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Simple Summary: Clock proteins and their collaborating transcription factors often act as distal
enhancers to regulate the rhythmic transcription of gene promoters. Those transcription factors need
to interact with the mediator complex and general transcription factors near the transcription start
site to finally control transcription. Pol II pausing, which is determined by Pol II recruitment, pause
release, and premature transcription termination near the transcription start site, plays a critical role in
influencing the final transcription output. However, the way Pol II pausing is regulated during daily
transcription and its role in shaping transcription rhythms have not been systematically investigated.
We recently carried out a quantitative ChIP-seq study to characterize Pol II pausing across the day in
mouse liver. Our analyses suggest that Pol II recruitment, pause release, and premature transcription
termination activities exhibit genome-wide changes that can peak at distinct clock phases. Such
complexity of Pol II pausing regulation during daily transcription provides new perspectives on the
transcription regulation of circadian rhythms and warrants future studies to dissect the regulatory
mechanisms of Pol II pausing and their roles in shaping the daily rhythms of gene transcription.

Abstract: Cell autonomous circadian oscillation is present in central and various peripheral tissues.
The intrinsic tissue clock and various extrinsic cues drive gene expression rhythms. Transcription
regulation is thought to be the main driving force for gene rhythms. However, how transcription
rhythms arise remains to be fully characterized due to the fact that transcription is regulated at multi-
ple steps. In particular, Pol II recruitment, pause release, and premature transcription termination
are critical regulatory steps that determine the status of Pol II pausing and transcription output
near the transcription start site (TSS) of the promoter. Recently, we showed that Pol II pausing
exhibits genome-wide changes during daily transcription in mouse liver. In this article, we review
historical as well as recent findings on the regulation of transcription rhythms by the circadian clock
and other transcription factors, and the potential limitations of those results in explaining rhythmic
transcription at the TSS. We then discuss our results on the genome-wide characteristics of daily
changes in Pol II pausing, the possible regulatory mechanisms involved, and their relevance to future
research on circadian transcription regulation.
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1. Introduction

Molecular clockworks consisting of feedback loops of core clock genes drive cell-
autonomous circadian oscillation in various species [1]. In mammals, the transcription
factors (TFs) CLOCK and BMAL1 dimerize to activate the transcription of Per1/2 and
Cry1/2, whose protein products are repressors that inhibit CLOCK/BMAL1 action through
negative feedback [2]. While the post-translational regulation of clock proteins play critical
roles in setting the clock pace [3,4], the prime mover of circadian oscillation is thought to be
transcription [5]. High throughput technologies such as microarray [6], RNA-seq [7,8], and
ChIP-seq [9] enable the detailed characterization of gene rhythms and the genomic binding
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of clock proteins, allowing for in depth analyses of circadian rhythm generation at the level
of transcription.

The binding sites of clock proteins are located within open chromatin regions estab-
lished by tissue-specific pioneer TFs (tsTFs), and thus are typically tissue-specific [10].
Chromatin is known to be a barrier to transcription, and DNA sequences are often not
accessible to many TFs, with the exception of tsTFs that are sufficient to trigger enhanced
competency within chromatin. Furthermore, tsTFs allow subsequent binding by other
TFs, including clock proteins. Some tsTFs (e.g., HNF4a [11,12]) and ubiquitous TFs (u-
TFs, e.g., RELA/p65 [13,14]) interact with and recruit clock proteins to their cis elements.
CLOCK/BMAL1 can also facilitate the binding of some tsTFs, leading to the suggestion
that CLOCK/BMAL1 acts like a pioneer-like TF [10,15]. Like many TFs [16], clock proteins
recruit cofactors to modify histones and remodel nucleosomes to regulate transcription.
Clock proteins and their cofactors form a complex with an M.W. over 1 MDa, and defi-
ciencies in some cofactors alter clock dynamics [17]. For example, clock proteins in both
Drosophila and mammals recruit the TIP60 complex to regulate clock oscillation [18–20].
To control Pol II transcription at the transcription start site (TSS), TFs require the mediator
complex [21] to interact with general transcription factors (GTFs) that are present at gene
promoter [22]. The mediator subunits interacting with the clock protein complex remain to
be determined.

Traditional studies addressed how TFs and cofactors direct the mediator complex to
assemble the pre-initiation complex (PIC) for transcription initiation and reinitiation at
the TSS [23]. Distal enhancers bound by TFs and promoters are thought to be brought
to proximity via chromatin looping, which is a process assisted by proteins such as co-
hesin and CTCF [24]. The traditional view of transcription, however, has difficulties in
explaining new findings such as transcription bursting, which represents Pol II initiation
and multiple rounds of reinitiation [25]. Imaging studies in single cells revealed that the
transcription of many genes, including clock genes [26], is stochastic and of low frequency.
Transcription often toggles between active and inactive states within a cell, and the active
state is characterized by transcription bursting followed by a prolonged dormancy of the
inactive state [27]. Bursting could be readily explained by the formation of a transcription
hub: cluster and/or molecular condensate of TFs, cofactors, mediators, and Pol IIs that
permit multiple rounds of Pol II initiation [28,29]. Recent studies revealed that TFs often
contain intrinsically disordered low-complexity domains, whose interactions induce the
formation of transcription hubs and even molecular condensates, the latter via “lipid-lipid
phase separation” [28,29]. Transcription bursting also requires pause release [30], which
refers to the process of P-TEFb-licensed Pol II elongation to overcome the +1 nucleosome
barrier and transcribe into the gene body [31]. Initiated Pol II travels only a short distance;
it then enters the state of pausing, wherein Pol II stays paused downstream of the TSS via
the actions of pausing factors (DSIF and NELF) and the +1 nucleosome [31,32]. P-TEFb is a
component of the super elongation complex (SEC) [33,34] that releases paused Pol II for
elongation, permitting Pol II reinitiation to achieve transcription bursting. Initiated Pol
II is also subject to premature transcription termination at the 5′ end of genes, which can
decrease Pol II pausing [35,36].

Compared to other aspects of the transcription regulation of circadian rhythms [37], Pol
II recruitment and pausing have just begun to attract attention from the circadian rhythm
field [2,19]. Recently, we performed quantitative ChIP-seq analyses of Pol II recruitment
and pausing during daily transcription in mouse liver, and revealed unique characteristics
of those regulatory steps [38]. In this article, we first review the critical roles of rhythmic
transcription in the generation of mRNA rhythms and clock oscillation, as revealed by
historical and recent studies on transcription regulation by clock proteins and other TFs. We
then discuss our findings on the daily regulation of Pol II pausing, which reveal the global
characteristics of Pol II recruitment, pause release, and premature transcription termination
at the 5′ end of genes. Given the critical role of Pol II pausing regulation in determining the
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transcription output, elucidating the mechanisms of Pol II pausing regulation during daily
transcription is critical to understand the regulatory logic of circadian rhythm generation.

2. Transcription Regulation Is the Main Driving Force for Gene Expression Rhythms

First demonstrated for Per in flies [39], core clock genes exhibit robust daily changes in
their mRNA expression. Owing to rapid co-transcriptional splicing, the pre-mRNA level
can be used as the surrogate for transcription activity. RNAse protection assays against Per
pre-mRNA and mRNA showed that the Per mRNA rhythm in Drosophila is mainly driven
at the level of transcription [40]. The post-transcriptional regulation of mRNA stability also
contributes to the Per mRNA rhythm and is sufficient to confer rhythmic mRNA expression
to other genes [41,42]. In mammals, core clock genes such as Per1/2 also exhibit robust daily
changes in mRNA levels [43,44]. A pre-mRNA measurement implicated that rhythmic
transcription is the driving force for the mRNA rhythms of core clock genes and many
other genes [45,46]. Deep sequencing studies evaluated the contribution of transcription
regulation to mRNA rhythm generation in a genome-wide manner. One study estimated
that 22% of mRNA rhythms are driven by rhythmic transcription [9]. Later studies with
a high sequencing depth and kinetic modeling increased the estimate to about 70–80%,
whereas rhythmic degradation contributes to the mRNA rhythms of 30–35% genes [47,48].
Nuclear export, which is another post-transcriptional regulation step, contributes to rhythm
generation for 10% of rhythmic transcriptomes [49]. Overall, rhythmic transcription is
deemed as the main driving force for gene rhythms [5].

3. Both the Intrinsic Tissue Clock and Extrinsic Cues Can Regulate Gene
Expression Rhythms

Clock genes typically harbor multiple cis elements for clock proteins, which also have
numerous other binding sites across the genome. Clock proteins thus also regulate many
other genes. Clock genes and other genes are also influenced by extrinsic cues, which
are often rhythmic in wildtype animals. Such cues include body temperature (Tb) [50],
feeding [51], and communication signals from other tissues (including the autonomic
nervous system) [52]. The extrinsic cues can engage TFs as well as post-transcriptional
mechanisms to regulate gene rhythms, including those of clock genes. For example, daily
changes in Tb drive rhythmic HSF1 expression to regulate gene transcription [53]. The Tb
rhythm also drives Cirbp expression to post-transcriptionally regulate clock dynamics [54].
Besides the Tb rhythm, blood-borne cues also regulate clock dynamics; serum and plasma
can activate multiple signaling pathways to impact clock genes [55–57]. For example,
rhythmic cues in plasma activate SRF, which regulates the transcription of the clock gene
mPer2 [57]. Certain blood-borne cues impacting clock dynamics are heat labile, implying
that they are proteins [58]. Lipids can also serve as inter-tissue communicating cues. For
example, phosphatidylcholine is synthesized by the liver and released into plasma to
activate PPARα in muscles [59].

Overall, clock proteins and many other TFs exhibit daily changes in their actions.
Like clock proteins, other TFs also have thousands of genomic binding sites in various
tissues. Therefore, they potentially can regulate numerous genes besides clock genes. Gene
expression rhythms are thus driven by both clock proteins and other TFs. How clock
proteins and other TFs work together to control gene rhythms was the focus of recent
studies in various peripheral mouse tissues.

4. Clock Proteins Typically Collaborate with Other TFs to Regulate Transcription Rhythms

Clock proteins and other TFs often collaborate to regulate target genes [10]. The
independent contribution of the clock to gene rhythms is rather limited [60,61]. In studies
that reconstitute clock oscillation (RE) in specific tissues of Bmal1-deficient mice [60,61], it
was shown that only 10% of the rhythmic transcriptome can be restored in the livers of
liver-RE mice [60]. However, that is not to say that the liver clock regulates only 10% of the
rhythmic transcriptome in wildtype mice. In fact, the disruption of the liver clock disturbs
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about 90% of the gene rhythms in mouse liver [62,63]. Overall, those results indicate that
the majority of gene rhythms are regulated in a combinatorial manner by both the intrinsic
clock and the TFs engaged by extrinsic cues.

By comparing the liver gene rhythms in Bmal1 KO, liver-RE, and wildtype mice under
ad libitum feeding versus nighttime restricted feeding, it was shown that the mRNA
rhythms in the livers of the wildtype mice can be partitioned into four parts based on
their modes of regulation [64]. Some rhythms can be driven by the intrinsic liver clock
alone (13.7%); some can be driven by rhythmic feeding cues alone (17.5%); some require
not only the intrinsic clock, but also rhythmic feeding cues (34.5%); while the rest (34.4%)
require both the intrinsic clock and rhythmic cues from other tissues (and their clocks).
Those results indicate that for the regulation of a majority of gene rhythms, there is a
mandatory requirement for clock proteins to collaborate with other TFs. For example,
feeding engages the TF CEBPB to coregulate BMAL1 target genes, and CEBPB deficiency
disrupts the rhythms of some BMAL1 target genes that are also regulated by feeding [64].

5. The Need to Study Pol II Pausing Regulation near the TSS

Clock proteins and other TFs occupying distinct enhancers of the same gene can col-
laborate through chromatin looping to regulate transcription. Techniques such as Hi-C and
CHIA-PET revealed daily changes in the long-range interactions between distinct enhancers
bound by clock proteins and other TFs, respectively, and between those enhancers and gene
promoters [10,65]. The collaboration between clock proteins and other TFs can also occur at
the same enhancers. Indeed, TFs often exhibit cooperative binding at the same enhancers
to increase the affinities of the two factors to their respective motifs. However, cooperative
binding does not necessarily lead to coactivation. For example, HNF4a and RELA/p65 can
recruit CLOCK/BMAL1 for genomic binding [11,13], but can transrepress its transcription
activation [12,14]. Such interactions between TFs at same and/or distinct enhancers pose
serious challenges in elucidating how clock proteins contribute to the final transcription
output at the TSS. Indeed, the genomic binding of CLOCK/BMAL1 at enhancers is often
not sufficient to specify the rhythm phase and amplitude, and cannot confer rhythmicity to
some target genes [37].

Another aspect of the complexity of transcription regulation is the lack of consensus
on how TFs and their cofactors at distal enhancers regulate transcription near the TSS [66].
The textbook model of chromatin looping posits that a stable contact is formed between
distal enhancers and promoters. A variation of this classical model is the “kiss-and-run”
model of transient contact between distal enhancers and promoters. However, the nature of
such long-range genomic interactions and its relevance to transcription have recently been
questioned [66]. The alternative TAG (TF activity gradient) model [66] emphasizes contact-
independent “communication by diffusion” of TFs and their cofactors between enhancers
and promoters. However, given the diversity of interacting TFs and their multitudes of
cofactors, it would be difficult, if not impossible, to dissect the specific contribution of
an individual TF and/or cofactor to the transcription output. On the other hand, Pol II
recruitment and Pol II pausing represent the final regulatory outcomes by a plethora of
TFs and cofactors. Those regulatory steps are directly related to the final transcription
output. Obtaining information about them is thus critical for understanding the logic of
transcription regulation. Surprisingly, such information is lacking in circadian rhythm
research (Figure 1).
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Figure 1. While clock proteins collaborate with other TFs at distal enhancers to regulate rhythmic
transcription of target genes, exactly how final transcription output is determined by Pol II recruit-
ment, premature termination, and pause release activities near the TSS is still an open question (?)
and needs to be systematically characterized.

Against this backdrop, we performed a ChIP-seq study of the Tbp (TATA-binding
protein. A TFII D subunit) and Pol II during daily transcription in mouse liver [38]. We
used the Tbp to measure the Pol II recruitment at the gene promoter and assumed that
the Tbp signal near the TSS is proportional to the rate of Pol II initiation (and reinitiation).
However, the Tbp and the mediator remain promoter-bound during PIC formation and
Pol II initiation and reinitiation [67,68], while other GTFs such as TFII B dissociate after Pol
II initiation and recycle for Pol II binding during reinitiation [69,70]. Thus, relative to the
signals of other GTFs, the Tbp signal might overestimate the Pol II initiation and reinitiation
rates. Nonetheless, the Tbp and other GTFs appear to exhibit concordant changes near the
TSS [71,72], permitting our use of the Tbp signal to measure not only Pol II recruitment, but
also initiation and reinitiation [73]. The Tbp signals within the TSS region (defined as −50
to +300 bp to TSS [38,74]) were quantitated to measure Pol II recruitment ([Tbp]TSS). The
Pol II ([Pol II]TSS) signals within the TSS region were quantitated to measure the paused
Pol II, while the Pol II signals in the gene body ([Pol II]GB) were quantitated to measure
the gene transcription rate. The Pol II traveling ratios (TR: [Pol II]TSS:[Pol II]GB), which
are quantitative measures of Pol II pausing [74,75], were also calculated. By means of the
systematic characterization of Pol II recruitment and pausing for 7414 genes during daily
transcription, our study provides the first glimpse of their genome-wide characteristics.

6. Global Characteristics of Pol II Recruitment and Pausing during Daily Transcription
in Mouse Liver

The results of our study are summarized in Figure 2. As can be seen, Pol II recruitment
measured via [Tbp]TSS is typically low during nighttime, especially at ZT22 (zeitgeber time
22. ZT0 corresponds to the lights that are on during the 12:12 light/dark cycle). [Tbp]TSS
exhibits a great rebound at ZT2. Most genes also have higher [Pol II]TSS near ZT2. Moreover,
numerous genes’ transcription rates, as measured via [Pol II]GB, are higher at ZT2, which is
concurrent with the increase in [Pol II]TSS and [Tbp]TSS (Figure 2). Together, those results
indicate a global upregulation of gene transcription at ZT2. Nonetheless, [Pol II]GB exhibits
more gene-specific changes across the day than [Pol II]TSS and [Tbp]TSS, with many genes’
transcription peaking at other time points than ZT2, especially near ZT14. The overall
bimodal distribution of peak gene transcription is consistent with the pre-mRNA analysis
results obtained by others [48].
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Pol II TR and stability within the TSS region ([Pol II]TSS/[Tbp]TSS).

The characteristics of daily changes in [Tbp]TSS, [Pol II]TSS, and [Pol II]GB (Figure 2)
may be related to the cell cycle, whose progression is known to impact transcription [76].
In particular, transcription is generally inhibited during mitosis and reactivated upon
mitotic exit [77,78]. While the liver is typically considered a non-dividing organ, it still
exhibits daily changes in cell-cycle related activities that interplay with the clock [79,80].
For example, the activity of CDK1, which is critical for mitosis entry, exhibits daily changes
controlled by the clock [81] and also regulates clock oscillation in return [82]. CDK1 activity
peaks before ZT0 in mouse liver [82,83]. CDK1 is known to phosphorylate TFII D to inhibit
PIC formation [84]. The late-night rise in CDK1 activity in mouse liver could induce the
global diminishment of [Tbp]TSS, as indeed observed at ZT22. On the other hand, the
rebound of [Tbp]TSS and [Pol II]TSS at ZT2 could be analogous to gene reactivation upon
mitotic exit [77,78].

Our results show that the Pol II TRs of all genes exhibit daily changes (Figure 2).
The TRs of most genes are high near ZT0, and their nadirs are near ZT12, especially at
ZT14 (Figure 2). [Pol II]TSS also reaches its genome-wide nadir at ZT14 (Figure 2). Pause
release lowers the Pol II TR by decreasing [Pol II]TSS and increasing [Pol II]GB. The patterns
of daily changes in [Pol II]TSS and TR in our results suggest a global rhythm of pause
release affecting most liver genes. This possibility is supported by other evidence. During
pause release, P-TEFb recruits the PAF1 complex (PAF1c) [85] to stimulate the activity of
SET1 [86,87], which deposits H3K4me3 downstream of the TSSs of genes. H3K4me3 is
increased in a genome-wide manner in mouse liver in the early night [9,88,89], which is
consistent with the rise in the pause release activity at that time. Against this global trend,
however, some genes’ TRs peak near ZT14. The possible causes for such exceptions are
discussed in Section 8.

The results of our ChIP-seq study are population averages lacking single-cell resolu-
tion. In single cells, the inherent noises of stochastic gene expression lead to phenotypic
variations, such as period heterogeneity among clonal cell populations [90–92]. More
specifically to our study, Pol II recruitment (and subsequent pausing) and pause release
could be distinct events occurring randomly among cells. However, single cell imaging
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studies showed that Pol II recruitment and bursting are not mutually independent, but are
sequential events occurring in close succession [93]. This permits cross analyses of the Tbp
and Pol II signals to infer the rules of daily transcription regulation. Below, we discuss our
analysis results and their implications.

7. Pol II Recruitment Is Not a Direct Determinant of Gene Transcription Rate

Traditionally, Pol II recruitment is thought to be the determinant of transcription
output. However, our results show that [Tbp]TSS does not correlate well with [Pol II]GB
for numerous genes [38]. Six example genes are shown in Figure 3. While the [Tbp]TSS
values of all six genes are the highest at ZT2, the transcription rates ([Pol II]GB) of those
genes peak at different phases. For example, the [Tbp]TSS and [Pol II]GB values of Bmal1
are the highest at ZT2, but several genes’ transcription rates peak near ZT14, when their
[Tbp]TSS values are low compared to other time points. Such results clearly indicate that
Pol II recruitment does not directly determine the transcription rate. This appears to be at
odds with the current view of coordinated regulation of Pol II recruitment and transcription
bursting [93]. Nonetheless, the paradox can be reconciled if pause release, which is required
for transcription bursting, is regulated independently from PIC formation. Such a scenario
was reported in [94]. Upon the acute depletion of the mediator complex to limit Pol
II recruitment and initiation, the cell-type-specific genes’ transcription is lowered [94].
However, the transcription of many other genes is maintained due to a compensatory rise
in pause release [94]. Such results indicate that pause release can affect transcription in a
manner independent of Pol II recruitment.
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transcription rate.

Transcription bursting has two parameters, burst frequency and burst size, which often
respond differentially to biological stimuli and experimental manipulations [95]. Burst
frequency is primarily determined via Pol II recruitment, which leads to PIC formation
and transcription initiation [96]. On the other hand, the burst size is mainly affected by
pause release, which permits rounds of reinitiation. If pause release is low during Pol II
recruitment, then Pol II from the first initiation round would stay paused downstream
of the TSS, creating a barrier for trailing Pol II. Eventually, it can hinder the downstream
movement of Pol II in the PIC. Indeed, Pol II pausing inhibits initiation [71,72]. By contrast,
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the P-TEFb-mediated release of paused Poll promotes Pol II reinitiation to increase the burst
size. It might also reduce the dwelling time of the Pol II “hub” near the TSS to facilitate
new PIC formation and initiation. Thus, pause release might increase burst frequency.
With regard to daily transcription in mouse liver, we suspect that genes with the highest
[Tbp]TSS, [Pol II]TSS, and [Pol II]GB at ZT2 have high burst frequencies but low burst sizes at
this time point. By contrast, the upregulation of some genes’ transcription near ZT14 may
be due to increased burst sizesassociated with high pause release activity. Such a scenario
is supported by other evidence, such as the genome-wide increase in H3K4me3 in mouse
liver in the early night [9,88,89].

TFs, their cofactors, and the mediator complex are known to regulate pause release
through interactions with P-TEFb. TFs such as c-Myc [75] can directly recruit P-TEFb. The
cofactor BRD4 also binds P-TEFb [97,98], and the TIP60 complex is suggested to acetylate
BMAL1 to recruit BRD4-P-TEFb [19]. The mediator complex not only regulates PIC forma-
tion, but also regulates downstream transcription events, including Pol II initiation and
pause release [25]. The MED23 and MED26 subunits and the CDK8 mediator kinase module
(MKM) of the mediator complex have been shown to interact with P-TEFb/SEC [99,100].
However, we want to emphasize that, in the molecular interactions controlling pause
release, P-TEFb is probably a rate-limiting factor. P-TEFb can be sequestered into the 7SK
snRNP, where it remains inactive and unable to elicit pause release. Signaling pathways can
activate pause release via inducing 7SK snRNP disassembly to release P-TEFb [94,101,102].
As shown in [94], the disassembly of 7SK snRNP boosts the P-TEFb availability to increase
pause release. This can be a potential mechanism accounting for daily changes in pause
release activity in mouse liver.

8. Premature Transcription Termination at the 5′ End of Genes Contribute to the
Regulation of Pol II Pausing

Pause release decreases Pol II stability in the TSS region by enabling Pol II outflux
for elongation. Footprinting and imaging studies revealed a rapid turnover of Pol II near
the TSS [103,104]. However, blocking pause release via P-TEFb inhibition only partially
increases Pol II stability [103–105]. Those results implicate that transcription termination at
the 5′ end of genes is the major determinant of Pol II stability near the TSS [35,36]. Such
premature termination is mediated by factors such as XRN2 [106], which also terminates
Pol II transcription at the 3′ end of genes [107]. Interestingly, clock proteins can inhibit Pol
II termination at the 3′ ends of the clock genes Per1 and Cry2, leading to daily changes in
Pol II accumulation therein [108]. To characterize whether premature termination at the
5′ end of genes changes over the day and to determine its contribution to Pol II stability
near the TSS, we used the ratio of [Pol II]TSS to [Tbp]TSS as the index of Pol II stability
within the TSS region. As evident in Figure 2, Pol II stability is the lowest at ZT2, when the
pause release activity appears to be low. On the other hand, Pol II stability at ZT14, which is
a time point that presumably has high pause release activity, is intermediate among the six
daily time points (Figure 2). Those results indicate a critical role of premature termination
in lowering Pol II stability [35,36]. Because premature termination decreases [Pol II]TSS
(thus Pol II TR) in a manner independent of P-TEFb, it leads to an inaccurate estimate of
the pause release. For example, the Pol II TRs of most genes are low at ZT14, which is most
probably due to a global increase in the pause release. However, some genes’ TRs peak
at ZT14 (Figure 2). We suspect that, for those outlier genes, premature termination might
significantly lower their TR values at other time points to confound the estimate of pause
release activity at ZT14.

The TSS region can only harbor a limited number of Pol IIs, and such space limitation
is suggested to subject Pol IIs to collisions that promote premature termination [109].
However, the target of premature termination needs clarification. In ChIP-seq studies
with a high sequencing depth, two Pol II peaks can be observed in the TSS region [110].
The first peak centers on the TSS and represents the initiated Pol II before pausing. The
second peak is 110 bp downstream of the TSS and represents canonical pausing. Existing
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evidence suggests that the paused Pol II (the second Pol II peak) is stable. For example,
following triptolide treatment to inhibit Pol II initiation, the half-lives of Pol IIs near the
TSS are typically minutes to even above an hour [111,112], indicating that paused Pol IIs
are not prone to rapid turnover via premature termination. While such long half-lives
were questioned based on the efficacy of triptolide treatment [103,104], we suspect that
premature termination mainly targets initiated Pol II before pausing. The capping of
nascent pre-mRNAs starts upon transcription initiation and is completed when Pol II enters
the pausing state [113]. Nascent RNAs with a 5′ cap are very stable, with only about 1%
being subjected to premature termination, indicating that Pol II pausing is stable [114].

The pausing factor NELF recruits the cap-binding complex (CBC) to bind the m7G
cap [115]. Importantly, the m7G cap and its binding by CBC are checkpoints for pre-mRNA
splicing and Pol II elongation [116–118]. This suggests a quality control role of premature
termination to ensure productive Pol II elongation. Indeed, premature termination involves
pre-mRNA quality control mechanisms. For example, XRN2 plays a role in premature
termination [106]. XRN2 acts on uncapped RNAs, and its action is assisted by decapping
enzymes such as DXO and DCP2, whose likely targets are inappropriately capped pre-
mRNAs [119]. The integrator complex (INTS), which cleaves nascent RNAs and recruits
PP2A to dephosphorylate Pol II CTD, also functions in premature termination [120]. INTS
depletion leads to the production of unspliced transcripts by Pol IIs that are incompetent
for productive elongation [121,122], indicating that INTS functions in quality control to
ensure productive Pol II elongation and efficient co-transcriptional pre-mRNA splicing.
By contrast, CBC functions in P-TEFb recruitment and INTS exclusion to activate pause
release and productive elongation [123,124].

9. Conclusions

To regulate gene transcription rhythms, clock proteins and their collaborating TFs at
distal enhancers need to gain access to the mediator complex and GTFs near the TSS. Pol II
recruitment, pause release, and premature transcription termination are the three processes
that control Pol II pausing and the transcription output near the TSS. Our previous study
revealed that those three processes exhibit genome-wide changes that could peak at distinct
clock phases, thus providing new perspectives on the logic of the transcription regulation of
circadian rhythms. Future studies should be directed towards elucidating the mechanisms
for daily changes in pause release and premature termination and towards pinpointing
their roles in shaping the daily rhythms of gene transcription. A major limitation of our
study and many others is the routine use of [Pol II]TSS as the measure of paused Pol II.
However, [Pol II]TSS actually contains signals from multiple Pol II forms [110], including
PIC, initiated Pol II before pausing, and paused Pol II. [Pol II]TSS thus overestimates paused
Pol II. Moreover, premature termination can lower [Pol II]TSS (and TR) independent of
pause release. Those confounding factors can lead to inaccuracies in the TR results. Ideally,
only signals of paused Pol II should be used for TR calculation to measure Pol II pausing
and pause release. However, it is not feasible in practice to find an antibody that exclusively
recognizes paused Pol II. Even monoclonal antibodies against a specific Pol II CTD form
(e.g., pSer5) show various cross-reactivities to other forms, and different antibodies against
the same epitope can yield dramatically different results [125]. We suggest alternative
targets such as CBC components [115] as surrogates of paused Pol II to improve accuracies
in the quantitative analyses of Pol II pausing and pause release in future studies.
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