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Simple Summary: Chemotherapy is one of the common methods for the treatment of malignant
tumors of the biliary pancreatic system, but chemoresistance reduces treatment effectiveness. In
recent years, studies have found that intestinal flora imbalance is closely related to chemotherapy
resistance. Targeted regulation of intestinal flora can improve chemotherapy resistance. The purpose
of this review is to explore the role of intestinal flora in the chemoresistance of malignant tumors
of the biliary pancreatic system and to target the regulation of intestinal flora with antibiotics and
probiotics so as to seek potential treatment directions.

Abstract: Biliary pancreatic malignancy has an occultic onset, a high degree of malignancy, and
a poor prognosis. Most clinical patients miss the opportunity for surgical resection of the tumor.
Systemic chemotherapy is still one of the important methods for the treatment of biliary pancreatic
malignancies. Many chemotherapy regimens are available, but their efficacy is not satisfactory, and
the occurrence of chemotherapy resistance is a major reason leading to poor prognosis. With the
advancement of studies on intestinal flora, it has been found that intestinal flora is correlated with
and plays an important role in chemotherapy resistance. The application of probiotics and other
ways to regulate intestinal flora can improve this problem. This paper aims to review and analyze the
research progress of intestinal flora in the chemotherapy resistance of biliary pancreatic malignancies
to provide new ideas for treatment.

Keywords: intestinal flora; biliary pancreatic malignancy; chemotherapy resistance; mechanism;
regulation

1. Introduction

Malignant tumors of the biliary pancreatic system are highly malignant; most patients
are diagnosed at an advanced stage, so the incidence and mortality are close. Cholangio-
carcinoma accounts for about 3% of gastrointestinal cancers. The global incidence ranges
from 0.3 to 6 cases per 100,000 population per year and mortality from 1 to 6 cases per
100,000 population per year [1]. Pancreatic cancer is the seventh leading cause of cancer-
related death worldwide with a global incidence and mortality rate of 4.8 and 4.4 per
100,000 population per year, respectively, and the incidence is increasing year by year [2].
Chemotherapy is the main treatment, and there are several chemotherapy regimens, includ-
ing FOLFIRINOX (oxaliplatin + irinotecan + leucovorin + 5-fluorouracil), AG (gemcitabine
+ albumin-bound paclitaxel), GS (gemcitabine + S-1), gemcitabine + cisplatin, gemcitabine
+ albumin-bound paclitaxel, and other combined treatment regimens, but the efficacy is
poor; compared to single-agent chemotherapy, combination chemotherapy can reduce the
cytotoxic effect of chemotherapy drugs [3]. Chemotherapy is often interrupted due to
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recurrent biliary obstruction or inflammation, and drug resistance caused by long-term
chemotherapy is not conducive to the treatment of patients, all of which lead to the lim-
itations of chemotherapy [4]. Among them, tumor resistance to chemotherapy drugs is
one of the important reasons for the poor clinical efficacy of antitumor therapy observed.
Preventing or reducing drug resistance is still a difficult problem to solve to improve the
clinical efficacy of chemotherapy [5,6]. In recent years, studies on intestinal flora have
found that its imbalance can abolish the protective effect of the intestinal barrier and affect
the activity of chemotherapy drugs in vivo metabolically and in other ways, resulting in a
reduction in tumor cell sensitivity to chemotherapy drugs and an extension of treatment
time, which indicates that the intestinal flora may be closely related to chemotherapy
resistance [7–11]. Targeted regulation of intestinal flora may help to reduce chemotherapy
resistance and improve the effect of cancer chemotherapy [12,13]. This review aims to
interrogate the literature on the role of intestinal flora in the chemotherapy resistance of
biliary pancreatic cancer.

2. Resistance of Biliary Pancreatic Malignancies to Chemotherapy

Common biliary pancreatic malignancies include gallbladder cancer, cholangiocarci-
noma, pancreatic cancer, and pancreatic endocrine tumors. These tumors are characterized
by high malignancy, frequent recurrence, and a poor prognosis. Most patients have already
missed the opportunity for radical surgery by the time they see a doctor, and chemotherapy
is an important treatment method for them [9,14]. The intestinal flora of these cancers
is different. The abundance of Salmonella enterica serovar. typhi in the stool of patients
with gallbladder cancer is increased. Patients with proximal cholangiocarcinoma have a
higher abundance of Helicobacter pylori and Escherichia coli in feces, while patients with
distal cholangiocarcinoma have a higher abundance of Fusobacterium and Actinobacteria.
Fusobacterium and Porphyromonas gingivalis increase in the feces of patients with pancreatic
cancer [15]. In particular, fungi play a unique role in pancreatic ductal adenocarcinoma,
which can activate the complement system, participate in the body’s immune response,
and promote tumor progression. In addition, the interaction between fungi and bacteria
may be involved in the occurrence and development of pancreatic cancer. Although there
are few studies on fungi, it may be a new idea for the treatment of pancreatic cancer [16,17].

Tumor resistance is a complex process caused by the change of antitumor drug targets
and the decrease in their concentration in cells. It can be divided into inherent and acquired
drug resistance. Inherent drug resistance refers to the natural resistance of tumor cells to
a certain antitumor drug, which has nothing to do with whether they have been exposed
to the drug or not. It may be caused by the expression of mutated oncogenes or tumor
suppressor genes in tumor cells, which affect drug resistance. Acquired drug resistance
refers to drug resistance of tumor cells being induced by chemotherapy drugs, that is, tumor
cells being sensitive to chemotherapy drugs at the beginning of administration and then
displaying drug resistance [18,19]. As an important treatment for biliary pancreatic cancer,
chemotherapy mainly includes chemotherapeutics such as alkylating agents, antimetabo-
lites, and antibiotics. These drugs can be classified according to different mechanisms
of action, as shown in Table 1 [20,21]. The mechanisms of chemotherapy resistance in
biliary pancreatic malignancies mainly include increased expression of drug transporters,
accelerated drug exclusion, apoptotic dysfunction, tumor stem cell action, and changes in
drug metabolism [9]. Studies have shown that the intestinal flora can influence the response
of cancer cells to chemotherapy by regulating the local immune response and inflammation
around tumors [22]. Intestinal flora can also regulate cancer autophagy through certain sig-
naling pathways, affecting chemotherapy drug resistance [23]. This suggests that intestinal
flora may be involved in the process of tumor resistance to chemotherapy drugs.
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Table 1. Classification of commonly used chemotherapy drugs for biliary pancreatic cancer.

Classification Representative
Drugs Mechanism of Action Mechanism of Drug

Resistance
Drug-Resistant

Flora Literature

Alkylating
agents

Platinum analogs Oxaliplatin,
cisplatin

Produces unstable alkyl R-CH2
+, which reacts with

nucleophilic centers on proteins
and nucleic acids, inhibiting

DNA replication and
transcription.

Increased expression
of drug transporters

and autophagy
regulators.

Fusobacterium [13,21,24]

Antimetabolites

Cytidine analogs Gemcitabine
Direct incorporation into DNA

and inhibition of DNA
polymerase.

Change of drug
metabolism, tumor
stem cell function.

Proteus, Bacteroides,
Mycoplasma [13,21,24–29]

Pyrimidine
analogue

5-fluorouracil,
capecitabine

It forms stable covalent
complexes with thymidine

synthetase and interferes with
DNA synthesis and repair.

Increased expression
of drug transporters

and autophagy
regulators.

Fusobacterium [13,21,23,30,31]

Antibacterial
drug

Topoisomerase I
inhibitors Irinotecan

Ternary complexes are formed
by preventing topoisomerase I
from being released from the
cleavable complex to prevent

degradation.

Change of drug
metabolism,

anti-apoptotic.

Proteus,
Enterobacterium [21,24,30,32–34]

Taxanes Paclitaxel

Promoting microtubule
polymerization inhibits

depolymerization, interferes
with microtubule assembly, and
leads to abnormal cell function

and replication destruction,
leading to cell apoptosis.

Change of drug
metabolism, tumor
stem cell function.

Proteus, Firmicutes,
Bacteroides [21,35–37]

3. Intestinal Flora and Chemotherapy Resistance in Biliary Pancreatic Malignancies

The intestinal flora constitutes a group of bacteria that are designated to plant them-
selves in the human intestine and depend on the human body for a long time. There
are more than 40 bacterial genera and more than 500 bacterial species, mainly composed
of obligate anaerobes, facultative anaerobes, and aerobic bacteria, among which obligate
anaerobes account for more than 99% and are the dominant bacteria in the intestinal flora,
such as Bifidobacterium, Bacteroides, Eubacillus, and Lactobacillus. They function in nutrient
metabolism and immune regulation. Facultative anaerobic bacteria and aerobic bacteria
are mostly pathogenic bacteria, such as Enterobacter, Enterococcus, and Proteus [7,38]. These
bacteria are harmless when the intestinal ecosystem is in balance, but when the flora is
disturbed, that is, the type, quantity, and proportion of the normal intestinal flora are
changed abnormally from the physiological stoichiometry to pathological ratios, ecolog-
ical imbalances of the intestinal flora occur, which in turn lead to various diseases and
other health problems [39]. Intestinal flora plays an important role in the pathological
development of diseases from inflammation to cancer. The increase in pathogenic bacteria
such as Escherichia coli and Fusobacterium nucleatum and the decrease in probiotics such as
Bifidobacterium and butyrate-producing bacteria lead to the decrease in short-chain fatty
acid content, abnormal bile acid metabolism, and DNA damage, which jointly mediate the
inflammatory response and induce the progression of diseases to cancer [40,41]. The abuse
of antibiotics, radiotherapy, chemotherapy, surgery, trauma, infection, and tumors, as well
as environmental degradation, can reduce human immunity, directly damage the intestine,
interfere with the physiological mechanism of the host, and cause intestinal flora imbal-
ance, which is characterized by the reduction in probiotics and the increase in pathogenic
bacteria, which further leads to various diseases and other health problems [8,42,43]. Envi-
ronmental factors have a great impact on intestinal flora, especially on dietary structure
and the metabolites of intestinal flora (such as fatty acids, choline metabolites, and ethanol
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metabolites). They regulate the structure of intestinal flora by participating in digestion,
nutrient absorption, mucosal immune response formation, and the synthesis or regulation
of bioactive compounds and induce changes in the host’s physiological and pathological
states [44,45].

In recent years, with the in-depth study of intestinal flora, it has been found that
the latter bears a close relationship with chemotherapy drugs. While killing tumor cells,
chemotherapy drugs can cause immune imbalance by increasing intestinal permeability,
leading to intestinal flora disorders. For example, after the use of oxaliplatin, cisplatin, gem-
citabine, capecitabine, 5-fluorouracil, albuminopaclitaxel, irinotecan, and other chemother-
apy drugs, the intestinal flora structure of patients changes, increasing the proportion of
Proteus, Clostridium, and other bacteria. Reduced proportions of Lactobacillus and Bacteroides
often result in diarrhea, vomiting, and other adverse reactions [10,46–53]. A decrease in
symbiotic bacteria such as Lactobacillus and Bifidobacterium leads to damage to the intestinal
mucosa and changes the structure of the intestinal mucus layer, thus reducing its protective
effect on intestinal barrier function [54–57]. On the contrary, intestinal flora can also affect
(enhance or reduce) the efficacy of these chemotherapy drugs and thereby chemotherapy,
which may be closely related to chemotherapy resistance [13].

4. Mechanism of Intestinal Flora Drug Resistance in Biliary Pancreatic
Malignancy Chemotherapy

Cancer chemotherapy resistance results from a complex interplay between gene regu-
lation and the environment. The intestinal flora is involved in the initiation and progression
of digestive tract tumors by influencing intestinal inflammation. Pathogenic bacteria in the
gastrointestinal tract always cause local inflammation and induce the production of inflam-
matory cytokines, including interleukin (especially interleukin-1 [IL-1] and interleukin-6
[IL-6]) and tumor necrosis factor-α (TNF-α), and further lead to the activation of tumor-
related signaling pathways. The intestinal flora also upregulates Toll-like receptors (TLR)
and induces immune tolerance [23,58]. Studies have shown that after chemotherapy, the
decrease in intestinal probiotics, such as Bifidobacterium, and intestinal mucosal damage
lead to the rapid depletion of mucin stored in intestinal goblet cells. The depletion of mucin
makes the mucus layer thinner, increases intestinal permeability, and increases the risk of
bacterial lipopolysaccharide (LPS) translocation to the circulation where it can easier acti-
vate immune cell TLRs. It causes the upregulation of the downstream signaling pathway of
the transcription factor nuclear factor kappa B (NF-κB) and the release of proinflammatory
cytokines, which reduces the efficacy of chemotherapy drugs [57,59,60].

4.1. Gut Microbiota Is Involved in the Mechanism of Gemcitabine Resistance

Studies have found that Proteobacteria could metabolize gemcitabine by expressing
cytidine deaminase (CDA), changing its chemical structure, and metabolizing the active
form of gemcitabine (2′,2′-difluorodeoxycytidine) into inactive 2′,2′-difluorodeoxyuridine,
thus influencing its activity and local concentration (Figure 1). Levels of gamma-Proteus
were also elevated in human pancreatic ductal adenocarcinoma samples compared to
normal pancreas samples [13,24–28]. In addition to CDA, pyrimidine nucleoside phospho-
rylase (PyNPase) produced by Mycoplasma can also indirectly enhance the deamination of
chemotherapy drugs by removing natural pyrimidine nucleoside, 2′-deoxyuridine, and
thymidine, which inhibit gemcitabine deamination, thus adversely affecting the therapeutic
effect of chemotherapy drugs (Figure 1) [28,29]. In addition, gemcitabine treatment of pan-
creatic cancer stimulates the activation of NF-κB and other related inflammatory pathways,
increases intestinal permeability, increases Proteobacteria, Escherichia coli, and Akkermansia
muciniphilia, and decreases Gram-positive Firmicutes and Gram-negative Bacteroides, result-
ing in reduced butyrate formation, which contributes to its various anticancer properties.
In addition, the anti-proliferation, pro-apoptosis, anti-invasion, and anti-angiogenic prop-
erties of pancreatic cancer cells cannot be demonstrated, which indicates that gemcitabine
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chemotherapy brings important changes to the intestinal flora, and this change of intestinal
flora will inhibit the anticancer effect of gemcitabine [10,61,62].
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Figure 1. Proteobacteria and Mycoplasma affect chemotherapy drugs. Proteobacteria could metabolize
gemcitabine by expressing CDA. In addition, Mycoplasma can also indirectly enhance the deami-
nation of chemotherapy drugs by removing natural pyrimidine nucleoside, 2′-deoxyuridine, and
thymidine. PPLO: patent-pending laboratory organism (mycoplasma); dFdC: difluorodeoxycytidine;
dFdU: difluorodeoxyuridine; dFdCTP: difluorodeoxycytidine triphosphate; hCNT/hENT: human
concentrative/equilibrative nucleoside transporter; DCK: deoxycytidine kinase; NMPK: nucleoside
monophosphate kinase; NDPK: nucleoside diphosphate protein kinase; PyN: pyrimidine nucleoside;
2′-DU: 2′-deoxyuridine; T: thymidine. By Figdraw, www.figdraw.com (accessed on 5 March 2023).

4.2. Gut Microbiota Is Involved in the Resistance Mechanism of Oxaliplatin and 5-Fluorouracil

Studies in cell lines and mouse models have shown that adhesion proteins (FadA)
on Fusobacterium nucleatum bind to epithelial cadherin (E-cadherin) to induce β-catenin
signaling and regulate inflammatory and carcinogenic responses to promote tumorige-
nesis [63,64]. Through Toll-like receptor 4 (TLR4) and myeloid differentiation factor
88 (Myd88) of the TLR signaling pathway, Fusobacterium induces the selective loss of
two autophagy-related microRNAs (microRNA-18a [miR-18a] and microRNA-4802 [miR-
4802MYD88]), which activate autophagy, thereby reducing the antitumor activity of oxali-
platin and 5-fluorouracil in cancer patients (Figure 2) [13,23,24,30,65]. The Wnt/β-catenin
signaling pathway is the upstream regulatory pathway of some drug resistance proteins,
such as the ATP-binding cassette subfamily B member 1 (ABCB1), multidrug resistance
1 (MDR1), and p-glycoprotein (P-gp), which constitute important molecular mechanisms
involved in the occurrence, development, metastasis, and chemotherapy resistance of colon
cancer and other tumors. MDR1 and P-gp are important members of the ATP-binding
cassette effervescent transporter family. Their overexpression has been shown to be one of
the most common mechanisms by which hemotherapy occurs. They can cause a large num-
ber of anticancer drugs with different structures and functions (such as 5-FU, oxaliplatin,
etc.) to be expelled from tumor cells, and they are key effector proteins of chemotherapy
resistance [66,67]. Experimental studies have shown that co-culture with Fusobacterium

www.figdraw.com
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nucleatum can enhance the vitality of cancer cells, promote the formation of cell colonies,
reduce cell apoptosis, antagonize 5-FU, and enhance chemotherapy resistance and cancer
cell proliferation. This is related to the overactivation of the Wnt/β-catenin signaling
pathway, which upregulates the ABC transporters (MRP1 and P-gp) (Figure 3) [31]. In
addition, immunogenic commensal bacteria (e.g., non-enterotoxin-producing Bacteroides
fragilis) stimulate follicular helper T cell (TFH) cells to interact with B lymphocytes, en-
hance oxaliplatin-induced epithelial cell apoptosis, and generate an immune response to
enhance the anticancer effect of oxaliplatin [68]. Recent studies have found that butyrate,
a metabolite of gut microbiota, can promote the antitumor effect of oxaliplatin through Id2-
dependent CD8 T cell immunomodulation. After eliminating such bacteria with antibiotics,
cancer cells show increased resistance to oxaliplatin [69].
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Figure 2. Fusobacterium affects chemotherapy drugs. Through Toll-like receptor 4 (TLR4) and myeloid
differentiation factor 88 (Myd88) of the TLR signaling pathway, Fusobacterium nucleatum induces the
selective loss of two autophagy-related microRNAs (microRNA-18a [miR-18a] and microRNA-4802
[miR-4802MYD88]), which activate autophagy, thereby reducing the antitumor activity of oxaliplatin
and 5-fluorouracil. Fn.: Fusobacterium nucleatum; LPS: lipopolysaccharide; miR-18a*: ‘*’ represents
the by-product with a relatively low content; L-OHP: Oxaliplatin. By Figdraw, www.figdraw.com
(accessed on 5 March 2023).
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Figure 3. Fusobacterium affects chemotherapy drugs. Co-culture with Fusobacterium nucleatum can
enhance the vitality of cancer cells, reduce cell apoptosis, antagonize 5-FU, and enhance chemotherapy
resistance and cancer cell proliferation. This is related to the overactivation of the Wnt/β-catenin
signaling pathway, which upregulates the ABC transporters (MRP1 and P-gp). LRP: lipoprotein
receptor-related protein. By Figdraw, www.figdraw.com (accessed on 4 March 2023).

4.3. Gut Microbiota Is Involved in the Mechanism of Irinotecan Resistance

Irinotecan has a heavy piperidine side chain at the C-10 site that can be cut by carboxyl
esterase into 7-ethyl-10-hydroxycamptothecin (SN-38), which is 1000 times more potent
than irinotecan [70,71]. Both irinotecan and SN-38 are in equilibrium with their active
lactone and inactive carboxylate forms, which are pH-dependent. Under acidic conditions,
the lactone form is favored, but under physiological or high pH, the lactone form is unstable,
and the hydrolysis of the lactone ring into its carboxylate form is favored, at which time
the concentrations of Enterobacterium and Proteus are reduced. This may be related to the
activity and resistance of irinotecan [32,72–75]. The β-glucuronide produced by Escherichia
coli can convert inactive glucuronide (Sn-38-G) into active SN-38, inhibit β-glucuronide,
and reduce irinotecan activity (Figure 4) [30,33,76]. In addition, nuclear factor kappa B
(NF-κB) is an anti-apoptotic transcription factor, especially in early transformed tumor
cells. Activated NF-κB inhibits the apoptotic cascade induced by tumor necrosis factor α
(TNF-α) and chemotherapeutic agents, particularly irinotecan, which are also associated
with pathogenic bacteria in the gut [32,34,58,77–80].

www.figdraw.com
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4.4. Gut Microbiota Is Involved in the Mechanism of Paclitaxel Resistance

Experimental studies have shown that the imbalance of intestinal flora is closely related
to diabetes. The decrease in Firmicutes abundance and the increase in Proteus and Bacteroides
lead to insulin resistance, and high blood sugar increases the therapeutic resistance of
pancreatic cancer to citabine/paclitaxel. Additionally, an increase in the hematopoietic stem
cell antigen CD133 in the tumor cell population in diabetic models has also been observed.
These observations suggest that in animal models of type-2 diabetes, dysregulation of
intestinal flora increases resistance to chemotherapy in pancreatic cancer, which may be
related to the tumor microenvironment. The specific mechanism needs to be further
investigated [35–37,81]. Queuosine and S-adenosylmethionine (SAM) are two metabolites
of intestinal flora. Queuosine is a rare nucleoside found in tRNA and appears at the swing
position of some tRNA anticodons. SAM is an antitumor agent that regulates cysteine–
methionine metabolism, immune response, and nucleotide methylation, thereby controlling
transcriptional processes. Queuosine enhances the chemoresistance of pancreatic cancer
cells to paclitaxel under obesity by protecting cancer cells from chemotherapy-induced
oxidative stress by up-regulating the peroxiredoxin1 (PRDX1) recombinant protein. Further
experiments showed that this chemoresistance could be reversed by supplementing obese
mice with SAM [82].

5. Reduction of Chemotherapy Resistance by Regulating the Intestinal Flora

Regulating intestinal flora through antibiotics, probiotics, fecal microbiota transplanta-
tion, or nanotechnology may reduce chemotherapy resistance and enhance the antitumor
effect of chemotherapy agents (Figure 5). Some mechanisms of tumor drug resistance have
been found through existing studies, including high expression of P-gp, overexpression
of multidrug resistance-associated protein (MRP), inhibition of apoptosis, etc., but the
problem of tumor drug resistance has not been completely solved. In recent years, more
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and more evidence has shown that intestinal flora plays an important role in inhibiting
tumorigenesis and regulating the therapeutic effect of tumors, especially in alleviating the
chemotherapy resistance of tumor cells [12,83–85]. The imbalance of intestinal flora can
seriously affect the pathogenesis and therapeutic effect of cancer. In particular, the modula-
tion of this therapeutic effect is closely linked to the ability of gut microbiota to metabolize
antitumor compounds and to modulate the host’s immune response and inflammatory
pathways. Together, these two effects could explain the effect of a patient’s gut microbiota
pairing on resistance to cancer chemotherapy [86,87].
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5.1. Antibiotics

Studies have shown that targeted intervention of antibiotics with pathogenic bacteria
can enhance the immune function of the body, reduce the metabolism of chemotherapy
drugs, and reduce drug resistance so as to restore or even enhance its antitumor efficacy [88].
Although antibiotics can enhance the immunity of the body and improve the sensitivity
of tumor cells to some chemotherapy drugs in some ways, the routine use of antibiotics
will change the symbiotic microbiota (that is, the bacteria that live with the organism and
keep it healthy), interfere with the fixed value of probiotics, and long-term use will lead
to the emergence of antibiotic-resistant bacteria strains, resulting in collateral damage to
patients [89,90]. Alternatively, antibiotic treatment leads to a decrease in the level of reactive
oxygen species produced by the gut microbiota, which is required for the early action of
oxaliplatin and cisplatin, which reduces the anticancer efficacy of oxaliplatin and cisplatin.
Therefore, the aim of using antibiotics to target intestinal flora to improve the clinical effect
of cancer chemotherapy resistance needs more experimental support [91].

5.2. Probiotics

Probiotics, which replenish beneficial bacteria that are reduced due to intestinal flora
imbalance, may help repair the intestinal barrier, relieve gastrointestinal inflammation,
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maintain intestinal homeostasis, and reduce adverse reactions, such as diarrhea associated
with chemotherapy [92,93]. A randomized, controlled trial has shown that Bifidobacterium-
and Lactobacillus-based probiotics can reduce β-glucuronidase activity, thereby reducing
the incidence of diarrhea caused by irinotecan while improving its anticancer activity [94].
Some studies have found that Lactobacillus paracasei combined with gemcitabine or 5-
fluorouracil in the treatment of pancreatic cancer can reduce the resistance of cancer cells to
these two chemotherapy drugs by inducing apoptosis [95,96]. However, some clinical trials
have also denied the clinical benefits of probiotics in terms of chemotherapy resistance
and efficacy in cancer treatment [97–99]. The conflicting results of clinical trials may be
explained by interindividual variation in the microbiome and host genome, which may
also be related to the limitations of most clinical trials on probiotics (e.g., small sample
size, short treatment duration, and lack of follow-up to examine the long-term effects of
probiotics on patients).

5.3. Fecal Microbiota Transplantation

One study examined the effect of eleven strains of probiotics and autologous fecal
microbiota transplantation (aFMT) on mouse and human microbiomes following antibiotic
reestablishment. The probiotics significantly delayed microbiome reestablishment. aFMT
induced a rapid and nearly complete recovery within days of administration. Based
on this finding, aFMT rather than probiotics could be used to reconstruct a patient’s
antibiotic-interfered microbiome to reduce tumor resistance in patients [100]. Although
fecal microbiota transplantation (FMT) has been shown to be of great therapeutic value in
diseases caused by bacteria such as Clostridium difficile, it also bears certain risks, such as
multidrug resistance, aspiration, and death, which require the use of standard microbial
screening in future FMT trials to improve FMT safety [101–103].

5.4. Nanomaterials

In recent years, new nanotechnologies, such as the clustered regularly interspaced
short palindromic repeats (CRISPR)/Cas9 system, provided by phages can target specific
bacterial species at the microbiome–cancer interface to minimize interference with the
symbiotic microbiome and ensure effective cancer treatment. In a study of colorectal cancer,
the covalent attachment of irinotecan-containing glucan nanoparticles to azide-modified
phages that inhibit the growth of Fusobacterium nucleatum significantly improved the sen-
sitivity of tumor cells to chemotherapy, suggesting that phage-guided nanotechnology
can stimulate cancer therapy by regulating the gut microbiome, which may lead to a new
approach to cancer therapy [104–106]. However, phage therapy to reduce chemotherapy
resistance is limited to gastrointestinal tumors, and its effectiveness in the treatment of
biliary pancreatic malignancies is still lacking. Nanotechnology can be used to target tumor-
associated bacteria or to release anticancer drugs in a controlled manner, thereby increasing
the sensitivity of tumor cells to chemotherapy drugs and reducing side effects in patients.
Given the impact of nanotechnology on cancer prevention and treatment, efforts should
be made to evaluate the mechanisms of nanoparticle-mediated toxicity, side effects, and
reduction in chemotherapy resistance with a focus on its role in tumor therapy [107–109].

Based on the current research, it is necessary to further clarify the mechanisms of
probiotics, FMT, and nanotechnology in antitumor therapy to improve the treatment of
biliary and pancreatic malignancies, especially regarding chemotherapy resistance.

6. Conclusions and Future Perspectives

To sum up, treatments for biliary pancreatic malignancies are becoming more and
more diverse, and combination therapy based on chemotherapy is extremely important.
After chemotherapy, along with immune disorders and the destruction of the intestinal
epithelial barrier, the types and composition of intestinal flora have undergone significant
changes, usually manifested as a reduction in probiotics and an increase in opportunis-
tic pathogens. This pathogenesis may be related to intestinal immune dysfunction after
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chemotherapy. However, the increase or decrease in some bacteria after an imbalance in the
bacterial community has occurred in turn increases or decreases the sensitivity of biliary
and pancreatic malignant tumor cells to these commonly used chemotherapy drugs. The
changes in intestinal flora can affect the chemoresistance of biliary pancreatic malignan-
cies in a variety of ways, including regulating local immune response and inflammation
around the tumor, regulating cancer autophagy through signaling pathways, affecting
drug metabolism, increasing the expression of drug transporters, and anti-apoptosis. Such
chemotherapy resistance often underlies the poor prognosis and easy recurrence of biliary
and pancreatic malignant tumors. By thoroughly investigating the correlation between
the intestinal flora and tumor and its treatment, antibiotics, FMT, probiotics, and nano-
loaded drug technology have shown their benefits in tumor treatment; they can target
the regulation of gut microbiota and improve chemotherapy resistance through the above
various ways. And the interaction mechanism between intestinal flora and chemotherapy
will also be paid to attract researchers’ future attention. In the future, we need a large
number of animal models and clinical trials to further study the role of probiotics and
nano-drug loading technology in the chemotherapy of patients with biliary pancreatic
malignant tumors so as to fully understand the complex interaction between intestinal
flora and chemotherapy resistance in biliary pancreatic malignant tumors. With the im-
provement of animal experiments and clinical data in the future, the potential of intestinal
flora in reducing chemotherapy resistance, improving efficacy, or reducing related adverse
reactions will be explored and applied.
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