50508, Santa Cruz
Biotechnology). Antibody binding was detected with a Vectastain Elite ABC kit (Vector
Laboratories, Burlingame, CA, USA) and 3, 3′-diaminobenzidine as a chromogen. After
tissue sections were stained, hematoxylin was used as a counterstain. Negative controls
were performed without the primary antibody. Due to space limitations, the negative
staining controls are presented as Supplementary Material. Twenty random digital images
were taken of each rat using an Olympus BX51 microscope (Olympus Co. Model BX51RF,
Tokyo, Japan). The staining areas of the images were analyzed using digital image analyz-
ing software (ImageJ, U.S. National Institute of Health, Bethesda, MD, USA) and a color
deconvolution plug-in.

2.9. Statistical Analysis

Gene expression is expressed as mean Log2 RPKM± standard error of the mean
(SEM). Immunohistochemical analyses are presented as mean ± SEM. A p-value < 0.05 was
considered statistically significant. To analyze differences between the groups, we used the
Tukey test (one-way ANOVA) for males and females separately. Analysis was performed
with the Sigma Stat 3.5 statistical program (2005). Gene expression from RNA-seq data is
shown as the mean of Log2FC and SEM based on normalized data. There was no overlap
in DEGs between the sexes in the pathways examined, indicating that it was not necessary
to compare males and females to determine sexual dimorphism.

3. Results
3.1. Liver Differentially Expressed Genes (DEGs)

We performed four different comparisons to evaluate the effects of maternal obesity at
two different ages (young and old) and the effect of aging in the control group’s and obese
mothers group’s offspring. The comparisons were as follows: (1) the effect of maternal
diet on the young (MO-110PND vs. C-110PND); (2) the effect of maternal diet on the old
(MO-650PND vs. C-650PND); (3) the effect of aging on the control groups (C-650PND vs.
C-110PND); and 4) the effect of maternal obesity on aging (MO-650PND vs. MO-110PND).
Males and females were analyzed separately.

The number of DEGs for male comparisons: (1) MO-110PND vs. C-110PND showed
that 3030 genes were down- and 118 genes were up-regulated; (2) MO-650PND vs. C-650PND
revealed that 35 genes were down- and 604 were up-regulated; (3) C-650PND vs. C-110PND
indicated that 4218 genes were down- and 127 were up-regulated; (4) MO-650PND vs.
MO-110PND showed that 480 genes were down- and 1285 were up-regulated.

The number of DEGs for female comparisons: (1) MO-110PND vs. C-110PND ex-
hibited that 51 genes were down- and 127 genes were up-regulated; (2) MO-650PND vs.
C-650PND revealed 9244 down- and 3 up-regulated genes; (3) C-650PND vs. C-110PND
showed that 57 genes were down- and 415 were up-regulated; (4) MO-650PND vs. MO-
110PND exhibited 3346 down- and 44 up-regulated genes.

Based on the DEG analysis for the effects of maternal obesity, we observed that 96%
of the genes were down-regulated in male comparisons in both maternal obesity (MO-
110PND vs. C-110PND) and age (C-650PND vs. C-110PND). We performed a Venn analysis
to determine if the DEGs in both conditions shared common genes; then, we evaluated
whether these genes are associated with premature aging (Figure 1).

The Venn diagram shows the distribution of DEGs by maternal diet in the young and
by age in the control groups for males (Figure 1A) and for females (Figure 1B). Male Venn di-
agram with DEG comparisons: C-650PND vs. C-110PND and MO-110PND vs. C-110PND
reveal that there are 1477 genes in common for both comparisons; we refer to these genes
as genes involved in premature aging due to MO. In the same comparison, females only
shared 35 genes. Clearly, maternal diet affects more genes involved in premature aging in
males compared to females.
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3.2. KEGG Pathway Analysis for Prematurely Aging Genes in Males and Females

Using the lists of 1477 and 35 common genes (premature aging) in males and females,
respectively, we performed an over-represented analysis to identify the KEGG pathways
enriched from these two DEG lists (Supplementary Tables S1 and S2). The two lists were
mapped to KEGG pathways separately; we found that fifty-one KEGG pathways showed
significant changes in the male livers but just three did so in the livers of the females.
Table 1 shows the most significant KEGG pathways (by p-value). In males (Table 1A), the
pathways related to liver metabolism and aging, oxidative phosphorylation, and NAFLD
are at the top of the KEGG pathway analysis; however, in females (Table 1B), there were
only three pathways that changed significantly.

Table 1. List of the most significant KEGG pathways enriched with DEGs by p-value (up- and
down-regulated), showing premature aging for males (A) and females (B).

(A). MALE.
Id Pathway Name Size p-Value

rno01100 Metabolic pathways 1380 <2.2 × 10−16

rno00280 Valine, leucine, and isoleucine degradation 56 1.7 × 10−6

rno00640 Propanoate metabolism 32 1.0 × 10−5

rno00190 Oxidative phosphorylation 143 4.1 × 10−5

rno04932 Non-alcoholic fatty liver disease (NAFLD) 159 9.4 × 10−5

rno04714 Thermogenesis 243 9.5 × 10−5

rno00260 Glycine, serine, and threonine metabolism 40 1.0 × 10−4

rno00310 Lysine degradation 61 1.1 × 10−4

rno00140 Steroid hormone biosynthesis 84 1.1 × 10−4

rno01200 Carbon metabolism 127 1.4 × 10−4

rno00270 Cysteine and methionine metabolism 49 1.7 × 10−4

rno00630 Glyoxylate and dicarboxylate metabolism 30 2.2 × 10−4

rno03022 Basal transcription factors 45 1.3 × 10−3

rno00760 Nicotinate and nicotinamide metabolism 32 1.8 × 10−3

rno00380 Tryptophan metabolism 47 1.9 × 10−3
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Table 1. Cont.

(A). MALE.
Id Pathway Name Size p-Value

rno04122 Sulfur relay system 9 2.8 × 10−3

rno04142 Lysosome 129 2.8 × 10−3

rno00510 N-Glycan biosynthesis 51 3.6 × 10−3

rno03420 Nucleotide excision repair 47 6.6 × 10−3

rno04144 Endocytosis 275 6.6 × 10−3

rno04217 Necroptosis 161 7.5 × 10−3

rno04120 Ubiquitin mediated proteolysis 141 7.6 × 10−3

rno00670 One carbon pool by folate 18 8.3 × 10−3

rno00830 Retinol metabolism 85 9.1 × 10−3

rno03060 Protein export 26 1.0 × 10−2

rno00053 Ascorbate and aldarate metabolism 27 1.2 × 10−2

rno00563 Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 27 1.2 × 10−2

rno00650 Butanoate metabolism 28 1.5 × 10−2

rno04141 Protein processing in the endoplasmic reticulum 164 1.8 × 10−2

rno00071 Fatty acid degradation 47 2.0 × 10−2

rno00350 Tyrosine metabolism 40 2.5 × 10−2

rno04146 Peroxisome 88 2.8 × 10−2

rno00410 Beta-Alanine metabolism 33 3.2 × 10−2

rno00730 Thiamine metabolism 17 3.2 × 10−2

rno00920 Sulfur metabolism 10 3.3 × 10−2

rno00330 Arginine and proline metabolism 52 3.5 × 10−2

rno00010 Glycolysis/Gluconeogenesis 72 3.8 × 10−2

rno00980 Metabolism of xenobiotics by cytochrome P450 74 4.5 × 10−2

rno03040 Spliceosome 138 4.7 × 10−2

(B). FEMALE
Id pathway Name Size p-Value

rno04064 NF-kappa B signaling pathway 97 5.4 × 10−3

rno00230 Purine metabolism 182 1.8 × 10−2

rno04060 Cytokine–cytokine receptor interaction 269 3.8 × 10−2

3.3. Pathway Analysis Related to Mitochondria

To determine that the pathways implicated in the MO-110PND vs. C-110PND and
C-650PND vs. C-110PND comparisons were enriched and significant separately, we eval-
uated the over-represented analysis of the pathways of DEGs in each comparison using
three different databases: KEGG, Wikipathway, and Reactome. In Table 2A–C, the results
of the male DEGs in each database are displayed. For the analysis, we focused on mito-
chondrial function-related pathways; for each comparison, oxidative phosphorylation was
significantly enriched and all DEGs in the pathways were down-regulated.

Table 2. List of (A) KEGG, (B) Wikipathway, and (C) Reactome enrichment pathways from DEGs
(up- and down-regulated) in male livers from the MO-110PND vs. C-110PND and C-650PND vs.
C-110PND comparisons.

(A). KEGG Pathway

Comparison p-Value Genes
Down

Genes
Up

MO-110PND vs. C-110PND Oxidative phosphorylation 7.8 × 10−5 39 0
Maternal diet effect (young) Lysosome 1.7 × 10−4 37 0

Ribosome 3.0 × 10−3 41 0
Peroxisome 9.5 × 10−3 23 0

Citrate cycle (TCA cycle) 1.1 × 10−2 11 0
C-650PND vs. C-110PND Peroxisome <2.2 × 10−16 55 0

Aging effect in controls Oxidative phosphorylation 2.9 × 10−14 68 0
Mitophagy 1.6 × 10−4 27 0
Lysosome 8.6 × 10−4 43 0

Citrate cycle (TCA cycle) 7.2 × 10−2 11 0
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Table 2. Cont.

(B). Wikipathway

Comparison p-Value Genes
Down

Genes
Up

MO-110PND vs. C-110PND Oxidative phosphorylation 1.0 × 10−3 22 0
Maternal diet effect (young) Electron Transport Chain 1.5 × 10−3 30 0

TCA Cycle 1.7 × 10−2 10 0
Oxidative Stress 1.9 × 10−2 12 0

C-650PND vs. C-110PND Electron Transport Chain 1.0 × 10−10 51 0
Aging effect in controls Mitochondrial LC-Fatty Acid Beta-Oxidation 1.5 × 10−7 14 0

Oxidative phosphorylation 8.1 × 10−7 32 0
Oxidative stress 1.4 × 10−5 20 0

TCA Cycle 7.3 × 10−2 10 0

(C). Reactome

Comparison p-Value Genes
Down

Genes
Up

MO-110PND vs. C-110PND Mitochondrial translation termination 5.2 × 10−14 46 0
Maternal diet effect (young) Mitochondrial translation 9.5 × 10−14 46 0

The citric acid (TCA) cycle and respiratory electron
transport 1.3 × 10−6 46 0

Respiratory electron transport 7.1 × 10−5 25 0
Citric acid cycle (TCA cycle) 9.8 × 10−4 10 0

Pyruvate metabolism and Citric Acid (TCA) cycle 1.3 × 10−3 17 0
Peroxisomal protein import 1.9 × 10−3 18 0

C-650PND vs. C-110PND Mitochondrial translation <2.2 × 10−16 66 0
Aging effect in controls Mitochondrial translation termination <2.2 × 10−16 66 0

Mitochondrial translation elongation <2.2 × 10−16 65 0
Peroxisomal protein import 2.5 × 10−10 47 0

Respiratory electron transport 3.4 × 10−10 39 0

3.4. Oxidative Phosphorylation KEGG Pathway

In accordance with the aims of this study, we restricted our detailed analysis to changes
in genes related to the oxidative phosphorylation KEGG pathway (Table 3). This pathway
showed no overlap in DEGs between sexes or diet comparisons, clearly demonstrating a
sex-dependent aging and maternal diet effect on the liver transcriptome.

Table 3. List of DEGs for males and females in each comparison of the oxidative phosphorylation
KEGG pathway.

Comparison Genes, Male p-Value Genes, Female p-Value

(1) MO-110PND vs.
C-110PND Maternal diet

effect (young)

atp5d, atp5g2, atp5i, atp5o, atp6v0a1,
atp6v1f, cox15, cox5b, cox7a2l, cyc1,
lhpp, ndufa10l1, ndufa11, ndufa12,
ndufa9, ndufb10, ndufb11, ndufb2,

ndufb3, ndufb6, ndufb8, ndufc2, ndufs1,
ndufs2, ndufs7, ndufs8, ndufv1, ndufv2,
ndufv3, ppa2, sdha, sdhb, tcirg1, uqcr11,

uqcrc1, uqcrc2,

7.8 × 10−5 cox6a ---
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Table 3. Cont.

Comparison Genes, Male p-Value Genes, Female p-Value

(2) MO-650PND vs.
C-650PND Maternal diet

effect (old)
atp6v0a4, atp6v0a2 ----

atp5f1a, atp5f1b, atp5f1c, atp5f1c,
atp5f1d, atp5f1e, atp5mc1, atp5mc2,

atp5me, atp5mf, atp5mg, atp5pb, atp5pd,
atp5pf, atp5po, atp6ap1, atp6v0a1,

atp6v0a2, atp6v0a2, atp6v0c, atp6v0d1,
atp6v0d2, atp6v0e1, atp6v1a, atp6v1b2,
atp6v1c1, atp6v1c2, atp6v1d, atp6v1e1,

atp6v1f, atp6v1g1, atp6v1h, cox15,
cox17, cox4i1, cox5a, cox5b, cox6a1,

cox6b1, cox6c, cox7a2, cox7a2l,
cox7a2l2, cox7b, cox7c, cox8a, cox8b,

cyc1, lhpp, ndufa1, ndufa10, ndufa10l1,
ndufa11, ndufa12, ndufa13, ndufa2,

ndufa4, ndufa5, ndufa6, ndufa7, ndufa8,
ndufa9, ndufab1, ndufb10, ndufb11,

ndufb2, ndufb3, ndufb4, ndufb5, ndufb6,
ndufb7, ndufb8, ndufb9, ndufc2, ndufs1,
ndufs2, ndufs3, ndufs4, ndufs5, ndufs6,
ndufs7, ndufs8, ndufv1, ndufv2, ndufv3,

ppa1, ppa2, sdha, sdhb, sdhc, sdhd,
tcirg1, uqcr10, uqcr11, uqcrb, uqcrc2,

uqcrfs1, uqcrh, uqcrq

1.3 × 10−8

(3) C-650PND vs. C-110
PND Aging effect in

controls

atp5f1c, atp5mc1, atp5me, atp5mf,
atp5mg, atp5pb, atp5pd, atp5pf, atp5po,
atp6v0a2, atp6v0c, atp6v0d1, atp6v0e1,

atp6v1a, atp6v1f, atp6v1g1, atp6v1h,
cox15, cox17, cox4i1, cox5a, cox5b,

cox6a1, cox6b1, cox6c, cox7a2, cox7a2l,
cox7a2l2, cox7b, cox7c, cox8a, ndufa1,
ndufa10l1, ndufa11, ndufa12, ndufa13,
ndufa2, ndufa4, ndufa5, ndufa6, ndufa7,

ndufa8, ndufa9, ndufb10, ndufb11,
ndufb2, ndufb3, ndufb4, ndufb5, ndufb6,
ndufb7, ndufb9, ndufs3, ndufs5, ndufs6,
ndufs8, ndufv1, ndufv2, ndufv3, ppa1,
ppa2, sdhb, sdhc, sdhd, tcirg1, uqcr10,

uqcrb, uqcrfs1, uqcrh, uqcrq

2.42 × 10−14 cox6a, cox8, atpev1c ---

(4) MO-650PND vs.
MO-110PND Aging effect

in MO
Cox8 ---

ap2s1, apaf1, atp5f1c, atp5f1d, atp5f1e,
atp5mc1, atp5mc2, atp5pb, atp5pd,

atp5pf, atp5po, bax, casp3, cox4i1, cox5a,
cox5b, cox6a1, cox6b1, cox6c, cox7a2,

cox7a2l, cox7a2l2, cox7b, cox7c, cox8a,
cox8b, crebbp, creb3l1, cycs, cyct, cyct,

dlg4, dnah1, gpx1, hdac2, ndufa1,
ndufa10, ndufa11, ndufa12, ndufa13,

ndufa2, ndufa4, ndufa5, ndufa6, ndufa7,
ndufa9, ndufab1, ndufb10, ndufb11,

ndufb2, ndufb3, ndufb4, ndufb5, ndufb6,
ndufb7, ndufb9, ndufc2, ndufs3, ndufs4,
ndufs5, ndufs6, ndufs7, ndufs8, ndufv2,

ndufv3, plcb1, polr2f, polr2g, polr2h,
polr2i, polr2j, polr2k, pparg, sdhd,

slc25a5, sod1, sod2, uqcr10, uqcr11,
uqcr11, uqcrb, uqcrfs1, uqcrh, uqcrq,

vdac3

<2.2 × 10 −16

The genes in bold were up-regulated between comparisons in each sex.

Figure 2 shows the overlapping genes between the comparisons for aging (1) C-650PND
vs. C-110PND and for programming by obesity (2) MO-110PND vs. C-110PND. Genes
that were in common in these two comparisons were involved in premature liver aging,
specifically in the oxidative phosphorylation KEGG pathway (Figure 2A) and on the ETC
Wikipathway (Figure 2B).



Biology 2023, 12, 1166 10 of 22Biology 2023, 12, x FOR PEER REVIEW 11 of 24 
 

 

 
Figure 2. Overlapping genes for (A) the oxidative phosphorylation KEGG pathway and (B) the elec-
tron transport chain (Wikipathway) between the comparisons C-650PND vs. C-110PND and MO-
110PND vs. C-110PND, enriched with common DEGs of male premature aging. Genes that were 
down-regulated in both comparisons are indicated in blue. 
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Figure 2. Overlapping genes for (A) the oxidative phosphorylation KEGG pathway and (B) the
electron transport chain (Wikipathway) between the comparisons C-650PND vs. C-110PND and
MO-110PND vs. C-110PND, enriched with common DEGs of male premature aging. Genes that were
down-regulated in both comparisons are indicated in blue.

3.5. Male and Female Liver Oxidative Phosphorylation Complexes

We selected one representative gene from each oxidative phosphorylation complex.
In males, the genes ndufa10 (Complex I), sdhc (Complex II), cox5a (Complex IV), and
atp5f1 (Complex V) were down-regulated in the groups MO-110PND, C-650PND, and
MO-650PND in comparison to the C-110PND group (Figure 3A–D). In contrast, the gene
expression of ndufa10, sdhc, cox5a, and atp5f1 was down-regulated only in MO-650PND
females (Figure 4A–D).
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(Log2 RPKM) of (A) ndufa10; (B) sdhc; (C) cox5a; (D) atp5f1; the immunostained area (%) of (E) 
Ndufa10; (F) Sdhc; (G) Cox5a; (H) Atp5f1; and (I) representative IHC micrograph (40×). Data for 
RNA-seq, mean Log2 RPKM ± SEM. Protein values are mean ± SEM. p < 0.05 for data not sharing a 
lowe case letter between groups. N = 5–6 rats/group/litter. PND = Postnatal days. Scale bar: 50 µm. 

Figure 3. Male hepatic gene expression and protein abundance of four proteins in oxidative phospho-
rylation complexes in the control (C) and maternal obesity (MO) groups. Gene expression level (Log2
RPKM) of (A) ndufa10; (B) sdhc; (C) cox5a; (D) atp5f1; the immunostained area (%) of (E) Ndufa10;
(F) Sdhc; (G) Cox5a; (H) Atp5f1; and (I) representative IHC micrograph (40×). Data for RNA-seq,
mean Log2 RPKM ± SEM. Protein values are mean ± SEM. p < 0.05 for data not sharing a lowe case
letter between groups. N = 5–6 rats/group/litter. PND = Postnatal days. Scale bar: 50 µm.

To determine whether changes in gene expression are associated with changes in
gene protein products, proteins encoded by the ndufa10, sdhc, cox5a, and atp5f1 genes were
quantified by an IHC analysis. Males in the MO-110PND, C-650PND, and MO-650PND
groups exhibited a lower liver fractional area being stained for Sdhc and Atp5f1 proteins
than those in the C110-PND group; for the Ndufa10 and Cox5b proteins, only the MO-
650PND group differed from the C-110PND group (Figure 3E–H). In contrast, the results
for females varied across all proteins evaluated. The percentage of the Ndufa10 protein’s
stained area was higher in MO-650PND compared to C-110PND, with no differences
between the MO-110PND and C-650PND groups. In terms of the Sdhc protein, C650-
PND and MO-650PND had higher percentages of stained areas compared to the C and
MO groups at younger ages. The Cox5a protein was similar in all groups; whereas, the
groups from obese mothers, regardless of age, exhibited lower percentages of stained
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areas for the Atp5f1 protein (Figure 4E–H). Figures 3I and 4I show representative sections
stained by IHC analysis for all of the oxidative phosphorylation proteins for males and
females, respectively.

Biology 2023, 12, x FOR PEER REVIEW 13 of 24 
 

 

 
Figure 4. Female hepatic changes in gene expression and abundance of proteins in four oxidative 
phosphorylation complexes in the control (C) and maternal obesity (MO) groups. Gene expression 
(Log2 RPKM) of (A) ndufa10; (B) sdhc; (C) cox5a; (D) atp5f1; the immunostained area (%) of (E) 
Ndufa10; (F) Sdhc; (G) Cox5a; (H) Atp5f1; and (I) representative IHC micrograph (40×). Data for 
RNA-seq, mean Log2 RPKM ± SEM. Protein values are mean ± SEM. p < 0.05 for data not sharing a 
lower case letter between groups. n = 5–6 rats/group/litter. PND = Postnatal days. Scale bar: 50 µm. 

To determine whether changes in gene expression are associated with changes in 
gene protein products, proteins encoded by the ndufa10, sdhc, cox5a, and atp5f1 genes were 
quantified by an IHC analysis. Males in the MO-110PND, C-650PND, and MO-650PND 
groups exhibited a lower liver fractional area being stained for Sdhc and Atp5f1 proteins 
than those in the C110-PND group; for the Ndufa10 and Cox5b proteins, only the MO-
650PND group differed from the C-110PND group (Figure 3E–H). In contrast, the results 
for females varied across all proteins evaluated. The percentage of the Ndufa10 protein’s 
stained area was higher in MO-650PND compared to C-110PND, with no differences be-
tween the MO-110PND and C-650PND groups. In terms of the Sdhc protein, C650-PND 
and MO-650PND had higher percentages of stained areas compared to the C and MO 
groups at younger ages. The Cox5a protein was similar in all groups; whereas, the groups 
from obese mothers, regardless of age, exhibited lower percentages of stained areas for 
the Atp5f1 protein (Figure 4E–H). Figures 3I and 4I show representative sections stained 
by IHC analysis for all of the oxidative phosphorylation proteins for males and females, 
respectively. 

  

Figure 4. Female hepatic changes in gene expression and abundance of proteins in four oxidative
phosphorylation complexes in the control (C) and maternal obesity (MO) groups. Gene expres-
sion (Log2 RPKM) of (A) ndufa10; (B) sdhc; (C) cox5a; (D) atp5f1; the immunostained area (%) of
(E) Ndufa10; (F) Sdhc; (G) Cox5a; (H) Atp5f1; and (I) representative IHC micrograph (40×). Data for
RNA-seq, mean Log2 RPKM ± SEM. Protein values are mean ± SEM. p < 0.05 for data not sharing a
lower case letter between groups. n = 5–6 rats/group/litter. PND = Postnatal days. Scale bar: 50 µm.

3.6. Male and Female Liver Sirtuins

The sirt-2 mRNA expression and protein content were both decreased in all groups
in comparison to the C-110PND group (Figure 5A,B). Despite C-650PND exhibiting the
lowest level of sirt-3 gene expression, the protein abundance did not differ from C110PND;
for the groups representing maternal obesity (MO-110PND and MO-650PND), both gene
and protein contents were lower compared to C-110PND (Figure 5D,E). Figure 5C,F show
representative sections stained by IHC analysis for the Sirt-2 and Sirt-3 proteins, respectively.



Biology 2023, 12, 1166 13 of 22

Biology 2023, 12, x FOR PEER REVIEW 14 of 24 
 

 

3.6. Male and Female Liver Sirtuins 
The sirt-2 mRNA expression and protein content were both decreased in all groups 

in comparison to the C-110PND group (Figure 5A,B). Despite C-650PND exhibiting the 
lowest level of sirt-3 gene expression, the protein abundance did not differ from C110PND; 
for the groups representing maternal obesity (MO-110PND and MO-650PND), both gene 
and protein contents were lower compared to C-110PND (Figure 5D,E). Figure 5C,F show 
representative sections stained by IHC analysis for the Sirt-2 and Sirt-3 proteins, respec-
tively. 

 
Figure 5. Male hepatic gene expression and protein abundance of Sirt-2 and Sirt-3 in the control (C) 
and maternal obesity (MO) groups. (A) Expression level of sirt-2 (Log2 RPKM); (B) Sirt-2 im-
munostained area (%); (C) representative IHC micrograph of Sirt-2 (40×); (D) expression level of sirt-
3 (Log2 RPKM); (E) Sirt-3 immunostained area (%); and (F) representative IHC micrograph of Sirt-
3 (40×). Data for RNA-seq, mean Log2 RPKM ± SEM. Protein values are mean ± SEM. p < 0.05 for 
data not sharing a lower case letter between groups. n = 5–6 rats/group/litter. PND = Postnatal days. 
Scale bar: 50 µm. 

In terms of sirtuin gene expression in female livers, only the MO-650PND group 
showed a decrease in sirt-2 and sirt-3 (Figure 6A and D, respectively). However, unexpect-
edly Sirt-2 and Sirt-3 protein content was higher in C-650PND, and even higher in MO-
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representative sections stained by IHC analysis for the Sirt-2 and Sirt-3 proteins, respec-
tively. 

Figure 5. Male hepatic gene expression and protein abundance of Sirt-2 and Sirt-3 in the control
(C) and maternal obesity (MO) groups. (A) Expression level of sirt-2 (Log2 RPKM); (B) Sirt-2
immunostained area (%); (C) representative IHC micrograph of Sirt-2 (40×); (D) expression level of
sirt-3 (Log2 RPKM); (E) Sirt-3 immunostained area (%); and (F) representative IHC micrograph of
Sirt-3 (40×). Data for RNA-seq, mean Log2 RPKM ± SEM. Protein values are mean ± SEM. p < 0.05
for data not sharing a lower case letter between groups. n = 5–6 rats/group/litter. PND = Postnatal
days. Scale bar: 50 µm.

In terms of sirtuin gene expression in female livers, only the MO-650PND group showed
a decrease in sirt-2 and sirt-3 (Figure 6A and D, respectively). However, unexpectedly Sirt-
2 and Sirt-3 protein content was higher in C-650PND, and even higher in MO-650PND,
compared to MO-110PND and C-110PND (Figure 6B,E). Figure 6C,F show the representative
sections stained by IHC analysis for the Sirt-2 and Sirt-3 proteins, respectively.Biology 2023, 12, x FOR PEER REVIEW 15 of 24 
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3.7. Male and Female Liver Sod-1 and Catalase 
For males, the groups C-650PND and MO-650PND presented less gene expression 

and a lower protein percentage of the area stained for Sod-1 and Cat compared to C-
110PND (Figure 7A,B,D,E). Figure 7C,F show representative sections stained by IHC anal-
ysis for Sod-1 and catalase proteins, respectively. 

Figure 6. Female hepatic gene expression and protein abundance of Sirt-2 and Sirt-3 in the control
(C) and maternal obesity (MO) groups. (A) Expression level of sirt-2 (Log2 RPKM); (B) Sirt-2
immunostained area (%); (C) representative IHC micrograph of Sirt-2 (40×); (D) expression level of
sirt-3 (Log2 RPKM); (E) Sirt-3 immunostained area (%); and (F) representative IHC micrograph of
Sirt-3 (40×). Data for RNA-seq, mean Log2 RPKM ± SEM. Protein values are mean ± SEM. p < 0.05
for data not sharing a lower case letter between groups. n = 5–6 rats/group/litter. PND = Postnatal
days. Scale bar: 50 µm.



Biology 2023, 12, 1166 14 of 22

3.7. Male and Female Liver Sod-1 and Catalase

For males, the groups C-650PND and MO-650PND presented less gene expression and
a lower protein percentage of the area stained for Sod-1 and Cat compared to C-110PND
(Figure 7A,B,D,E). Figure 7C,F show representative sections stained by IHC analysis for
Sod-1 and catalase proteins, respectively.
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Figure 7. Male hepatic gene expression and protein abundance of Sod-1 and Catalase in the control
(C) and maternal obesity (MO) groups. (A) Expression level of sod-1 (Log2 RPKM); (B) Sod-1
immunostained area (%); (C) representative IHC micrograph of Sod-1 (40×); (D) expression level of
catalase (Log2 RPKM); (E) Cat immunostained area (%); and (F) representative IHC micrograph of
Cat (40×). Data for RNA-seq, mean Log2 RPKM ± SEM. Protein values are mean ± SEM. p < 0.05 for
data not sharing a lower case letter between groups. n = 5–6 rats/group/litter. PND = Postnatal days.
Scale bar: 50 µm.

In females, sod-1 and catalase gene expression were only down-regulated in the MO-
650PND group in comparison to all groups (Figure 8A and D, respectively). However, when
it came to the Sod-1 protein, MO-650PND had a higher protein percentage of area stained
than C-110PND and C-650PND (Figure 8B). Regarding the catalase protein, C-650PND and
MO-650PND exhibited higher protein concentrations than C-110PND and MO-110PND
(Figure 8E). Figure 8C,F show representative sections stained by IHC analysis for the Sod-1
and catalase proteins, respectively.
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Figure 8. Female hepatic gene expression and protein abundance of Sod-1 and catalase in the
control (C) and maternal obesity (MO) groups. (A) Expression level of sod-1 (Log2 RPKM); (B) Sod-1
immunostained area (%); (C) representative micrograph of Sod-1 (40×); (D) expression level of cat
(Log2 RPKM); (E) Cat immunostained area (%); and (F) representative micrograph of Cat (40×).
Data for RNA-seq, mean Log2 RPKM ± SEM. Protein values are mean ± SEM. p < 0.05 for data
not sharing a lower case letter between groups. n = 5–6 rats/group/litter. PND = Postnatal days.
Scale bar: 50 µm.

4. Discussion

Exposure to a high-fat diet prior to and/or during pregnancy and lactation has long-
term consequences for both mothers and their offspring. Maternal obesity increases off-
spring liver fat accumulation, which negatively affects offspring metabolism and predis-
poses neonates and children to obesity and NAFLD, increasing oxidative damage, inflam-
mation, insulin resistance, lipid metabolism, and mitochondrial function [31]. The fetal liver
function is immature and vulnerable to dysregulated maternal metabolism. Exposing the
fetus to an excess of metabolic fuels from an obese mother during gestation contributes to
the programming of NAFLD in childhood [36,38,44]. Studies in rodents [4,10,45], ewes [15],
and non-human primates [46] have shown that maternal obesity programs offspring to de-
velop hepatic metabolic disorders later in life and correlates with the severity of childhood
NAFLD [47].

There is also considerable interest in the potential that developmental programming
can alter the trajectory of aging [48–50]. Aging is a multifactorial degenerative process in
which physiological and metabolic processes decline and is a risk factor for the development
of metabolic diseases [51]. The natural biological changes that occur during aging differ
among major organs and are sexually dimorphic [52]. In this regard, males aged earlier
than females [53]. In humans, fatty liver disease is more severe and has a worse prognosis
in the elderly than in young adults [54].

In addition to alterations in genes, proteins, and metabolites, liver aging is accompa-
nied by a redox imbalance and a decline in hepatic metabolism. Among the alterations
associated with liver aging, several signaling pathways are implicated, such as those re-
lated to xenobiotic metabolism, lipid metabolism, oxidative stress [55], cell growth [56],
immune cell responses [53,57], metabolic processes, cell activation [57], and inflammatory
processes [58,59].

In our animal model, the male and female offspring of obese mothers have higher
adiposity indexes, triglycerides, and insulin resistance compared to those of control moth-
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ers. Males from the MO group exhibit greater physiological and histological NAFLD
characteristics than females at 110 days [4]. Also, human studies indicate that the preva-
lence of NAFLD is higher in men [60]. However, little is known about developmental
programming–aging interactions and the molecular mechanisms of NAFLD programmed
by MO.

Our observations showed that where genes that were down-regulated in C-650PND
vs. C-110PND (natural aging) were also down-regulated in the MO-110PND vs. C-110PND
comparison (effect of maternal diet at a young age) they were considered to be genes
programmed by maternal obesity to age prematurely. Furthermore, at a young age, we
observed sex differences in the gene expression profiles between the offspring of obese
mothers and offspring born to the control mothers, as well as in the natural liver aging
course in our animal model at old age (650PND) vs. young age (110PND), with males again
having more pronounced changes. Clearly, in all studies, the sexual dimorphism of the
outcomes must be addressed in determining the underlying mechanisms involved.

In the MO-programmed NAFLD phenotype, we have also previously observed impor-
tant metabolic and liver oxidative stress sexual dimorphism. In the liver transcriptomic
analysis, we observed diet and age effects in a sex-dependent manner regarding mitochon-
drial pathways. In our model, we reported the phenotypic characterization of NAFLD in
the offspring of obese mothers [10]. The changes observed in MO offspring compared to C
offspring were programmed by the mother’s consumption of a high-fat diet; since offspring
were weaned onto a C diet and did not consume a high-fat diet, the observed changes in the
NAFLD phenotype in gene expression and protein concentration were programmed from
fetal and neonatal exposure to excess fetal nutrients. Importantly, changes in mitochondrial
function have been demonstrated from fetal and neonatal ages, prior to the establishment
of NAFLD [31].

The liver is an organ that plays a central role in the body’s main metabolic processes,
including energy production, and is therefore essential for regulating energy balance [61].
In this regard, oxidative phosphorylation is by far the principal pathway for cellular energy
production and is the primary source of ROS production [62]. Aging induces morphological,
structural, and functional changes in the liver, as well as increased levels of ROS, oxidative
damage, decreased mitochondrial energy production capacity, and dysfunction of the res-
piratory chain [62–64]. Among the molecular mechanisms of NAFLD programmed by MO,
major pathways and genes related to mitochondrial function, such as lysosome, ribosome,
peroxisome, TCA cycle, mitophagy, ETC, oxidative stress, and oxidative phosphorylation,
are involved in premature aging in males. Therefore, mitochondria and peroxisomes are
significant ROS sources [64].

We studied genes involved in oxidative phosphorylation as possible contributors to
increased ROS concentrations. During both normal aging and accelerated aging in the
offspring of obese mothers, a number of sex-related gene-expression changes were detected.
Age-related declines in mitochondrial function and antioxidant enzymes result in a rise
in mitochondrial ROS production. Different studies comparing old and young animals
have evaluated mitochondrial function and found that the number of mitochondria and the
mitochondrial protein concentrations decrease with age in the liver cells of mice, rats, and
humans [24]. In addition, the respiratory chain capacity of liver mitochondria in aged rats
(720 days) is reduced by 40% compared to young rats (90–120 days) [25]. Mitochondrial
dysfunction is one of the hallmarks of aging [22–27,65,66] and is related to the progression
of NAFLD.

In males, maternal obesity and aging led to the down-regulation of representative
genes for Complexes I, II, IV, and V. These findings are consistent with the decreased
immunolocalization of Complexes I and IV, mainly in the MO groups, as well as the
decreased immunolocalization of Complexes II and V observed in the MO and aged groups.
In fact, the activity of Complexes I and IV decreased with age in the livers of mice and rats;
whereas, the activity of Complexes II, III, and IV remained relatively unchanged [25]. In a
mouse model of maternal obesity, it has been reported that 105-day-old female offspring
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reduced the hepatic mitochondrial ETC activity of Complexes I, II/III, and IV [32]. This
observation suggests the presence of post-translational mechanisms in ETC-associated gene
expression. Maternal obesity also programs increased adiposity in males and females [7],
which worsens with age [10]. In this regard, it is known that obesity alone accelerates
aging and adipose tissue dysfunction can be observed earlier than in normal aging [67]. In
addition, the continued delivery of FFAs to liver mitochondria induces a hypermetabolic
state, as occurs with insulin resistance, which further impairs mitochondrial bioenergetics
in the adipocytes of diabetic (db/db) individuals. This situation may resemble our model in
which the offspring of obese mothers accumulated much dysfunctional adipose tissue with
signs of insulin resistance in which the suppressed expression of mitochondrial proteins
caused mitochondrial loss, decreased fatty acid oxidation, and lowered ATP production [68].
Thus, the loss of mitochondrial function plays an important role in the progression of
NAFLD [29].

MO led to the down-regulation of representative genes for Complexes I, II, IV, and V,
only in females at 650PND. Nevertheless, the increased immunolocalization of Complexes
I and II was mainly observed in aged offspring MO females. These findings suggest an
adaptation mechanism for offspring MO females as they age. Compared to males, females
have greater respiratory function and mitochondrial biogenesis in several tissues [69].
In addition, females exhibit a tighter regulation of mitochondrial processes than males,
which affords them increased protection in the presence of metabolic challenges [70].
In this regard, the ETC can be regulated through the expression of Complexes I and
II by tuning the availability of NADH and succinate [71]. In addition, the observed
increased immunostaining for Complex II, which catalyzes the oxidation of succinate
to fumarate, suggests a mechanism for protecting the integrity of the TCA cycle and
oxidative phosphorylation [72]. Regardless of age, the decreased immunolocalization of
Complex V was observed mainly in the MO groups for both sexes. The primary function of
mitochondria is to generate ATP via oxidative phosphorylation, which is carried out by
the four respiratory chain complexes (I–IV) and the ATP synthase (Complex V), which are
localized within the mitochondrial inner membrane.

Through the ATP synthase system, the ETC is tightly coupled with the oxidative
phosphorylation pathway to enable the production of metabolically useful energy in the
form of ATP. The lack of consistency observed between the transcription and expression
of mitochondrial complexes in each sex indicates that mitochondrial biogenesis is sex-
dependent. The increased expression of sirt-2 (from the cytoplasm) and sirt-3 (from the
mitochondria) that we observed in females in the offspring of the MO 650PND group
may be related to a potential increase in mitochondrial biogenesis as SIRTs are known to
indirectly regulate the expression of mitochondrial biogenesis through PGC-1 activation.

NAFLD is graded as simple steatosis, nonalcoholic steatohepatitis (NASH), liver cirrho-
sis, or hepatocellular cancer [73]. The progression from simple steatosis to NASH involves
the generation of reactive oxygen species, lipotoxicity, and inflammatory cytokines [74]. The
sirtuins family are highly conserved NAD+-dependent histone deacetylases that have been
related to antioxidant and oxidative stress-related processes and functions like longevity,
mitochondrial function, DNA-damage repair, and metabolism [75]. In mammals, seven
members (sirt1-7) have been identified, with sirt-2 being the least recognized but highly
expressed in metabolically active tissues, including the liver, heart, brain, and adipose
tissue [76]. In obese mice, it has been shown that sirt-2 hepatic overexpression ameliorates
insulin sensitivity, oxidative stress, and mitochondrial dysfunction [77]. However, a link
between sirt-2 and NAFLD has not yet been established. In obese ob/ob mice and HFD-fed
mice, it has been reported that liver Sirt-2 protein levels gradually decreased with age.
This reduction was also confirmed in HepG2 cells treated with palmitate in a time- and
dose-dependent manner, indicating that hepatic sirt-2 expression significantly decreased
in the context of NAFLD [78]. Our findings showed that maternal obesity decreased liver
sirt-2 expression in offspring in a sex-dependent manner, with the reduction starting at
PND110 in MO males and PND650 in females. The sirt-3 is also highly expressed in the liver
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and other metabolic tissues with high oxidative capacity. Sirt-3 plays an important role in
mitochondrial metabolism through the reversible acetylation of mitochondrial proteins [79].
Low Sirt-3 activity, mitochondrial dysfunction, and protein hyperacetylation were observed
in the liver of mice fed a chronic HFD [80]. In a separate study, sirt-3-deficient mice fed a
chronic HFD developed obesity, insulin resistance, and steatohepatitis more rapidly than
wild-type mice [81]. Our findings showed that maternal obesity decreased liver sirt-3
expression in a sex-dependent manner, with the reduction starting at 110PND in MO
males and 650PND in MO females. Therefore, the reduction in sirt-2 and sirt-3 expression
might be related to the decline in the expression of antioxidant enzyme genes and the
increased reactive oxygen species, oxidative stress, and fatty liver accumulation [10]. It
is well known that oxidative stress contributes to aging. During the aging process, cells
defend themselves against oxidative damage by expressing a variety of non-enzymatic
and enzymatic antioxidant defenses that convert ROS into less dangerous byproducts. Sod
converts the anion superoxide to hydrogen peroxide and it mitigates the ROS produced
by the mitochondria; but, as NAFLD progresses, Sod decreases. In the present study, age
and diet reduced sod gene expression in both males and females. However, the amount
of protein was higher in MO-650PND compared to MO-110PND and the C group. This
observation merits further study. It may be due to post-translational changes in protein
production. In mice, the deletion of liver sod-1 accelerates aging, shortens the life span, and
results in the development of hepatocellular carcinoma [82].

The observed changes in gene and protein expression associated with the mitochon-
drial function pathways (Figure 9), together with those previously observed in our experi-
mental model, such as insulin resistance, increased liver fat accumulation, visceral fat and
oxidative stress, decreased antioxidant enzymes, and liver morphological alterations in
MO offspring, contribute to the programming of the MO offspring fatty liver phenotype.
Likewise, the differences in the changes in gene expression observed between the diet,
age, and sex comparisons could be associated with the severity of the fatty liver over the
life span as the changes observed at 110PND remain at age 650PND. This study links
mitochondrial function to signaling pathways that regulate the life span and the aging
process; it demonstrates the role and importance of the mitochondria in the predisposition
to developing NAFLD.
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5. Conclusions

Maternal obesity programs sex-specific changes associated with the natural aging
process leading to liver dysfunction in offspring. In males at 110PND, maternal obesity
accelerates the age-associated down-regulation of genes and pathways related to mitochon-
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drial function. In females, these programming effects occur at 650PND. Moreover, maternal
obesity programs decreased offspring liver ETC gene expression, especially Complex 1,
the major site of ROS production. These changes can lead to metabolic dysfunction and
offspring obesity and are potential mechanisms for programming offspring from maternal
obesity life-course metabolic dysfunction.
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//www.mdpi.com/article/10.3390/biology12091166/s1, Figure S1: Representative IHC micrograph
of negative controls (40x), Table S1: Male DEG in common from the comparisons MO-110PND vs
C-110PND and C-650PND vs C-110PND in males. Log2Fold change regulation and their statistical
significance are shown by p-value, Table S2: Male DEG in common from the comparisons MO-
110PND vs C-110PND and C-650PND vs C-110PND in males. Log2Fold change regulation and their
statistical significance are shown by p-value.
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