
Citation: Möhle, L.; Stefan, K.;

Bascuñana, P.; Brackhan, M.; Brüning,

T.; Eiriz, I.; El Menuawy, A.; van

Genderen, S.; Santos-García, I.;

Górska, A.M.; et al. ABC Transporter

C1 Prevents Dimethyl Fumarate from

Targeting Alzheimer’s Disease.

Biology 2023, 12, 932. https://

doi.org/10.3390/biology12070932

Received: 30 May 2023

Revised: 14 June 2023

Accepted: 27 June 2023

Published: 29 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Article

ABC Transporter C1 Prevents Dimethyl Fumarate from
Targeting Alzheimer’s Disease
Luisa Möhle 1,† , Katja Stefan 1,†, Pablo Bascuñana 1,‡ , Mirjam Brackhan 1,§ , Thomas Brüning 1 , Ivan Eiriz 1,
Ahmed El Menuawy 1,‖, Sylvie van Genderen 1, Irene Santos-García 1 , Anna Maria Górska 1, María Villa 1,
Jingyun Wu 1, Sven Marcel Stefan 1,2,3,* and Jens Pahnke 1,2,4,5,*

1 Department of Pathology, Section of Neuropathology/Translational Neurodegeneration Research and
Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20,
0372 Oslo, Norway

2 Pahnke Lab (Drug Development and Chemical Biology), Lübeck Institute of Experimental
Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH),
Ratzeburger Allee 160, 23538 Lübeck, Germany

3 School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney,
Camperdown, NSW 2006, Australia

4 Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 3, 1004 Rı̄ga, Latvia
5 Department of Neurobiology, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University,

Tel Aviv 6997801, Israel
* Correspondence: jens.pahnke@gmail.com (J.P.); s.m.stefan@medisin.uio.no (S.M.S.); Tel.: +47-23071466 (J.P.)
† These authors contributed equally to this work.
‡ Current address: Department of Nuclear Medicine, Instituto de Investigación Sanitaria del Hospital Clínico

San Carlos, 28040 Madrid, Spain.
§ Current address: Department of Neuroscience, Instituto de Investigación Sanitaria del Hospital Universitario

La Paz, 28046 Madrid, Spain.
‖ Current address: Institute for Breeding Research on Horticultural Crops, Julius-Kühn-Institute (JKI)—Federal

Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany.

Simple Summary: Reusing drugs could potentially shorten the development time for the effective
treatment of dementia. Here, we tested a drug—dimethyl fumarate—for its efficacy in reducing
Alzheimer’s disease-related changes in the brain. We discovered that the drug is not efficient due to
the involvement of an essential exporting brain transporter.

Abstract: Alzheimer’s disease (AD), the leading cause of dementia, is a growing health issue with very
limited treatment options. To meet the need for novel therapeutics, existing drugs with additional
preferred pharmacological profiles could be recruited. This strategy is known as ‘drug repurposing’.
Here, we describe dimethyl fumarate (DMF), a drug approved to treat multiple sclerosis (MS), to
be tested as a candidate for other brain diseases. We used an APP-transgenic model (APPtg) of
senile β-amyloidosis mice to further investigate the potential of DMF as a novel AD therapeutic.
We treated male and female APPtg mice through drinking water at late stages of β-amyloid (Aβ)
deposition. We found that DMF treatment did not result in modulating effects on Aβ deposition at
this stage. Interestingly, we found that glutathione-modified DMF interacts with the ATP-binding
cassette transporter ABCC1, an important gatekeeper at the blood–brain and blood–plexus barriers
and a key player for Aβ export from the brain. Our findings suggest that ABCC1 prevents the effects
of DMF, which makes DMF unsuitable as a novel therapeutic drug against AD. The discovered effects
of ABCC1 also have implications for DMF treatment of multiple sclerosis.

Keywords: dimethyl fumarate; DMF; Alzheimer’s disease; AD mouse model; drug repurposing;
multiple sclerosis; ABC transporter; ABCC1; blood–brain barrier; fingolimod; BBB
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1. Introduction
1.1. Alzheimer’s Disease: Background and Therapy

Approximately 55 million people worldwide suffer from dementia, and the num-
bers are estimated to rise to over 130 million by 2050 [1–3]. The most common cause of
dementia is Alzheimer’s disease (AD) [1,2]. Two very well-recognized histopathological
hallmarks of AD are (i) neurofibrillary tangles (NFT) consisting of aggregates of the hyper-
phosphorylated microtubule-associated protein τ, and (ii) the so-called ‘senile plaques’ of
agglomerated amyloid-β (Aβ) polypeptides with a length between 37 and 43 amino acids.
The Aβ peptides are produced mainly by β- and γ-secretase cleavage of the β-amyloid-
precursor protein (APP) [4,5]. Permanent production of Aβ results in toxic aggregates
of both NFT and Aβ, causing neurodegeneration through impairment of neurite func-
tion, disrupted synaptic communication, and disturbed cortico–cortical circuits (reviewed
in [6]). Clinically, this leads to well-described symptoms such as cognitive impairment with
memory loss, disorientation, agnosia, and also neuropsychiatric abnormalities [7,8].

Despite more than a century of research efforts, the treatment options for AD are
limited to very few symptomatic therapeutics, addressing either (i) dementia-related symp-
toms, such as cognitive decline, or (ii) secondary symptoms, such as depression [9]. Only
four therapeutics are currently licensed on the European and US markets to treat AD-related
symptoms (Figure 1): the acetylcholine esterase (AChE) inhibitors donepezil (1), galan-
tamine (2), and rivastigmine (3), as well as the N-methyl-D-aspartate (NMDA) receptor
antagonist memantine (4).
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Figure 1. Molecular formulae of drugs to symptomatically or causatively address AD: donepezil
(1; AChE inhibitor), galantamine (2; AChE inhibitor), rivastigmine (3; AChE inhibitor), memantine
(4; NMDA antagonist), tacrine (5; first drug approved against AD; AChE inhibitor), and semagacestat
(6; γ-secretases inhibitor).

The first approved drug to treat AD, the AChE inhibitor tacrine (5) [10], has already
been withdrawn from the markets due to doubtful benefits and adverse side effects [11].

In an attempt to establish a causative treatment, the γ-secretases inhibitor semagacestat
(6) has been clinically evaluated. However, the phase III trial was terminated due to severe
side effects [12].
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1.2. Drug Repurposing

Drug repurposing is the exploration of novel therapeutic indications for drugs
already in clinical use. It has considerable advantages in modern drug development:
(i) it extends the knowledge with respect to the polypharmacological profile of the
drugs in terms of their initial indication, increasing data awareness and the general
safety profile; (ii) due to the known and well-documented safety profile, new clinical
applications can be accomplished much faster; and (iii) as these drugs have already
gone through the approval process, their application to new indications is associated
with considerably lower costs than drugs from novel drug discovery pipelines that
have to undergo investigations in all phases. Furthermore, drug repurposing to treat
neurodegenerative diseases is highly encouraged by the European Medical Agency
(EMA, Amsterdam, Nederlands) and the Federal Drug Agency (FDA, Silver Springs,
MD, USA). Therefore, mutual recognition agreements have been established between sev-
eral countries (https://www.ema.europa.eu/en/human-regulatory/research-development/
compliance/good-manufacturing-practice/mutual-recognition-agreements-mra (accessed on
10 May 2023)).

1.3. Dimethyl Fumarate

A potential candidate for repurposing strategies for AD is DMF (7; Tecfidera®, Skilarence®).
DMF and its bioactive metabolite monomethyl fumarate (MMF, 8; Bafiertam®) are approved
for the treatment of multiple sclerosis (MS) [13], an inflammatory brain disease, and psori-
asis, a disease of the skin (reviewed in [14]). DMF regulates inflammation [15–17], halts
disease progression in MS [18–21], and affects the response to oxidative stress [22]. Several
studies in animal models have previously reported beneficial effects of DMF treatment
on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-(MPTP)- or Aβ-mediated neurotoxic-
ity [23–25], stroke, intracerebral hemorrhage [26,27], as well as learning and memory in
streptozotocin-induced rat models [28–30]. DMF may also induce ATP-binding cassette
(ABC) transporters [31,32], a protein class that has been associated with direct and/or
indirect Aβ clearance from the brain in several independent studies [33,34]. Figure 2 shows
the molecular formulae of DMF and MMF, including the important physicochemical pa-
rameters calculated octanol–water partition coefficient (CLogP), molecular weight (MW),
molar refractivity (MR), and topological polar surface area (TPSA) [35] as determined with
the online web service SwissADME [36].
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Figure 2. Molecular formulae of DMF and MMF, including the physicochemical parameters CLogP,
MW, MR, and TPSA, are particularly important with respect to central nervous system (CNS) pene-
tration and ABC transporters.

In contrast, our own study in young female APPtg mice found no effects of DMF
treatment on cognitive performance, the extent of β-amyloidosis, or neuroinflammation
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markers [3]. These results prompted us to evaluate DMF at more advanced pathological
stages of β-amyloidosis in this model, as several differences between early- and late-stage
amyloidosis mice exist (e.g., the integrity of BBB, the regulation and function of BBB-located
proteins, or altered CNS penetration of drugs and/or metabolites amongst other factors).
In addition, we explored potential options for the (in)effectiveness of DMF, which are
presented in the current work.

2. Material and Methods
2.1. Animal Models and Breeding Scheme

Heterozygous female and male APPPS1-21 mice [B6.Cg-Tg(Thy1-APPSw,Thy1-
PSEN1*L166P)/21JkcrPahnk, APPtg [37]] were housed in Eurostandard type III cages
(macrolone) in groups of 5–6 animals per cage at the animal core facility of the De-
partment of Comparative Medicine (section Radium Hospital) at the Oslo University
Hospital (Norway) with a 12 h/12 h light/dark cycle and free access to food (Rat and
Mouse No.1 Maintenance expanded pellets from SDS) and water (pH 3 for maintenance,
pH 7.2 for treatment with DMF) at a mean temperature of 22 ◦C [38]. All cages were
provided with aspen wood (Populus tremula, Tapvei, Estonia) as bedding substrate and
additional enrichment material (tissue paper, tunnels/huts, and occasionally gnawing
sticks). APPPS1-21 mice have a combined APP (Swedish mutations) and PS1 (L166P
mutation) transgene under the control of the Thy1-promoter, leading primarily to patho-
logical Aβ production in the fronto-cortical neurons and the first cortical Aβ plaques
at 45–50 days of age, which also occurs much later in other brain regions, but to a sig-
nificantly lesser extent (e.g., hippocampus) [34,39]. All experiments were conducted in
accordance with the guidelines for animal experiments of the European Union directive
and national laws.

2.2. Treatment Scheme

Animals were treated with dimethyl fumarate (DMF (97% purity, Merck, Darmstadt,
Germany)) in drinking water (pH ~7.2) for 50 days from 125 to 175 days of age. DMF
was dissolved in tap water by stirring it for 1–2 h at a slightly elevated temperature (ca.
25–35 ◦C). Neutral pH was important to avoid the degradation of DMF [40]. Once DMF
was dissolved, water was filtered sterile. Fresh, sterile water with DMF was provided once
per week, and DMF concentration was adjusted throughout the experiment to achieve a
daily uptake of 75 mg/kg DMF. To this end, body weight and water consumption were
monitored weekly throughout the entire experiment. Control groups received sterile
filtered water at neutral pH (~7.2).

2.3. Spectroscopic Measurement of DMF

We followed a previously described method using UV spectroscopy [41]. We prepared
a reference curve by dissolving DMF in tap water with neutral pH of 1 mg/mL. From
this stock, several dilutions were prepared spanning 0.002—1 mg/mL, and absorbance
at 210 nm was measured using a NanoDrop™ One UV-Vis spectrophotometer (Thermo
Scientific, Schwerte, Germany). There was a strong linear correlation between absorbance
and DMF concentration from 0.002 to 0.1 mg/mL (Appendix A, Figure A1).

To assess the degradation of DMF in water, we prepared solutions at the relevant
concentration of 0.6 mg/mL. Absorbance was measured in freshly prepared solutions as
well as in aliquots kept for 1–2 weeks either at room temperature or in the fridge. Prior to
measurement, samples were diluted 10-fold.

2.4. Tissue Harvesting

Mice were euthanized using ketamine/xylazine (400 mg/kg ketamine, 40 mg/kg
xylazine). After intracardial perfusion with ice-cold PBS, brains were removed and sep-
arated into two hemispheres. One hemisphere was kept in paraformaldehyde (PFA 4%



Biology 2023, 12, 932 5 of 18

in PBS), the other on snap frozen in liquid nitrogen and later transferred to −80 ◦C (for
protein extraction).

2.5. Protein Extraction and Quantification

Frozen hemispheres were thawed on ice in 500 µL RNAlater® (Merck KGaA, Germany)
for one hour, removed from the liquid, and homogenized for 60 s with four 2.8 mm ceramic
beads (OMNI International, Kennesaw, GA, USA) using the SpeedMill PLUS (Analytik
Jena GmbH, Jena, Germany). Twenty mg of homogenate was mixed with 10 µL cold
Tris-buffered saline (TBS, pH 7.5, containing protease inhibitor (Roche, Germany)) per 1 mg
brain. Samples were homogenized with a 2.8 mm ceramic bead (SpeedMill PLUS, 30 s) and
centrifuged (16,000× g, 4 ◦C, 20 min) to separate soluble and aggregated Aβ. The resulting
supernatant (TBS fraction containing soluble Aβ) was collected and stored at −20 ◦C until
further use. The pellet was mixed with an 8 µL cold 5 M guanidine buffer (pH 8.0) per
1 mg brain homogenate and homogenized (SpeedMill PLUS, 30 s). Samples were incubated
at room temperature for 3 h under constant shaking (1500 rpm) before centrifugation
(16,000× g, 4 ◦C, 20 min). The supernatant (guanidine fraction containing aggregated
Aβ) was collected and stored at −20 ◦C until further use. To quantify Aβ42 in TBS and
guanidine fractions, we performed electrochemiluminescence immunoassays using the
V-PLEX Plus Aβ42 Peptide (4G8) Kit and a MESO QuickPlex SQ120 machine according to
manufacturer’s recommendations (Meso Scale Diagnostics, Rockville, MD, USA).

2.6. ABC Transporter Assays: Cell Culture

The ABCB1-, ABCC1-, and ABCG2-expressing cell lines A2780/ADR, H69AR, and
MDCK II BCRP were a generous gift of Prof. Dr. Finn K. Hansen and Prof. Dr. Gerd
Bendas (Pharmaceutical and Cell Biological Chemistry, University of Bonn, Germany).
Cells were cultured as previously described [42,43]. A2780/ADR and H69AR cells were
cultivated using RPMI-1640 cell culture media (VWR, Norway) supplemented with 10%
and 20% fetal bovine serum (FBS; VWR), respectively. MDCK II BCRP cells were cultured
in DMEM cell culture media (VWR) supplemented with 10% FBS. All cells were also
supplemented with streptomycin (50 µg/µL), penicillin G (50 U/mL), and L-glutamine
(2 mM; VWR). The cells were stored under liquid nitrogen (media: 90%; DMSO: 10%,
Alfa Aesar/Thermo Fisher Scientific, Oslo, Norway) and cultivated at 37 ◦C under a 5%
CO2-humidified atmosphere. A trypsin-EDTA solution (0.05%/0.02%; VWR) was used to
detach the cells for either sub-culturing or biological evaluation at a confluence of ~90%,
followed by washing steps and the addition of fresh cell culture media. Cell counting
was performed using a Scepter handheld automated cell counter (60 µM capillary sensor;
MerckMillipore, Darmstadt, Germany).

2.7. ABC Transporter Assays: Membrane Preparation

Forty full-grown (confluence≥ 90%) cell culture dishes (VWR) with ABCC1-expressing
H69AR cells were necessary to obtain a membrane preparation with adequate protein (and
therefore ABCC1) content. The cells were harvested using a freshly prepared homogeniza-
tion buffer (4-(2-hydroxyethyl)-piperazin-1-ethansulfonic acid (HEPES; 20 mM; Alfa Aesar)
and Na2-EDTA (10 mM; Sigma-Aldrich, Oslo, Norway)). After adding a 2.4 mL homog-
enization buffer to each dish, the cells were scratched from the bottom and transferred
into 50 mL reaction tubes (VWR) on ice, subsequently repeating this step. The cell suspen-
sion was shredded three times, applying a dispenser (Polytron, Kinematica AG, Luzern,
Switzerland). The homogenized suspension was ultracentrifuged (40,000× g, 10 min, 4 ◦C).
The supernatant was disposed of in a freshly prepared storage buffer (HEPES (20 mM) and
Na2-EDTA (0.1 mM)), subsequently followed by two further ultracentrifugation steps. The
final membrane preparation was suspended in a storage buffer and aliquoted before storage
at −80 ◦C. Protein content was determined by applying a protein content determination kit
(Pierce™ BSA assay, Thermo Fisher Scientific, Norway; 7.0 mg/mL).
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2.8. ABC Transporter Assays—Experimental Protocols

The assays to assess the ABC transporter activity were conducted as reported ear-
lier [43–45]. We assessed the activity of ABCB1 (calcein AM and daunorubicin), ABCC1
(daunorubicin and rhodamine 123), and ABCG2 (pheophorbide A and Hoechst 33342), and
the fluorescence probes were supplied by Calbiochem (Merck KGaA, Darmstadt, Germany),
Biomol (Cayman Chemicals, Ann Arbor, MI, USA), Sigma–Aldrich, and MerckMillipore
(Merck KGaA, Darmstadt, Germany).

DMF and MMF were prepared in a volume of 20 µL at concentrations of 100 µM
or 500 µM in clear (calcein AM, daunorubicin, rhodamine 123, and pheophorbide A)
or black (Hoechst 33342) 96-well flat-bottom plates (Brand, Germany). Next, we added
a 160 µL cell suspension containing either 30,000 cells/well (calcein AM and Hoechst
33342) or 45,000 cells/well (daunorubicin, rhodamine 123, and pheophorbide A) in either
phenol red-free RPMI-1640 (A2780/ADR and H69AR) or phenol red-free DMEM (MDCK
II BCRP) without further supplements. DMF and MMF were incubated with the cells
for 30 min before adding the respective fluorescence dye to each well (20 µL of calcein
AM (3.125 µM), daunorubicin (30 µM), rhodamine 123 (3 µM), pheophorbide A (5 µM),
or Hoechst 33342 (10 µM); final concentrations: calcein AM: 0.3125 µM; daunorubicin:
3 µM; rhodamine 123: 0.3 µM; pheophorbide A: 0.5 µM; Hoechst 33342: 1 µM). Subsequent
fluorescence measurements depended on the dye:

• Calcein AM: Fluorescence (excitation: 485 nm; emission: 520 nm) was measured for
30 min at 30 s intervals using a Paradigm® microplate reader (Beckman Coulter
Biomaterials, Munich, Germany);

• Daunorubicin: Fluorescence (excitation: 488 nm; emission: 695/50 nm) was measured
after 180 min incubation on an Attune NxT flow cytometer (Invitrogen, Waltham,
MA, USA);

• Rhodamine 123 and pheophorbide A: Fluorescence (excitation: 488 nm; emission: 695/50 nm)
was measured after 120 min incubation on an Attune NxT flow cytometer;

• Hoechst 33342: Fluorescence (excitation: 360 nm; emission: 460 nm) was measured
after 120 min incubation using a Paradigm® microplate reader.

The slopes (calcein AM) or average fluorescence values (daunorubicin, rhodamine 123,
pheophorbide A, Hoechst 33342) per well were calculated and compared to the refer-
ence inhibitors cyclosporine A (ABCB1), 4-(4-(benzo[d][1,3]dioxol-5-ylmethyl)piperazin-1-
yl)-6,7,8,9-tetrahydropyrimido [4,5-b]indolizine-10-carbonitrile (ABCC1) [46], and Ko143
(ABCG2). Data were processed using Prism (v9, GraphPad Software, San Diego, CA, USA).
For full-blown concentration-effect curves, dilution series of both DMF and DMS-SG were
generated in a concentration range between 0.05 µM and 100 µM. DMS-SG was generated
according to a previously established protocol [47] by an equimolar mixture of DMF and
glutathione (incubation: 30 min) and subsequent generation of the dilution series.

2.9. ABC Transporter C1 ATPase Assay

The vanadate-sensitive ATPase assay was performed as already described before [47–50]
with minor modifications. The reaction mixture [3-(N-morpholino)propanesulfonic acid-
(MOPS)-Tris (40 mM; pH 7.0; Sigma–Aldrich, Oslo, Norway), KCl (50 mM; Sigma-Aldrich),
dithiothreitol (2 mM; Alfa Aesar), EGTA-Tris (500 µM; pH 7.0; Sigma–Aldrich), sodium
azide (5 mM; Sigma–Aldrich), ouabain (1 mM; Alfa Aesar,) was supplemented with 10 µg
of the ABCC1 membrane preparation (2 mg/mL). DMF, DMS-SG, or GSH in DMSO (final
DMSO concentration < 1%) were added (20 µL). The reaction was started by the addition
of MgATP (3.3 mM in water; Sigma–Aldrich), and an incubation period of 60 min at 37 ◦C
followed. A control with sodium orthovanadate (1 mM; Sigma–Aldrich) was necessary
for subtraction in the following calculations. The reaction was stopped by the addition
of 5% SDS (Sigma–Aldrich). The samples were supplemented with Pi reagent (H2SO4
(2.5 M; Acros Organics, Geel, Belgium)), ammonium molybdate (1%; Sigma–Aldrich),
antimony potassium tartrate (0.014%; Alfa Aesar), acetic acid (20%; Sigma–Aldrich), and
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freshly prepared ascorbic acid (1%; Sigma–Aldrich). After further 20 min incubation, the
optical density was measured using a Paradigm® microplate reader (Beckman Coulter,
Germany) at a wavelength of 710 nm at room temperature. Calibration was accomplished
with K2HPO4 (Sigma–Aldrich) and used to determine the amount of phosphate from the
absorbance values. For the full-blown concentration-effect curve of DMS-SG, different
concentrations of DMF (0.01 µM–5 mM) were added in different concentrations to a constant
concentration of GSH (5 mM).

2.10. Multi-Drug Resistance Reversal Assay

The capability of DMF to reverse ABCC1-mediated MDR was determined by applying
an MTT-based cell viability assay as described earlier [42]. The toxicity of the antineoplas-
tic agent doxorubicin (0.01–10 µM; 20 µL/well; Calbiochem (Merck KGaA, Darmstadt,
Germany)) toward ABCC1-expressing H69AR cells (20,000 cells/well; 160 µL/well) was
assessed either alone or in combination with 5.0 µM, 10 µM, 20 µM, 30 µM, or 50 µM DMF
(20 µL/well) and compared to the sensitive counterpart cell line H69 (20,000 cells/well;
180 µL/well). The necessary volumes were transferred onto clear 96-well flat-bottom plates,
which were subsequently incubated for 72 h at 37 ◦C and 5% CO2-humidified atmosphere.
Eventually, 40 µL of an MTT solution (5 mg/mL; Alfa Aesar) was added to each well,
followed by incubation of 1 h. The supernatant was removed, and 100 µL of DMSO was
added to each well. Absorbance measurement was spectrophotometrically accomplished
at 570 nm using a Paradigm® microplate reader (Beckman–Coulter, Germany; background
correction: 690 nm). The determined absorbance values were plotted against the loga-
rithmic concentrations of DMF, subsequently applying non-linear regression using Prism
(v8.4.0, GraphPad Software, San Diego, CA, USA).

2.11. Cell Viability Assay

The intrinsic toxicity of DMF was assessed in a concentration range between 3.16 µM
and 100 µM using the same MTT-based cell viability assay as described above.

2.12. Statistical Analysis

Statistical analysis was performed with Prism (GraphPad Software). We verified the
data for Gaussian normal distribution by using the Shapiro–Wilk normality test. Student
t-tests were performed to determine the significant differences between the two groups.
Data are presented as means ± standard deviation (SD) or standard error of the mean
(SEM). Differences were considered statistically significant when p < 0.05. N is reported in
the figure legends.

3. Results
3.1. The Impact of DMF on Body Weight and Drinking Water Consumption

We treated APPtg mice with DMF through neutral drinking water (pH ~7.2) at an
advanced stage of β-amyloidosis (125 to 175 days of age) at which animals already have
abundant amounts of oligomeric Aβ and Aβ plaques in the brain [34,38,39].

First, we confirmed that DMF was stable in neutral drinking water (pH ~7.2) using
spectroscopic measurements (Appendix A, Figure A1). The body weight of the mice was
monitored weekly. As seen in Figure 3, DMF did not have a significant effect on body
weight in male and female APPtg mice compared to controls despite a slight tendency of
body weight loss in male late-stage amyloidosis mice.

In addition to body weight, we also monitored total weekly water consumption per
cage and calculated the average amount of water consumed per animal per week. We found
that DMF treatment considerably reduced water intake in male but not female APPtg mice
(Figure 4). The intermittently reduced water consumption of male late-stage amyloidosis
mice could be the reason for the slight tendency of reduced body weight.
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animal (same for all animals, no SD) for (A) female and (B) male DMF-treated (closed circles, n = 8)
and control APPtg animals (open circles, n = 7–8).

3.2. The Impact of DMF on Aβ Deposition

To determine whether DMF treatment had an effect on late-stage β-amyloidosis mice,
we determined cerebral levels of aggregated Aβ (higher MW aggregates, GuHCl extraction)
as well as soluble Aβ (monomers and small oligomers, TBS extraction). We extracted
total protein from the brain and first quantified aggregated Aβ42 in the guanidine-soluble
fractions (Figure 5A,B). Similar to our previously published results in female younger
APPtg animals with less advanced stages of β-amyloidosis, we did not detect changes
in Aβ amounts after DMF treatment in female late-stage amyloidosis mice (Figure 5A).
However, we observed a significant difference in aggregated Aβ42 in DMF-treated male
APPtg mice compared to controls with lower Aβ42. This difference was not present in
the TBS fraction that contains soluble Aβ42 (Figure 5C), pointing to no change in Aβ42
production and/or early deposition between DMF-treated and control animals. In essence,
DMF seems to have no impact on Aβ deposition in late-stage amyloidosis mice.
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Figure 5. DMF had no effect on Aβ deposition in 175-day-old APPtg animals. We assessed Aβ levels
in DMF-treated (gray bars) (A) female and (B) male APPtg mice compared to controls (white bars)
using electrochemiluminescence-based immunoassays. Protein extraction from brain hemispheres
was performed in two steps. Soluble Aβ42 was removed with a TBS buffer before extracting aggre-
gated Aβ42 with GuHCl buffer. (A,B) Graphs show aggregated Aβ levels in control and DMF-treated
(A) female and (B) male APPtg mice. (C) Soluble Aβ levels in control (white bar) and DMF-treated
APPtg males (grey bar). Data are presented as mean ± SD; n = 6–8. Statistical analysis was performed
with Student’s t-test. ** p < 0.01 considered significant.

3.3. The Effect of DMF on ABC Transporter Function

Previous research suggested that DMF may affect the function and regulation of ABC
transporters [31,32]. Thus, we assessed the potential of DMF and its metabolite MMF to
modulate the AD-associated ABC transporters ABCB1 (P-glycoprotein, P-gp), ABCC1,
(multi-drug resistance-associated protein 1, MRP1), and ABCG2 (breast cancer resistance
protein, BRCP1) in vitro. We applied two different assays per transporter to minimize
the possibility of false-positive or false-negative outcomes, as functional assays strongly
depend on the functional tracer used [43]. In principle, all assays use fluorescence dyes (or
their precursors) that are substrates of the respective evaluated transporter. Inhibition of the
transporter expressed in model cell lines results in increased intracellular concentrations of
the fluorescence dyes (or their precursor), allowing for their spectroscopic determination.
The higher the degree of inhibition of the used ABC transporter inhibitor, the higher the
measured intracellular fluorescence values.

An ABCB1 modulation could not be observed as assessed in calcein AM and daunoru-
bicin assays using ABCB1-expressing A2780/ADR cells, as already reported earlier [51]
(Figure 6A). However, ABCC1 transport activity was inhibited by DMF at concentrations of
10 µM and 50 µM, respectively, as determined in daunorubicin and rhodamine 123 assays
using ABCC1-expressing H69AR cells (Figure 6B). Finally, no modulatory effect could
be observed against ABCG2 in both pheophorbide A and Hoechst 33,342 assays using
ABCG2-expressing MDCK-II-BCRP1 cells (Figure 6C). In summary, we could show for the
first time that DMF seems to functionally inhibit ABCC1-mediated transport of the ABCC1
substrates daunorubicin and rhodamine 123.
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Figure 6. Functional screening of DMF and MMF against the AD-related ABC transporters (A) ABCB1,
(B) ABCC1, and (C) ABCG2 applying calcein AM (ABCB1), daunorubicin (ABCB1 and ABCC1), rho-
damine 123 (ABCC1), pheophorbide A (ABCG2), and Hoechst 33,342 (ABCG2) assays using ABCB1-
expressing A2780/ADR, ABCC1-expressing H69AR, and ABCG2-expressing MDCK II BCRP cells.
Full inhibition (100%) was determined by the effect of 10 µM of the reference inhibitors cyclosporine
A (ABCB1), 4-chloro-6,7,8,9-tetrahydropyrimido [4,5-b]indolizine-10-carbonitrile (ABCC1) [46], and
Ko143 (ABCG2). For all assays, the experimental cut-off for meaningful results was 20%, as visualized
in the charts. Data are shown as mean ± standard error of the mean (SEM); n = 3–7.

3.4. The Effect of DMF and Its Glutathione Conjugate on ABCC1 ATPase Activity

The observed inhibition of the ABCC1-mediated transport of both daunorubicin and
rhodamine 123 prompted us to investigate whether DMF had an impact on the energy-
supplying unit of ABCC1, the ABCC1 ATPase. As DMF has been demonstrated before
to easily form glutathione conjugates under near-physiological conditions [52], we also
analyzed its glutathione conjugate (dimethyl succinate-SG, DMS-SG, 9; Figure 7A). As can
be seen in Figure 7B, DMF alone had no effect on ATP cleavage (and phosphate liberation)
mediated by the ABCC1 ATPase, while DMS-SG stimulated the ABCC1 ATPase to an
even greater extent than the reference ABCC1 ATPase stimulator, reduced glutathione
(GSH), alone (~1.6 times of GSH; Figure 7B). This effect was concentrat, ion-dependent,
with a maximum at ~200 µM (Figure 7C). In contrast to inhibition, stimulation of the
ATPase suggests that the stimulant is a substrate of the respective transporter [47]. This is
particularly true with respect to GSH and GSH analogs, which were demonstrated earlier to
be transported by ABCC1 under competitive inhibition of the ABCC1-mediated transport
of daunorubicin [53–55]. Thus, the observed activation of the ABCC1 ATPase by DMS-SG
only suggests that DMS-SG (and not DMF) is the actual effector in the functional assays,
being itself a substrate rather than an inhibitor of ABCC1.
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with respect to CNS penetration and ABC transporters [35]. (B) Screening of DMF (5 mM) and DMS-
SG (5 mM) in a vanadate-sensitive ATPase assay using membrane preparations of ABCC1-expressing
H69AR cells and colorimetric detection of liberated phosphate with ascorbic acid at 710 nm. Data
are compared to the control (DMSO) and the reference ABCC1 stimulator GSH (5 mM) [53] and are
shown as mean ± SEM; n = 3. (C) Concentration-dependent modulation of the ABCC1 ATPase by
DMS-SG with maximal stimulation at ~200 µM. Data are shown as mean ± SEM; n = 3.

3.5. The Effect of DMF and DMS-SG on ABCC1 Transport Activity

The data shown in Figure 7 suggested that not DMF but its intrinsically formed
GSH-adduct (DMS-SG) was transported by ABCC1, competing with daunorubicin and
rhodamine 123 for the transport capacity of ABCC1. To prove this hypothesis, we evaluated
both DMF and DMS-SG with respect to the concentration dependence of their effects and
whether these concentration-effect curves exhibited differences. Strikingly, both compounds
showed similar concentration-effect curves in both daunorubicin and rhodamine 123 assays
with comparable half-maximal inhibition concentrations (IC50) values, allowing for the
conclusion that DMS-SG is the actual effector against ABCC1 (Figure 8).

3.6. Efficacy of DMF in Cancer Cells Expressing ABCC1

In order to substantiate our findings, we sought to functionally assess the capability
of DMF to reverse ABCC1-mediated multi-drug resistance (MDR) by applying a 3-(4, 5-
dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide-(MTT)-based cell viability assay.
ABCC1-expressing H69AR cells exhibit resistance against the antineoplastic agent dox-
orubicin. Inhibition of ABCC1 would sensitize H69AR cells, resulting in less doxorubicin
necessary to impair H69AR cell viability. As can be seen from Figure 9A, DMF (5–30 µM)
was able to shift the concentration-effect curve of doxorubicin from the right (resistant) to
the left (less resistant) toward the sensitive cell line (no resistance). Concentrations higher
than 30 µM could not be applied due to the occurring toxicity of DMF against H69AR
cells. The half-maximal reversal concentration (EC50) was 8.81 µM (Figure 9B). This EC50
value is well in alignment with the IC50 values as determined in Figure 8, considering the
usual discrepancy between inhibition and efficacy assays that is very often much greater
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than a factor of 2 [43,56]. The intrinsic toxicity of DMF can be visualized in Figure 9C;
the determined half-maximal growth inhibition concentration (GI50) was 52.7 µM, which
matches the findings of impaired cell viability at 50 µM as indicated in Figure 9A. In
conclusion, DMF forms DMS-SG in vitro, which is a substrate of ABCC1 and competitively
inhibits ABCC1-mediated doxorubicin transport, eventually reversing ABCC1-mediated
MDR against doxorubicin in ABCC1-expressing H69AR cancer cells.
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Figure 9. Complementary functional assessment of DMF against ABCC1. (A) Concentration-effect
curves of the antineoplastic agent doxorubicin without (closed circles) and supplemented with 5.0 µM
(closed upward triangles), 10 µM (closed downward triangles), 20 µM (closed routes), 30 µM (closed
squares), and 50 µM (open hexagons and dashed line; outlier) of DMF as determined in an MTT-based
cell viability assay using ABCC1-expressing H69AR cells compared to the concentration-effect curve
of doxorubicin against the sensitive H69 cell line (open circles). (B) Plotting of the resistance factors
(individual GI50 values of concentration-effect curves of doxorubicin in H69AR cells divided by the
GI50 value of the concentration-effect curve of doxorubicin in H69 cells) allowed for the determination
of the EC50 value of 8.81 µM (open hexagon: DMF at 50 µM not considered for non-linear regression).
(C) Determination of intrinsic toxicity of DMF using H69AR cells. The GI50 value was determined to
be 52.7 µM. Data are shown as mean ± SEM; n = 4.
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4. Discussion

In our previous work, we have shown that DMF had no effect on cognitive impairment,
β-amyloidosis, and neuroinflammation in younger APPtg female animals (endpoints at
80 and 100 days, respectively) [3]. The aim of the present study was to complement the
previous data and to investigate DMF treatment in older animals (endpoint at 175 days of
age) as well as animals of both sexes, as our previous study was limited to females only.
Another previous study by us using Fingolimod (FTY720), also a MS-repurposed drug,
showed positive effects only in older male mice (treatment for 50 days from 125–175 days
of age) [38].

To this end, we treated APPtg mice with DMF at a dose of 75 mg/kg body weight
daily via drinking water. This dosage matched the one used in our previous experiments
and was comparable to the dosage used in the treatment of multiple sclerosis patients
(Data described in the pharmacological review application 204063Orig1s000 to the FDA
by Paul C. Brown, (https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/20406
3Orig1s000PharmR.pdf (accessed on 10 May 2023)). Drug application through drinking
water instead of a bolus application once a day was chosen to achieve a more even drug
availability throughout the day, although it bore the risk of reduced drug intake due to
low water consumption, which has been seen for male late-stage amyloidosis mice only
(Figure 4B). However, although water and subsequent DMF uptake were documented for
both female and male (slightly reduced) mice, DMF did not improve β-amyloidosis in
agreement with our previous study [3].

Interestingly, a recent report suggested sex-specific effects of DMF on microglia exclu-
sively in females [57], and another one addresses sex-specificity in AD mouse models [38].
While we have not investigated microglia in the present study, we did not observe microglial
changes in females in our previous study [3]. Several research articles have been published
(listed in Supplementary Materials—Table S1) using either transgenic mouse models [3,58]
or experimentally inducible models in rats [28–30] (all from the same group) [59] and
mice [60] to verify effects of DMF on the pathology and behavioral aspects also associated
with AD. Inducible models using, e.g., streptozotocin with ICV delivery, have low construct
validity since the underlying mechanism leading to disease-related effects is very different
from the ones occurring in AD. This low predictive validity is expected to mask eventual
positive effects for the treatment of AD and thus hampers the extrapolation from these
induction experiments toward human AD patients. Apart from the induction models, only
one publication proposed possible positive AD treatment effects of DMF. The authors used
a double-transgenic mouse model (APP and TAU) and assessed activation of Nrf2-signaling
by DMF, which led to a trend of reduced impairment of motor functions during the disease
progress and improved memory through reduced neuroinflammation [58].

In the present study, we conducted additional comprehensive in vitro experiments to
assess a potential direct effect of DMF and its metabolite MMF on ABC transporter activity,
a group of transporters associated with AD [33,61–64]. As it has already been demonstrated
in the literature, DMF (and MMF) did not promote or impede ABCB1 transport activity [51].
This also accounted for ABCG2, which up to now, has not been associated with DMF or
MMF in the literature before. Strikingly, we could show inhibition of ABCC1 by DMF at
concentrations of 10 µM and 50 µM. ABCC1 is an important gatekeeper at the blood–plexus
barrier for Aβ clearance from the brain [34]. In vivo studies have previously shown that
DMF reaches the brain only at low concentrations [65]. One reason could be a potential
recognition and efflux mediated by ABCC1. In addition, DMF has been demonstrated to
form glutathione conjugates [52], and many glutathione conjugates were demonstrated to
be substrates of ABCC1 [53,54]. Thus, we have shown in the present study that DMS-SG,
the GHS-conjugate of DMF, activated the ATPase of ABCC1, strongly suggesting promoted
transport. Moreover, concentration-effect curves of both DMF and DMS-SG resulted in
similar inhibitory effects, allowing for the conclusion that DMS-SG is the actual effector of
ABCC1. Functional efficacy assays underpinned our findings, as DMF was able to partially
reverse ABCC1-mediated MDR in ABCC1-expressing H69AR cells.

https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/204063Orig1s000PharmR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/204063Orig1s000PharmR.pdf
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Although ABCC1 often co-transports substrates with GSH, this may be hindered in
the case of Aβ protein due to the deprivation of ABCC1 transport capacity by DMS-SG.
Comparable findings have already been found for other GSH-conjugates and daunorubicin
transport [53–55]. These observations provide an explanation of why DMF was not able
to ameliorate both early- and late-stage amyloidosis in APPtg mice in our previous [3]
and the present study. Additionally, ABCC1 is expressed ubiquitously in the human
body, including the intestine [66]. Importantly, the intestine is the site of uptake after oral
application of DMF, leading to (i) short-term availability and (ii) higher concentrations of
the compounds locally than in other parts. In this light, inhibition of ABCC1 may be of
interest for further studies, especially given that the most common side effects of DMF
treatment are gastrointestinal symptoms [67].

5. Conclusions

The present study addresses two important aspects of the potential use of DMF as a
repurposed anti-AD drug. Firstly, we clarify the complete time frame for treatment with
DMF on a late-stage β-amyloidosis mouse model. Secondly, we provide an explanation
for the ineffectiveness of DMF in both early- and late-stage β-amyloidosis by thorough
investigation of its interaction with the AD-related ABC transporter ABCC1. In light of
the presented results, DMF becomes entirely disqualified as a repurposed drug to treat or
ameliorate AD and AD progression.
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