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Simple Summary: Drosophila suzukii, also known as the spotted-wing drosophila (SWD), is a
polyphagous insect pest of soft-skinned small fruits. SWD, similar to other insects, is affected by
climate change-associated factors, yet its impacts on the pest regarding its behavior, distribution,
and survival remains poorly understood. Current climate change is allowing this species to colonize
colder regions. This review explores how SWD adapts to survive during cold seasons, focusing on a
plethora of overwintering strategies, and the transcriptomics changes in response to cold. Finally, it is
discussed how climate change progression may promote the ability of this species to survive and
spread, and what mitigation measures could be employed to overcome cold-adapted D. suzukii.

Abstract: Anthropogenic challenges, particularly climate change-associated factors, are strongly
impacting the behavior, distribution, and survival of insects. Yet how these changes affect pests such
as Drosophila suzukii, a cosmopolitan pest of soft-skinned small fruits, remains poorly understood. This
polyphagous pest is chill-susceptible, with cold temperatures causing multiple stresses, including
desiccation and starvation, also challenging the immune system. Since the invasion of Europe
and the United States of America in 2009, it has been rapidly spreading to several European and
American countries (both North and South American) and North African and Asian countries.
However, globalization and global warming are allowing an altitudinal and latitudinal expansion of
the species, and thus the colonization of colder regions. This review explores how D. suzukii adapts
to survive during cold seasons. We focus on overwintering strategies of behavioral adaptations such
as migration or sheltering, seasonal polyphenism, reproductive adaptations, as well as metabolic
and transcriptomic changes in response to cold. Finally, we discuss how the continuation of climate
change may promote the ability of this species to survive and spread, and what mitigation measures
could be employed to overcome cold-adapted D. suzukii.

Keywords: spotted-wing drosophila; overwinter; climate change; survival adaptation;
cold acclimatation; transcriptomic changes

1. Introduction

Temperature plays an important role in the overall biology of insects. As poikilother-
mic organisms, the insects’ body temperature depends on the environment, which affects
the species’ behavior, distribution, development, and reproduction [1,2]. Due to climate
change and global warming, extreme events such as droughts or heat waves are becoming
more frequent. Even though an overall trend of winter warming is predicted, harsher
winters with longer cold spells are still expected in some regions [3,4]. During the winter,
insects face specific abiotic and biotic challenges (Figure 1a), the low temperature being
the most relevant abiotic pressure. In addition to internal ice formation and consequent
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desiccation, cold can induce chilling injuries due to alterations in metabolic processes and
homeostasis [5], and it impacts the immune system, increasing susceptibility to pathogens
and the inability to behaviorally avoid pathogens and predators [6]. Additionally, with
lower temperatures, fewer food sources are available, forcing insects to cope with periods
of starvation [4].
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To overwinter, insects have developed several strategies to overcome the inability to
metabolically generate heat, either by avoiding threatening cold temperatures (via migration
or burrowing) or developing cold tolerance [7,8]. Cold-tolerant insects are usually classified
in three main types: (1) chill susceptible, (2) freeze-avoidant (or freeze-intolerant), and
(3) freeze-tolerant (Figure 1b) [9]. Chill-susceptible insects die when exposed to cold
temperatures without internal ice formation. The freeze-avoiding insects can survive cold
as long as they can maintain their fluids in a supercooled state, and eventually die when
ice formation occurs. Freeze-tolerant species can survive cold temperatures even if their
body fluids freeze, but usually can only do so over a specific temperature range [7].

Typical winter low food availability and internal body ice formation lead to desicca-
tion. Yet, low temperatures can eventually benefit freeze-tolerant insects, as they reduce
the metabolic rate, allowing survival in desiccating conditions [5]. The decrease in the
metabolic activity of freeze-tolerant insects is one of the physiological adaptations involved
in diapause, which can either be obligate or facultative and is characterized by a suppres-
sion of development, suspended activity, and increased resistance to cold. The success
of overwintering in many insect species thus depends on diapause, which can be acti-
vated during all life stages, such as eggs, pupae, larvae, nymphs, or adults [1]. These
strategies to survive cold periods are triggered by temperature, together with photoperiod
or humidity cues. Such cues cause flexible changes at various levels, such as molecular,
transcriptomic, hormonal, metabolic, and phenotypic, which allow for overwintering and
then a post-diapause recovery [10,11].

Understanding how insects cope and survive across winters in a world impacted by
climate change is fundamental not only from a conservation point of view, but also because
the changing climatic dynamics may influence the population trends of invasive pest
species. The spotted-wing Drosophila (SWD), Drosophila suzukii (Matsumura), is an insect
pest of soft-skinned fruits with a preference for small red berries, but with the capacity to
thrive on a wide variety of host species, both cultivated and non-cultivated [12]. There
are currently no efficient treatments to control this pest, and available agrochemicals face
sustainability or efficacy limitations [13,14]. New biocontrol strategies have been proposed
and include identifying new local predators [15,16] and parasitoids [17,18], among other
strategies [19]. The difficulty of managing D. suzukii populations and the damage they
cause are aggravated by the fact that this pest is highly polyphagous. Drosophila suzukii has
diverse food and reproductive sources available, and although it shows some preferences, it
can shift between hosts depending on their availability [20]. Further, wild-caught D. suzukii
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during winter months has shown the capacity of this pest to overwinter, and understanding
such a process may be key to developing efficient control measures. These studies are
particularly of interest, as they have already proven that overwintered individuals are the
primary source of infestation during the early fruiting season [21].

This review goes through alternative strategies that allow D. suzukii to survive the
cold, also addressing different behavioral adaptations such as migration strategies and
sheltering. It also addresses this species’ polyphenism and reproductive adaptations, as well
as metabolic and transcriptomic shifts in response to cold (Figure 2). Finally, it discusses
how climate change is impacting the overwintering capacity of the species and may be
promoting the survival and spread of this pest, concluding with recommendations for
control/preventive measures to avoid further impacts caused by cold-adapted D. suzukii.
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Figure 2. Drosophila suzukii overwintering strategies. When the temperature starts to drop, adult
flies take shelter in non-crop habitats, using non-crop hosts as food and reproduction sources; imma-
ture stages such as pupae often take shelter in leaf litter. The adults that are capable of emerging after
cold exposure have developed seasonal polyphenism, being larger and darker (winter morphotypes),
as well as exhibiting reproductive arrest and changes at the metabolic and transcriptomic levels.

2. Migration and Sheltering in Non-Crop Habitats

The capacity of D. suzukii females to feed and lay eggs in a wide variety of cultivated
and non-cultivated host species allows this pest to have access to reproduction sites and
feeding sources year-round [22–25]. We have recently demonstrated that the nutrition
source modulates D. suzukii’s energetic pathways, in a way dependent on the fruits’ nutri-
tional geometry and sex, and that females showed higher adaptability in their energetic
metabolism shift to the diet [25]. Energetically more suitable hosts may provide better
conditions for feeding and development success of the offspring, and support D. suzukii
host preferences [26,27]. However, this dependence of energetic pathways on the nutri-
tional source may be important in winter, when food is limited and may justify the higher
plasticity of females to wider energetic plasticity.

Migration between crop and non-crop habitats has already been observed, depending
on the climate and host availability [28–30]. When temperatures start to decrease, there is
an increase in D. suzukii individuals captured in non-crop habitat traps, such as hedgerows
or forests [29]. Non-crop habitats are usually rich in wild ornamental fruit types, with
different ripeness stages (from unripe to fermenting or damaged fruits), providing D. suzukii
adults with food and oviposition sources [28,31,32]. Furthermore, as hedgerows and forest
habitats are usually more dense areas, they also provide shelter from cold and desiccation,
as they have higher temperatures and humidity than crop areas [33–35], allowing adults
to enter reproductive diapause and survive the winter until the first preferred cultivated
hosts start to bear fruit [21].
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3. Seasonal Polyphenism as a Thermoregulation Strategy

The invasion success of D. suzukii relies not only on its wide range of host species
and migration between crop and non-crop habitats, but also on its capacity to adapt to
novel environments and climates through phenotypic plasticity, particularly seasonal
polyphenism [36]. Seasonal polyphenism is the ability to manifest alternative phenotypes
depending on annual season in response to an environmental cue. This form of phenotypic
flexibility allows for coping with different environmental conditions across seasons and
maintaining adaptation year-round. Seasonal polyphenism exists in a wide diversity
of animals, such as changes in pattern and color in butterflies [37], or the change from
brown pelage or plumage color in the summer to white in the winter in some birds and
mammals (e.g., the rock ptarmigan or the snowshoe hare) [38,39]. In D. suzukii, seasonal
polyphenism occurs as a response to an environmental temperature cue, resulting in two
different phenotypes depending on the season: a summer morphotype (SM), which is the
most recurrent, and a winter morphotype (WM), found in colder seasons [40].

Tran et al. (2020) established a decision tree-based method to morphometrically distin-
guish seasonal morphs. Both WM males and females are larger than their SM counterparts,
with higher wing length, wing width, and hind tibia length [41,42]. This increase in body
size in ectotherms when development temperatures are lower is common across different
genera and is likely due to benefits associated with heat absorption [5]. Furthermore, larger
body sizes allow for increased storage of energy sources such as sugars and fats [43]. In
addition to size, D. suzukii seasonal polyphenism is also observed as a difference in body
color: WM adults have darker cuticles, with significantly higher abdominal melanization
than SM, especially on the third (in males) and fourth (in females) abdominal segments [44].
This increase in body melanization is in accordance with the theory of thermal melanism, in
which darker morphotypes have an advantage over lighter individuals in conditions with
lower temperatures and low levels of solar radiation, as they will eventually heat faster
than the lighter morphotypes [45].

Drosophila suzukii life cycle is closely related to temperature and photoperiod [46].
Similar to other insects, D. suzukii is chill-susceptible and can rapidly suffer at temperatures
below its freezing point [47–49]. Winkler et al. (2021) [50] estimated that the minimum
temperature for D. suzukii females’ oviposition is 13.2 ◦C, and for the eggs to successfully
develop into adults is 14.1 ◦C (although with a success rate of ≈20% compared to 85%
success rate when flies were kept at the optimum development temperature). At lower
temperatures, larvae and pupae also have longer developmental times, and adults can take
approximately one month to emerge at 9 ◦C [44]. The biochemical mechanisms associated
with phenotypic trait expression are often induced early in the development stages, and as
the development times are longer, WM adults are usually larger than SM [51].

4. Transcriptomic Changes Underlying Cold Adaptation and Survival

To date, only a few studies have explored the transcriptomic differences underlying
the observed seasonal polyphenism of D. suzukii, or how these differences can influence this
pest’s management. In 2016, Shearer et al. used RNA sequencing to identify transcriptomic
changes underlying WM physiology. This study showed that most of the upregulated
genes in the WM were involved in metabolic pathways such as glucose metabolism, tricar-
boxylic acid (TCA) cycle, and glycogen metabolism. Genes involved in morphogenesis,
development, and pigmentation were also upregulated in WM, explaining the phenotypic
differences between the two seasonal morphs related to size and melanization. In contrast,
genes involved in reproduction/oogenesis, such as those associated with the chorion,
eggshell formation, or oogenesis were downregulated in the WM [44]. These differences
in transcript levels were also estimated by Toxopeus et al. (2016) when analyzing the dif-
ferences in the expression of genes between WM and SM by RT-qPCR, with WM showing
higher levels of stress-related gene transcripts (Catalase (Cat), Superoxide dismutase (Sod),
heat shock proteins (HSP)) than SM flies, as well as diapause regulation (cpo and foxo), with
no expression of the Yp1 gene (vitellogenesis) detected in WM females [52]. In another
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study, Eriquez and Colinet (2019) acclimated 5-day-old adults to cold at 10 ◦C from 2 h to
9 days and showed that cold-acclimated flies had improved cold survival when compared
to non-acclimated flies. Cold-acclimated and non-acclimated flies were in a chill coma after
being exposed at 0 ◦C for 12 h, however, flies acclimated at 10 ◦C for 9 days had the fastest
chill coma recovery time compared to the other acclimation regimes. When comparing the
transcriptome of adults acclimated at 10 ◦C for 9 days to the non-acclimated adults, they
found several upregulated and downregulated genes in the cold-acclimated flies. Most of
the upregulated genes had GO-terms associated with ion transport, important to maintain
ion and water homeostasis; GO-terms associated with neuronal activity and carbohydrate
metabolism were also enriched. In contrast, and in accordance with the findings of Shearer
et al. (2016) and Toxopeus et al. (2016), there was a downregulation of genes associated with
oogenesis, suggesting that at 10 ◦C females will likely enter reproductive arrest [44,52,53].

The identification of these physiological changes that allow the survival of D. suzukii
at colder temperatures is of the utmost importance not only to understand the thermal
plasticity of this species, but also to develop SWD-focused management strategies. In
fact, differences in the effect of insecticides between SM and WM have been suggested,
especially Spinetoram, with WM appearing to be less susceptible than SM [54]. Additionally,
monitoring traps are less efficient during the winter, which could be associated with
differences in the response to volatiles between SM and WM [55]. Schwanitz et al. (2022)
found several differentially expressed genes between SM and WM associated with the
olfactory behavior of D. suzukii, namely those linked to food-seeking and mating behaviors,
reinforcing previous work that suggested that WM flies have different food preferences
than SM [56,57]. Considering that the flies surviving the winter are the most concerning at
the beginning of the fruiting season [21], it is essential to understand these transcriptomic
differences between SM and WM, to develop management practices targeted at WM flies
and therefore reduce the impact of the winter survivors on the first fruits.

5. Reproductive Arrest in Winter Morphs as a Result of A Metabolic Trade-Off

As the transcriptomic studies showed, the downregulation of several genes associated
with reproduction in WM when compared to SM points to a reproductive arrest of WM
flies. In the field, females with immature ovaries start to appear in traps during winter,
also with fewer eggs than females captured in summer [46,58]. This is a result of delayed
ovarian development at cold temperatures and could also be the result of a shift in the
females’ metabolism when faced with adverse conditions. Additionally, more than 50% of
males captured in the same period do not have sperm in their testes, but females usually
already have sperm stored in their spermathecae ready to be used as females exit their
reproductive arrest phase [59].

High energy reserves are necessary for females to invest in oogenesis and reproduction;
however, at cold temperatures, these energy reserves are required to survive and instead of
being invested in reproduction, there is a metabolic shift towards survival and extending
adult lifespan [60,61]. Cold-acclimated D. suzukii individuals have an increased accumula-
tion of cryoprotectant molecules such as carbohydrates, polyols, or amino acids [62], which
is in line with the increase in the expression of genes associated with metabolic pathways
found in transcriptomic studies, therefore revealing a metabolic trade-off of survival vs.
reproduction. When D. suzukii females enter a reproductive diapause, they are capable of
surviving longer periods and being more cold-tolerant than flies not entering reproductive
diapause [58]. This reproductive diapause is then rapidly reverted, as observed by Cloutier
et al., 2022, as flies that entered diapause were capable of reproducing successfully with
non-diapause flies when temperatures became warmer [63].
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6. How Is Climate Change Affecting D. suzukii Survival?

The impact of climate change on insect species is complex and difficult to isolate
given its interdependence with many other anthropogenic stressors, such as insecticides,
agricultural intensification, or deforestation, according to Wagner et al. (2021) [64]. Diverse
factors are changing the population dynamics of agricultural insect pests, including the
globalization of trade, which accelerates the epidemiological distribution of exotic pests;
the controversial use of agrochemicals, often also affecting endemic or beneficial insects or
promoting resistance in the pest population; and particularly the ongoing climate change,
which tends to provide conditions to widen the geographic distribution of pests [64].
However, climate change impacts not only agricultural insect pests but also their hosts,
as temperature changes eventually affect pest–host relationships and the relations of the
pests with other insects, such as natural enemies [1]. The global increase in temperature
during winter is one of the most important marks of climate change, even though in
some regions winters are predicted to become harsher and with sudden cold spells [3,4].
In D. suzukii, the injury associated with cold-stress increases as temperatures decrease.
However, cold acclimation improves cold tolerance to moderate or even intense cold-stress
exposures [48,53,65], and their survival is especially improved when flies are exposed to
fluctuating thermal regimes, which often occur during more temperate winters [66]. When
exposed to 3 ◦C for 20 h and a small daily warm period (1 h 20 min at 25 ◦C), with some
gradual cooling and warming mimicking natural environments, D. suzukii flies do not enter
reproductive arrest and the warmer periods allow them to recover from desiccation [67].
With such a complex cold adaptation, as well as rapid cold-stress recovery, we can predict
that warmer winters will help D. suzukii thrive in regions where it is now established, with a
decreasing need to overwinter and enter reproductive diapause. Such conditions will allow
to produce a higher number of generations per year [68], which may dramatically increase
the demographic potential of the species and promote population growth. Additionally,
warming winters in regions that are currently inhospitable for the species may promote
new colonization of these regions and increase the invasive capacity of the species [69,70].
A wider area of D. suzukii presence worldwide and higher demographic potential will
therefore lead to more fruit losses and economic damage.

7. Conclusions

Climate change provides a new paradigm regarding D. suzukii, as it promotes the
dissemination of this pest in regions previously considered not ideal for its development,
whilst promoting further adaptations to survive in new environmental conditions. More-
over, temperature fluctuations could have an impact on natural enemies (such as nematodes
and arthropods), reducing their activity and impairing the control of D. suzukii.

Knowing that D. suzukii WM respond differently to the olfactory cues present in traps
optimized for SM, together with their demonstrated higher resistance to insecticides, it is
of great importance to develop new strategies focused on WM such as traps with different
attractive compounds to be applied during winter (off-season) periods. This can prevent a
higher incidence of this pest during producing seasons, whilst promoting a reduction in
the use of harmful insecticides. Furthermore, producers should be informed and advised
by phytosanitary agents to take into account these adaptations and maintain some IPM
strategies year-round (e.g., mass trapping, attract-and-kill). Further studies should be
conducted to understand the overwintering adaptations of D. suzukii and double down on
the research of new specific traps/compounds and ecological management strategies to
control the pest during winter periods, with emphasis on WM.
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