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Simple Summary: This is the first study describing successful recovery of winter cuttings from five
bird cherry varieties of different genetic origin after six months of cryopreservation in liquid nitrogen
vapor (−183–−185 ◦C). This study also included analysis of morphometric data collected for plants
developed from cryopreserved cuttings, and biochemical analysis of fruits produced by plants after
cryopreservation in the field during three consecutive years. The viability of cuttings recovered after
six months of cryopreservation varied from 43 to 50% which exceeded the internationally accepted
genebank viability standard (40%). Cryopreservation had little to no impact on the morphological
parameters of the developed plants and no influence on the biochemical composition of the fruits.
All parameters measured for plants after cryopreservation were comparable to those recorded after
cold storage at −5 ◦C, which implies suitability of these storage methods for long- and mid-term
conservation, respectively, of the bird cherry genetic collection.

Abstract: Conservation at cryogenic temperatures, usually in liquid nitrogen (LN) or in its vapor, is
the only reliable method for the long-term ex situ conservation of fruit and berry crops with vege-
tative reproduction. In this study, five bird cherry (Padus Mill.) varieties of different genetic origin
from the bird cherry genebank at the N.I. Vavilov All-Russian Institute of Plant Genetic Resources
(VIR, Russia) were tested for their response to cryopreservation in LN vapor (−183–−185 ◦C). The
response included viability under laboratory and field conditions, morphological assessment of the
developed plants and biochemical analysis of fruits produced during three consecutive years by
plants developed from cryopreserved cuttings. All parameters were compared to those recorded
after cold storage of cuttings (−5 ◦C), a routine mid-term conservation method currently used at the
VIR genebank. The initial viability of winter cuttings varied from 86.7% to 93.3%. Six-month cold
storage and cryopreservation reduced viability to 53.3–86.7% and 43.3–60.0%, respectively, which
was above the 40% viability threshold in all varieties tested. Cuttings after cold storage showed better
viability when recovered in the laboratory (80% mean viability) than in the field (58% mean viability);
viability of cryopreserved cuttings was not affected by recovery conditions. The results of a two-way
analysis of covariance suggested that storage and recovery conditions had the most significant effect
on viability (p < 0.0001), while the effects of genotype (p = 0.062) and factor interactions (p = 0.921)
were minor. Cryopreservation had little or no influence on morphological parameters of the plants
recovered in the field, including plant height, number of shoots, internodes and roots, and root length.
Similarly, no effect of cryopreservation was recorded on dry matter content, total sugar content and
ascorbic acid concentration in fruits produced by plants developed from the cryopreserved cuttings.
These results suggest that cryopreservation in LN vapor is a reliable method for conservation of the
bird cherry genetic collection and is worth testing with a broader variety of genotypes.
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1. Introduction

Cryobiology is the branch of biology that studies effects of low temperatures on
living organisms. F. Simon, a British physicist, noted that “. . . this is the field where
human has far surpassed nature itself” [1]. Implementation of cryogenic temperatures
opened new directions to investigating biophysical properties of living cells and tissues
and stimulated the development and application of new research methods and technolo-
gies [2]. From the practical viewpoint, the greatest advantage of storage at ultra-low
temperatures is the significant deceleration or even complete stop of metabolic processes in
plant or animal tissues [3]. It is acknowledged that cryogenically stored material remains
genetically stable and thus unsusceptible to genetic changes that may occur in living or-
ganisms conserved under ambient conditions [4]. Plant biodiversity can be conserved in
situ, i.e., in natural environments, such as nature reserves or fields, or ex situ—in collec-
tor’s gardens, nurseries or genebanks. For most of the cultivated plants, germplasm is
stored in the form of seeds in genebanks at positive (+4–+5 ◦C) or negative (−10–−18 ◦C)
temperatures, thus ensuring high viability of seeds even after decades of storage [5–7].
However, this method is not applicable for plants with vegetative propagation, because
seed propagation does not ensure preservation of agriculturally important traits in the
offspring. The most effective method of ex situ storage of fruit and berry crops with vegeta-
tive propagation is cryopreservation in liquid nitrogen (LN, −196 ◦C) or its vapor phase
(−183–−185 ◦C) [8–11]. This method was successfully applied for the long-term storage
of meristem and pollen of the blackcurrant, apple, sweet cherry, and plum [12–20]. Cry-
opreservation using winter-dormant vegetative buds was implemented to back-up field
collections of Malus in the USA [21,22], Canada [23], and Germany [24]. The important
advantages that cryopreservation of dormant buds can offer, compared to other storage
methods, include no impact on cultivar genetic integrity, significantly lower maintenance
costs, smaller areas for sample storage, and an indefinitely long storage period [25]. Despite
the high initial costs and a complex procedure of putting samples into cryogenic storage,
cryopreservation is the only method that ensures stability of the main cytogenetic character-
istics of plant materials over the decades of storage—an advantage that cannot be achieved
using any other method, including cold storage [26,27].

The common European bird cherry (Padus avium Mill., synonym of Prunus padus L.)
is widely spread through the whole Russian territory, from its western to eastern borders.
Another bird cherry species, P. virginiana L., has been introduced to Russia from North
America. The bird cherry is the most frost-resistant among all stone fruit crops and is widely
grown for fruit production and greenspace extension in central and northern regions of the
country. The tree is undemanding and easy to cultivate. Fruits, leaves, bark, and flowers
of the bird cherry have high pharmacological value and have been used for centuries
in folk medicine. The fruits are used in the human diet, mostly in the regions of West
Siberia. Improved varieties of bird cherry with high nutritional and decorative values
were developed in the Central Siberian Botanical Garden after crossbreeding with the
chokecherry. At present, intensive research and breeding of the bird cherry aims to develop
new cultivars with higher fruit quality; therefore, chemical composition of fruits including
sugars and ascorbic acid content is of primary importance [28–30].

Field collections of diverse varieties of bird cherry are maintained at the research
stations of the All-Russian Institute of Plant Genetic Resources (VIR) (St. Petersburg,
Russia). Bird cherry is the only stone fruit plant that can be propagated by ligneous cuttings
in the spring. Therefore, cold storage of winter scions with dormant buds at −5 ◦C and
60% air humidity is currently used as the main mid-term storage method to back up field
collections of bird cherry.
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This research aimed to explore the suitability of cryopreservation in LN vapor for
conservation of bird cherry cuttings using five varieties of different genetic origin from
VIR collection. The viability of cuttings after cryogenic storage, morphometric analysis
of the developed plants, and biochemical analysis of fruits collected from plants grown
after cryopreservation were measured and compared to those recorded after conventional
cold storage.

2. Materials and Methods
2.1. Plant Material

Five varieties of the bird cherry (Padus Mill.) of different genetic origins were selected
from the bird cherry genebank of the Research Station Pushkin and Pavlovsk Laboratory
of the N.I. Vavilov, All-Russian Institute of Plant Genetic Resources (VIR) (30 km from St.
Petersburg, Russia) (Table 1). Cryopreservation studies were carried out at the Laboratory
for Long-Term Storage of Plant Genetic Resources of VIR (St. Petersburg, Russia). Biochem-
ical composition of bird cherry fruits was analyzed at the Biochemistry Laboratory of St.
Petersburg State Agrarian University (St. Petersburg, Russia).

Table 1. Bird cherry varieties used in the study.

Variety VIR Catalog № Genetic Origin

Avgustina 42,101 P. virginiana × P. avium

Granatovaya grozd’ 42,102 P. virginiana × P. avium

Rannyaya kruglaya 42,109 Seedling of Pamyati Salamatova
(P. virginiana × P. avium)

Samoplodnaya 42,110 Seedling of Pamyati Salamatova
(P. virginiana × P. avium)

Sakhalinskaya ustojchivaya 42,287 Padus avium Mill.

2.2. Cold Storage and Cryopreservation

The experiments were conducted over three consecutive years (2013–2015). In De-
cember, dormant one-year-old scions, 25–30 cm long, were collected from trees in the
Research Station and transported to the Laboratory for Long-Term Storage of Plant Genetic
Resources. In the laboratory, the scions were divided into 6–8 cm long segments (cuttings),
each having 2 or 3 buds. The cuttings were randomly divided into three groups that
were used for control without treatments (baseline viability assessment), cold storage, and
cryopreservation. An equal number of cuttings (200 pieces) was used for each treatment.

To determine the initial (baseline) viability, cuttings collected from the field were
partially placed in tap water and kept at 21 ◦C and a 16/8 h light/dark regime, illumination
of 5000–7000 lux was provided by cool fluorescent lamps in a climate control chamber
(hereafter designated as “laboratory conditions”). The viability was assessed after 160 days
as a percentage of cuttings that produced normal looking new stems, leaves, and roots.

The cuttings of the second group (cold storage treatment) were stored during 6 months
at −5 ◦C, 16/8 h light/dark regime, air humidity 60%; then their viability was determined
under laboratory conditions (described above) and in the field [31–33]. To assess viability
in the field, immediately after cold storage the cuttings were transferred to the Research
Station and planted in soil under ambient conditions. The viability was assessed after
160 days as a percentage of the cuttings that produced normal looking new stems, leaves,
and roots.

The cuttings of the third group intended for cryopreservation were dried in a ther-
mostat at −4~−5 ◦C to a water content of 28–32% based on the fresh weight (determined
gravimetrically). Cryopreservation was performed using the method suggested by Forsline
et al. [21] for cryopreservation of apples. Dried cuttings were placed into laminated bags,
10 × 15 cm, (10 cuttings per bag) and frozen in the Sanyo Medical Freezer U442 (T) (Japan)
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using a two-step technique. In the first step, cuttings were frozen at a rate of −1~−2 ◦C
per minute to −28~−32 ◦C. Then the freezing rate was increased to −3~−4 ◦C per minute
until reaching a terminate temperature of –50 ◦C. Then the bags were quickly transferred
to LN vapor (−183~−185 ◦C) for storage. After 6 months of cryogenic storage, bags with
cuttings were rewarmed in a water bath at +18~+20 ◦C. Cuttings were withdrawn from the
bag and their viability was assessed in the laboratory or in the field as described above.

Cold storage is currently a routine conservation method in the VIR genebank; therefore,
cuttings after cold storage were used for comparison of morphometric parameters and fruit
composition after cryopreservation.

2.3. Comparison of the Morphometric Parameters

Morphometric parameters such as plant height, the number of shoots and internodes,
and the number and length of roots were assessed in 15–20 randomly selected rooted plants
from cold storage and cryopreservation treatments recovered in the laboratory and in the
field 160 days after planting. Morphological observations were performed in compliance
with the Program and Methods for Research on Varieties of Fruit, Berry and Nut Crops [34].

2.4. Fruits Biochemistry

Mature fruits (total weight 500–1000 g) were collected for three years (2017 to 2019)
from plants grown in the field after cold and cryogenic storage (5 plants per storage
conditions per variety). Dry matter content, total sugar content, and the content of ascorbic
acid were measured as the key parameters of fruit quality [35]. The dry matter content
was determined by drying fruits at 105 ◦C until a constant weight was achieved. The
concentration of ascorbic acid in raw fruits was determined by titration with Tillmans stain
until the stain color in fruits changed. Ascorbic acid content was expressed as mg per 100 g
of fruit fresh weight [35]. The sugar content was measured using the reaction of potassium
ferricyanide reduction. The procedure is based on the oxidation of carbohydrates to reduce
potassium ferricyanide, which, in turn, reacts with iron (III) sulfate producing blue staining.
Staining intensity was determined by photocolorimetry using a spectrophotometer AAC
(Spectr-1) [28,35]. The sugar content was calculated using optical density, according to the
calibration curve. For determination of the total sugar content after hydrolysis, 1 mL of 5%
hydrochloric acid was added to test tubes containing 2 mL of the extract and heated for
5 min at 70 ◦C. The tubes were cooled and neutralized with 5% alkali.

2.5. Statistical Analysis of Data

Data are presented as mean values from three-year experimental data with standard
deviations. Viability was assessed in a one-way analysis of covariance. Viability data
obtained in different treatments were compared and assessed using dependent samples
t-test. Statistical analysis was performed using Statistica 13 software [36].

3. Results
3.1. Viability of Cuttings after Cold Storage and Cryopreservation

Baseline (initial) viability of bird cherry cuttings was compared to that after cold and
cryogenic storage in LN vapor (Table 2).

A one-way analysis of covariance revealed no significant difference between the five
varieties within the same storage and recovery conditions (p = 0.193–0.802). A two-way
analysis of covariance showed that the variant of the experiment (storage and recovery
condition) had the most prominent effect on viability (p < 0.0001), while the effects of the
variety (p = 0.062) and of factor interactions (p = 0.921) were insignificant. The variant of
the experiment had the greatest influence (83.7%) on viability variation, while the influence
of the genotype was established to be 2.6%, the factor interaction influence was 2.0%, and
error was 11.8%.
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Table 2. Viability of cuttings of five bird cherry varieties after 6 months of cold or cryogenic storage.

Variety

Viability of Cuttings, %

Baseline (Initial) Viability
(Laboratory Conditions)

Viability Under Laboratory Conditions Viability in the Field

Cold Storage Cryopreservation Cold Storage Cryopreservation

Avgustina 86.7 ± 3.3 fg 86.7 ± 3.3 fg 56.7 ± 3.3 abcd 56.7 ± 3.3 abcd 50.0 ± 5.8 abc

Granatovaya
grozd’ 90.0 ± 5.8 g 83.3 ± 3.3 efg 60.0 ± 5.8 abcde 63.3 ± 3.3 abcdef 46.7 ± 3.3 a

Rannyaya kruglaya 86.7 ± 3.3 fg 73.3 ± 3.3 bcdefg 50.0 ± 5.8 ab 53.3 ± 3.3 abc 46.7 ± 3.3 a

Samoplodnaya 90.0 ± 5.8 g 76.7 ± 3.3 cdefg 46.7 ± 3.3 a 56.7 ± 3.3 abcd 43.3 ± 3.3 a

Sakhalinskaya
ustojchivaya 93.3 ± 3.3 g 80.0 ± 5.8 defg 56.7 ± 3.3 abcd 60.0 ± 5.8 abcde 50.0 ± 5.8 abcd

Average 89.3 ± 1.8 D 80.0 ± 2.0 C 54.0 ± 2.1 AB 58.0 ± 1.7 B 47.3 ± 1.8 A

The same lowercase letters mark the mean values that do not differ significantly at p < 0.05. The same capital
letters mark the average values of viability in different treatments that do not differ significantly at p < 0.05. Data
are mean values from the experiments performed in three consecutive years (200 cuttings per treatment per year)
with standard deviations.

The results demonstrated high viability of control cuttings (baseline viability) varying
from 86.7% (Avgustina variety) to 93.3% (Sakhalinskaya ustoichivaya variety). Both cold
storage and cryopreservation led to a significant decrease in viability compared to the
baseline. The viability of cuttings recovered in the laboratory varied from 73.3% to 86.7%
after cold storage and from 46.7% to 60.0% after cryopreservation. When recovered in the
field, cuttings showed viability within 53.3–60.0% after cold storage and within 43.3–50.0%
following cryopreservation. On average, the cryopreservation effect was more detrimental,
resulting in a lower mean viability (47.3% and 54.0%) compared to the cold storage (58%
and 80%).

The viability of the cuttings planted in the field after cold storage (58.0% mean vi-
ability) was significantly lower than in the laboratory (80.0%). By contrast, viability of
cryopreserved cuttings remained almost unaffected by recovery conditions (mean viability
47.3% in the field vs. 54.0% in the laboratory). It is important to note that viability of all
varieties after cryopreservation for six months exceeded the existing genebank standard of
40% [4,5].

During recovery in the laboratory, cuttings of the Avgustina variety demonstrated the
highest viability (86.7%) after cold storage. The Granatovaya grozd’ variety showed high
viability both after cold storage (83.3%) and after cryopreservation (60.0%). Avgustina and
Sakhalinskaya ustoichivaya demonstrated the best viability (50.0%) after cryopreservation
when recovered in the field.

It is noteworthy that the cold storage and cryopreservation experiments were per-
formed during three consecutive years, and no significant differences in viability were
observed between variants of the experiment upon per-year analysis (p = 0.065–0.774).

Thus, bird cherry cuttings preserved their viability over 40% after cold and cryogenic
storage. The viability of the cuttings planted in the field following cryogenic storage,
complied with the standards established for the genebanks and varied from 43.3 to 50.0%.

3.2. Morphometric Parameters of the Rooted Cuttings

In addition to viability, morphometric parameters of the rooted bird cherry cuttings
were assessed in two variants of the experiment: following cold storage and following
cryogenic storage (Table 3).
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Table 3. Morphometric parameters of rooted bird cherry cuttings after 6 months of cold storage or
cryopreservation. Plants developed from cuttings recovered in the field.

Variety
Plant Height, cm

Number of
Length of Roots, cm

Shoots Internodes Roots

Cold Cryo Cold Cryo Cold Cryo Cold Cryo Cold Cryo

Avgustina 25.3 ± 3.3 15.5 ± 0.5 1.3 ± 0.3 1.5 ± 0.5 2.7 ± 0.3 4.5 ± 2.5 10.7 ± 0.9 9.0 ± 0.0 6.7 ± 0.9 10.0 ± 0.0

Granatovaya
grozd’ 22.5 ± 4.5 19.5 ± 1.5 1.0 ± 0.0 1.0 ± 0.0 9.5 ± 2.5 7.0 ± 5.0 5.5 ± 0.5 4.5 ± 0.5 12.0 ± 2.0 12.0 ± 2.0

Ranyaya
kruglaya 8.8 ± 0.3 20.8 ± 4.3 3.5 ± 0.5 1.0 ± 0.0 * 15.0 ± 2.0 3.8 ± 1.0 * 12.5 ± 1.5 12.0 ± 2.4 8.5 ± 2.5 6.8 ± 1.3

Samoplodnaya 12.3 ± 2.2 8.3 ± 0.9 1.0 ± 0.0 1.0 ± 0.0 3.3 ± 0.8 3.0 ± 0.6 8.0 ± 0.7 7.3 ± 1.8 12.3 ± 1.7 8.7 ± 1.3

Sakhalinskaya
ustoychivaya 25.5 ± 1.2 22.6 ± 3.3 1.0 ± 0.0 1.0 ± 0.0 2.4 ± 0.4 3.6 ± 1.2 2.2 ± 0.4 8.8 ± 2.4 * 11.2 ± 1.3 9.8 ± 1.7

Cold—cold storage; Cryo—cryopreservation; *—values are significantly different between cold and cryopreserva-
tion storage according to a Student’s t-test at a 5% significance level.

Rooted cuttings of Avgustina and Sakhalinskaya ustoichivaya varieties are shown in
Figures 1 and 2, respectively. The assessed morphometric parameters included plant height,
the number of shoots and internodes, and the number and length of roots, as summarized
in Table 3.
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Plant height for all accessions, except Ranyaya kruglaya, was greater after cold storage
compared to cryopreservation (Table 3). The highest number of shoots was recorded
after cold storage for the varieties Avgustina (1.3) and Rannaya kruglaya (3.5). After
cryopreservation, the number of shoots was highest in the Avgustina variety (1.5). In
Rannyaya kruglaya, the number of shoots was significantly reduced after cryopreservation
compared to cold storage. In the cold storage group, the highest number of internodes
was recorded for varieties of Granatovaya grozd’ (9.5) and Rannyaya kruglaya (15.0). A
significantly lower number of internodes was recorded in varieties of Granatovaya grozd’
and Rannyaya kruglaya after cryopreservation compared to cold storage. Root number
remained similar between cold and cryogenically stored cuttings in all varieties, while root
length was greatly reduced after cryopreservation in all genotypes tested.

3.3. Biochemical Composition of Fruits

Upon beginning of the fruiting period, the biochemical composition of bird cherry
fruits was analyzed. Table 4 summarizes the results of fruit biochemical analysis in plants
grown in the field after cold storage and after cryopreservation. The data were collected
over a period of three years, from 2017 to 2019.

Table 4. Biochemical parameters of bird cherry fruits (average from three-year experiments,
2017–2019). Plants developed from cuttings recovered in the field.

Variety

Dry Matter
Content (%) Total Sugars Content (%) Ascorbic Acid

Content (mg/100 g Fresh Weight)

Cold Storage Cryopreservation Cold Storage Cryopreservation Cold Storage Cryopreservation

Avgustina 27.6 ± 2.1 27.1 ± 2.0 12.1 ± 1.5 13.1 ± 0.5 20.5 ± 1.1 19.4 ± 2.0

Granatovaya
grozd’ 28.1 ± 2.1 27.0 ± 2.8 14.8 ± 2.1 13.4 ± 3.3 21.1 ± 2.3 20.6 ± 3.1

Rannyaya
kruglaya 27.9 ± 1.5 28.0 ± 1.7 15.7 ± 2.0 14.5 ± 3.1 19.8 ± 2.2 19.9 ± 2.8

Samoplodnaya 27.3 ± 3.1 28.1 ± 2.0 16.3 ± 2.1 16.6 ± 1.8 21.1 ± 3.3 21.1 ± 2.9

Sakhalinskaya
ustojchivaya 28.1 ± 2.5 29.5 ± 1.1 15.9 ± 2.5 16.0 ± 2.4 19.1 ± 2.6 18.8 ± 3.0

Average 27.8 ± 2.3 27.9 ± 1.9 14.9 ± 2.0 14.7 ± 2.2 20.3 ± 2.3 19.9 ± 2.7

No significant differences between treatments or varieties were recorded.

No significant difference in dry matter content was observed in bird cherry fruits
between the cold storage and cryopreservation groups. The content of dry matter varied
within a narrow range of 27.1–29.5%. Similarly, cryopreservation had no significant effect
on total sugar content and the concentration of ascorbic acid in fruits of the developed
plants. The difference between trees developed after cold storage and cryopreservation did
not exceed 1–2%.

Among the varieties, higher levels of sugars were observed in fruits of Samoplodnaya
(16.3–16.6%) and Sakhalinskaya ustoichivaya (15.9–16.0%). The level of ascorbic acid was
highest in fruits of varieties Granatovaya grozd’ and Samoplodnaya (20–21 mg/100 g
fresh weight).

4. Discussion

The results of our study demonstrated that cuttings of bird cherry with dormant buds
remain viable after dehydration and cryopreservation in LN vapor. These results are in line
with the work by Stusnnoff [37] who presented the classification of fruit crops based on
their frost resistance and potential for cryopreservation. According to this classification,
Class I includes species that are extremely frost-resistant, e.g., Amelanchier alnifolia Nutt.
And Prunus virginiana L. (tolerate temperatures below −60 ◦C) that demonstrate rapid
acclimation, are resistant to dehydration-induced damage, and withstand cryopreservation
without prior dehydration. Class II includes frost-resistant species, such as Malus baccata
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Borkh., P. besseyi Bailey, P. pennsylvanica L.f., and P. tenella Batsch, that are also capable of
rapid acclimation but are susceptible to dehydration-induced damage; these species also
tolerate cryopreservation without prior dehydration. Class III includes the frost-resistant
species M. pumila Mill., P. nigra Ait., P. fruticosa Pall., P. tomentosa Thunb., and P. salicina
Lindl. (which survive at –40 ◦C) that are susceptible to dehydration-induced damage and
require controlled acclimation for storage. Class IV includes the cold-susceptible species
P. armeniaca, P. avium L., P. cerasus L., and P. persica (L.) Batsch (which tolerate temperatures
above −40 ◦C) with slow acclimation, are susceptible to dehydration-induced damage,
that do not withstand direct cryopreservation in LN and require controlled acclimation to
recover from cryopreservation. Class V includes highly cold-susceptible species (threshold
temperature above −20 ◦C). Several authors also investigated cryopreservation in fruit
crops such as apples, pears, and almonds; their studies demonstrated viability of LN-stored
cuttings and buds varying from 50.0% to 70.0% [22,38,39]. For example, in the recent study
by Höfer and Flachowsky [40], 180 accessions belonging to 32 species of Malus were tested
for cryopreservation using the dormant bud method within ten years, with an average
recovery rate of 39%. Among those, 116 accessions achieved the 40% threshold recovery.

In our study, both cold storage and cryopreservation led to reduced viability of winter
cuttings compared to the baseline viability. We hypothesized that such moderate viability
decrease may be caused by the combinational effect of dehydration and low temperatures.
On the other hand, statistical analysis revealed only a minor change in viability for cuttings
recovered in the laboratory after cold storage, which confirms that the cold storage method
routinely used in the VIR genebank is suitable for mid-term conservation of the bird cherry.
It is interesting that recovery conditions (in the laboratory or in the field) affected viability
of cuttings after both cold storage (significantly) and cryopreservation (insignificantly).
This difference may be caused by various factors including more stable physical conditions
in the laboratory compared to field. Further experiments are required to better understand
the effects of those factors on viability. It is, however, important that, in all varieties tested,
viability after cryopreservation was above the standard threshold level of 40% accepted for
the genebanks.

The analysis of morphometric parameters of bird cherry cuttings allows for the assess-
ment of growth and development of the plants following storage at low temperature and
cryopreservation. A two-way analysis of covariance demonstrated significant difference
between varieties in all assessed parameters, except for root length. At the same time,
only a few significant variations were noted in plant height, number of shoots, internodes
and roots, and root length between cold-stored and cryopreserved cuttings. Other stud-
ies [41,42] confirmed the stability of genetic and morphological parameters in various plant
materials after cryopreservation. According to Kaity et al. [43], genetic changes may occur
in papaya plants following cryopreservation. In general, it is acknowledged that the use of
dormant buds for cryopreservation without establishing the in vitro culture reduces the
risk of somaclonal variations in plant materials [27] and thus is preferable for the long-term
storage of vegetatively propagated fruit trees.

Biochemical analysis of bird cherry fruits confirmed high levels of dry matter and total
sugars and low levels of ascorbic acid in the fruits. No significant difference between the
varieties was revealed. Cold storage and cryopreservation had no significant effect on fruit
quality in all accessions tested. In our previous works we noted that blackcurrant berries
are less susceptible to the effects of cryopreservation, as assessed by mean berry mass,
berry mass loss and levels of solids, organic acids, and vitamin C [30]. In gooseberry plants
grown after cryopreservation, an increase in mean berry mass, levels of solids, vitamin C
and carbohydrates, and a decrease in the levels of organic acids was observed [30].

5. Conclusions

Our results confirmed the high reliability of the cold storage method for mid-term
conservation of winter cuttings of the bird cherry. The study also demonstrated that cryop-
reservation of dehydrated winter cuttings in LN vapor could be successfully applied to
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genotypes of different genetic origin. The viability of the cuttings after cryopreservation
determined under laboratory conditions or in the field were similar among genotypes and
exceeded the genebank threshold of 40% in all five varieties tested. Cryopreservation had
no or minor influence on morphometric parameters (plant height, number of shoots, in-
ternodes, and roots) of the recovered plants. Moreover, we found no change in biochemical
composition of fruits produced by plants developed from cryopreserved cuttings. In the
future, we plan to implement both storage methods to safely backup genetic collections of
the bird cherry at the VIR genebank. Cold conditions will be used for mid-term storage
and for storing materials for research purposes, while cryopreservation will be used as an
ultimate long-term storage back-up of the core collection. Further investigations should
involve a wider range of bird cherry species and varieties and include interspecific hybrids,
in order to investigate the response of a broader range of genotypes to cryogenic conditions.
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