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Simple Summary: Iron is an essential element in human cells. Cells use iron for many processes,
such as proliferation, survival, DNA synthesis and energy production. However, iron overload is
dangerous and can cause damage to cells. Hence, iron metabolism and balance are tightly regulated
in order to avoid iron accumulation or iron depletion. Studies published in recent years have
demonstrated that iron metabolism is dysregulated in cancer cells and that such alterations help the
tumor to grow, invade and survive anticancer therapies. For these reasons, iron represents a potential
useful target for cancer therapy. The dysregulation of iron metabolism has also been observed in
senescent cells, but in this case, our knowledge is still expanding. In this review, we first provide an
overview of iron metabolism and iron regulatory proteins. Then, we summarize what we currently
know about iron balance in cancer cells and senescent cells.

Abstract: Iron participates in a number of biological processes and plays a crucial role in cellular
homeostasis. Alterations in iron metabolism are considered hallmarks of cancer and drivers of
aggressive behaviors, such as uncontrolled proliferation, resistance to apoptosis, enhanced metastatic
ability, increased cell plasticity and stemness. Furthermore, a dysregulated iron metabolism has
been associated with the development of an adverse tumor microenvironment. Alterations in iron
metabolism have been described in cellular senescence and in aging. For instance, iron has been
shown to accumulate in aged tissues and in age-related diseases. Furthermore, in vitro studies
demonstrate increases in iron content in both replicative and stress-induced senescent cells. However,
the role, the mechanisms of regulation and dysregulation and the effects of iron metabolism on
senescence remain significantly less characterized. In this review, we first provide an overview of
iron metabolism and iron regulatory proteins. Then, we summarize alterations in iron homeostasis in
cancer and senescence from a cellular point of view.

Keywords: iron; cancer; senescence

1. Introduction
1.1. Iron Metabolism in Normal Cells

Iron is a transition element that is abundantly present on the surface of our planet [1].
What makes iron unique, particularly in living organisms, is its ability to donate and accept
electrons in redox reactions [2]. In this way, iron actively participates in a number of
biological processes such as DNA synthesis and repair, mitochondrial cellular respiration,
cell proliferation, cell survival, cell signaling and host defense [3]. The majority (80%) of the
iron in the human body is incorporated into the heme of erythrocyte hemoglobin to ensure
oxygen transport along the bloodstream, while the remaining 20% can mainly be found
in macrophages and hepatocytes bound to ferritin or in myoglobin and iron-containing
enzymes in various cell types [4].
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Iron metabolism is regulated at different levels in human cells. A crucial step is the
reduction of dietary iron Fe3+ to Fe2+ before its uptake into enterocytes, and this process
is mediated by the iron-reducing ferric reductase duodenal cytochrome B (DCYTB) at
the apical membranes of the enterocytes facing the intestinal lumen. The reduced iron
then enters the cells across the divalent metal transporter 1 (DMT1), where it is (i) used
for specific metabolic reactions, (ii) stored in ferritin or (iii) delivered to the basolateral
membrane for ferroportin (FPN1)-mediated release into the bloodstream. Then, ferrous
iron is oxidized to Fe3+ by hephaestin (Hp) and bound to transferrin (Tf), the main natural
iron carrier in plasma. Under normal physiological conditions, erythroblasts, hepatocytes
and macrophages bind the transferrin–iron complex on their cell surfaces via transferrin re-
ceptors 1 and 2 (TfR1 and TfR2) and internalize it via clathrin-dependent endocytosis. Then,
the acidic dissociation of iron Fe3+ occurs into endosomes, followed by a ferrireductase
six-transmembrane epithelial antigen of prostate (STEAP3)-mediated reduction into Fe2+

,
which is released to the cytosol via DMT1. Under physiological conditions, it will constitute
the “labile iron pool (LIP)” and will be either incorporated into heme (mainly erythroblasts)
or stored in ferritin (erythroblasts, hepatocytes and macrophages) (Figure 1) [5].
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Figure 1. Overview of iron metabolism. Dietary Fe3+ is reduced to Fe2+ by DCYTB, which is located at
the apical membranes of enterocytes facing the intestinal lumen. DMT1 mediates the entry of reduced
iron into the cells, where it is stored in ferritin, used in various metabolic reactions or delivered to the
basolateral membrane for FPN1-mediated release into the bloodstream. Hp oxidizes Fe2+ to Fe3+,
which can be bound by the iron carrier Tf. Cells bind holo-transferrin through TfR1 on their cell
surface and internalize this complex via clathrin-dependent endocytosis. Finally, acidic dissociation
of Fe3+ occurs into endosomes, followed by a STEAP3-mediated reduction to Fe2+, which is released
into the cytosol via DMT1.

Given that the excess and lack of iron are two potentially dangerous conditions for
the human body due to the ability of iron to contribute substantially to the regulation of
the cellular redox state and proper erythropoiesis, its homeostasis is tightly controlled. To
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this end two iron-dependent proteins, iron-responsive element binding proteins (IRPs) 1
and 2, bind to the iron-responsive elements (IREs) located at the 5′ and 3′UTRs of the main
iron metabolism genes’ mRNAs. The binding of the IRPs to the 5′UTR IREs determines
translational repression, while their binding to the 3′UTR IREs stabilizes the mRNAs and
increases protein synthesis. For example, when the cellular iron concentration is high, IRPs
do not bind to either the 5′UTR IREs of FPN1 and ferritin mRNAs, thus allowing their
translation, or to the 3′UTR IREs of DMT1 and TfR1, thus allowing their degradation. On
the contrary, in the case of an increased demand for cellular iron uptake, the binding of
IRPs to the corresponding IREs located at the 5′ and 3′UTRs of the same mRNAs leads to
the inhibition of FPN1 and ferritin synthesis and the stabilization of the DMT1 and TfR1
transcripts (Figure 2) [6,7].
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In addition to these mechanisms, iron homeostasis is balanced by the FPN1/hepcidin 
axis. Iron overload conditions increase the expression of hepcidin, which binds to FPN1 
to promote its internalization and lysosomal degradation to prevent the cellular export of 
iron, whereas in the case of a lack of iron, hepcidin expression is downregulated to allow 
for cellular iron release (Figure 3) [8]. The dysregulation of hepcidin could lead to 
hemochromatosis (iron accumulation) or to anemia (iron deprivation) [9,10]. 

Figure 2. IRP1- and IRP2-dependent control of iron metabolism genes’ mRNAs. (A) Under iron-
depleted conditions, IRP1 and IRP2 proteins bind to IREs located at the 5′ and 3′UTRs of target genes.
The binding of IRPs to the 5′UTR IREs induces the translational repression of ferritin and FPN1 genes,
whereas their binding to the 3′UTR IREs stabilizes the mRNAs of TfR1 and DMT1. These coordinated
actions decrease iron storage and enhance iron uptake in the cells. (B) Under iron-rich conditions
IRP1 and IRP2 do not bind IREs, allowing for ferritin and FPN1 translation and the degradation of
TfR1 and DMT1 mRNAs.

In addition to these mechanisms, iron homeostasis is balanced by the FPN1/hepcidin
axis. Iron overload conditions increase the expression of hepcidin, which binds to FPN1
to promote its internalization and lysosomal degradation to prevent the cellular export
of iron, whereas in the case of a lack of iron, hepcidin expression is downregulated to
allow for cellular iron release (Figure 3) [8]. The dysregulation of hepcidin could lead to
hemochromatosis (iron accumulation) or to anemia (iron deprivation) [9,10].
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Figure 3. The FPN1/hepcidin axis and systemic plasma iron homeostasis. (A) Under iron-depleted
conditions hepcidin is downregulated in order to allow for cellular iron release through FPN1. (B) Iron
overload upregulates the expression of hepcidin, which binds to FPN1 at the cell surface. Hepcidin
and FPN1 are internalized and degraded in lysosomes, thus inhibiting iron release.

In addition to the above-described proteins, which are mainly involved in the control
of iron metabolism, other regulators have been proposed to play a role in iron homeostasis,
such as mitoferrin, or have been ascertained to be pivotal for cellular iron management, such
as neutrophil gelatinase-associated lipocalin (NGAL). Mitoferrin, also called SLC25A37,
controls the balance of iron between the cytoplasm and mitochondria. Little is known
about the regulation of mitoferrin expression: it is still unclear if it is regulated at the
transcriptional, translational or post-translational level. Also, how iron influences its ac-
tivity is still debated. Since mitochondrial dysfunction and disrupted iron homeostasis
are associated with a number of pathologic conditions, including atherosclerosis, type 2
diabetes, neurodegenerative diseases and cancer progression, it has been postulated that
dysregulated mitoferrin could be found in different diseases. Accordingly, altered expres-
sions of mitoferrin have been reported in in vitro and in vivo models of atherosclerosis,
Huntington’s disease, head and neck cancer and hepatocarcinoma [11].

NGAL (also called Lipocalin-2) is an acute phase protein abundantly secreted by neu-
trophils during bacterial infections to limit the availability of iron for bacterial growth [12]. It
also contributes to the regulation of iron homeostasis in mammalian cells via the SLC22A17-
and/or Megalin-mediated uptake of iron-loaded catecholate siderophores to activate the
expression of iron-responsive genes like ferritin and transferrin receptor [13,14] (Figure 4).
Notably, NGAL can also bind intracellular iron-loaded siderophores and transfer them
to the extracellular milieu, thereby decreasing the intracellular iron concentration [15]. In
addition to its role as an iron carrier, NGAL binds to matrix metalloproteinase-9 (MMP-9)
to protect it from auto-degradation [16].

Although iron plays a beneficial role in many aspects of cellular physiology, it can
become toxic in the presence of hydrogen peroxide (H2O2) by producing a large number of
free radicals. The Fenton reaction is a typical example of how iron can play a dangerous role
in the cell: when iron Fe2+ reacts with H2O2, it generates the hydroxyl radical (OH·), one of
the powerful reactive oxygen species (ROS), and is oxidized to Fe3+. The H2O2 reduces the
Fe3+ to Fe2+, generating the hydroperoxyl radical (OOH·), an additional powerful ROS [17].
These free radicals, if not inhibited by antioxidants, give rise to oxidative stress and react
with proteins, lipids, nucleic acids and carbohydrates, causing cellular damage and tissue
injury. One of the most common consequences of this oxidative damage is represented
by massive lipid peroxidation that causes dramatic modifications in cellular membrane
structures, resulting in an iron-dependent non-apoptotic cell death called ferroptosis [18].
Ferroptosis is triggered by the inability of the antioxidant glutathione (GSH) to either
counteract the accumulation of ROS, which is determined by cellular iron excess, or to
enhance the activity of phospholipid peroxidase GPX4, which prevents the accumulation of
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peroxidized lipids. GSH failure mainly occurs as a consequence of missed cysteine uptake
in its oxidized form (cystine) via the Xc– cystine/glutamate antiporter [19]. Ferroptosis
has been found to be associated with different human disorders such as cardiovascular
diseases [20], neurodegeneration [21] and cancer [22].
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(NGAL) binds to extracellular iron (Fe3+) (NGAL-Fe) and is delivered inside cells through Megalin or
NGAL receptors (NGAL-Rs). Internalized NGAL-Fe undergoes endosome-mediated dissociation
to allow for the release of iron into the cytosol, which will be used to activate the transcription of
iron-dependent genes.

1.2. Iron in Cancer and Senescence

In recent years, a substantial body of literature has highlighted the pivotal role of iron
metabolism in cancer. It has been largely demonstrated that neoplastic cells need iron to
accelerate their proliferative rate, circumvent pro-apoptotic signals, enhance the metastatic
spread, shape a tumor-desirable microenvironment and sustain the activity of cancer stem
cells [23–27]. The intracellular accumulation of iron is also a distinctive alteration in cellular
senescence.

Cellular senescence is a state of irreversible cell cycle arrest that ensues in cells in
response to different types of stress or arises as a conserved developmental program during
mammalian embryogenesis [28]. Senescent cells are characterized by distinctive phenotypic
alterations, such as a flat and enlarged morphology, the increased expression and activity
of lysosomal beta-galactosidase (referred to as senescence-associated beta-gal or SA-β-
gal) [29] and the SASP (senescence-associated secretory phenotype), a temporally regulated
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secretion of cytokines, growth factors and extracellular remodeling enzymes which mediate
both the physiological and pathological effects of senescent cells [30,31]. Senescent cells
and their secretome contribute critically to organismal aging. Senescent cells have been
shown to accumulate in aged tissue and in age-related diseases, where they impair tissue
repair and promote tissue dysfunction [32]. Pre-malignant and malignant cancer cells
can also undergo senescence and accumulate in pre-neoplastic lesions and in neoplastic
tissue from patients with cancer [33]. In preneoplastic lesions, the improper activation of
oncogenes induces oncogene-induced senescence (OIS), which acts as a barrier against
transformation [33]. Notably, the SASP factors expressed during OIS promote paracrine
senescence in adjacent cells, also limiting tumorigenesis [34]. Finally, a senescent-like
phenotype indicated as therapy-induced senescence (TIS) can be induced in neoplastic cells
via treatment with conventional and targeted anticancer drugs [35–37]. Although both
short-term OIS and TIS are beneficial in that they limit the proliferation of pre-neoplastic
and neoplastic cells, respectively, the detrimental effects of senescent cells mediated by the
SASP prevail in the long term [38].

The development of a senescent phenotype is associated with specific metabolic
changes, as recently reviewed in [39,40]. In particular, alterations in lipid metabolism have
been described. Some alterations, such as the upregulation of the β-oxidation of fatty acids,
are necessary for the secretion of SASP factors, whereas others, such as the synthesis of
prostaglandin, have been functionally linked to the reinforcement of the senescent cell
cycle arrest [39]. Alterations in autophagy have also been observed, with both reduced
macroautophagy and selective protein degradation via microautophagy. an increase in
lysosomal mass is responsible for increased SA-β-gal, whereas increased lysosomal per-
meability determines the upregulation of glutaminolysis [39]. In addition, mitochondrial
alterations, such as an increase in mitochondrial mass, reduced oxidative phosphorylation
and elevated ROS production, have been involved in cellular senescence [40]. Interestingly,
senescent cells accumulate transition metals, including manganese, zinc and iron [39].

A critical aspect of cellular senescence is the significant heterogeneity of senescent cells.
An analysis of senescence-specific gene expression showed dramatically different profiles
between different cell types, such as fibroblasts and epithelial cells [41], and different
senescence inducers [42]; even within a homogeneous cell population, senescent cells
display more variability in mRNA levels than quiescent cells [43].

Experimental data have demonstrated that intracellular iron content increases during
replicative and stress-induced senescence in normal cells [44,45]. Accordingly, iron accu-
mulation in tissue has been associated with aging and with the development of age-related
diseases [46,47]. Although alterations in proteins involved in iron metabolism have been
reported in senescent cells, the role of iron in senescence has not been clarified.

This review presents a protein-by-protein description of iron metabolism alterations
in cancer and senescence from a cellular perspective. To this end, we focus on a subset
of proteins involved in iron homeostasis whose roles in cancer and senescence have been
investigated in a cellular context.

2. Key Iron Regulatory Proteins in Cancer and Senescence
2.1. Transferrin Receptor 1 and 2 (TfR1, TfR2)

Tf binds circulating iron from plasma in vivo or from milieu in vitro and delivers it to
cells via TfR1/TfR2-mediated uptake, followed by clathrin-mediated endocytosis. Hence,
TfR1 and TfR2 are key regulators of cellular iron import and iron content [48].

TfR1 is overexpressed on the surfaces of many different types of cancer cells [49], to
the degree that it has been identified as a universal cancer marker [50]. Several studies
have shown that tumor cells express higher levels of TfR1 than normal cells to increase
the intracellular iron uptake needed to trigger the different metabolic pathways involved
in different aspects of cancer development. Interfering with TfR1 expression or activity
suppresses the proliferation, survival, migration and invasion of cancer cells from different
human tumors [51]. Generally, the increased expression of TfR1 in malignant cells correlates
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with an aggressive tumor phenotype, and it is predictive of a poor prognosis in a number
of malignancies of both solid and hematopoietic origins [48]. Evidently, cancer cells have
every interest to induce unregulated TfR1 expression which, on the contrary, is tightly
controlled in normal cells, as described above. To this end, aside from the well-known
genes involved in the regulation of TfR1 expression, such as IRP1 and IRP2, different
pro-tumorigenic proteins positively influence TfR1 expression in cancer cells, including the
proto-oncogene c-MYC, which binds to a conserved E-box binding site of the TfR1-encoding
gene promoter [52], hypoxia-inducible factor 1 (HIF-1), which activates the expression
of TfR1 under iron-deficient conditions by binding to an upstream hypoxia response
element [53], and 17β-estradiol, which induces the expression of TfR1 in estrogen receptor-
positive breast cancer [54]. Moreover, it has been shown that TfR1 overexpression warrants
robust iron uptake in breast carcinoma cells to protect neoplastic cells from the cytolytic
activities of natural killer (NK) cells [55] and that TfR1 is able to mediate NF-κB activation
in tumor cells by interacting with the inhibitor of the NF-κB kinase (IKK) complex, leading
to an increased survival of malignant cells [56]. Interestingly, an elevated expression of TfR1
in breast cancers and gliomas correlates with an adverse tumor microenvironment that
mainly constitutes infiltrating pro-tumorigenic immune cells [57,58]. Finally, TfR1 mediates
iron accumulation in hepatocarcinoma-associated cancer stem cells (CSC) to contribute
to the retention of their stemness, thus promoting cancer progression [59]. The elevated
expression, surface localization and pro-tumorigenic activity of TfR1 in neoplastic cells
have made it a promising target for anti-cancer therapy. A common strategy is represented
by the use of either Tf or specific anti-TfR1 antibodies to promote the delivery of anti-
cancer drugs such as chemotherapeutics, toxins and oligonucleotides [60]. Alternatively,
one could take advantage of the ability of anti-TfR1 antibodies to directly inhibit TfR1
activity or induce antibody-mediated effector functions such as antibody-dependent cell-
mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP)
and complement-dependent cytotoxicity (CDC) [61].

TfR2 is highly expressed in the liver, and its expression is not regulated by intracellular
iron levels but seems to be influenced by the cell cycle [62]. TfR2 is upregulated in tumor
cell lines from ovarian cancer, colon cancer and glioblastoma, and to a lesser extent in tumor
cell lines from leukemia and melanoma [63]. Interestingly, in these cells, TfR2 expression is
inversely correlated to the expression levels of TfR1 and c-myc, and it is lowered by c-myc
upregulating agents such as iron, while it is enhanced by c-myc downregulating molecules
such as iron chelators [64]. Colon carcinomas and glioblastomas frequently express Tfr2: it
has been reported that TfR2 is detectable in about 26% of cases of colon cancer examined;
it is not related to histological grade, and it is preferentially expressed during the S-M
phases of the cell cycle. Similarly, a strong degree of TfR2 upregulation has been found
in glioblastomas, where TfR2 levels correlate with an overall longer survival for patients
previously treated with radiotherapy and temolozomide [65].

Senescence-associated alterations in TfR1 have been described in human diploid fibrob-
lasts (HDF) exposed to sub-lethal concentrations of tert-butyl-hydroperoxide or ethanol
which display features of premature senescence. In these stress-induced senescent fibrob-
lasts, an upregulation of transferrin receptor has been detected via differential display
RT-PCR. The upregulation of TfR1 has been confirmed in replicative senescent fibroblasts
compared to young, proliferating cells [66]. Elevated levels of TfR1, associated with an in-
crease in intracellular iron content, have been also detected in mouse embryonic fibroblasts
(MEFs) induced to undergo senescence via sublethal gamma irradiation when compared to
primary non-irradiated MEFs [45]. The acquisition of a senescent phenotype is a gradual
process. Interestingly, through analyzing the temporal development of senescence in irradi-
ated MEFs, these authors show that intracellular iron content gradually increases, reaching
a plateau in fully senescent MEFs. TfR1 protein levels also gradually increase, paralleling
the amount of intracellular iron. Hence, in these cells, the progressive accumulation of
intracellular iron content during senescence correlates with a progressive upregulation of
TfR1, suggesting a gradual increase in iron uptake from the extracellular milieu.
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A similar link between cellular senescence, iron uptake and TfR1 expression has been
suggested in chronic obstructive pulmonary disease (COPD) [67]. COPD is a condition of
accelerated lung aging that is characterized by chronic inflammation and the accumulation
of senescent cells in the lung. Increased levels of TfR1 have been detected in small airway
epithelial cells from COPD patients. The uptake of iron is also increased in COPD small
airway epithelial cells when compared to small airway epithelial cells from non-smokers,
and the intracellular iron content is also increased. In line with an increased iron uptake,
lung homogenates from COPD patients demonstrate increased protein levels of TfR1,
which correlates with the expression of senescence markers. Finally, the in vitro induction
of therapy-induced senescence (TIS) in small airway epithelial cells via treatment with
doxorubicin confirms an enhanced expression of both senescence markers p21Cip1 and
TfR1, further linking senescence and elevated iron uptake via TfR1 [67].

Senescent cells can spread the senescent phenotype to neighboring proliferating cells
via secreted SASP (senescence-associated secretory phenotype) factors, a process referred
to as paracrine senescence [68]. Admasu and colleagues have analyzed both primary
endothelial cells induced to undergo TIS with doxorubicin and DPP4-positive paracrine
senescent endothelial cells. Both TIS and paracrine senescent endothelial cells accumulate
intracellular ferrous iron Fe2+, but the iron importer TfR1 is found to be downregulated,
suggesting that in this cell system, increased iron uptake is not responsible for the elevated
intracellular iron levels [69]. The downregulation of TfR1 has also been described in
senescent cancer cells. Colorectal cancer cells (CRC) HCT116, SW620 and SW480 which
have been induced to undergo senescence via treatment with either doxorubicin or H2O2
demonstrate reduced TfR1 levels and elevated levels of labile ferrous iron [70].

Overall, these data indicate that TfR1 is able to meet the metabolic needs of cancer
cells by acting as an essential regulator of iron uptake, representing a crucial molecule for
cancer development and progression. Its expression is also modulated in different types of
senescence, but senescence-induced alterations in TfR1 levels do not necessarily reflect the
intracellular iron content.

2.2. Ferritin

Ferritin is a protein complex composed of two subunit types, ferritin light chain (FTL)
and ferritin heavy chain (FTH1), and represents the major iron storage protein in mammals.
Ferritin plays a key protective role in cells by storing excess iron in a redox inactive form
(Fe3+), thereby preventing iron- and ROS-dependent damage to cellular components and
ferroptosis. The extraction and utilization of ferritin-bound iron under iron-depleted
conditions mostly depends on the lysosomal degradation of ferritin, a process known as
ferritinophagy [71].

Ferritin modulates the proliferation, apoptosis and invasion of cancer cells [72]. There-
fore, its levels are dysregulated in many human tumors, such as breast cancer [73], prostate
cancer [74] and glioblastoma [75], and are associated with poor survival rates in multiple
cancers [72]. The enhanced expression of FTH1 in HCCLM3 and MHCC97H hepatocarci-
noma cells leads to increased cell proliferation via the downregulation of H2O2 and ROS
levels [76]. Elevated FTL contributes to glioblastoma cells’ growth via the inhibition of the
GADD45a/JNK pathway and the upregulation of c-MYC and cyclin D1 [77], while FTL
downregulation decreases the proliferation of ACC-MESO-1 and CRL-5915 mesothelioma
cells [78]. In addition, tumor-associated macrophages (TAMs) stimulate the proliferation
of cancer cells through ferritin secretion in the tumor microenvironment, highlighting
that not only intracellular but also extracellular ferritin could contribute to neoplastic
growth [79,80]. Interestingly, the ability of ferritin to sustain the growth of neoplastic cells
is independent of its iron content: for instance, in MCF7 and T47D breast cancer cells,
ferritin drives proliferative activity in an iron-independent fashion [73]. While the role
of ferritin in the positive regulation of cell proliferation in tumors is robustly established,
its ability to protect cancer cells from apoptosis seems to be context-dependent, even if in
the majority of cases, it acts to promote the survival of neoplastic cells. For instance, in
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H460 and A549 non-small cell lung cancer (NSCLC) cells, FTH1 activates the apoptotic
pathway via the upregulation of p53 [81], and in erythroleukemic K562 cells, mitochondrial
ferritin promotes cell death via iron sequestration and JAK/STAT5 activation [82]. On
the other hand, blocking FTH1 in MCF7 breast cancer cells increases their susceptibility
to apoptosis [83], whereas its overexpression rescue HeLa cells from TNFα-induced cell
death [84]. Similarly, FTL inhibition in melanoma cells determines increased sensitivity
to apoptosis and reduced growth rate [85]. As in the case of its pro-proliferative activity,
the pro-survival activity of ferritin is also independent of cytosolic iron content but could
be exerted via the direct inhibition of pro-apoptotic proteins: FTH1’s association with the
pro-apoptotic BAX protein protects 293T cells from BAX-mediated cell death [86]. A role
of ferritin has also been demonstrated in cancer progression, particularly for its ability to
interfere with two critical prerequisites for the invasion and spread of cancer cells: the
epithelial mesenchymal transition (EMT) and angiogenesis. Ferritinophagy in A549 cells
enhances a TGFβ-induced EMT [87], and FTH1 silencing in MCF7 and H460 cells activates
either CXCR4/CXCL12 axis or iron-dependent oxidative stress to foster the EMT [88].
Accordingly, a decrease in ferritin in TfR1-silenced breast cancer cells is accompanied by an
increase in vascular endothelial growth factor (VEGF), a well-known pro-angiogenic factor,
through the stabilization of the hypoxia-induced factor (HIF)-1α transcription factor, whose
expression is enhanced via oxygen starvation (hypoxia) to promote angiogenesis [89]. On
the contrary, in gliomas, angiogenesis is induced by mitochondrial ferritin overexpression,
which activates the small nucleolar RNA host gene 1 (SNHG1) to stimulate endothelial
cells [90].

High ferritin levels have been found in CSCs associated with cholangiocarcinoma [91],
glioblastoma [75], lung cancer [92], ovarian cancer [93] and breast and prostate cancers [94].
This overexpression correlates with the ability of CSCs to form tumor spheres in vitro and
in vivo and is linked to a poor prognosis given that the activity of CSCs in the tumoral
mass, which is well established, is responsible for relapse and progression.

Finally, ferritin has been shown to be involved in the resistance of neoplastic cells to
anti-cancer treatments (chemotherapy, radiotherapy, immunotherapy and targeted therapy)
due to its antioxidant features, which allow tumor cells to survive the stresses exerted by
therapies. The elevated expression of both FTH1 and FTL has been reported to correlate
with chemo- and radio-resistance in cancer cell lines derived from different types of human
tumors, including leukemia [95,96], melanoma [85], glioma [97,98], breast cancer, bladder
cancer, lung cancer and prostate cancer [99,100].

Elevated levels of ferritin have been detected in various models of cellular senescence.
For instance, replicative and stress-induced WI-38 fetal lung HDFs show increases in steady-
state levels of ferritin light chain (FTL) transcript when compared to proliferating cells [66].
Masaldan describes an up to 10-fold increase in the ferritin protein amount in replicative
and irradiation-induced senescent MEFs. Similar ferritin elevations have also been detected
in primary HDFs as well as prostate epithelial cells undergoing replicative or IR-induced
senescence. In line with the upregulation of this iron storage protein, all the senescent
cells analyzed, irrespective of the senescence-inducing stimulus, demonstrate significant
intracellular iron accumulation. Importantly, increased ferritin levels in senescent cells have
been shown to be related to an impaired ferritinophagic flux due to a senescence-dependent
autophagic/lysosomal dysfunction [45].

A crucial role of the autophagy–lysosome pathway in regulating ferritin turnover in
senescence has been also demonstrated in replicative senescent human dermal fibroblasts,
in which the relative contributions of the two major proteolytic systems, i.e., the ubiquitin–
proteasome system and autophagy–lysosome system, to ferritin degradation have been
investigated. Ferritin heavy chain (FTH1) displays a higher steady-state level and a reduced
protein turnover in the senescent cells, and impaired autophagy is responsible for reduced
FTH1 degradation in senescent cells [101]. A senescence-specific reconfiguration of the
lysosomal compartment has been recently described in SK-MEL-103 melanoma cells in-
duced to undergo TIS by treatment by the CDK4/6 inhibitor palbociclib [102]. SK-MEL-103
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senescent cells display not only a well-described increase in lysosomal mass [103], but
also distinctive alterations in the compositions and amounts of both resident lysosomal
proteins and lysosomal substrate proteins. In particular, proteomic analyses of lysosomes
isolated from SK-MEL-103 TIS cells have allowed for the identification of proteins whose
degradation rates are specifically decreased in senescence, including FTH1 and FTL. Fur-
thermore, FTH1 protein levels are specifically increased in both total cell lysates and in
the conditioned media from TIS cells when compared to proliferating SK-MEL-103 [102].
Hence, FTH1 accumulates in these senescent cancer cells and appears to be subjected to
lysosomal secretion upon the fusion of lysosomes with the plasma membrane. Interestingly,
cellular senescence induced via various stimuli in normal or neoplastic cells has been asso-
ciated with increased biogenesis and an increase in the release of extracellular vesicles [104],
and iron-loaded ferritin is known to be secreted via exosomes [105]. It is plausible to
hypothesize that lysosomal secretion and the exososomal release of ferritin might both
represent means of excreting excess iron from senescent cells, but a role for the elimination
of ferritin in senescent cells, as well as its potential effects on the microenvironment, has
not been clarified.

Interestingly, Masaldan and colleagues demonstrated that the co-treatment of primary
MEF with the iron chelator deferiprone and irradiation inhibits both iron and ferritin
accumulation but does not affect senescence development. These results suggest that the
acquisition of a senescent phenotype precedes intracellular iron accumulation and that
iron accumulation is not required for cellular senescence [45]. Additional evidence that
iron accumulation ensues after senescence and is not an upstream contributor event has
been provided in H2O2-induced senescent CRCs [70]. In these cells, pretreatment with iron
chelator desferoxamine (DFO) followed by hydrogen peroxide exposure does not prevent
the acquisition of a senescent-like phenotype. In this study, however, senescent cancer
cells displayed reduced amounts of FTH1 and, accordingly, accumulated intracellular
iron in the form of ferrous iron. In line with these observations, the overexpression of
FTH1 attenuates Fe2+ accumulation. These data suggest that FTH1 downregulation can
contribute to the accumulation of redox-active ferrous iron in senescent CRC cells, likely
promoting ferroptosis. These authors also uncovered a novel role of ribosomal L1 domain-
containing 1 (RSL1D1) RNA-binding protein as a direct regulator of FTH1. In particular,
RSL1D1 binds to the 3′-untranslated region of FTH1 and promotes FTH1 mRNA stability.
Accordingly, RSL1D1 knockdown in senescent CRC cells decreases FTH1 levels and induces
the intracellular accumulation of ferrous iron, thereby sensitizing cells to ferroptosis. Hence,
ferritin is implicated in modulating the cellular labile iron pool and the susceptibility to
ferroptosis in senescent cancer cells.

A protective role of ferritin in limiting labile ferrous iron-dependent ferroptosis has
also been demonstrated in a model of premature senescence induced via bleomycin in
HDFs [106]. These senescent cells showed elevated levels of ferritin heavy and light chain.
Interestingly, treatment with the BET family inhibitor JQ1 results in decreased levels of
mRNA expression of both FTH1 and FTL and activates ferroptosis selectively in senescent
HDFs, not affecting proliferating control cells. The ferroptosis resistance genes BRD4, GPX4,
SLC7A11 and Nrf2 are also selectively downregulated by JQ1 in senescent cells.

Non-ferritin-bound iron can induce not only ferroptosis but also premature senescence,
as demonstrated in a cell model of neuroferritinopathy (NF), a rare autosomal dominant
disease caused by mutations in the FTL gene. Patient-derived fibroblasts, neural progen-
itors and neurons exposed to Fe-ammonium citrate to generate iron overload develop a
senescent-like phenotype, while control cells expressing FTL are unaffected [107]. These
data further support the protective role of ferritin and suggest the direct involvement of
ferrous iron in the aging process.

Overall, these studies indicate that ferritin, given its multifaceted roles in iron-related
tumor biology, strongly supports the proliferation, survival, invasion, therapy resistance
and relapse of cancer cells. Senescent cells can accumulate iron as either harmful labile
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ferrous iron [67,70] or as redox-inactive ferritin-bound Fe3+ [45,102], but the mechanisms
determining such differences are still unclear.

2.3. Ferroportin (FPN1)

FPN1 is a transmembrane exporter essential for the release of ferrous ion (Fe2+) from
cells. Its expression is strongly downregulated in human tumors such as those found
in ovarian cancer [93], prostate cancer [108], breast cancer [109] and lung cancer [110],
very likely because cancer cells have an interest in preserving intracellular iron content to
achieve all the pro-tumoral activities in which iron metabolism is involved. Conversely,
hepcidin expression is increased in neoplastic cells to ensure a high rate of FPN1 degra-
dation [108,111,112]. The role of FPN1 in cancer has been studied in cancer cell lines from
different malignancies: decreased FPN1 levels following the upregulation of ferritin lead
to the enhanced proliferation, survival and migration of prostate cancer cells, whereas
the overexpression of FPN1 stimulates autophagy and reduces cancer cells’ oncogenic
potential [113]. In breast cancer cells, FPN1 interferes with tumor growth and progres-
sion [114,115], and in thyroid cancer cells, its degradation, which is mediated by secreted
hepcidin, promotes cell proliferation [116]. Interestingly, FPN1 inhibition makes neuroblas-
toma and lung cancer cells more sensitive to erastin-induced ferroptosis [117,118].

Both deregulated expression and altered subcellular localization have been described
for FPN1 in senescent cells. For instance, in irradiation-induced senescent MEFs, increased
FPN1 protein levels were detected, not at the plasma membrane but mislocalized intra-
cellularly, thereby suggesting the accumulation of an inactive transporter. Since FPN1
is degraded through the autophagic pathway, the observed intracellular accumulation
has been linked to the previously described senescence-dependent dysfunction of the
autophagic/lysosomal pathway [45]. In contrast, in primary endothelial cells induced to
undergo TIS and in paracrine senescent endothelial cells, FPN1 protein levels are reduced
when compared to non-senescent cells. The role of FPN1 in this cell system has not been
fully analyzed, but both primary and paracrine senescent endothelial cells accumulate
high levels of ferrous iron; therefore, a reduction in iron efflux via the downregulation of
FPN1 might represent a plausible mechanism for this accumulation [69]. As previously
described, FPN1 downregulation has been observed in multiple cancer types in which
it provides a mechanism for the retention of intracellular labile iron. In cancer cells, an
elevated Fe2+ content is required to sustain enhanced proliferation. Interestingly, in a panel
of metastatic head and neck squamous carcinoma cell lines (HNSCCs), conditional FPN1
overexpression not only inhibits proliferation but even induces premature senescence via
the loss of labile iron [119]. FPN1 overexpression also induces cell cycle arrest in prostate
cancer cells in vitro and in vivo in mouse xenografts. Interestingly, although these authors
did not investigate a potential induction of premature senescence in these prostate cancer
cell lines, microarray analyses of cells overexpressing FPN1 highlight alterations in SASP
genes [113].

These data indicate that reducing FPN1 expression in cancers via increasing intra-
cellular ferrous iron may contribute to a highly proliferative and aggressive phenotype,
whereas the effects of elevated ferrous iron in senescent cells are less clear. However,
the downregulation of FPN1 in cell cycle-arrested senescent cells clearly uncouple Fe2+

accumulation from cellular proliferation. This observation is supported by recent data ob-
tained in KRAS-driven tumors. In this study, the acute induction of oncogenic KRASG12D
signaling in MEFs and primary dermal fibroblasts induced FPN1 downregulation, labile
iron accumulation and the features of oncogene-induced senescence (OIS). Increased in-
tracellular ferrous iron is also observed in immortalized bronchial and pancreatic human
epithelial cells after the expression of KRASG12D [120]. Hence, this study demonstrates
that dysregulated iron export and sustained intracellular Fe2+ accumulation both represent
consistent features of KRAS-induced senescence in primary cells. Importantly, the authors
also demonstrate that this altered iron metabolic state can be therapeutically exploited.
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Overall, these studies indicate that the functional inactivation of FPN1, via protein
downregulation or intracellular delocalization, and the consequent disruption of iron
homeostasis characterize various types of cellular senescence. The role of FPN1, if any,
in the acquisition and/or the maintenance of a senescent phenotype deserves further
investigation.

2.4. Neutrophil Gelatinase-Associated Lipocalin (NGAL)

In addition to transferrin, NGAL delivers iron to mammalian cells, thereby contribut-
ing to cellular iron homeostasis. NGAL has been found to be overexpressed in a high
number of human tumors given its ability to promote cancer development and progression.
For this reason, NGAL levels correlate with the aggressive behavior of cancer cells and
are associated with poor outcomes of malignancies of either solid or hematopoietic origin.
Elevated NGAL expression has been found in breast and colon cancer patients with adverse
prognosis [121,122] and in patients with chronic myeloid leukemia (CML), as well chronic
lymphocytic leukemia (CLL) [123,124]. NGAL levels are also elevated in early lesions
of pancreatic tumors, where they further increase with disease progression [125], and in
thyroid carcinomas, especially of the undifferentiated type [126]. In addition, cell lines from
endometrial, lung and oral cancers expressing high levels of NGAL show strong resistance
to radio- and chemo-therapy [127,128], while in prostate cancer cell lines, the elevated
expression of NGAL increases their proliferation and oncogenic potential [129]. NGAL
also facilitates the metastatic spread of neoplastic cells due to its ability to preserve MMP-9
enzymatic activity: an increase in NGAL/MMP-9 complexes has been found associated
with a higher metastatic risk in patients with breast [130], gastric [131] and endometrial
cancer [132], while NGAL knockdown in prostate cancer-derived cell lines [133] or the
impairment of NGAL/MMP-9 complex formation in anaplastic thyroid carcinoma-derived
cell lines [134] led to a marked decrease in their invasive potential. Finally, since NGAL
is also secreted by stromal, immune and inflammatory cells infiltrating tumor masses, it
actively participates in the shaping of the tumor microenvironment. The NGAL secreted
by N2-type neutrophils and by tumor associated macrophages (TAMs) strongly supports
breast cancer cell colonization in the lung [135,136], whereas the inhibition of NGAL in
CT26 colon carcinoma cells drastically reduces the number of infiltrating macrophages
and lymphocytes in the tumor microenvironment of allografts generated in syngeneic
mice [137]. It is important to note that the pro-tumorigenic role of NGAL mainly relies
on its iron carrier property and in part, on its ability to enhance MMP-9 activity, since
the disruption of siderophores and the binding of MMP-9 to NGAL impair its role in
cancer [13]. Interestingly, it has also been shown that NGAL inhibits ferroptosis in CRCs
via decreasing intracellular iron levels and stimulating the expression of glutathione per-
oxidase 4 (GPX4) to prevent membrane lipid peroxidation [138]. Moreover, the nuclear
protein 1 (NUPR1)-dependent upregulation of NGAL expression inhibits ferroptosis in
pancreatic cancer [139]. Similarly, NGAL-stimulated renal cell carcinoma cells are protected
from erastin-induced ferroptosis [140]. Overall, these studies indicate that NGAL plays a
pivotal role in cancer, contributing, with other iron-related proteins, to the development of
malignant cells’ iron-dependent, pro-tumorigenic functions.

A potential role of NGAL in aging and senescence has been investigated by Bahmani
and colleagues, who reported a positive correlation between plasma levels of NGAL and
age in a cohort of healthy volunteers classified into three groups of age. Furthermore, these
authors found that the expression of NGAL increases in human bone marrow-derived
mesenchymal stem cells (MSCs) induced to undergo premature senescence via exposure
to oxidative stress, and in this experimental setting, NGAL overexpression counteracts
senescence induction. In contrast, no alterations in NGAL expression are observed during
replicative senescence, suggesting that NGAL does not play any role in the natural aging
process of MSCs [141]. Hence, this study suggests a specific role for NGAL in stress-induced
senescence.
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A distinctive trait of senescent cells is the SASP, a temporally regulated secretion
of cytokines, chemokines, growth factors and extracellular remodeling enzymes which
mediate both the physiological and pathological effects of senescent cells [30,31]. Notably,
NGAL has been identified as SASP factor in various models of stress-induced senescence in
both normal and neoplastic cells. For instance, the induction of NGAL has been described
in CRC cells: HCT116 cells induced to undergo TIS via exposure to either 5-fluorouracil or
doxorubicin develop a SASP and secrete NGAL into the medium. Notably, this senescent
secretome elicits an epithelial-to-mesenchymal transition and invasiveness in proliferating
colon and rectal cancer cell lines [142]. NGAL is also expressed in the SASP of etoposide-
treated breast and lung cancer cells [143]. Furthermore, analyses of biopsy samples from
breast cancer patients collected prior to or following neoadjuvant chemotherapy treatments
demonstrated a significant upregulation of SASP markers, such as IL-6, and NGAL after
treatments [144]. Although these authors did not analyze additional markers of premature
senescence in biopsy specimens, these data support a TIS-associated increase in NGAL
levels in cancer cells. However, in these studies, the specific role(s) and/or effect(s) of
NGAL on senescence were not investigated in detail. Interestingly, proliferating breast
cancer cells exposed to the secretome from OIS or TIS fibroblasts upregulate NGAL, and
NGAL appears to mediate several pro-tumoral effects of the SASP, such as increased
proliferation and migration and the epithelial-to-mesenchymal transition [144]. NGAL was
also identified as a SASP factor in a mouse model of spinal cord injury. In this latter model,
senescent cells developed at the lesion periphery and exerted their pathophysiological
effects through the SASP containing NGAL [145].

These studies indicate that NGAL is expressed in various SASP programs in both
normal and neoplastic cells and particularly in stress-induced senescence, but the specific
role of NGAL as part of the SASP and its potential functions in the acquisition and main-
tenance of a senescent phenotype have not been fully investigated. Notably, NGAL is
able to bind intracellular iron-loaded siderophores and mediate their release out of the
cells [15]. Therefore, increases in the expression and secretion of NGAL might represent
additional means of eliminating excess iron from senescent cells. Finally, it may be worth
recalling that NGAL exerts its pleiotropic properties not only through the regulation of
iron homeostasis but also via NGAL/MMP-9 complex formation. Hence, whether NGAL
functions as iron-binding protein during senescence or if other NGAL functions prevail
must be clarified.

2.5. Other Iron Proteins

In addition to those mentioned above, additional iron proteins could play minor roles
in cancer, whereas to the best of our knowledge, no data are available for senescence:

a. Duodenal cytochrome B (DCYTB): a ferrireductase that reduces Fe3+ to Fe2+ to allow
for the uptake of iron by DMT1 on the surfaces of duodenal cells [5]. Lemler and
co-workers found that DCYTB expression is a favorable prognostic factor in breast
cancer patients because it correlates with a better response to therapy and an increased
progression-free survival [146]. Interestingly, they also showed that upregulated
DCYTB improves outcomes for breast cancer patients via an iron-unrelated mechanism
involving the inhibition of FAK activation and cell adhesion [146].

b. Hepcidin: a small peptide produced by the liver that is able to induce FPN1 degrada-
tion to block iron export from cells [8]. Hepcidin is overexpressed in several human
tumors, such as breast, lung and prostate cancers, as well as multiple myeloma, for
its property to promote neoplastic growth by increasing iron retention in malignant
cells [147]. In a breast tumor microenvironment, cancer-associated fibroblasts stimu-
lated hepcidin expression in breast cancer cells via the production of IL-6 [148], while
it has been found that hepcidin expression is associated with immune tumor infiltrates
in lung cancer, particularly those constituting B cells, CD4 + T cells, macrophages,
neutrophils and dendritic cells [149].
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c. Divalent metal transporter 1 (DMT1): a key protein in the regulation of iron home-
ostasis for its ability to enable the translocation of Fe2+ to the cytosol after iron endo-
cytosis [5]. Blocking DMT1 in colorectal cancer has been shown to suppress cancer
progression [26], and using DMT1 inhibitors has been reported to selectively kill iron-
addicted cancer stem cells by inducing lysosomal iron overload [150]. Interestingly,
DMT1 inhibition promotes ferroptosis in head and neck cancers [151].

3. Conclusions

In normal cells, iron homeostasis is finely regulated in order to supply iron for
metabolic processes and to avoid iron-dependent ROS accumulation and cellular damage.
In this review, we have summarized data regarding iron metabolism-related proteins in
cancer cells and senescent cells. These data provide a clear picture of how cancer cells
can remodel metabolism in order to increase iron uptake and reduce iron loss. In line,
tumor cells express higher levels of TfR1, with several oncogenes directly inducing TfR1
expression. On the contrary, FPN1 expression is strongly downregulated in human tumors.
Conclusive evidence points to a pro-tumoral role for ferritin, which sustains the prolifera-
tion of cancer cells and protects them from apoptosis. Finally, NGAL is overexpressed and
plays multiple roles in cancer cells, as well as in the tumor microenvironment. Hence, the
evidence generated in recent years demonstrates that alterations in iron metabolism criti-
cally contribute to an aggressive tumor phenotype and a pro-tumoral microenvironment.
These observations indicate that iron metabolism and iron metabolism-related proteins
represent valuable targets for the development of new cancer therapeutics. Many promis-
ing strategies are currently being investigated to interfere with iron homeostasis in cancer
cells. One of the most-explored strategies is based on the use of iron chelators such as
DFO: these compounds, which are employed to treat disorders of iron overload, are very
effective at reducing the intracellular supply of iron; however, they are unfortunately also
highly toxic at the doses that are useful for achieving their therapeutic goals in neoplastic
cells. In addition, prolonged treatment with iron chelators induces cancer cells to restore
iron homeostasis through the upregulation of DMT1 and TfR1, leading to an increase in
the intracellular concentration of iron [152]. Targeting TfR1 is another promising strategy
under development, as discussed in Section 2.1 of this review, and increasing evidence
indicates hepcidin as a target in the metastatic disease state. The use of antibodies that
directly or indirectly inactivate hepcidin in cancer cells increased iron serum levels, but
their efficacy was time-limited or restricted only to normal cells [153].

This review also suggests a more complex regulation of iron metabolism in senescent
cells, either normal or neoplastic. For instance, iron has been shown to accumulate in
senescent cells but either as harmful labile ferrous iron or as redox-inactive ferric iron.
TfR1 and ferritin levels are clearly modulated during the development of a senescent
phenotype, but their expression seems to be context-dependent, increasing in some in vitro
models of the cellular senescence and decreasing in other models, and their levels do
not necessarily reflect the intracellular iron content. Hence, how these iron-regulatory
proteins are regulated in senescent cells and their role(s) are still unclear. In some cases, the
processes that govern alterations in iron-regulatory proteins are starting to be understood.
For instance, senescence-specific alterations in the autophagy–lysosome pathway, which
critically controls protein degradation, likely contribute to the modulation of ferritin in
senescence. So, it is tempting to speculate that while iron-related proteins are mainly
regulated at the transcriptional level in proliferating cells, they might be regulated via
degradation in senescence. In other instances, however, senescent-specific modifications in
iron-regulatory proteins still lack an explanation.

A functional inactivation of FPN1 has also been demonstrated in various models
of cellular senescence via protein downregulation or intracellular delocalization. FPN1
inactivation might explain the increases in ferrous iron content observed in some senescent
cells. Finally, NGAL has emerged as a critical SASP component, particularly in stress-
induced senescence. Interestingly, senescent cells appear to excrete excess iron bound to



Biology 2023, 12, 989 15 of 21

ferritin via either lysosomal secretion or exosome release. In this context, the secretion of
iron-loaded NGAL might represent an additional means of eliminating excess iron.

In conclusion, the data summarized herein highlight important alterations in iron
metabolism in cellular senescence which likely reflect the alterations described in organis-
mal aging and in age-related diseases and open therapeutic opportunities for targeting iron
metabolism. However, as previously stressed, senescent cells are highly heterogeneous,
and the dysregulation of iron metabolism in senescence requires further investigation. A
detailed transcriptional and proteomic analysis of iron-related protein expression, as well
as a functional characterization of iron metabolism, across different types of senescent
cells could be very informative in understanding the role of iron in cellular senescence.
Characterizing iron metabolism heterogeneity in senescent cells would also help in the
development of new senotherapeutics.
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