
Citation: Veyrié, A.; Noreña, A.;

Sarrazin, J.-C.; Pezard, L.

Information-Theoretic Approaches in

EEG Correlates of Auditory

Perceptual Awareness under

Informational Masking. Biology 2023,

12, 967. https://doi.org/10.3390/

biology12070967

Academic Editor: Jean Marc Edeline

Received: 31 May 2023

Revised: 23 June 2023

Accepted: 29 June 2023

Published: 6 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Article

Information-Theoretic Approaches in EEG Correlates of
Auditory Perceptual Awareness under Informational Masking
Alexandre Veyrié 1,2 , Arnaud Noreña 1, Jean-Christophe Sarrazin 2 and Laurent Pezard 1,*

1 Centre National de la Recherche Scientifique (UMR 7291), Laboratoire de Neurosciences Cognitives,
Aix-Marseille Université, 13331 Marseille, France

2 ONERA, The French Aerospace Lab, 13300 Salon de Provence, France
* Correspondence: laurent.pezard@univ-amu.fr

Simple Summary: Characterizing the brain activity related to the conscious perceptive experience is
an important step toward understanding the relationship between brain activity and consciousness.
In this study, we use an experimental protocol, where a human subject detects an auditory target
embedded in a multitone masker. Since the subject can miss some targets, this experimental protocol
provides trials where the target is present and perceived and some trials where it is present but
not perceived. Comparing the difference in brain activity between these two conditions allows us
to characterize specific patterns of brain activity related to auditory perceptual awareness. Here,
we provide extensive characterization of the neural correlates of auditory perceptual awareness
using information-theoretic approaches in brain electrical activity together with a more conventional
analysis of brain signals. Among the information measures, integrated information measures are
related to a specific theory of consciousness. We show that auditory perceptual awareness is associated
with an enhancement in the informational content of the neural signals in fronto-central brain areas
and with an increase in the redundancy of the information in the temporal cortices. These results thus
characterize conscious perceptual states on the basis of the informational content of neural signals.

Abstract: In informational masking paradigms, the successful segregation between the target and
masker creates auditory perceptual awareness. The dynamics of the build-up of auditory perception
is based on a set of interactions between bottom–up and top–down processes that generate neuronal
modifications within the brain network activity. These neural changes are studied here using event-
related potentials (ERPs), entropy, and integrated information, leading to several measures applied to
electroencephalogram signals. The main findings show that the auditory perceptual awareness stimu-
lated functional activation in the fronto-temporo-parietal brain network through (i) negative temporal
and positive centro-parietal ERP components; (ii) an enhanced processing of multi-information in
the temporal cortex; and (iii) an increase in informational content in the fronto-central cortex. These
different results provide information-based experimental evidence about the functional activation of
the fronto-temporo-parietal brain network during auditory perceptual awareness.

Keywords: hearing; perception; awareness; neural correlates; electroencephalogram

1. Introduction

The extraction of an auditory target from its noisy environment is classically illus-
trated by the cocktail party” situation [1,2], where the processes of auditory scene analysis
segregate multiple acoustic sources into coherent auditory objects [3]. These segregated
objects form the basis of the listener’s conscious auditory perception, which develops
gradually over time [4–6]. This process was experimentally studied using the masking
phenomena which occur when the threshold of audibility of a given signal is raised by
the presence of another sound. In particular, informational masking appears when the
target is masked by a multi-tone background [7,8], whereas there is no overlap of their
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frequency content and no peripheral interaction at the cochlear level [9]. Awareness of the
target is thus limited by information-processing bottlenecks in the central auditory system
rather than by the resolution of the peripheral auditory system [10]. Successful segregation
between the target and masker streams comes from information processing at a central
level of the auditory system [11–13]. More extensive activity associated with recursive and
integrative processing within a fronto-temporo-parietal brain network is also considered an
essential neural substrate for auditory perceptual awareness [14–20]. A dynamic cascade of
neural information processing based on interactions between bottom–up and top–down
processes [21,22] generates modifications within the brain activity, which are referred to as
neural correlates of auditory perceptual awareness. As a consequence, the quantification
of the brain electrical activity during the build-up of auditory perceptual awareness may
elucidate a deeper characterization of the neuronal activity related to the awareness of the
auditory target [23–25].

Two event-related potentials (ERPs), awareness-related negativity (ARN) and the
P300 (a positive component with maximum amplitude around 300 ms post-stimulus) were
studied to decipher the mechanisms of information processing at the macroscopic level.
ARN was observed in the auditory cortex of both hemispheres during the awareness of
target tones in informational masking, with a larger amplitude for detected tones than
for non-detected tones [10,19,26]. The ARN was considered a potential neural correlate
of auditory perceptual awareness [10,15,16,19,26,27]. The P300, previously considered a
processing marker of global stimulus integration [28–31], was larger and had a shorter
latency for tones detected with high confidence than for those detected with low confi-
dence [32–34]. In informational masking, the P300 was the only amplified component
for detected tones, and a robust P300-like response was observed for the detected tones
using trial-by-trial perceptual reports [19]. Source estimates allow one to localize P300
generators in the temporo-frontal and temporo-lateral cortices [27]. Although ERP provides
information about the specific and localized processing of incoming stimuli, they do not
inform about the information content of the neural signals related to perceptual awareness.

Several algorithms have been used to characterize the information content of brain
electrical activity during global conscious states. Although they share the term “entropy”
and thus characterize a level of disorder, they are applied to different representations of
the signals and quantify different properties of the signal. Some measures are based on
frequency-domain computations, like spectral entropy (SpEn) [35–40] or linear decompo-
sitions like single-value decomposition entropy (SvEn) [41–43]. They characterize mostly
linear statistical properties of the signals, while others make probabilistic estimates in the
time domain, like approximate entropy (ApEn) [38,44–46], sample entropy (SaEn) [38,47],
or permutation entropy (PeEn) [36,38,40,46], which characterize mostly nonlinear proper-
ties. Consequently, they have different abilities to characterize the informational content
of the neural signal. These entropy measures have already been used to characterize
neuronal correlates of global conscious states [36,38,40,48,49]. Notably, entropy measures
were employed to characterize the impaired states of consciousness like coma [50–54] or
anesthesia [35,38,44,55,56] but also during states of consciousness modified by neuropsy-
chiatric disorders, such as epilepsy [37,39,45,57]. Entropy measures were also used for
the classification of subjective visual interest [58]. Many studies have thus shown that
the informational content of the brain’s electrical activity is modulated with the state of
awareness, but they have not investigated the specific changes in informational content
related to the emergence of perceptual awareness.

Although entropy measures the information content of signals, Tononi et al. [59–61]
proposed that brain activity related to consciousness would be more adequately charac-
terized if the relationship between the integration and segregation of information in brain
interactions were better taken into account. The integrated information theory of conscious-
ness [59–61] was originally developed to characterize the states of consciousness. It consists
of a model of consciousness that aims to establish a strong link between the properties of
brain activity and the properties of conscious phenomenal experience [59,60,62]. Integrated
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information characterizes the difference in mutual information between the interactions in
the actual system and those in a totally independent one. Several measures of integrated in-
formation were derived from this theoretical model to approach the problem of the contents
of consciousness and to characterize the dynamics of the cerebral activity during percep-
tual awareness [63–68]. Four measures of integrated information have been developed
from different theoretical points of view: (i) decoding-based integrated information [67],
(ii) geometric integrated information [69], (iii) stochastic integrated information [70], and
(iv) redundancy-based integrated information or “multi-information” [70]. The integrated
information theory of consciousness postulates, on the one hand, that integrated informa-
tion presents a relation of identity with consciousness, and on the other hand, it predicts
that the measure of integrated information estimated from brain activities represents the
level of consciousness. Thus, the more conscious a system, the higher its integrated in-
formation. Integrated information is considered here to study the brain’s mechanisms of
information integration during auditory perceptual awareness.

We propose an exploratory study of brain electrical activity associated with auditory
perceptual awareness using event-related potentials (ARN and P300), several measures of
entropy, and integrated information. We present only a restricted set of related measures;
a more complete characterization of these data can be found in [71]. We study the effect
of target detection on the electrophysiological indices compared to non-detected targets
and describe the changes in these indices over the build-up of auditory perception. The
original contribution of this article is to gather different approaches, usually separated
in the literature, to the electrophysiological correlates of perceptual awareness using the
same data. The ARN and P300 are described as neuronal correlates of auditory awareness,
and we seek to replicate the main findings in the literature. Since the information content
measures were mainly used to characterize states of consciousness, we test whether they
are able to quantify specific neural correlates of consciousness by distinguishing between
the brain activity associated with detected targets and those related to non-detected targets.
The integrated information theory of consciousness has a strong basis on the relationship
between the integration of information and consciousness. In this study, we test if these
hypotheses can be checked experimentally and if these measures perform better than the
simple quantification of specific neural correlates of consciousness.

2. Materials and Methods
2.1. Participants

Statistical simulations were performed using the “simr” library [72] to determine the
minimum sample size. In an experimental paradigm of 4 blocks with 20 statistical items
each and a total number of observations higher than 1200, a sample size of n = 15 subjects
was considered the minimum requirement to ensure a statistical power of 84%, a medium
effect size (Cohen’s d) = 0.44, and a statistical threshold α = 5%. Consequently, twenty
participants (six women; ages from 20 to 39 years; mean = 26 y.o., SD = 4 y.o.) were
recruited at the ONERA Laboratory of Salon-de-Provence following a call for volunteers.
Most of the subjects (15) had an education level of 7 according to the international standard
classification of education (version 2011), two had an education level of 6, and three had an
education level of 8. Four subjects were left-handed (S5, S12, S13, and S19). All participants
reported normal vision and filled out a general questionnaire about hearing disorders to
ensure that they did not report any hearing trouble [73]. None presented neurological or
psychiatric disorders or were under any medical treatment. Participants received a gift
card worth EUR 30 for their contribution to the study.

2.2. Stimuli

All auditory stimuli were composed of a multi-tone masker and, in two thirds of
the trials, a target as depicted in Figure 1 (left). Since the acoustic parameters of the
masker and the target highly influence the target detection [10,20–22,26,27,74–76], they
were chosen according to a previous study [76] in order to provide a long enough delay
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between the beginning of the trial and the target detection, and a performance of around
70%. The target tones were presented at the same level as the individual masker tones, i.e.,
a target-to-masker intensity ratio of 0 dB [27].

B2 B1 A1 A2

Figure 1. Graphical illustrations of an auditory stimulus (left) and epochs segmentation proce-
dure (right). A target (in red) surrounded by a protected region of two equivalent rectangular
bandwidths (in green) is embedded in a random multi-tone masker (in black). In these examples, the
target frequency is 1 kHz with a tone duration of 60 ms and a repetition rate of 1 Hz. The masker is
composed of 32 frequencies per octave with mean inter-tone intervals of 800 ms and a tone duration
of 20 ms. For each trial with a target, a time reference allowed us to define a 6 s epoch (3 s before
and 3 s after the time reference). For the event-related potentials analyses, four tones around the
time reference were taken into account: two tones before (labeled “B1” and “B2”) and two tones after
(labeled “A1” and “A2”) the time reference.

Targets were composed of a regular series of tones defined by the tone duration
(100 ms) and the tone repetition rate, i.e., tones per second (in Hz). To prevent the subject
from selectively paying attention to a specific frequency range, the target tone frequencies
were randomly drawn from a set of five equiprobable frequencies: 699, 1000, 1430, 2045,
and 2924 Hz [10,27]. When present, the target always started at 600 ms after the beginning
of the masker.

The maskers were composed of a multi-tone noise characterized by the number of
frequencies per octave (fpo) and the mean inter-tone interval (miti). The ratio between the
number of frequencies per octave and the mean inter-tones interval defines the spectro-
temporal density of the masker (i.e., fpo/miti in s−1 oct−1). The inter-tones intervals were
randomly drawn from a uniform distribution with a minimum duration of 100 ms and a
variable maximum duration of either 300, 700, 1100, or 1500 ms. Tone frequencies were
equally spaced on a logarithmic scale between 239 and 5000 Hz [10,20,26,27]. Each value of
the mean inter-tone interval was associated with a number of frequency per octave, leading
to four levels of spectro-temporal density: 11, 20, 28 and 36 s−1 oct−1. These correspond,
respectively, to the pairs (miti = 200, fpo = 32), (miti = 400, fpo = 64), (miti = 600, fpo = 96),
and (miti = 800, fpo = 128). All masker tones had a duration of 20 ms and included 10 ms
cosine ramps.

To ensure minimal energetic masking, a protected region surrounding the target was
kept free of tones in the masker. For each target, an equivalent rectangular bandwidth
(ERB) [77,78] was calculated using ERB = 24.7 (4.37 Ft + 1) with Ft as the target frequency
in kHz. The protected region was centered on the target frequency and had a total extension
of two equivalent rectangular bandwidths, i.e., one on each side of the target frequency
(see Figure 1). Auditory stimuli were generated using Python programming language [79].
They were digitized with a sampling rate of 44, 100 Hz and a 16 audio bit depth.
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2.3. Experimental Task and Procedure

A graphical summary of the procedure is presented in Figure 2.
To familiarize the participants with the experimental task and evaluate their detection

rates, a training block of 60 trials was presented first. In this block, the trials were composed
of maskers whose densities were sampled from the entire set of combinations of frequencies
per octave and mean inter-tone interval as defined above. Targets were composed of tones
with a 1 kHz frequency, a 100 ms duration, and a 1 Hz tone rate. This training block allowed
us to ensure that all the subjects heard all the target frequencies.

The experimental session was composed of 240 trials randomly distributed into
4 blocks of 60 trials. The target was present in two thirds of the trials (160:240), and
one third (80:240) had no target. Each trial lasted 10 s, and subsequent trials were separated
by 3 s of silence. The participants’ task was to push a key press with their right index
finger as soon as they detected the target (response box: Chronos Psychology Software
Tools Inc., Pittsburg, PA, USA). Subjects were asked to answer as quickly and accurately as
possible. They were informed that the target signal would not be present at each trial, but
no information regarding the target occurrence probability was provided.

A white fixation cross was displayed against a black background onto a 19 in the
cathode-ray tube monitor (with a 1024× 768 pixel resolution and a 100 Hz refresh rate)
located 46 cm away from the participant in a dark and soundproof room. Auditory
stimulus was produced by a DELL PRECISION M4800 computer (i7 4900 MQ processor,
16 Gb DDR3 RAM, NVidia Quadro K2100M running Windows 7 with an Intel Lynx Point
PCH sound card) and presented to listeners via ER-3 insert earphones (Etymotic Research)
at a comfortable listening level. E-prime 2.0 software (v.2.0.10.356, E-prime Psychology
Software Tools Inc., Pittsburg, PA, USA) was used to present auditory stimuli and visual
fixation stimulus.

Block 0 Block 1 Block 2 Block 3 Block 4(60 trials) (60 trials) (60 trials) (60 trials) (60 trials)

Break Break Break Break

Training Experiment

240 trials (160 targets)

Stimulus Silence Stimulus SilenceStimulus Silence

One trial

10 sec. 3 sec.

Figure 2. Graphical summary of the procedure. Stimuli are described in Figure 1.

2.4. Behavioral Responses

The detection times were recorded each time the participant first pressed the key
during a trial. Each trial was categorized as either a hit, a miss, a false alarm, or a correct
rejection according to both the target’s presence and the participant’s response. Since
detecting a regularity requires hearing at least two repetitions of the target tone, any
detection occurring faster (i.e., before 1600 ms) was considered a guess and dismissed from
the valid responses [76]. The detection performance index (d′) was computed from the hit
rate (HR) and false alarm rate (FAR) after a z-score transformation with the percent point
function [80,81]: d′ = z(HR)− z(FAR). The detection performance index (d′) was then
obtained for each level of the spectro-temporal density of the masker.

2.5. Electroencephalogram Recordings

The electroencephalogram (EEG) was continuously recorded from the head surface
using a suitable elastic cap (ActiCAP, Brain Products GmbH) equipped with 64 Ag/AgCl
unipolar active electrodes positioned according to a subset of the extended 10/20 electrode
placement system [82,83] (Figure 3). The electrodes’ impedance was kept below 10 kΩ. The
signal was amplified using an actiCHamp™ system (Brain Products, Inc.), digitized at a



Biology 2023, 12, 967 6 of 32

24-bit rate and sampled at 1000 Hz with a 0.05 µV resolution. The raw EEG signal was
recorded using Brain Vision Recording software (1.20.0801 version).

Two active electrodes (TP9 and TP10) were used to record the signals from the left
and right mastoids, and their average was used as a reference. The ground electrode
was positioned on the forehead (Fpz electrode). Two pure silver electro-oculography
electrodes were positioned on the external side of the left and right eyes. The recorded
electro-oculogram was used to detect ocular artifacts, such as blinks and eye movements.
Participants were instructed to limit blinking and eye movements during the experimental
session, and they were provided breaks between blocks to move their eyes and blink.

2.6. Processing of EEG Recordings

EEG data processing was performed using Python programming language [79] and
“Python-MNE” module (v0.20.5) [84]. Raw EEG data were re-referenced offline to the aver-
age of electrodes. Low-pass (80 Hz) and high-pass (1 Hz) non-causal filters were applied.

Ocular movement artifacts were corrected using independent component analysis
(20 components, 800 loops). Trials with excessive noise were either removed or repaired,
depending on the number of bad channels, using the algorithm implemented in the “au-
toreject” Python module (v0.2.1) [85,86]. Finally, all remaining segments contaminated
with muscular activity and/or non-physiological artifacts were rejected offline after a
visual inspection.

A time reference corresponding to the pressing of the button for the detected targets
(i.e., hit trials) and to the average detection time (3.4 s) for the non-detected targets (i.e.,
miss trials) was taken into account to define the 6 s EEG epochs for the analysis. For the
ERP, four tones around a time reference were taken into account. The two tones before the
time reference were labeled “B1” and “B2”, and the two tones after the time reference were
labeled “A1” and “A2” (see Figure 1 (right)). For the entropy and integrated information
measures, each epoch was divided into two segments of 3 s before and after the time
reference (Figure 1 (right)).

The evoked potentials were computed in a time window from−200 to +500 ms around
the four tones (B1, B2, A1, and A2) [10,19,26,27,74,87]. Then, the grand average waveforms
were obtained for each electrode, for each tone, and for the detected and non-detected
targets. The peak amplitude of the ARN component was computed in the 50–350 ms time
interval [10] and that of the P300 component in the 250–500 ms time interval.

The information content of the neural signal was quantified using information-theoretic
approaches based on five measures of entropy: spectral entropy (SpEn), approximate en-
tropy (ApEn), sampled entropy (SaEn), permutation entropy (PeEn), and singular-value
decomposition entropy (SvEn). All their explicit formulations and algorithms are presented
in Appendix C.

In order to quantify the evolution of entropy during the build-up of the perceptual
awareness, each 6 sec EEG epoch was divided into 24 windows. In order to ensure reliable
measures for each window, EEG signals were oversampled at 4 kHz to compute entropy
measures on 1000 data points for each window [88–92]. All information content measures
were estimated using “antropy” [93] or “pyEEG” [94] Python modules.

Four measures of integrated information (Φ) were used to study the dynamics of
auditory perceptual awareness: (i) decoding-based integrated information (Φ*) [67], (ii) ge-
ometric integrated information (ΦG) [69], (iii) stochastic integrated information (ΦH) [70],
and (iv) redundancy-based integrated information, or “multi-information” (ΦMI) [70]. The
algorithms allowing the calculation of these measures are available in the Matlab tool-
box “phitoolbox” [67,68]. More complete formulations of these measures are described in
Appendix D.

Since computing integrated information measures on real neurophysiological data is
known to be extremely time consuming as the number of electrodes increases [68,95,96], the
integrated information measures were computed for the temporal cluster only (see Figure 3)
on windows of 750 time samples after the EEG signal was downsampled at 125 Hz. By
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varying the time lag τ involved in the computation of integrated information measures,
65 windows (27 before and 37 after the time reference) were obtained as the average of
10 τ values. In this configuration, in total, more than 3400 h using the computing cluster of
ONERA were needed for this study.

Figure 3. Electrode positions according to the extended 10/20 international placement system and
aggregation procedure according to eight different cortical areas for each hemisphere and sagittal
cluster. AF: antero-frontal; F: frontal; FC: fronto-central; C: central; CP: centro-parietal; P: parietal;
PO: parieto-occipital; T: temporal. Adapted from [97].

2.7. Statistical Analyses

Information content and integrated information measures were topographically aggre-
gated by averaging the values obtained for groups of electrodes [97]. Eight cortical areas
were defined per hemisphere for the entropy measures, and only the temporal cluster was
studied using the integrated information measures (see Figure 3).

The effects of the experimental conditions on behavioral data, ERP amplitude, EEG
information content, and integrated information were analyzed using linear mixed-effect
models implemented in the “lme” [98] and “nlme” [99] libraries in the R statistical lan-
guage [100]. Five factors were used in this study: detection (hit/miss), condition (be-
fore/after the time reference), cluster (AF, F, FC, C, CP, P, PO, T, S), window (11 before and
11 after for information content measures; 27 before, 38 after for integrated information),
and subject (20). The window factor is nested in the condition factor. In all analyses,
the experimental factors (i.e., detection, condition, cluster, and window) were treated as
fixed-effect variables, and the subject factor was treated as a random effect for the intercept.

In each case, analyses of variance were performed to test the null model (i.e., without
mixed effects) against the corresponding mixed-effects model, and all of the models were
checked on the basis of their residuals. The linear mixed-effects models were fitted and
estimated using likelihood maximization optimizers. In the case of statistical effects of
factors and their interactions, we studied the paired comparisons using the estimated
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marginal means [101] implemented in the R “emmeans” library. The estimated marginal
means (least squares means) are the values of the model parameters averaged over the
appropriate combinations of the levels of factors.

For the behavioral data, a model was adjusted to obtain the effect of the spectro-
temporal density of the masker on the detection performance index. ERPs were analyzed in
the function of the electrodes of interest in order to study the effects of detection and tone
factors on the peak amplitude of ARN and P300 components. For the information content
measures, a first model was fitted in order to study the effects of the detection, condition,
and cluster factors on the measures. This allowed us to investigate the effect of the auditory
perceptual awareness on the different measures before and after the time reference and
within the different brain areas of interest. A second model was fitted to study the temporal
dynamics of the build-up of auditory perception within the significant clusters. For the
integrated information measures, a first model was fitted in order to study the effects of
the detection and condition factors on the Φ measure values. Then, a second model was
fitted to study the temporal dynamics of the integration of the information underlying the
build-up of auditory perception.

3. Results
3.1. Behavioral Data

The individual mean detection times and performance indices for each subject are
presented in Table A1. The group mean detection time was 3.45± 1.58 s. The mean correct
detection and false alarm rates were 0.71% ± 0.14% and 0.11% ± 0.14%, respectively,
leading to a mean detection performance index (d′) of 2.15 ± 0.84. Left-handed subjects
did not perform worse than right-handed subjects (all d′ higher than the lower limit of the
95 % confidence interval), although one of them had a longer detection time (S12).

The effect of the masker’s spectro-temporal density on the detection performance index
is depicted in Figure 4. This effect was statistically significant (F(3, 57) = 4.46, p = 0.01),
and post hoc tests show that the detection performance index was significantly lower for a
masker density of 20 and 28, compared to a density of 11. No other significant effect was
found for the other multiple comparisons (see Table 1).

Figure 4. Detection performance index d′ in function of the spectro-temporal density of the masker.



Biology 2023, 12, 967 9 of 32

Table 1. Estimated marginal means for the post hoc multiple comparisons of the effects of marker
density on detection performance index (d′).

Estimate Std. Error z Value Pr(>|z|)
20–11 −0.39 0.12 −3.23 0.01
28–11 −0.34 0.12 −2.80 0.03
36–11 −0.11 0.12 −0.91 0.80
28–20 0.05 0.12 0.43 0.97
36–20 0.28 0.12 2.32 0.09
36–28 0.23 0.12 1.89 0.23

3.2. Electrophysiological Data
3.2.1. Event-Related Potentials ARN and P300

The complete topography of the ERP can be observed for the four tones on Figures A1–A4.
The amplitude values of the ARN were selected for the electrodes FT7, FT8, T7, T8,

TP7, TP8, C5, F6, and F7 for all tones (B2, B1, A1, and A2). The largest negative amplitudes
were found for electrodes C5, F6, and F7 for the first tone before the button press (B1) for
the detected targets. Figure 5 illustrates the grand-average waveforms of the ARN for
electrodes C5, F6, and F7 for the four tones. Thus, the effect of detection and tone factors
on peak amplitude values was studied for each electrode.

• The ARN amplitude did not differ significantly between detection conditions for the
three electrodes (C5: F(1, 81) = 0.69, p = 0.41; F6: F(1, 95) = 3.47, p = 0.07; and
F7: F(1, 90) = 2.74, p = 0.1).

• However, the tone factor had a significant effect on the ARN amplitude for the F6
and F7 electrodes (F(3, 95) = 3.81, p = 0.01, η2 = 0.11 and F(3, 90) = 2.99, p = 0.04,
η2 = 0.9, respectively), while no significant effect was observed for the C5 electrode
(F(3, 81) = 1.76, p = 0.16).

• The interaction between the detection and the tone factors was significant for the three
electrodes (C5: F(3, 81) = 4.54, p = 0.01, η2 = 0.14; F6: F(3, 95) = 8.12, p < 0.001,
η2 = 0.2; and F7: F(3, 90) = 5.05, p < 0.001, η2 = 0.14).

Multiple comparisons were performed to study the interaction between detection and
tone factors (see Table 2). The amplitude of ARN was significantly lower for tone B1 when
targets were detected compared to missed targets for the three electrodes. On the contrary,
amplitude values were significantly higher for tone A2 when targets are detected compared
to missed targets for electrode F6.

The P300 component was observed in the sagittal cluster through electrodes FCz, Cz,
CPz, and Pz (Figure 6). Compared evoked waveforms (see Figures A1–A4) show that
the FCz, Cz, CPz, and Pz electrodes notably displayed a P300 signature with a strong
transition when the targets were detected for the first tone, B1. However, this waveform
was not observed for the detected targets on the other tones. For each electrode, the effect
of detection and tone factors on the peak amplitude was studied.

• The P300 amplitude did not differ significantly between detection conditions for the
four electrodes (FCz: F(1, 101) = 0.14, p = 0.71; Cz: F(1, 102) = 0.35, p = 0.55; CPz:
F(1, 99) = 0.13, p = 0.71; and Pz: F(1, 101) = 0.95, p = 0.33).

• The tone factor had a significant effect on the amplitude of P300 for the FCz, Cz, and
Pz electrodes (F(3, 101) = 10.3, p < 0.001, η2 = 0.23; F(3, 102) = 8.02, p < 0.001,
η2 = 0.19; and F(3, 101) = 6.75, p < 0.001, η2 = 0.17, respectively) but not for the CPz
electrode (F(3, 99) = 0.92, p = 0.43).

• The interaction between the detection and the tone factors was significant for all four
electrodes (FCz: F(3, 101) = 7.14, p < 0.001, η2 = 0.17; Cz: F(3, 102) = 8.06, p < 0.001,
η2 = 0.19; CPz: F(3, 99) = 11.21, p < 0.001, η2 = 0.25; and Pz: F(3, 101) = 9.54,
p < 0.001, η2 = 0.22).
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Figure 5. Grand-average time-evoked waveforms of the awareness-related negativity (ARN) compo-
nents on electrodes C5 (top panel), F6 (middle panel), and F7 (bottom panel) for the first and second
tone before (B1,B2) and after (A1,A2) the time reference between 50 and 350 ms.

Multiple comparisons were then performed to study the interaction between detection
and tone factors (see Table 2). The amplitude of P300 was significantly higher for tone B1
when targets were detected compared to missed targets for the all electrodes. The amplitude
of P300 was significantly lower for tone B2 when targets were detected compared to missed
targets for the CPz electrode. Finally, the amplitude values were significantly lower for
tone A2 when targets were detected compared to missed targets for electrodes FCz, Cz,
and Pz.
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Figure 6. Grand-average time-evoked waveforms of the P300 components on electrodes FCz
(top panel), Cz (second panel), CPz (third panel), and Pz (bottom panel) for the first and second
tones before (B1 and B2) and after (A1 and A2) time reference between 250 and 500 ms.
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Table 2. Estimated marginal means of the post hoc paired comparisons between hit and miss trials
for the two ERP components (ARN and P300) and their electrodes of interests. SE: standard error
of the estimate; df: degrees of freedom (Kenward–Roger method). p-values were adjusted using
Bonferroni method.

Electrode Tone Pairs Estimate SE df t-Ratio p-Value

ARN

C5

B2 H—M 0.697 0.338 81 2.05 0.170
B1 H—M −1.193 0.335 81 −3.56 0.002
A1 H—M 0.154 0.323 81 0.47 1.000
A2 H—M 0.341 0.346 81 0.98 1.000

F6

B2 H—M 0.308 0.300 95 1.02 1.000
B1 H—M −1.120 0.291 95 −3.84 <0.001
A1 H—M −0.341 0.288 95 −1.18 0.958
A2 H—M 1.154 0.296 95 3.89 <0.001

F7

B2 H—M 0.517 0.335 90 1.54 0.505
B1 H—M −1.277 0.331 90 −3.85 <0.001
A1 H—M 0.216 0.319 90 0.67 1.000
A2 H—M 0.543 0.336 90 1.61 0.438

P300

FCz

B2 H—M −0.156 0.145 101 −1.07 1.000
B1 H—M 0.636 0.149 101 4.25 <0.001
A1 H—M −0.034 0.143 101 −0.23 1.000
A2 H—M −0.445 0.143 101 −3.10 <0.01

Cz

B2 H—M −0.100 0.164 102 −0.61 1.000
B1 H—M 0.780 0.166 102 4.69 <0.001
A1 H—M −0.178 0.164 102 −1.08 1.000
A2 H—M −0.501 0.168 102 −2.97 <0.01

CPz

B2 H—M −0.546 0.173 99 −3.15 <0.01
B1 H—M 0.999 0.177 99 5.63 <0.001
A1 H—M −0.169 0.173 99 −0.97 1.000
A2 H—M −0.283 0.173 99 −1.63 0.42

Pz

B2 H—M −0.293 0.195 101 −1.50 0.546
B1 H—M 1.003 0.198 101 5.06 <0.001
A1 H—M −0.054 0.195 101 −0.27 1.00
A2 H—M −0.655 0.203 101 −3.21 <0.01

3.2.2. Information Content Measures

The mean values of the five entropy measures for each electrode cluster are depicted in
Figure 7 in increasing order. The variations in the entropy according to the experimental factors
(detection, condition, and electrodes clusters) were similar for the five entropy measures:

• The entropies obtained for the electrode clusters differed significantly for the five entropy
measures (SpEn: F(8, 647) = 51.21, p < 0.001, η2 = 0.39; ApEn: F(8, 647) = 49.65,
p < 0.001, η2 = 0.38; SaEn: F(8, 647) = 46.06, p < 0.001, η2 = 0.36; PeEn:
F(8, 647) = 147.72, p < 0.001, η2 = 0.65; and SvEn: F(8, 647) = 46.04, p < 0.001,
η2 = 0.36). Moreover, the four electrode clusters that depicted the highest en-
tropy values were the same for all the entropy measures, and entropy increased
from the antero-frontal cluster to the fronto-central cluster through the frontal and
temporal cluster.
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Figure 7. Mean values and standard errors of the entropy measures calculated for each of the
clusters (AF: antero-frontal, F: frontal, FC: fronto-central, C: central, CP: centro-parietal, P: parietal,
PO: parieto-occipital, T: temporal, and S: sagittal) before and after target detection (hit, in light red) or
non-detection (miss, in light blue). Measures were computed from each electrode in the cluster and
then obtained by topographic aggregation of the values.

• The entropy measures were significantly higher when the target was detected (hits)
than when the target was not detected (miss), except for the singular-value en-
tropy (SpEn: F(1, 647) = 6.64, p = 0.01, η2 = 0.01; ApEn: F(1, 647) = 7.94,
p = 0.005, η2 = 0.01; SaEn: F(1, 647) = 5.54, p = 0.019, η2 = 8.49× 10−3; PeEn:
F(1, 647) = 91.16, p < 0.001, η2 = 0.12; and SvEn: F(1, 647) = 1.65, p = 0.19).

• No significant effect was observed for the condition factor for all the entropy mea-
sures (SpEn: F(1, 647) = 1.09, p = 0.297; ApEn: F(1, 647) = 0.84, p < 0.358;
SaEn: F(1, 647) = 0.68, p < 0.408; PeEn: F(1, 647) = 0.12, p < 0.725; and SvEn:
F(1, 647) = 1.63, p = 0.201).

• The interaction of the detection factor and cluster was significant for all the entropy mea-
sures (SpEn: F(8, 647) = 2.82, p = 0.004, η2 = 0.03; ApEn: F(8, 647) = 9.61, p < 0.001,
η2 = 0.11; SaEn: F(8, 647) = 7.88, p < 0.001, η2 = 0.09; PeEn: F(8, 647) = 76.56,
p < 0.001, η2 = 0.49; and SvEn: F(8, 647) = 2.70, p = 0.006, η2 = 0.03).
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• The effect of the interaction between detection and condition was significant for the
permutation entropy only (SpEn: F(1, 647) = 0.42, p = 0.51; ApEn: F(1, 647) = 0.08,
p = 0.77; SaEn: F(1, 647) = 0.00, p = 0.95; PeEn: F(1, 647) = 4.53, p = 0.034,
η2 = 6.97× 10−3; and SvEn: F(1, 647) = 1.48, p = 0.22).

• The effect of the interaction between condition and cluster was not significant (SpEn:
F(8, 647) = 0.25, p = 0.98; ApEn: F(8, 647) = 0.29, p = 0.96; SaEn: F(8, 647) = 0.29,
p = 0.96; PeEn: F(8, 647) = 0.13, p = 0.99; and SvEn: F(8, 647) = 0.18, p = 0.99).

• The effect of the triple interaction between detection, condition, and electrode cluster
factors was not significant (SpEn: F(8, 647) = 0.26, p = 0.97; ApEn: F(8, 647) = 0.42,
p = 0.90; SaEn: F(8, 647) = 0.46, p = 0.88; PeEn: F(8, 647) = 0.06, p = 1.00; and SvEn:
F(8, 647) = 0.24, p = 0.98).

Multiple comparisons were performed to study the interaction between detection
and cluster factors for all the entropy measures (see Table 3). In the fronto-central cluster,
entropy measures increased significantly for the detected targets compared to missed
targets for all the entropy measures. In the other clusters, except for the central and
temporal clusters, the permutation entropy only depicted a significant difference between
the detected and non-detected targets. This difference corresponds to a decrease in entropy
for the detected targets compared to the non-detected ones.

The dynamics of the entropy measures was studied for the fronto-central cluster,
which depicts significant differences between the detected and non-detected targets for all
the entropy measures (see Figure 8). The effects of the detection and windows factors are
the following:

• There was no significant difference between the hit and miss trials for all the entropy
measures (SpEn: F(1, 795) = 3.43, p = 0.06; ApEn: F(1, 795) = 2.58, p = 0.10;
SaEn: F(1, 795) = 1.33, p = 0.24; PeEn: F(1, 795) = 0.60, p = 0.43; and SvEn:
F(1, 795) = 2.79, p = 0.09)

• A significant effect of the window factor was found for the approximate, the sample,
and the singular-value entropies, but not for the spectral and permutation entropies
(SpEn: F(21, 795) = 1.39, p = 0.11; ApEn: F(21, 795) = 1.66, p = 0.031, η2 = 0.04;
SaEn: F(21, 795) = 1.60, p = 0.044, η2 = 0.04; PeEn: F(21, 795) = 1.42, p = 0.09; and
SvEn: F(21, 795) = 1.63, p = 0.038, η2 = 0.04).

• A significant effect was also reported for the interaction between detection and window
for all the entropy measures except for the singular-value decomposition entropy
(SpEn: F(21, 795) = 5.22, p < 0.001, η2 = 0.12; ApEn: F(21, 795) = 1.90, p = 0.009,
η2 = 0.05; SaEn: F(21, 795) = 1.68, p = 0.028, η2 = 0.04; PeEn: F(21, 795) = 2.76,
p < 0.001, η2 = 0.07; and SvEn: F(21, 795) = 0.92, p = 0.569).

Then, multiple comparisons were performed between hit and miss trials for each
time window for entropy measures, where the interaction between the detection and time
window was significant (SpEn, ApEn, SaEn, and PeEn). The time windows where the
difference was statistically significant are represented by black dots in Figure 8. Several
time windows depict a significant difference between hit and miss trials. The general
pattern, which was the most visible for spectrum and permutation entropies, shows high
entropy before the time reference for the hit trials compared to the miss trials and a decrease
in entropy in the windows following the time reference. Although there was no significant
interaction between the detection and time window for singular-value entropy, this pattern
was also qualitatively present for this measure.
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Table 3. Estimated marginal means of the post hoc paired comparisons between hit and miss trials in
all the electrode clusters for the five entropy measures. SE: standard error of the estimate; df: degrees
of freedom (Kenward–Roger method). p-values were adjusted using Bonferroni method.

Cluster Measure Pairs Estimate SE df t-Ratio p-Value

Antero-Frontal

SpEn H—M −0.004 0.005 647 −0.727 1.000
ApEn H—M −0.017 0.010 647 −1.817 0.627
SaEn H—M −0.018 0.011 647 −1.706 0.796
PeEn H—M −0.008 0.002 647 −3.388 0.006
SvEn H—M −0.008 0.006 647 −1.265 1.000

Central

SpEn H—M −0.003 0.005 647 −0.588 1.000
ApEn H—M −0.009 0.010 647 −0.981 1.000
SaEn H—M −0.010 0.011 647 −0.903 1.000
PeEn H—M −0.006 0.002 647 −2.526 0.106
SvEn H—M −0.004 0.006 647 −0.627 1.000

Centro-Parietal

SpEn H—M −0.004 0.005 647 −0.817 1.000
ApEn H—M −0.006 0.010 647 −0.679 1.000
SaEn H—M −0.006 0.011 647 −0.571 1.000
PeEn H—M −0.008 0.002 647 −3.351 0.007
SvEn H—M −0.002 0.006 647 −0.253 1.000

Frontal

SpEn H—M −0.001 0.005 647 −0.177 1.000
ApEn H—M −0.012 0.010 647 −1.290 1.000
SaEn H—M −0.012 0.011 647 −1.169 1.000
PeEn H—M −0.007 0.002 647 −2.834 0.042
SvEn H—M −0.003 0.006 647 −0.588 1.000

Fronto-Central

SpEn H—M 0.026 0.005 647 4.714 <0.001
ApEn H—M 0.083 0.010 647 8.709 <0.001
SaEn H—M 0.083 0.011 647 7.882 <0.001
PeEn H—M 0.060 0.002 647 24.726 <0.001
SvEn H—M 0.027 0.006 647 4.545 <0.001

Parietal

SpEn H—M −0.003 0.005 647 −0.527 1.000
ApEn H—M −0.006 0.010 647 −0.582 1.000
SaEn H—M −0.005 0.011 647 −0.501 1.000
PeEn H—M −0.007 0.002 647 −2.937 0.030
SvEn H—M −0.000 0.006 647 −0.045 1.000

Parieto-Occipital

SpEn H—M −0.003 0.005 647 −0.545 1.000
ApEn H—M −0.011 0.010 647 −1.129 1.000
SaEn H—M −0.011 0.011 647 −0.998 1.000
PeEn H—M −0.009 0.002 647 −3.578 0.003
SvEn H—M −0.003 0.006 647 −0.452 1.000

Sagittal

SpEn H—M −0.005 0.005 647 −0.881 1.000
ApEn H—M −0.013 0.010 647 −1.400 1.000
SaEn H—M −0.013 0.011 647 −1.237 1.000
PeEn H—M −0.009 0.002 647 −3.536 0.003
SvEn H—M −0.005 0.006 647 −0.911 1.000

Temporal

SpEn H—M −0.002 0.005 647 −0.452 1.000
ApEn H—M −0.008 0.010 647 −0.831 1.000
SaEn H—M −0.008 0.011 647 −0.797 1.000
PeEn H—M −0.006 0.002 647 −2.577 0.091
SvEn H—M −0.002 0.006 647 −0.405 1.000
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Figure 8. Mean values and standard error bars of entropy measures computed for each of the time
windows from −3 to +3 s, respectively, before and after the time reference (red line) for the fronto-
central cluster. The values of the measures were estimated from 1000 point windows. The black dots
show the time windows where a significant difference was found in the model between detection
and non-detection.

3.2.3. Integrated Information Measures

Figure 9 shows the distribution of the values of the four integrated information
measures as a function of detection (detected or missed targets) and condition (before or
after the detection).

• The difference between hit and miss trials was significant for stochastic integrated
information and multi-information, whereas it was not significant for the decoding-
based and geometric integrated information (Φ*: F(1, 54) = 0.51, p = 0.479; ΦG:
F(1, 54) = 0.03, p = 0.859; ΦH : F(1, 54) = 4.08, p = 0.048, η2 = 0.07; ΦMI :
F(1, 54) = 4.29, p = 0.043, η2 = 0.07)

• Integrated information decreased significantly between before and after the time refer-
ence for the four measures of integrated information (Φ*: F(1, 54) = 580.20, p < 0.001,
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η2 = 0.91; ΦG: F(1, 54) = 541.93, p < 0.001, η2 = 0.91; ΦH : F(1, 54) = 49.39,
p < 0.001, η2 = 0.48; and ΦMI : F(1, 54) = 69.34, p < 0.001, η2 = 0.56).

• The interaction between detection and condition was significant for the
multi-information only (Φ*: F(1, 54) = 0.75, p = 0.390; ΦG: F(1, 54) = 0.15, p = 0.698;
ΦH : F(1, 54) = 1.01, p = 0.319; and ΦMI : F(1, 54) = 11.03, p = 0.002, η2 = 0.17).

Multiple comparisons allowed us to study the interaction between condition and
detection for multi-information measures. They show that, before the time reference, ΦMI

was significantly higher for hit trials than for miss trials (t54 = 3.813, p < 0.001), but this
difference was no more significant after the time reference (t54 = −0.884, p = 0.380).

Figure 9. Integrated information measures computed from the temporal cluster are represented here
as a function of the detection (detected or missed targets) and the condition (before, in red; after, in
blue): Φ* (top left); ΦG (top right); ΦH (bottom left); and ΦMI (bottom right).

The changes in the integrated information with the time delay τ are represented in
Figure 10 for hit and miss trials. The effects of the detection and time window factors are
the following:

• Except for the geometric integrated information, the integrated information sig-
nificantly differed between hit and miss trials (Φ*: F(1, 2322) = 7.58, p = 0.006,
η2 = 3.25 × 10−3) ΦG: F(1, 2322) = 1.38, p = 0.241; ΦH : F(1, 2322) = 187.54,
p < 0.001, η2 = 0.07; and ΦMI : F(1, 2322) = 98.95, p < 0.001, η2 = 0.04).

• The time window factor had a significant effect for the four integrated information
measures (Φ*: F(64, 2322) = 356.27, p < 0.001, η2 = 0.91; ΦG: F(64, 2322) = 331.52,
p < 0.001, η2 = 0.90; ΦH : F(64, 2322) = 42.46, p < 0.001, η2 = 0.54; and ΦMI :
F(64, 2322) = 55.38, p < 0.001, η2 = 0.60).

• The effect of the interaction between detection and time windows was significant only
for the multi-information (Φ*: F(64, 2322) = 0.46, p > 0.999; ΦG: F(64, 2322) = 0.28,
p > 0.999; ΦH : F(64, 2322) = 0.79, p = 0.892; and ΦMI : F(64, 2322) = 8.54, p < 0.001,
η2 = 0.19).

Multiple comparisons were performed between hit and miss trials for each time win-
dow for multi-information, where the interaction between detection and time window was
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significant. The time windows where the difference was statistically significant are repre-
sented by black dots in Figure 10. The statistical differences demonstrate that integrated
information was higher for hit trials than for miss trials at the beginning of the 6 s epoch,
whereas it was lower at the end of the epoch.

Figure 10. Time evolution of integrated information measures around the time reference. The
measures appear as a function of τ and detection in the following order: Φ*, ΦG, ΦH and ΦMI . The
red vertical bars represent the time reference. The black dots show the time windows expressing a
statistically significant difference between detected and missed targets.

4. Discussion

The aim of this study was to characterize the neural correlates of auditory awareness
using event-related potentials, information-theoretic measures, and measures derived from
the integrated information theory of consciousness. The comparisons of the informational
measures between hit and miss trials, before and after the time reference of the target
perception combined with a topographic aggregation of electrodes cluster, provide the
basis of our results.

The combinations of masker parameters (frequencies per octave and mean inter-tone
intervals) used here allowed us to observe a long enough time period for the build-up
of the auditory perception and sufficient hit trials. Obtaining information and integrated
information measures was thus highly dependent on this specific set of masker parameters.
Therefore, characterizing the behavioral effect of different masker density levels is crucial
for the design of experimental paradigms adapted to the study of the neuronal correlates of
perceptual auditory awareness [76]. Despite its relatively homogeneous spectro-temporal
density, a significant effect of the masker density was observed. Indeed, the interaction
between the spectral and temporal characteristics of the masker can highly modulate the
segregation of the target from the noisy background masker [10,22,76]. Since the lowest
masker density was associated with high detection performance, the masker density may be
an index of the detectability level. However, since no monotonic relationship was observed
between the detection performance and masker density, and since the masker and target
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properties highly interact in informational masking [76], it remains difficult to define the
target and masker parameters to ensure a defined level of detectability.

In the present study, a waveform similar to the ARN was observed when the target
was detected for the first tone (B1) preceding the perceptual report but not for the second
one (B2). This negativity localized near the right and left temporal lobes appeared between
250 and 350 ms and exhibited characteristics similar to those of an ARN. In a comparable
masking protocol, Gutschalk et al. [10] observed an ARN two tones before the report, which
corresponds here to the B2 tone. In a protocol using pairs of tones as targets [19], the ARN
appeared just before the perceptual report by the subject, and thus corresponded to tone
B1 in our study. In the case of targets with four tones [26], the ARN was observed for the
second, third, and fourth tones, while the first tone showed latency characteristics different
from those of the other three. The amplitude of this negative wave was maximal in the
most anterior sites of the scalp, which is consistent with the literature [102]. Dynamical
causal modeling analysis [19] suggests that ARN would characterize the auditory stream
segregation by being associated with changes in the intrinsic connectivity of auditory
cortices. The ARN response observed here can thus be considered a signature of the
auditory perceptual awareness associated with recurrent processing between higher-order
auditory and parietal cortical areas.

A tone-dependent effect of auditory perceptual awareness was observed on the am-
plitude of a P300-like waveform for all the electrodes of interest. This effect increased
significantly for the first tone before detection. Giani et al. [19] observed that perceptual
awareness significantly increased P300 amplitudes for both tones for a target made of a pair
of tones. A large P300 observed for the detected targets was associated with generators in
the temporo-frontal and temporo-lateral cortices [27]. In the present study, large amplitudes
of P300 were observed at the level of the sagittal axis. P300 is considered a marker of the
segregation of the auditory target’s stream from the masker stream [19,27]. The P300 wave
is composed of at least two distinct subcomponents, an early fronto-central P3a and a later
maximal parietal P3b [103]. P3a occurs in states of unawareness and reflects automatic,
stimulus-driven attention processes, such as when an unexpected stimulus involuntarily
draws attention [104]. P3b, on the other hand, is most often elicited in experimental settings
during tasks involving infrequent target detection and is thought to reflect the working
memory storage of content, stimulus–response transformations, context updating, stimulus
categorization, and perceptual awareness [31,103,104]. This could suggest that the P300
is related to the integration of target features, which is therefore observed by an increase
in its amplitude on the vertex as the subject tends towards the report. However, recent
studies contradict the role of P3b in perceptual awareness and tend to associate this ERP
component rather with the post-perceptual process than with the conscious integration
process [105–109].

Most of the entropy measures depict similar results, where entropy values are higher
for the hit trials than for the miss trials, and identify the fronto-central cluster as the area
where this difference is the most clearly detected. Nevertheless, the permutation entropy
is the only measure to show both higher values in the fronto-central cluster and lower
values in most other clusters during the auditory perceptual awareness. In previous studies,
permutation entropy and other nonlinear measures, such as approximate entropy, were
shown to better distinguish EEG in conscious states from EEG in unconscious states and to
better reflect different levels of general anesthesia [38,55,88]. Higher permutation entropy
in non-vegetative subjects than in vegetative subjects was also found in centro-posterior
brain areas [40]. These results are associated with the ability of permutation entropy
to detect non-linearities where linear measures, such as spectral entropy, fail [110–112].
High permutation entropy in the fronto-central cluster during target awareness indicates
a decrease in the predictability of EEG signals, which could be due to growths in the
signal fluctuations, while the opposite is observed at the level of the other clusters, where
lower permutation entropy is observed for perceived targets. This difference between
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fronto-central areas and other brain areas might characterize their differential involvement
in discriminative ability and perceptual awareness.

The evolution of the entropy measures over the time course of the trial shows high
entropy measures prior to the time reference for the detected targets. The values then
return to the level of the undetected targets after the time reference. This result suggests
a higher information content at the scale of the neural signal during the build-up of the
conscious perception and a decrease in the informational content once the target has
been perceived as shown by the significant difference in the windows following the time
reference for permutation entropy. Indeed, the decrease in entropy in the fronto-central
brain areas following the time reference only when the targets have been detected could
be related to report initialization and decision making [109,113] and be linked to specific
post-perceptual processing aspects [103,107]. Specifically, it might suggest that once the
processing associated with the stimulus is performed, and therefore that the perceptual
report is carried out, the sudden decrease in the informational content of the neural signal
is associated with a kind of reset of the information processing. Such a hypothesis requires
further examination to evaluate its consistency and generality.

The results for the integrated information measures are less uniform than in the case
of the entropy measures. Although all the integrated information allows us to discriminate
between before and after the time reference, multi-information only depicts a significant
interaction between condition and detection. Moreover, multi-information only depicts
a significant time evolution during the time course of the trials. Focusing on the results
obtained for multi-information, we can describe the changes in integrated information
during auditory perceptual awareness. First, multi-information was globally higher for
hit trials than for miss trials in temporal brain areas, and windows with higher multi-
information also characterized hit trials before the time reference. A progressive decrease
in multi-information was observed during the build-up of the auditory perception. Then, a
clear drop appeared after the behavioral report, leading to lower multi-information for the
hit trials than for the miss trials at the end of the epoch. As the multi-information is intended
to capture the integration of information by measuring the amount of information shared
in the connected system compared to the system where all interactions are removed [70],
the build-up of auditory perceptual awareness is characterized in the temporal cluster by
the evolution of brain activity from highly integrated information processing before the
behavioral report to more independent processes after the behavioral report.

The characterization of the neural correlates of auditory perceptual awareness by
permutation entropy and multi-information provides a complementary description of EEG
information content and integration in both space and time. In informational masking,
the process of segregating the auditory streams leading to the awareness of the auditory
target is based on a cascade of information processing [10,27], taking just a few hundred
milliseconds to activate different brain regions. Previously, it was suggested that auditory
perceptual awareness is underpinned by recurrent processes in the auditory cortex [19],
and our results show that these recurrent processes may correspond to a high level of
integrated information in the temporal cluster as demonstrated by the multi-information.

Moreover, the planum temporale, located on the superior temporal gyrus and pos-
terior to Heschl’s gyrus [114], has is considered an efficient neural center for encoding
the statistical properties of acoustic signals [115]. An efficient encoding mechanism takes
place using fewer computational resources when less information is present in the au-
ditory stimulus, suggesting that the planum temporale is a functional center requiring
fewer computational resources to encode redundant signals compared to those with high
entropy [115]. These results might be supported by the high entropies for hit trials in the
fronto-central cluster, whereas they do not differ from miss trials for central and temporal
clusters and are characterized by low entropies in the other clusters. Further examination
should focus on this link between the information content of the auditory stimulus and
that of neural signals.
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Finally, as auditory scene analysis involves analyzing a mixture of sounds to elicit
perceptions that correspond to individual sound sources [3], such processes are reminiscent
of the way in which information accumulates over time at the auditory system level. As
the auditory system is able to store acoustic information in the short-term memory and
make available the stored information for recall and computation in the longer term [116],
it would be highly likely that a successful segregation is dependent on the accumulation of
statistical evidence based on acoustic features [117,118]. If evidence accumulation processes
of auditory information are handled by the core regions of the auditory cortex, once a
sufficient amount of information has been accumulated, the decision limit can be exceeded,
triggering the perceptual report. The observed decrease in the multi-information might
be a consequence of the implementation of such mechanisms within the auditory cortices,
whose role is to maintain the consistency and the coherency of the acoustic information over
time until the accumulated evidence is sufficient to solve the uncertainty of the stimulus
and consequently support the perceptual segregation between the masker and the target.

5. Conclusions

This study provides an extensive characterization of the neural correlates of auditory
perceptual awareness using information-theoretic approaches in EEG together with ERP
analysis. The ARN and P300 components described here are comparable to those found
in the previous literature, ensuring that the informational quantification undertaken on
the same data is relevant regarding the neuronal correlates of the auditory perceptual
awareness. Among the entropy measures, permutation entropy showed the most complete
characterization of the manifold modifications of brain electrical activity related to auditory
perceptual awareness. The integrated information quantified by multi-information was
higher for perceived targets than for non-perceived ones, in accordance with the hypothesis
of the integrated information theory of consciousness. Taken as a whole, permutation
entropy and multi-information seem to provide promising complementary measures of
specific neuronal correlates of consciousness.

More specifically, it was shown that auditory perceptual awareness is associated with
an enhancement in the informational content of the neural signals from fronto-central
brain areas and with an increase in the redundancy of the information in the temporal
cortices. These results shows that the perceptual awareness of an auditory target can be
characterized by variations in the macroscopic-scale neural signals and demonstrates the
ability of manifold entropy measures and integrated information to discriminate conscious
perceptual states on the basis of the informational content of neural signals.
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Appendix A. Behavioral Results

Table A1. Summary of behavioral results for detection times and performance. For each subject
(Subject Id.), the number of detected targets (Hit), undetected targets (Miss), false alarms (FA),
and correct rejections (CR), as well as the correct detection rates (HIR), false alarm rates (FAR),
detection performance indices d′, the mean detection times (DT), and their standard deviation (DT σ)
are indicated.

Subject Id. Hit Miss FA CR HIR (%) FAR (%) d’ DT (ms) DT σ (ms)

1 125 31 2 78 79 3 2.70 3016 1266
2 93 40 1 79 69 1 2.60 2928 1521
3 96 35 8 72 73 9 1.93 3277 1452
4 105 44 4 76 70 5 2.12 2874 1461
5 120 34 2 78 77 3 2.63 2631 1093
6 97 22 7 73 81 8 2.28 2891 1623
7 63 81 1 79 43 1 1.92 4006 1926
8 132 28 0 80 82 0 3.42 4046 1691
9 69 31 7 73 68 6 1.96 3003 1393

10 150 10 0 80 93 0 4.01 4467 2077
11 113 44 39 41 71 48 0.60 3609 1458
12 82 78 0 80 51 0 2.53 4629 1806
13 91 61 2 78 59 3 2.11 2693 1186
14 136 1 25 55 98 31 2.77 2843 1106
15 120 31 3 77 79 4 2.53 2857 1380
16 123 37 7 73 76 9 2.05 3391 1559
17 68 92 14 66 42 17 0.73 4540 2304
18 120 40 37 43 74 46 0.76 4849 1932
19 117 37 3 77 75 4 2.41 3318 1704
20 78 38 26 54 67 26 1.07 3115 1684

Total 2098 815 188 1412 — — — — —
Mean 105 41 9 71 71 11 2.15 3449 1581

Appendix B. Event-Related Potentials ARN and P300

Figure A1. Compared grand averages of evoked potentials between −200 and +500 ms for tone B2
for detected (Hit, in red) and undetected (Miss, in blue) targets.
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Figure A2. Compared grand averages of evoked potentials between −200 and +500 ms for tone B1
for detected (Hit, in red) and undetected (Miss, in blue) targets.

Figure A3. Compared grand averages of evoked potentials between −200 and +500 ms for tone A1
for detected (Hit, in red) and undetected (Miss, in blue) targets.
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Figure A4. Compared grand averages of evoked potentials between −200 and +500 ms for tone A2
for detected (Hit, in red) and undetected (Miss, in blue) targets.

Appendix C. Entropy Measures

Appendix C.1. Spectral Entropy: SpEn

The spectral entropy (SpEn), is a complexity marker characterizing the regularity of a
temporal signal xt [119]. It is defined as the Shannon entropy of the spectral power density
of the data and can be defined as follows:

1. Compute the spectrum X(wi) of the signal.
2. Calculate the spectral power density of the signal via the square of its amplitude and

normalize by the defined number of bins N.

P(ωi) =
1
N
|X(ωi)|2 (A1)

3. Normalize the computed spectral power density so that it can be viewed as a proba-
bility mass function:

pi =
P(ωi)

∑i P(ωi)
(A2)

4. SpEn can then be calculated using Shannon’s standard entropy formula.

SpEn = −
n

∑
i=1

pi log pi (A3)

Appendix C.2. Approximate Entropy: ApEn

Approximate entropy (ApEn) is an information marker characterizing the regularity
in the data fluctuations of a temporal signal xt [89,120]. It depends on several parameters;
the main ones are the tolerance threshold r, under which a recurrence is found (also called
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filtering level), the length of the data vector considered m (also called integration dimension,
see [121]), and time window duration T.

Approximate entropy (ApEn) is defined as follows: the time series is embedded in a
phase space of vectors Xi of delayed coordinates (called phases),

Xi = [xi, xi−1, . . . , xi−m+1] (A4)

where xi is the i-th sample of the studied time series. The correlation integral Cm
i (r)

indicates the probability that the integrated vector Xi is similar to other vectors inside a
threshold r:

Cm
i (r) =

Nr
i

N −m
i = 1, . . . , N −m + 1 (A5)

where N is the number of data samples and Nr
i is the number of vectors whose distance to

Xi is less than r. The norm L∞ is chosen as the definition of the distance (i.e., the maximum
distance between pairs of elements of the set of vectors).

Thus, the definition of the correlation integral Cm
i (r) requires counting the number of

recurrences Nr
i of the trajectory towards points close to Xi and dividing it by the number of

pairs possible, thus estimating the percentage of neighboring points of Xi (i.e., the probabil-
ity that the trajectory has recurrences close to it). Finally, the approximate entropy ApEn is
defined by the average degree of similarity φm(r) calculated on the basis of the correlation
integral for two integration dimensions m and m + 1:

ApEn = φm(r)− φm+1(r) (A6)

with

φm(r) =
1

(N −m + 1)

N−m+1

∑
i=1

log Cm
i (r) (A7)

The number of recurrences is higher in the lower dimension. Indeed, by increasing
the dimension from m to m + 1, an element is added to the vectors. This means that the
recurrences in dimension m + 1 are also recurrences in dimension m. It may happen that
two vectors close in dimension m are not neighbors in dimension m + 1, meaning that the
last elements added to the two vectors are further apart than the tolerance threshold r.

The approximate entropy (ApEn) is therefore higher when the probability that the
trajectories diverge is greater. Indeed, the logarithm in the definition of φm(r) is monotonic
so that the entropy increases if the number of recurrences decreases when the dimension
of integration is increased (from m to m + 1). The approximate entropy is thus largely
influenced by the data length N, the tolerance threshold r, and the integration dimension
m, and the following values are recommended: N = 1000, r ranging from 0.1 to 0.25 % of
the standard deviation of the signal, and m = 2− 3 [88,89].

Appendix C.3. Sample Entropy: SaEn

Sample entropy (SaEn) is another information marker characterizing, like the approxi-
mate entropy, the data fluctuations of a temporal signal xt [122]. The approximate entropy
(ApEn) has the bias of including potential self-similarity patterns in the data as well as
being dependent on the size of the dataset. Sample entropy (SaEn) aims to compensate for
these biases using a slightly different calculation procedure than the approximate entropy
(ApEn). Sample entropy (SaEn) is defined as follows:

1. Let [x1, . . . , xN ] be a time series of length N;
2. Let Xi be the integrated series for 1 ≤ i ≤ N −m + 1, vectors of length m:

Xi = [xi, xi+1, . . . , xi+m−1] (A8)
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3. Let nm
i (r) be the number of vectors xj at a distance r from the vectors xi, where j 6= i

and j = 1, . . . , N −m + 1 to exclude self-similar patterns;
4. Let Cm

i (r), which is (N−m)−1 times the number of nm
i (r), be defined as the probability

that all xj is at a distance r from xi;
5. Let φm(r) be the average degree of similarity that can be calculated as

φm(r) =
∑N−m+1

i=1 log Cm
i (r)

N −m + 1
(A9)

6. Similarly, φm+1(r) can be computed for the embedding dimension of m + 1:

SaEn = − log
φm+1(r)

φm(r)
(A10)

where φm(r) represents the probability that two sequences correspond in dimension m, and
φm+1(r) corresponds to the probability that two sequences correspond in dimension m + 1.

In this way, the sample entropy (SaEn) does not include self-similar patterns and does
not depend on the data size. Parameter values similar to approximate entropy (ApE)) are
recommended in the literature for sample entropy (SaEn) [90–92].

Appendix C.4. Permutation Entropy: PeEn

The permutation entropy (PeEn) is an information marker capturing the order relations
between the values of a temporal signal xt associated with a dynamic system [123]. The
time signal is transformed into a sequence of discrete symbols, and the entropy of the
signal is quantified from the probability densities of these symbols. The transformation is
performed by extracting sub-vectors from the signal, each comprising m measurements
separated by a fixed time delay τ. Similar to ApEn and SaEn, the permutation entropy
(PeEn) is based on three parameters: the embedding dimension m, the embedding delay
τ, and the length of the signal N. The permutation entropy (PeEn) can be calculated
as follows:

1. Given an input time series [x0, x1, . . . , xN−1], and an embedding dimension m > 1;
2. For each subsequence extracted at time t, [xt−(m−1), xt−(m−2), . . . , xt−1, xt], a rank

model π relative to t is obtained in the form π = [r0, r1, . . . , rm−1];
3. This rank pattern is defined by an order pattern xt−rm−1 ≤ xt−rm−2 ≤ . . . ≤ xt−r1

≤ xt−r0 ;
4. For all possible m! permutations, each probability p(π) is estimated as the relative

frequency of each different pattern π found;
5. Once all these probabilities have been obtained, the final value of the permutation

entropy (PeEn) is given by

PeEn = −
m!−1

∑
j=0

p(πj) log p(πj) (A11)

The parameter values recommended in the literature for the permutation entropy
(PeEn) are 3 ≤ m ≤ 7, τ = 1 and N >> m! [123,124].

Appendix C.5. Singular-Value Decomposition Entropy: SvEn

The singular-value decomposition entropy (SvEn) is an information marker character-
izing the data dimension of a temporal signal xt [125,126] and represents a tool that can
complement the existing nonlinear analysis methods in order to test the complexity of the
time series [127].

It indicates the number of eigenvectors necessary for an adequate explanation of the
data associated with the signal. Globally, the singular-value decomposition entropy (SvEn)
is calculated from the distribution of the singular values of the matrix M, including all the
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vectors constructed according to a delay procedure. First, we construct a vector of delays yi
on the basis of a time signal [x1, x2, . . . , xn] such that

yi = [xi, xi+τ , . . . , xi+(m−1)∗τ ] (A12)

where τ corresponds to the delay considered and m to the embedding dimension.
We then build an embedding matrix Y such that

Y = [yi, y2, . . . , xN−(m−1)∗τ ]
T (A13)

A singular-value decomposition is then performed on matrix Y in order to produce M
values σ1, σ2, . . . , σM, which represent a singular spectrum of values.

The singular-value decomposition entropy (SvEn) can then be defined as

SvEn = −
M

∑
i=1

σi log σi (A14)

Appendix D. Integrated Information Measures

Appendix D.1. Decoding-Based Integrated Information Φ*

Integrated information measures aim to characterize the difference in information
between an effective system and its interactions and a totally independent system. This
difference aims to fully quantify the integration of information in an organized system, such
as the brain. Each measure approaches the problem according to a particular theoretical
point of view, giving it its specificity.

First, integrated information based on decoding Φ* approaches the problem in terms
of the transmitter/receiver by considering their situation: the first one corresponds to
that where the receiver decodes the system information from the probability distribution
corresponding to that observed, and compares it to the second situation, where the receiver
decodes the message on the basis of a probability distribution resulting from a system
whose parts are completely independent.

That can be briefly formalized as

Φ∗ = IM(Xt; Xt−τ)− IM∗(Xt; Xt−τ) (A15)

where τ is the desired time delay to characterize the integration of information in the
system, IM(Xt; Xt−τ) is the mutual information between the present states and the past
states delayed according to τ, and IM∗ is the decoding information from the system to the
independent parties.

The complete formalism for the computation of Φ* is presented in [67].

Appendix D.2. Geometric Integrated Information ΦG

Geometric integrated information ΦG uses information geometry, which is an applica-
tion of differential geometry to the relationships and structures of probability distributions.
In this formalism, the Kullback–Leibler divergence is a natural measure of the distance
between two probability distributions. The geometric integrated information ΦG is based
on this fact and aims to measure the distance between the probability distribution of the
system compared to that of a totally disconnected system.

This can be briefly summarized as

ΦG = min
q

DKL[p(Xt, Xt−τ) || q(Xt, Xt−τ)] (A16)

where DKL[p||q] represents the Kullback–Leibler divergence between the two joint proba-
bility distributions of the present and past states of the system between the connected p
and disconnected q models.

The complete formalism for the computation of ΦG is presented in [69].
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Appendix D.3. Stochastic Integrated Information ΦH

The stochastic integrated information ΦH approaches the problem from the proba-
bilities of transition between one state and another in the case of the integrated system
compared to a system whose states evolve completely independently.

That can be understood as

ΦH = ∑
i

H(Mi
t−τ |Mi

t)− H(Xt−τ |Xt) (A17)

where H(Xt−τ |Xt) measures the amount of information “lost” irreversibly, and Mi are the
states of the system.

The complete formalism for the computation of ΦH is presented in [70,96].

Appendix D.4. Redundancy-Based Integrated Information or “Multi-Information” ΦMI

The multi-information ΦMI , also called “multivariate mutual information“ [128,129],
represents a multivariate generalization of Shannon’s mutual information [130,131].

It quantifies the integration of information by measuring the amount of information
shared by the variables of the connected system compared to that shared when all interac-
tions are removed, that is, when the M parts of the system are considered independent [70]:

ΦMI = ∑
i

H(Mi
t−τ , Mi

t)− H(Xt−τ , Xt) (A18)

where H(Xt−τ , Xt) is the joint entropy.
The complete formalism for the computation of ΦMI is presented in [70].
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