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Simple Summary: This article provides original numerical and mathematical insights about the FHR
model and non-homogeneous FitzHugh–Nagumo reaction-diffusion systems.

Abstract: This article focuses on the qualitative analysis of complex dynamics arising in a few mathe-
matical models in neuroscience context. We first discuss the dynamics arising in the three-dimensional
FitzHugh–Rinzel (FHR) model and then illustrate those arising in a class of non-homogeneous
FitzHugh–Nagumo (Nh-FHN) reaction-diffusion systems. FHR and Nh-FHN models can be used
to generate relevant complex dynamics and wave-propagation phenomena in neuroscience con-
text. Such complex dynamics include canards, mixed-mode oscillations (MMOs), Hopf-bifurcations
and their spatially extended counterpart. Our article highlights original methods to characterize
these complex dynamics and how they emerge in ordinary differential equations and spatially
extended models.

Keywords: FitzHugh–Nagumo; FitzHugh–Rinzel model; fast-slow dynamics; bifurcation; canard;
mixed mode oscillations; bursting oscillations; neuroscience; waves

1. Introduction

The goal of this article is to shed light on mechanisms related to the emergence of
complex oscillations arising in a few dynamical systems derivated from the FitzHugh–
Nagumo equations (FHN) [1,2]. A specific model of interest here is a non-homogeneous
FitzHugh–Nagumo reaction-diffusion (RD)-type system (Nh-FHN) where a parameter is
space-dependent. This model derivates from the classical FHN model, which is itself a
simplified version of the Hodgkin–Huxley (HH) model [3]. The HH reaction-diffusion
model is fundamental in the field of mathematical neuroscience because it stands for
the first model generating action potentials through ionic fluxes dynamics and because it
allows for their propagation along the axon. Before digging into a more detailed description
of the model under consideration here, it is worth providing some elements of context
about recent contributions that illustrate how dynamical systems have become a crucial
theoretical tool to describe the time evolution of neuronal activity and dynamical brain
states. In [4], the authors show how the Drosophila central complex, a region implicated
in goal-directed navigation, performs vector arithmetic. The authors describe a neural
signal in the fan-shaped body that tracks the allocentric traveling angle of a fly. Previous
work had identified neurons in Drosophila that track the heading angle. On this basis,
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they characterize a neuronal circuit that performs a coordinate transformation and vector
addition to compute the allocentric traveling direction. For modeling purposes, the authors
use a network of dynamical systems where traveling directions show up as bumps of
activity representing calcium concentrations. In [5,6], the authors propose a network model
of excitatory and inhibitory neurons to describe the activity of the visual cortex. Their
work highlights emergent properties such as Gamma rhythms. It also illustrates how the
network, doing its own mathematical computations, mimics the visual cortex response to
orientated visual stimuli. Again, they claim that the network dynamical system, and the
brain by extrapolation, computes mathematical convolutions to deliver cortical responses.
Finally, in [7], Volpert et. al. investigate the spatiotemporal dynamics of neural oscillations
observed in real EEG data acquired during a picture-naming task. Their theoretical models
rely on one hand on analytical solutions of non-autonomous Poisson equations and on the
other hand on optical flow patterns such as sources, sinks, spirals and saddles. Their work
contribute to a better understanding of the neural dynamics at the macroscopic scale with
the objective to characterize neural activity corresponding to a specific behavior. Overall,
all these works consecrate the use of Dynamical Systems to characterize neural activity
in a specific context. They appeal for a better knowledge of the mechanisms inducing
oscillations, neural rhythms and spatiotemporal organization. This list of relevant works
could be extended widely. Here, our focus is on how complex oscillations emerge and
propagate in FitzHugh–Nagumo inspired systems. This question arises naturally in the
context of propagation of an action potential along an axon or in excitable media. In recent
decades, a significant progress relying on the properties of FHN type models has been
made in the theoretical description of cardiac tachycardia and fibrillation, see [8,9] and
references cited therein. For axonal propagation, the article [10] provides a typical example
of a phenomenological study relying on excitable models. In this article, the authors indeed
rely on a non-homogeneous FHN RD-type system to give numerical insights about how to
distinguish between geometrical enlargements that lead to minor changes in propagation
from those that result in critical phenomena such as blockages of the original traveling
spike. They focus specifically on the inhomogeneity in the diffusion’s coefficient to take
into account the discrepancy of the axonal diameter. Our approach is by several aspects
related to the contribution of [10], but in a more theoretical framework. We seek to highlight
the detailed dynamical mechanisms that can shape complex oscillations and affect their
propagation across spatial domains. Coming back to the Nh-FHN model, the space domain,
typically stands for an excitable tissue such as a neural tissue or a neuron’s axon. One
interesting property of the FHN ODE is that upon variation of a parameter, a globally
attracting limit-cycle emerges from an Hopf-bifurcation. Depending on the value of this
parameter, FHN can be either excitable or oscillatory. For the specific case of Nh-FHN, at
a designated restricted location of the spacial domain, the cells are assumed to be in an
oscillatory state, and elsewhere in the domain, the cells are excitable, see Figure 1. The
excitability of the cells depend on the value of the aforementioned parameter, which now
depends on the space variable, and which in application is related to the external current.
In this context, for Nh-FHN, we observe the following phenomenon; upon the variation of
this parameter value related to excitability, waves of depolarization may propagate from
the center of the domain toward the boundaries when the cells are enough excitable, or the
solution can evolve to a stationary state if the cells are not enough excitable. For a parameter
value range in between, a bifurcation occurs, typically a Hopf-bifurcation. Within this
range of parameters, for some cells, mixed mode oscillations or other complex dynamics
can be observed in time. This scenario was first described in [11] and further analyzed and
discussed in a few papers such as [12,13]. Other scenarios can be drawn with Nh-FHN, for
example one could include damaged tissue parts in the domain, see Figure 1. Numerical
simulations have been developed for this case, but the details of it are beyond the scope of
the present work. The wave propagation phenomenon in excitable media and in FHN RD
in particular has been intensively investigated for a few decades, see for example [14–21]
and references therein. Since the seminal study of the Fisher KPP equations, a general
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theory of traveling waves has also been developed, see for example [22–24]. The numerical
simulations to be presented in this article suggest, however, that the vast literature does
not account for the details of the dynamics illustrated here. Our focus here is to present
few oscillatory complex phenomena that appear to be tractable by analogy with lower
dimensional systems. Our approach is to emphasize the analogy between some dynamics
observed in the spatial Nh-FHN system for some cells and the dynamics of the FHR ODE
system. This idea gives the structure of the present article. After the introductory part, we
provide an original theoretical and numerical analysis of the FHR system in Section 2. We
then illustrate numerical simulations and theoretical results for Nh-FHN in Section 3. Before
digging into a more detailed analysis, we first introduce the equations to be considered,
recalling also some necessary background.

(a) (b)

Figure 1. Diagram illustrating the principle of Nh-FHN. FHN ODE models can be excitable or
oscillatory depending on a parameter value. Adding a space variable and a diffusive term, one can
consider domains where the parameter is space-dependent, opening the possibilities for very rich
dynamics. In the left panel (a), we illustrate a 1D domain with an oscillatory part at the center and
excitable tissue elsewhere. In the right panel (b), we illustrate a 2D domain with oscillatory parts,
a damaged part and excitable tissue elsewhere. The damaged part can be drawn randomly with a
parameter value ranging from values corresponding to very low excitability to high excitability or
oscillatory dynamics.

2. Methods
2.1. The FHR System

The FHR ODE model was introduced as a simple model to generate bursting oscilla-
tions, (i.e., alternated phases of oscillations and quiescent states) in [25,26], and previously
studied by J. Rinzel and R. FitzHugh in an unpublished paper in 1979. In those fundamental
papers, the FHR model reads as

ε
dv
dt

= f (v)− w + y + I,
dw
dt

= φ(a + v− bw)

dy
dt

= ε(c− v− dy)

(1)

with
f (v) = −(1/3)v3 + v

For the following values of parameters, I = 0.3125, a = 0.7, b = 0.8, c = −0.775,
d = 1.0, φ = 0.08, ε = 0.0001 the model exhibits nice bursting behavior. The mechanism is
strikingly simple and intuitive. The model consists of a FitzHugh–Nagumo (FHN) system,
represented by the two first equations and a super slow variable, whose dynamics are
given by the third equation. A relevant approach here is to formally consider y + I as a
parameter for the two first equations. Then, the dynamics of the two first equations are
known from the FHN analysis. But the variable y moves slowly with the variation of
the first variable, allowing the emergence of the bursting. The description made in the
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original papers [25,26] reflects a precise numerical qualitative analysis of the FHR dynamics
supported by numerical illustrations. The author suggested that the model would be
suitable for a deeper rigorous mathematical analysis, and invited the community to study
the model in this direction. This call would receive important feedback, and the model was
indeed studied later in numerous papers, see for example [27–30] to cite only but a few.
More generally, the idea of adding one or more variables with different scales to capitalize
on the known dynamics of FHN was successful in many aspects. For example, in [31],
see also [32], the dynamics of FHN at different scales were used to model the alternating
pulse and surge pattern of gonadotropin-releasing hormone secretions. In [33], a three-
dimensional FHN served as an explanatory example to illustrate the inflection sets in the
context of the excitability threshold, a method previously developed for planar systems,
see [34] and references therein. In particular, such 3D systems are reference models for the
emergence of complex oscillations such as MMOs and bursting, which have been widely
observed in biological contexts [31,35–38]. The analysis of systems with multiple scales is a
very active topic of research with numerous applications in biology, physics and chemistry,
see [39–41]. Here, we will consider a slightly different version of the original FHR, for
which we will provide an original numerical and theoretical analysis. The system under
consideration writes: 

ε
du
dt

= f (u)− v + w + I,
dv
dt

= u− bv− c
dw
dt

= ε(−u− w)

(2)

with f a cubic function, b > 0, ε a small parameter and I a parameter to vary. For the ODE
section, we will provide an analysis with f and b set as

f (u) = −(1/3)u3 + u, b = 0.8, c = 0.

Next, we move forward with a short presentation of the Nh-FHN model.

2.2. A Non-Homogeneous FHN Model (Nh-FHN)

The non-homogeneous FHN reaction-diffusion model (Nh-FHN) to be considered
here writes 

ε
du
dt

= f (u)− v + w + I(x) + du∆u,
dv
dt

= u− bv− c(x) + dv∆v
(3)

on a real bounded interval space domain (α, β) or in a two dimensional square with
Neumann Boundary Conditions (NBC). The notation I(x) and c(x) are used on purpose to
emphasize their dependence in the space variable. The notations ∆u stands for ∑n

i=1
∂2u
∂x2

i
.

Around the center of the interval (α, β), I(x) and c(x) are set to a value for which the
diffusion-less ODE underlying system would generate relaxation oscillations. Out of this
region, I and c are set to a value for which the diffusion-less ODE would be in a stationary
stable but excitable state. We allow those functions to be varied as a function of a parameter;
this leads to a bifurcation path from a stationary state to propagation of oscillations for
Nh-FHN. Previously, various studies have been conducted by some of the authors of the
present paper, see [11–13]. In Section 4, we will present numerical simulations of this PDE
to be compared to the dynamics of Equation (2). We will consider the following set of
parameters in Section 4.1

n = 2, du = dv = 1, b = 0, f (u) = −u3 + 3u
I(x) = 0
c(x) = 0 in a small ball at the center
c(x) = c0 = −1.21 otherwise
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and also
n = 1, Ω = (α, β), du = d = 1, dv = 0, b = 0, f (u) = −u3 + 3u
I(x) = 0
c(x) = p(x/β)4 − 2p(x/β)2

β > 0, α = −β

in Section 4.2. All the partial differential equations will be solved with a RK4 discretization
in time and a finite difference scheme in space.

3. Analysis of the FHR System
3.1. A Short Background on FHN

The mechanisms at play in the FHR and Nh-FHN models rely primarily on the
dynamics of the FHN model. Consequently, it is worth to first briefly describe the dynamics
of the following classical FHN system:{

ε du
dt = f (u)− v + I
dv
dt = u− bv,

(4)

where f (u) = − u3

3 + u, ε is a small parameter, 0 < b < 1 an I > 0.

Proposition 1. Equation (4) admits a unique stationary solution (u∗, v∗) given by

v∗ = u∗/b

and u∗ is the unique solution of
f (u)− u/b + I = 0.

It follows that u∗ is an increasing function of I; and the map I → u∗ is a bijection from (0,+∞)
to (0,+∞). Furthermore, as I increases from 0 to +∞, (u∗, v∗) is successively a repulsive node, a
repulsive focus, an attractive focus and an attractive node. At f ′(u∗) = bε (i.e., u∗ =

√
1− bε)

a Hopf bifurcation occurs.

Furthermore, when u∗ is close to zero, the system is known to exhibit relaxation os-
cillations. With this result in mind, one principle at play to obtain MMOs becomes clear:
if we add a third variable that moves slowly, and in such a way that the dynamics for the
system of the two first equations follow the loop: attractive focus, repulsive focus, relax-
ation oscillation and then return mechanism, MMOs should appear. The next subsection
illustrates in more detail this idea to obtain MMOs as well as other phenomena related to
the so-called canard solutions.

3.1.1. A System with MMOs

We consider here the Equation (2) introduced above
ε du

dt = f (u)− v + w + I,
dv
dt = u− bv

dw
dt = ε(−u− w)

with
f (u) = −(1/3)u3 + u, ε = 0.1, I ∈ (1.3, 1.5), b = 0.8.

We focus on this system because it exhibits MMOs. We describe here two distinct mecha-
nisms leading to alternance of small and large oscillations. The first mechanism corresponds
to small oscillations related to the focus nature of the fixed point in the two-dimensional
FHN Equation (4) as described in Section 1. The second mechanism is different; in this case,
the trajectories clearly exhibits canard-type solutions, and the trajectories jump from the
repulsive manifold toward alternatively one side or the other side of the stable manifold.
Of note, this distinctive evolution toward the left or right side of the stable manifold oc-
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curs within a tiny region of the repulsive manifold. We end the section with a remark on
Shilnikov Chaos.

3.1.2. MMOs and Focus

The first mechanism to obtain MMOs is as follows. Considering w as a parameter,
the two first equations represent a classical FHN system, which goes through a Hopf
bifurcation as w is varied. If w varies very slowly, in an interval corresponding to a focus for
the FHN system, then we will observe focus-like dynamics in a neighborhood of the fixed
point of the FHN subsystem. The focus is first attractive, then repulsive, until the trajectory
falls into a relaxation oscillation type. This corresponds to small oscillations followed by a
large oscillation. The dynamics are such that during the relaxation oscillation w returns
close to its initial value. This is a return mechanism, from which a new cycle follows. This
behavior is illustrated in Figure 2.

(a) (b) (c)

Figure 2. Mixed Mode Oscillations. This figure illustrates the asymptotic behavior of solutions
of Equation (2) for I = 1.45. (a) In the left panel, time series of u, v and w are presented. (b) In
the center, we illustrate the projection of the same trajectory on the plane (u, v). (c) In the right,
we illustrate the trajectory in the three dimensional phase space along with the critical manifold
v = f (u) + w + I. This figure illustrates classical MMOs related to the focus nature of the fixed point
of the first two equations (considering w as a fixed parameter). In this case, the observed dynamics
suggest the following successive states: attractive focus, repulsive focus, relaxation oscillations and
return mechanism.

Remark 1. Another approach to describe the above dynamics relies on canards. The small oscilla-
tions are also to be seen as trajectories successively following the attractive and repulsive parts of the
manifold till they exit the vicinity of the fold through a relaxation oscillation. We wanted here to
emphasize an approach by a dynamical Hopf bifurcation, which appears to be relevant.

3.1.3. MMOs and Canards

The second mechanism we want to discuss gives rise to a quite different type of
dynamics. In this case, there are no multiple small focus-like oscillations. Instead, after a
relaxation oscillation, the trajectory may enter a canard-type trajectory after crossing the
apex of the right part of the critical manifold; it follows the unstable manifold and leaves it
either to the left side—where it reaches the left part of the attractive critical manifold—or
to the right side—and reaches the right part of the attractive manifold. The latter case
corresponds to a small (or middle) oscillation while the first case gives a large relaxation
oscillation. This is illustrated in Figure 3. It is worth to describe in more detail the trajectory
represented in this figure. Two large oscillations are followed by a single small oscillation
where the trajectory follows the repulsive manifold before being attracted by the right
side of the attractive manifold. This is repeated four times, the fifth time, the second large
oscillation is replaced by a small oscillation (but larger than the other small oscillations).
This corresponds to a brutal change of direction in the trajectory occurring in a tiny zone of
the phase space. After that, the cycle is repeated. Introducing the letter M for the medium
oscillation, L for large and S for small, we could denote this occurrence: LLS-LLS-LLS-LLS-
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LM. Note that during successive cycles LLS, the canards occurring during the second L, are
significantly different in the phase space, and move forward in a specific direction. At the
forth time the canard exits the unstable manifold to the right. Of note, this discrimination
between left and right exits has been used to generate rich dynamics in various contexts,
see the recent papers [27,42].

(a) (b)

(c) (d)

Figure 3. (Complex) Mixed Mode Oscillations. In this case, there are no multiple small focus-like
oscillations. Instead, after a relaxation oscillation, the trajectory may enter a canard-type trajectory
after crossing the apex of the right part of the critical manifold; it follows the unstable manifold and
leaves it either to the left side—where it reaches the left part of the attractive critical manifold—or
to the right side—and reaches the right part of the attractive manifold. The latter case corresponds
to a small (in fact a middle) oscillation, while the first case gives a large relaxation oscillation. It is
worth describing in more detail the trajectory represented in this figure. Two large oscillations are
followed by a single small oscillation where the trajectory follows the repulsive manifold before being
attracted by the right side of the attractive manifold. This is repeated four times, and the fifth time,
the second large oscillation is replaced by a middle-size oscillation. This corresponds to a change
in the trajectory occurring in a tiny value range (see bottom left). After that, the cycle is repeated.
Introducing the letter M for the medium oscillation, L for large and S for small, we could denote
this occurrence: LLSLLSLLSLLSLM. (a) time series of u,v and w. (b) projection on the u− v plane.
(c) projection on the u− w plane of four successive segments of the trajectory along the repulsive
branch and the subsequent fast trajectory. The first three segments exit towards the left part of the
attractive manifold. The fourth one exits toward the other side. (d) trajectory in the three dimensional
phase space along with the critical manifold v = f (u) + w + I.

Remark 2. In the next section, computations will show that the regimes of MMOs exhibited below
correspond to a range of parameter value I for which the fixed point has two complex eigenvalues
with a positive real part and one negative real value. This is a signature of Shilnikov Chaos, which
relates to dynamics alternating phases on the attractive manifold and phases on the repulsive
manifold supported by the complex eigenvalues [43,44] and references therein. Figure 4 gives an
interesting glimpse of it. For the initial condition considered here, at the beginning, the solution
follows the stable manifold corresponding to the negative eigenvalue. But afterwards, the trajectory
exits the neighborhood of the fixed point with a focus-like dynamics; this corresponds to the two
complex eigenvalues with positive real parts. After that, the trajectory never comes back in a
neighborhood of the fixed point— the trajectory following the stable manifold corresponds to a
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transient behavior—and as such the asymptotic observed dynamics do not relate to Shilnikov chaos
despite the eigenvalues.

(a) (b)

Figure 4. This figure illustrates a remarkable transient behavior. For the parameter values considered
here, the stationary point has two complex eigenvalue with positive real parts and one negative
real eigenvalue. Accordingly, for the initial conditions chosen here, the trajectory follows the stable
manifold associated with negative eigenvalue. After that, the trajectories are repelled from the fixed
point. The asymptotic behavior, however, does not relate so much with those eigenvalues. As such,
the Shilnikov chaos is not relevant for these parameter values. (a) I = 1.45. (b) I = 1.3.

3.2. Basic Stability Analysis

The following proposition results from simple computations.

Proposition 2. For any b > 0, Equation (2) admits a unique fixed point (u∗, v∗, w∗) given by

v∗ = u∗/b, w∗ = −u∗

where u∗ is the unique solution of

f (u)− (1 +
1
b
)u + I = 0.

A local stability analysis provides the following proposition.

Proposition 3. There exists I∗ ∈ (1, 2) such that at I = I∗, an a Hopf bifurcation occurs.

Proof. The Jacobian matrix J(u) writes f ′(u)
ε − 1

ε
1
ε

1 −b 0
−ε 0 −ε

 (5)

which gives

Det(J(u)− λI) = −λ3 + λ2(−ε− b +
f ′(u)

ε
) + λ( f ′(u) + b

f ′(u)
ε
− bε− 1

ε
− 1) + b f ′(u)− 1− b

= −λ3 + λ2(−ε− b +
f ′(u)

ε
) + λ( f ′(u) + b

f ′(u)
ε
− bε− 1

ε
− 1)− bu2 − 1

Thanks to simple algebraic computations (Routh–Hurwitz criterion and Cardan formula),
one can prove that in the interval (1, 2) an eigenvalue is real negative and the two other are
complex conjugate; moreover, for I < I∗, the stationary point is unstable, and for I > I∗, it
is stable.

See Figure 5 for numerical illustration.
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(a) (b)

Figure 5. This figure gives an illustration of Proposition 3. In both panels the x−axis represents
f ′(u∗) for I ∈ [1, 2]. (a) illustration of −∆ as defined in the Cardan formula. Since ∆ is negative,
the determinant admits two complex eigenvalues. (b) illustration of a2a1 − a0 as defined in the
Routh–Hurwitz criterion. It is positive for I > I∗. We also have a0 > 0 and a2 = ε + b− f ′(u)

ε , which
is positive for I > I∗, (I∗ is the first value for which a2a1 − a0 or a2 equals zero).

3.3. Absorbing Set, Existence of Periodic Solution, Numerical Approximation

We assume ε > 0 is small enough.

Proposition 4. System (2) admits an absorbing bounded set.

Proof. We define
ψ(t) = εu2 + v2 + w2

We have

ψ′ = −u4

3
+ u2 + (1− ε)uw + Iu− bv2 − εw2

By using young inequalities, we can prove that there exist two positive constants K1 and
K2 such that

ψ′ ≤ −K1g + K2.

Multiplying both sides by eK1t and integrating leads to

ψ(t) ≤ e−K1tg0 +
K2

K1

(
1− eK1t).

This completes the proof.

Theorem 1. There exists I0, such that for I ∈ [0, I0), the system admits a non-constant periodic
solution.

Proof. We assume I = 0. The result extends to [0, I0) by continuity. We consider the
Poincaré map F = (F1, F2, F3) from the manifoldM = {(u, v, w); u = 0, v < 0, w ∈ R}
to itself defined thanks to the flow of the ODE. For any w such that |w| is not too large,
and for ε is small enough, the map is well-defined thanks to the slow-fast theory since
the trajectories are close to relaxation oscillations and w′ is of O(ε). We know also that
the trajectories will return atM with a v−coordinate at f (−1) + O(ε) (with f defined in
Equation (2), and since f ′(−1) = 0, see classical works on slow-fast systems such as for
example [45]). From the Brouwer theorem, we deduce that for each fixed w, there exists v
such that

F2(0, v, w) = v

i.e., the v-coordinate is a fixed point. By this way, we define a continuous function w →
ϕ(w) = v such that

F2(0, ϕ(w), w) = ϕ(w).
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Next, we look for w∗ such that,

F3(0, ϕ(w∗), w∗) = w∗.

Let us start with an initial condition w0 < 0 close to 0. We have

F3(0, ϕ(w0), w0) = w0e−εT − ε
∫ T

0
e−ε(T−s)u(s)ds

where T is the time at which the flow ensued from (0, ϕ(w0), w0) returns toM. Replacing
the exponential by its order 1 Taylor expansion, we found that adopting the notation F3(w0)
for the sake of simplicity

F3(w0) = w0 − εw0T − ε
∫ T

0
u(s)ds + o(ε)

which gives F3(w0) > w0, for w0 < 0 in a small neighborhood of 0 and ε small enough.
Analog arguments allow us to prove that F3(w0) < w0 for w0 > 0 and ε are small enough.
We omit here the details of the computations that can be made explicit by changing the
variable of integration from s to u and rely on the fact that the time spent on the right or
left part of the stable manifold depends on the sign of w; this corresponds geometrically to
the relative position of the nullclines. It follows that there exists w∗ such that F3(w∗) = w∗

and therefore (0, ϕ(w∗), w∗) is a fixed point of the Poincaré map.

3.4. A Numerical Approximation for Small Oscillations

The aim of this section is to illustrate how the small oscillations observed during
typical MMOs (as in Figure 2) can be locally captured by the dynamics of a “moving” focus.
Observation of the small oscillations of Figure 2 show that oscillations in the (u, v) plane
are first decreasing in amplitude, then increasing till the trajectory leaves the vicinity of
the fold line. Since w moves very slowly, this corresponds to the fact that for fixed w in the
corresponding range, the stationary point of the two first equations is a focus, first stable
and then unstable, see Proposition 1. In this section, we will approximate the dynamics
of the full system by the dynamics of a simpler system for which computations can be
made quite explicitly. We will first operate a change variables to translate our attention
on the dynamics around the focus. Then, we will look at the linearization and compare
the dynamics of the simple system with the original one. The next proposition gives the
dynamics in a system of coordinates around (u∗(w), v∗(w)) where (u∗(w), v∗(w)) is the
“stationary” solution of the subsystem in (u, v) considering w constant. Since w is super
slow, this system of coordinates is relevant.

Proposition 5. Let (u∗(w), v∗(w)) be the unique solution of{
0 = f (u)− v + w + I,
0 = u− bv

(6)

Then, after a change of variables around (u∗(w), v∗(w)), and with appropriate notations, the
trajectory of the solutions of (2) is given by:

ε du
dt = g(u∗, u)− v + ε2 1

f ′(u∗)− 1
b
(u∗ + u + w),

dv
dt = u− bv + ε 1

f ′(u∗)− 1
b
(u∗ + u + w)

dw
dt = −ε(w + u∗ + u))

(7)

with

g(u∗, u) = (1− u∗2)u− u∗u2 − u3

3
(8)
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Next, our goal is to replace Equation (7) with a simpler system that mimics the
small oscillations. Now, since w is very slow, when (u, v) is small in Equation (7), it is
geometrically relevant to approximate solutions of Equation (7), during the specific period
of small oscillations, by the system:

ε du
dt = (1− u∗2)u− v,
dv
dt = u− bv

dw
dt = −ε(w + u∗ + u)

(9)

What is interesting with system (9) is that it gives you a practical way to compute the
number of oscillations involved. Let

A =

( 1
ε (1− u∗2) − 1

ε
1 −b

)
And let

β = 0.5
√

4 det A− (TrA)2

The following proposition holds.

Proposition 6. The number of small oscillations no occurring during a time interval (0, T) in
Equation (9) is given by

no =
1

2π

∫ T

0
β(t)dt

Proof. The idea is to work with an approximate solution of Equation (9). We divide the
time interval (0, T) into the subdivision

(kdt)k∈{0,1,2,...,N}, with N =
T
dt

Then, at each time step, for fixed w, it is possible to compute the solution of the linear
subsystem made of the first two equations of (9) on the interval (kdt, (k+ 1)dt). Eigenvalues
are given by

0.5(TrA+
−

√
(TrA)2 − 4 det A)

and are complex conjugate when
1− u∗2 ' bε

Classically, denoting α+ iβ one of this eigenvalues, we have after a new change of variables,(
ũ
ṽ

)
=

(
α + b β

1 0

)
The solution of this last system writes after dropping the tilde

u(t) + iv(t) = exp(αt) exp(iβ)

Now, the number of small oscillations is given by

∑
k

dt
2π

βk

Now, since the approximation converges towards the solution, the results follow from

n0 = lim
N→+∞

N

∑
k=0

dt
2π

βk =
1

2π

∫ T

0
β(t)dt
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Remark 3. The interest of this approximation is that it provides a geometrical approach to interpret
the dynamics of small oscillations occurring in MMOs: the amplitude of the solutions first decrease
and then increase. For system (7), this corresponds to α(u∗(t)) < 0, in which case the amplitude
decreases and then to α(u∗(t)) > 0 in which case the oscillations increase.

Remark 4. Additionally, note that system (9) provides a simple way to generate small oscillations
and control the number n0; this approach captures the essential phenomenon at play in the generation
of small oscillations in system (2). Figure 6 illustrates both oscillations for system (9) and (2).
System (9) could be extended to generate this small oscillation recurrently with a reset as it is
carried out in the classical Leaky Integrate and Fire models often used in applications [5,6,46]. The
difference being that in LIF models, the equation is linear and one-dimensional with respect to a
variable V (the voltage) with a reset that occurs when a V reaches a threshold value—while other
inputs are typically included to drive this variable V. Here, the idea would be to reset the value w
when it reaches the desired threshold value. In between the resets, the dynamics are oscillatory in the
variables (u, v).

Figure 6. This figure illustrates small oscillations for systems (9), in green, and (2) in purple. At the
beginning the solutions are very close, but since we dropped the nonlinear terms the solutions are
distinct after some time. Note, however, that the solutions of (9) capture two aspects of the small
oscillations occurring for (2). First, it allows to generate and control in a simple way small oscillations
by mimicking the behavior near a focus. Next, it generates oscillations that are first decreasing and
then increasing, which corresponds to a dynamical Hopf-bifurcation behavior (TrA changes its sign
and (TrA)2 − 4 det A < 0 ).

3.5. Slow-Fast Analysis

In this section, we shall give some insights about the dynamics of Equation (2) thanks
to a slow–fast approach. Setting ε = 0 in Equation (2) after different time scalings provides
the main dynamical picture. First, setting ε = 0 gives

0 = f (u)− v + w + I,
vt = u− bv
wt = 0

(10)

Then, after the time rescaling t = εt′ in Equation (2), dropping the ′ and setting ε = 0 gives
ut = f (u)− v + w + I,
vt = 0
wt = 0

(11)

Finally, rescaling with t = 1
ε t′, dropping the ′ and setting ε = 0 gives

0 = f (u)− v + w + I,
0 = u− bv

wt = −(w + u)
(12)

Equations (10) and (11) can be seen, for a fixed constant w, respectively, as the reduced
and the layer systems of the classical 2D FHN system. We first consider the fast dynamics.
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Outside of the critical manifold, the trajectories are given by the layer system (11), which
is a one dimensional ODE in u. For any initial condition (unless we start at the repulsive
point or in the stable manifold of a saddle), the trajectory will reach one of the attractive
parts of the critical manifold v = f (u) + w + I, where f ′(u) < 0.

Then, we look at the slow dynamics. Equation (10) is an ODE on the critical manifold.
If the stationary point of Equation (10) is on the attractive part of the critical manifold,
the solutions are well defined, and they will evolve to it. To further capture the evolution
of the system, we need to consider the very slow motion given by Equation (12). If this
stationary point is on the repulsive part with f ′(u) > 0, then when it reaches the fold
line f (u) = 0, system (10) is not defined, and the derivative explodes in finite time; this
corresponds to a jump from one side of the attractive part of the critical manifold to the
other one. If the stationary point is on the fold line, a more complex behavior (MMOs) can
be expected, see [47,48] and references therein. An interesting and less classical insight from
slow-fast analysis relates to the emergence of the sequence LLSLLSLLSLLSLM described in
Section 3.1.3. In this case, the transition between canards exiting to the left (large oscillation)
and canards exiting to the right (middle oscillation) plays a crucial role. Following the ideas
in [49,50], we highlight hereafter some relevant computations. Consider Equation (2)

εut = f (u)− v + w + I
vt = u− bv
wt = −ε(u + w)

We use the change of variables:

u = 1 + ū, v = ṽ + v̄, w = w̃ + w̄

with
f (1)− ṽ + w̃ + I = 0

1− bṽ = 0

which leads to the equation (dropping the bars)
εut = −3u2 − u3 − v + w,

vt = u− bv
wt = −ε(µ + u + w)

with
µ = 1 + w̃ = −1 +

1
b
− I

Next, we proceed to the change of variables

u =
√

εū, v = εv̄, w = εw̄

Further applying the change of time

t =
t̄√
ε

and dropping the bars, we obtain
ut = −3u2 −

√
εu3 − v + w,

vt = u− b
√

εv
wt = −

√
ε(µ +

√
εu + εw)

Setting ε = 0 gives 
ut = −3u2 − v + w,
dv
dt = u

dw
dt = 0

(13)
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Proposition 7. The point (u, v) = (0, w) is a stationary point of center type for the projection of
Equation (13) into the (u, v)-plane. Every trajectory passing through (0, c) with w < c < w + 1

6 is
a periodic solution. Every solution passing through (0, c) with c ≥ w+ 1

6 satisfies u(t)→ −∞ and
v(t)→ −∞ as t→ t∗, where t∗ is the maximal time for which the solution is defined. Furthermore,
as c goes to w + 1

6 , the diameter of the periodic solution goes to +∞.

Proof. Without loss of generality, we work with w = 0, since the general case follows from
the change of variable

−ṽ + w = −v

Next, we note that the function

G(u, v) = (−3u2 − v + 1/6) exp(6v).

is a first integral of Equation (13) (with w = 0). It follows that the solutions of (13) are
contained in the level sets of the function G. The proposition then follows from quite long
yet elementary computations to explicit the details of the level sets of G. We avoid the
details here. An illustrative picture is provided in Figure 7.

Figure 7. Solutions of the integrable Equation (13). The fixed point lies in the middle of limit cycles
(nonlinear center). Above some threshold, solutions are no longer periodic but rather escape the
vicinity of the stationary point. This illustrates the behavior of Figure 3: some canards exit to the left,
while others exit to the right.

4. Dynamics in the Nh-FHN Model

In this section, we shall consider the following Nh-FHN system:{
εut = f (u)− v + I(x) + du∆u,

vt = u− bv− c(x) + dv∆v
(14)

on a regular bounded domain Ω ⊂ Rn, n ≤ 3 with Neumann Boundary Conditions (NBC).

4.1. Existence and Uniqueness of the Stationary Solution

As far as we know, the existence result for Equation (14) in the case du > 0, dv > 0 has
not been proved. We consider here the case du = d > 0, dv = 0. In this case, the equation
writes {

0 = f (u)− v + I(x) + d∆u,
0 = u− bv− c(x)

(15)

When b = 0 (and dv = 0), the existence of a stationary solution is straightforward
since Equation (15) becomes u = c, v = f (c) + I + d∆u. We consider hereafter the case
b > 0.

Theorem 2. Equation (15) admits a unique solution.
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Proof. Equation (15) is equivalent to
0 = f (u)− (u/b) + (1/b)c(x) + I(x) + d∆u,

v = (1/b)(u− c(x))
(16)

Then, we apply the result in [51].

4.2. Numerical Experiments

The numerical simulations presented in this paragraph have been performed using
our own C++ program.

4.2.1. Filtering of Frequencies and Local Mixed Mode Oscillations (MMOs)

In this paragraph, we shall discuss some qualitative dynamics arising near a Hopf-
bifurcation. We illustrate the numerical simulation of system (14) with the following set of
parameters:

n = 2, du = dv = 1, b = 0, f (u) = −u3 + 3u
I(x) = 0
c(x) = 0 in a small ball at the center
c(x) = c0 = −1.21 otherwise

(17)

It is known from numerical experiments (see [11,12]) that if c0 is decreased, the stationary
solution of (14) is stable, and if it is very close to −1, the propagation of relaxation oscilla-
tions occurs. The value of c0 considered here is close to a bifurcation point, which leads to
more complex phenomena. Specifically, in this case, we observe the so-called mixed-mode
oscillations for a center cell. Relaxation oscillations will propagate at a frequency smaller
than the natural frequency of FHN in the oscillatory regime. This is illustrated in Figure 8.
In this figure, panels (a), (b), (c) correspond to a fixed value of x near the center. At this
space location, c(x) = 0. Panels (d), (e), and (f) correspond to a value of x near the right
border. For this latter value of x, we have c(x) = c0 = −1.21. We observe propagation of
oscillations from the center toward the border. Note, however, that only large oscillations
propagate. Small oscillations occurring in the center cells are filtered. Panels (d), (e), and (f)
suggest the following interpretation of the local dynamics related to wave propagation. In
panel (d), we represent u for fixed x as a function of time. We observe at this space location
relaxation oscillations at a lower frequency than the oscillatory FHN (i.e., the diffusion-less
system for c = 0). In panel (c), we represent u, v and ∆u as functions of time, respectively,
with red, dashed purple and blue colors. Through this panel, one can see how the wave
propagation is seen locally. It corresponds to a wave of depolarization. Note that the
diffusion remains close to zero for almost all times, which corresponds to a solution locally
constant in space. When the neighbor cell jumps, the term ∆u becomes positive, because at
this time we are at a minimum in space. This induces a jump for the considered cell toward
the right part of the stable manifold (see panel (e)). At this point, the diffusion becomes
negative because we are at a local maximum. Then, the diffusion comes back to almost
zero again as the considered cell and its neighbors have approximately the same value.
The same dynamic occurs symmetrically (the diffusion in this case is first negative and
then positive), when the cell goes from the right part of the stable manifold toward the left
part of the stable manifold. The dynamics of v follows from the fact that vt = u− c + dv∆v.
Panel (f) illustrates the dynamics of u, v and ∆u in the three-dimensional phase space. The
“critical” manifold v = f (u)+ du∆u is also represented where ∆u is considered as a variable.
It illustrates the oscillations of relaxation for the cells near the border. Illustrations in panels
(a), (b), (c) are analog. For this cell the dynamics resemble MMOs often pictured in three
dimensional systems.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Simulation of Equation (14) with the set of parameters given in (17). The first row corre-
sponds to a fixed value of x near the center for which c(x) = 0. The second row corresponds to a
value of x near the left border for which c(x) = c0 = −1.21. In the first column, we represent u as a
function of time. In the second column, we represent u, v and ∆u as functions of time, respectively,
in green, blue and violet. In the third column, we represent the trajectory u, v, ∆u along with the
manifold v = f (u) + du∆u (where ∆u is seen as the third variable). These figures illustrate the
apparition of MMOs for center cells and the propagation of relaxation oscillations from the center
cells toward the border with a filtration of small oscillations.

4.2.2. Fade of Wave Propagation (Death Spot)

In this paragraph, we discuss another phenomenon arising as we vary a parameter
(denoted by p in this paragraph). We present here the numerical simulation of system (14)
with the following set of parameters

n = 1, Ω = (α, β), du = d = 1, dv = 0, b = 0, f (u) = −u3 + 3u
I(x) = 0
c(x) = p(x/β)4 − 2p(x/β)2

β > 0, α = −β

(18)

In this case, again, as in the previous paragraph, if p is close enough to −1, waves
propagate from the center at the frequency of the diffusion-less system (with c = 0). On
the other hand, if p is decreased enough, the system generally converges to a stationary
solution. In between, for some range of p, regular waves propagate from center but fail to
propagate at some point in space. The existence of Hopf Bifurcation has been proved for
this specific case, see [12]. This type of failure of propagation, also referred as death-spot has
been described previously, see for example [52]. For relevance in biological context, we refer
to [10]. Related phenomena have also recently been considered in chains of kicked FHN
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neurons, see [42]. The dynamics under consideration are illustrated here in Figure 9. At the
center, oscillations are as in the ODE diffusion-less system. But at some space location, the
oscillation fails to propagate. For some intermediate cells, we observe alternations between
medium and larger oscillations. In this case, every other oscillation, the amplitude will be
shortened— note the difference in the uxx time series. In this figure, panels (a), (b), and (c)
correspond to a fixed value of x near the center. At this space location c(x) = 0. Panels (d),
(e), and (f) correspond to an intermediate value of x between the center and the left border.
In panels (a) and (d), we represent u for fixed x as a function of time. In panels (b) and
(e), we represent u, v and uxx as functions of time, respectively, with the colors red, dashed
purple and blue. In panels (c) and (f), we illustrate the dynamics of u, v and uxx in the
three-dimensional phase space. The “critical” manifold v = f (u) + duxx is also represented
where uxx is considered as a variable. Figure 10 illustrates u as a function of time. From left
to right, we represent four different space locations with the same range of amplitude: left
panel corresponds to a center cell, the far right corresponds to a cell close to the left border,
the two other panels correspond to intermediate cells. This illustrates the fade of the wave
propagation. Note the difference of these complex oscillations as compared to the MMOs
described in the previous paragraph.

(a) (b) (c)

(d) (e) (f)

Figure 9. This figure illustrates the simulation of Equation (14) with the set of parameters given in
(18). Panels (a–c) correspond to a fixed value of x near the center for which c(x) = 0. Panels (d–f)
correspond to a value of x at an intermediate location between the left border and the center. In (a)
and (d), we represent u as a function of time. In (b) and (e), we represent u, v and uxx as functions of
time, respectively, in green, blue and violet. In (c) and (f), we represent the trajectory u, v, uxx along
with the manifold v = f (u) + duxx (where uxx is seen as the third variable).
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Figure 10. This figure illustrates the fade of the wave propagation. We represent here the value of
u as a function of time. From left to right, we consider four different space locations with the same
range of amplitude: left panel corresponds to a center cell, the far right corresponds to a cell close to
the left border, the two other panels correspond to intermediate cells.

5. Discussion

Dynamical systems have proven to be a crucial tool in the description of phenomena
observed in neuroscience. This includes complex oscillations, rhythms, wave propaga-
tion and pattern formations. As discussed in the introduction, models such as the FHN
equations have been used successfully to visualize the emergence of those phenomena
and highlighted new ways of biological interpretation. For example, cardiac tachycardia
has been associated with spiral waves, which are a classical phenomena studied in FHN
systems. Yet, the mechanisms inducing the various dynamics are far from being well-
understood. It is necessary to gain a better understanding of the mathematical principles
that govern those dynamics to be able to reproduce the biological observed phenomena. In
the present article, we focused on the analysis of the FHR and Nh-FHN models. We have
provided original theoretical and numerical tools to understand the emergence of complex
oscillations and their propagation across excitable media. This included an original the-
oretical and numerical description of small oscillations and canards leading to different
kind of MMOs for the FHR system and an original description of local MMOS, filtering
frequencies and fade of wave propagation for Nh-FHN. A better qualitative analysis of
the various complex oscillations and their propagation arising in Nh-FHN is an entire
topic of research. One possible fruitful way to investigate is to work on finite-dimensional
subspaces in which solutions effectively lie. Such insights can be applied to better simulate
wave propagation, patterns and better understand their failure and their complexity in the
context of neuroscience and biology.

6. Conclusions

In this article we have considered the FHR and Nh-FHN models, discussed their
relevance in neuroscience context and provided a theoretical and numerical analysis of
complex oscillations and their propagation. Future work perspectives include a more
detailed investigation of reduction of the Nh-FHN dynamics to ODE models and their
various applications to neuroscience and biology. PDEs are infinite dimensional systems;
however, asymptotically, the solutions may lie in an attractor, which can be of a much
smaller size. Some preliminary unpublished results, see also [13], indicate that the complex
oscillations observed in Nh-FHN might be obtained with finite-size ODE models. This is an
interesting perspective that would allow a better understanding of the dynamics observed
and their biological interpretation.



Biology 2023, 12, 918 19 of 20

Author Contributions: Conceptualization, all authors.; methodology, B.A.; software, B.A.; validation,
all authors; investigation, all authors; writing—original draft preparation, all authors.; writing—B.A.
and M.A.A.-A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the LMAH, Région Normandie, CNRS project IEA00134, and
the HSM.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. FitzHugh, R. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys. J. 1961, 1, 445–466. [CrossRef]
2. Nagumo, J.; Arimoto, S.; Yoshizawa, S. An Active Pulse Transmission Line Simulating Nerve Axon. Proc. IRE 1962, 50, 2061–2070.

[CrossRef]
3. Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in

nerve. J. Physiol. 1952, 117, 500–544. [CrossRef] [PubMed]
4. Lyu, C.; Abbott, L.F.; Maimon, G. Building an allocentric travelling direction signal via vector computation. Nature 2021,

601, 92–97. [CrossRef]
5. Chariker, L.; Shapley, R.; Young, L.S. Orientation Selectivity from Very Sparse LGN Inputs in a Comprehensive Model of Macaque

V1 Cortex. J. Neurosci. 2016, 36, 12368–12384. [CrossRef] [PubMed]
6. Chariker, L.; Shapley, R.; Young, L.S. Rhythm and Synchrony in a Cortical Network Model. J. Neurosci. 2018, 38, 8621–8634.

[CrossRef] [PubMed]
7. Volpert, V.; Xu, B.; Tchechmedjiev, A.; Harispe, S.; Aksenov, A.; Mesnildrey, Q.; Beuter, A. Characterization of spatiotemporal

dynamics in EEG data during picture naming with optical flow patterns. Math. Biosci. Eng. 2023, 20, 11429–11463. [CrossRef]
8. Panfilov, L.L.A.; Dierckx, H. Impact of Electrode Orientation, Myocardial Wall Thickness and Myofiber Direction on Intracardiac

Electrograms: Numerical Modeling and Analytical Solutions. Front. Physiol. Sec. Card. Electrophysiol. 2023, 14. [CrossRef]
9. Harlaar, N.; Dekker, S.O.; Zhang, J.; Snabel, R.R.; Veldkamp, M.W.; Verkerk, A.O.; Fabres, C.C.; Schwach, V.; Lerink, L.J.S.; Rivaud,

M.R.; et al. Conditional immortalization of human atrial myocytes for the generation of in vitro models of atrial fibrillation. Nat.
Biomed. Eng. 2022, 6, 389–402. [CrossRef]

10. Maia, P.D.; Kutz, J.N. Identifying critical regions for spike propagation in axon segments. J. Comput. Neurosci. 2013, 36, 141–155.
[CrossRef]

11. Ambrosio, B.; Francoise, J.P. Propagation of bursting oscillations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 4863–4875.
[CrossRef]

12. Ambrosio, B. Hopf Bifurcation in an Oscillatory-Excitable Reaction–Diffusion Model with Spatial Heterogeneity. Int. J. Bifurc.
Chaos 2017, 27, 1750065. [CrossRef]

13. Ambrosio, B. Qualitative analysis of certain reaction-diffusion systems of the FitzHugh-Nagumo type. Evol. Equ. Control Theory
2023. [CrossRef]

14. Kopell, N.; Howard, L.N. Plane Wave Solutions to Reaction-Diffusion Equations. Stud. Appl. Math. 1973, 52, 291–328. [CrossRef]
15. Rinzel, J.; Keller, J.B. Traveling Wave Solutions of a Nerve Conduction Equation. Biophys. J. 1973, 13, 1313–1337. [CrossRef]
16. Rinzel, J. Spatial stability of traveling wave solutions of a nerve conduction equation. Biophys. J. 1975, 15, 975–988. [CrossRef]

[PubMed]
17. Rinzel, J.; Terman, D. Propagation Phenomena in a Bistable Reaction-Diffusion System. SIAM J. Appl. Math. 1982, 42, 1111–1137.

[CrossRef]
18. Jones, C.K.R.T. Stability of the travelling wave solution of the FitzHugh-Nagumo system. Trans. Amer. Math. Soc. 1984,

286, 431–469. [CrossRef]
19. Ermentrout, G.B.; Rinzel, J. Reflected Waves in an Inhomogeneous Excitable Medium. SIAM J. Appl. Math. 1996, 56, 1107–1128.

[CrossRef]
20. Carter, P.; Sandstede, B. Fast Pulses with Oscillatory Tails in the FitzHugh–Nagumo System. SIAM J. Math. Anal. 2015,

47, 3393–3441. [CrossRef]
21. Cornwell, P.; Jones, C.K.R.T. On the Existence and Stability of Fast Traveling Waves in a Doubly Diffusive FitzHugh–Nagumo

System. SIAM J. Appl. Dyn. Syst. 2018, 17, 754–787. [CrossRef]
22. Volpert, A.; Volpert, V.; Volpert, V. Traveling Wave Solutions of Parabolic Systems; American Mathematical Society: Providence, RI,

USA, 1994. [CrossRef]

http://doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1109/JRPROC.1962.288235
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://www.ncbi.nlm.nih.gov/pubmed/12991237
http://dx.doi.org/10.1038/s41586-021-04067-0
http://dx.doi.org/10.1523/JNEUROSCI.2603-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/27927956
http://dx.doi.org/10.1523/JNEUROSCI.0675-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/30120205
http://dx.doi.org/10.3934/mbe.2023507
http://dx.doi.org/10.3389/fphys.2023.1213218
http://dx.doi.org/10.1038/s41551-021-00827-5
http://dx.doi.org/10.1007/s10827-013-0459-3
http://dx.doi.org/10.1098/rsta.2009.0143
http://dx.doi.org/10.1142/S0218127417500651
http://dx.doi.org/10.3934/eect.2023023
http://dx.doi.org/10.1002/sapm1973524291
http://dx.doi.org/10.1016/S0006-3495(73)86065-5
http://dx.doi.org/10.1016/S0006-3495(75)85878-4
http://www.ncbi.nlm.nih.gov/pubmed/1203443
http://dx.doi.org/10.1137/0142077
http://dx.doi.org/10.1090/S0002-9947-1984-0760971-6
http://dx.doi.org/10.1137/S0036139994276793
http://dx.doi.org/10.1137/140999177
http://dx.doi.org/10.1137/17M1149432
http://dx.doi.org/10.1090/mmono/140


Biology 2023, 12, 918 20 of 20

23. Sandstede, B. Chapter 18—Stability of Travelling Waves. In Handbook of Dynamical Systems; Fiedler, B., Ed.; Elsevier Science:
Amsterdam, The Netherlands, 2002; Volume 2, pp. 983–1055. [CrossRef]

24. Volpert, V.; Petrovskii, S. Reaction–diffusion waves in biology. Phys. Life Rev. 2009, 6, 267–310. [CrossRef]
25. Rinzel, J. A Formal Classification of Bursting Mechanisms in Excitable Systems. In Proceedings of the International Congress of

Mathematicians, Berkeley, CA, USA, 3–11 August 1986.
26. Rinzel, J. A Formal Classification of Bursting Mechanisms in Excitable Systems. In Mathematical Topics in Population Biology,

Morphogenesis and Neurosciences: Proceedings of an International Symposium Held in Kyoto, Japan, 10–15 November 1985; Teramoto, E.,
Yumaguti, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1987; pp. 267–281.

27. Desroches, M.; Rinzel, J.; Rodrigues, S. Classification of bursting patterns: A tale of two ducks. PLoS Comput. Biol. 2022,
18, e1009752. [CrossRef] [PubMed]

28. Izhikevich, E.M. Synchronization of elliptic bursters. SIAM Rev. 2001, 43, 315–344. [CrossRef]
29. Mondal, A.; Sharma, S.K.; Upadhyay, R.K.; Mondal, A. Firing activities of a fractional-order FitzHugh-Rinzel bursting neuron

model and its coupled dynamics. Sci. Rep. 2019, 9, 15721. [CrossRef]
30. Wojcik, J.; Shilnikov, A. Voltage Interval Mappings for an Elliptic Bursting Model. In Nonlinear Systems and Complexity; Springer

International Publishing: New York, NY, USA, 2015; pp. 195–213.
31. Clément, F.; Françoise, J.P. Mathematical Modeling of the GnRH Pulse and Surge Generator. SIAM J. Appl. Dyn. Syst. 2007,

6, 441–456. [CrossRef]
32. Vidal, A.; Clément, F. A Dynamical Model for the Control of the Gonadotrophin-Releasing Hormone Neurosecretory System. J.

Neuroendocrinol. 2010, 22, 1251–1266. [CrossRef]
33. Albizuri, J.U.; Desroches, M.; Krupa, M.; Rodrigues, S. Inflection, Canards and Folded Singularities in Excitable Systems:

Application to a 3D FitzHugh–Nagumo Model. J. Nonlinear Sci. 2020, 30, 3265–3291. [CrossRef]
34. Desroches, M.; Krupa, M.; Rodrigues, S. Inflection, canards and excitability threshold in neuronal models. J. Math. Biol. 2012,

67, 989–1017. [CrossRef]
35. Amir, R.; Michaelis, M.; Devor, M. Burst Discharge in Primary Sensory Neurons: Triggered by Subthreshold Oscillations, Maintained

by Depolarizing Afterpotentials. J. Neurosci. 2002, 22, 1187–1198. [CrossRef]
36. Bertram, R. Mathematical Modeling in Neuroendocrinology. Compr. Physiol. 2015. [CrossRef]
37. Fletcher, P.A.; Thompson, B.; Liu, C.; Bertram, R.; Satin, L.S.; Sherman, A.S. Ca2+ release or Ca2+ entry, that is the question: What

governs Ca2+ oscillations in pancreatic β cells? Am. J. Physiol.-Endocrinol. Metab. 2023, 324, E477–E487. [CrossRef]
38. Desroches, M.; Guckenheimer, J.; Krauskopf, B.; Kuehn, C.; Osinga, H.M.; Wechselberger, M. Mixed-Mode Oscillations with

Multiple Time Scales. SIAM Rev. 2012, 54, 211–288. [CrossRef]
39. Letson, B.; Rubin, J.E.; Vo, T. Analysis of Interacting Local Oscillation Mechanisms in Three-Timescale Systems. SIAM J. Appl.

Math. 2017, 77, 1020–1046. [CrossRef]
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