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Simple Summary: Global climate change may expand the regions suitable for alien species beyond
their historical range. The striped field mouse (Apodemus agrarius) is a widespread species in Northern
Eurasia. Its current and future range expansion under climate change may negatively influence
public health and the economy. We studied the potential distribution of the striped field mouse and
assessed vulnerability of Northern Eurasia to A. agrarius invasion. We created an ensemble of species
distribution models to predict suitable niches across current and future climate changes. We found
that the range changes depended on both the sensitivity and scenario of climate change models.
The main trends included range expansion to the northeast, partial habitat loss in the steppe, and
formation of a continuous range from Central Europe to East Asia. The results are important for
minimizing new invasions of the striped field mouse and their negative consequences.

Abstract: The striped field mouse (Apodemus agrarius Pallas, 1771) is a widespread species in Northern
Eurasia. It damages crops and carries zoonotic pathogens. Its current and future range expansion
under climate change may negatively affect public health and the economy, warranting further
research to understand the ecological and invasive characteristics of the species. In our study, we used
seven algorithms (GLM, GAM, GBS, FDA, RF, ANN, and MaxEnt) to develop robust ensemble species
distribution models (eSDMs) under current (1970–2000) and future climate conditions derived from
global circulation models (GCMs) for 2021–2040, 2041–2060, 2061–2080, and 2081–2100. Simulation of
climate change included high-, medium-, and low-sensitivity GCMs under four scenarios (SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5). We analyzed the habitat suitability across GCMs and scenarios
by constructing geographical ranges and calculating their centroids. The results showed that the
range changes depended on both the sensitivity of GCMs and scenario. The main trends were
range expansion to the northeast and partial loss of habitat in the steppe area. The striped field
mouse may form a continuous range from Central Europe to East Asia, closing the range gap that
has existed for 12 thousand years. We present 49 eSDMs for the current and future distribution
of A. agrarius (for 2000–2100) with quantitative metrics (gain, loss, change) of the range dynamics
under global climate change. The most important predictor variables determining eSDMs are mean
annual temperature, mean diurnal range of temperatures, the highest temperature of the warmest
month, annual precipitation, and precipitation in the coldest month. These findings could help
limit the population of the striped field mouse and predict distribution of the species under global
climate change.

Keywords: Apodemus agrarius; rodent; climate change; global circulation models; invasive species;
species distribution models; eSDM; zoonotic pathogens
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1. Introduction

In recent years, research on climate change and biological invasions has intensified
worldwide [1–4]. Studies have shown that climate change affects disease transmission and
other aspects of the infectious process [5–8], for example, blood-sucking vectors [9,10]. A
major role of climatic factors in the circulation of pathogens of hantavirus infections [11] and
leptospirosis [12] involving invasive small mammals has been identified [13]. In the case
of the brown (Rattus norvegicus) and black (R. rattus) rats [14], it has been shown that rats
widely dispersed pathogens (particularly plague) from their native ranges in the process of
their invasions. In addition, as rats have invaded new territories, the number of pathogens
found in them has increased at least threefold [14]. A global meta-analysis of changes in the
range boundaries for 1700 species in the Northern Hemisphere showed that the northern
boundaries moved 6.1 km per decade northward, or 6.1 m per decade upward (p < 0.02) [15].
These estimates were developed for a moderate temperature increase of 0.74 ◦C in the
20th century, which caused latitudinal and altitudinal range shifts for many species [16].
Consequently, with the accelerated temperature increase predicted for the 21st century,
we expect even greater shifts in the species ranges. This will affect the extensiveness of
the invasive process and the possible increase in ecological and economic damage from
invasive species [17,18].

Climate change, including extreme events (e.g., floods, fires), can accelerate invasive
processes [19–21], and have a profound impact on the environment. In addition, human
impacts of transcontinental travel, land degradation, and conversion of natural ecosystems
to farmlands lead to the spread of many alien species, including the striped field mouse
(SFM)—Apodemus agrarius (Pallas, 1771) [21,22]. In Russia, the SFM carries 15 human
pathogens [23,24], and the list of diseases continues to grow [25,26]. The SFM is a good host
of ectoparasites, but it plays the greatest role in such non-vector-borne diseases as hemor-
rhagic fever with renal syndrome (HFRS), leptospirosis, and tularemia [27]. The Hantaan
orthohantavirus, whose main host is the SFM inhabiting the Far East of Russia, causes the
most severe course of the disease in humans, with a high mortality rate [28,29]. In the Euro-
pean part of the range, another hantavirus, less dangerous for humans, is associated with
the SFM: Dobrava-Belgrade orthohantavirus, genotypes Kurkino and Saaremaa [30–32]. Among
the leptospira, the SFM is the main host of Leptospira kirschneri, serovar Mozdok, whose
active foci are located in North Ossetia [23,33], and are found in Germany [34]. Extensive
invasions of the past, ongoing range expansion, and tangible negative consequences for
public health and agriculture [35] justify including the SFM in the list of the most dangerous
invasive species of Russia [36].

The SFM has undergone a significant range expansion over the past 24 kyr., with the
most recent invasions occurring in the 20th century. Currently, the striped field mouse
is a Palearctic rodent with a range divided into two large isolated areas: the western
part (Europe–Siberia–Kazakhstan) and the eastern part (Far East-China) [36–38]. The
significant part of its modern range is located in Russia. According to molecular genetic
analysis, the eastern part of the range is more ancient, while invasion to western regions of
Eurasia occurred later [38–41]. In the postglacial prehistoric times (about 17.7 (95% HPD
13.2–22.5) kyr.) [41], the SFM occupied West Siberian and East European habitats with
floodplain forests, shrubs, and meadows [23,42–46]. In the preagricultural times, the mouse
distribution was mosaic [47]. The SFM adapted to disperse widely, change habitats, rapidly
build up their numbers, and huddle in the secondary habitats during winter [48]. These
features are characteristic of many invasive species [49], and they fully manifested with the
beginning of anthropogenic transformations of landscapes, starting with plowing. Striped
field mice emerged from secondary habitats and invaded the croplands, field margins, and
arable lands [44–46,50]. By the 19th century, alongside the plowing of the forest-steppe area,
the SFM had taken over its current range in Eastern Europe [36,49,51], then moved north
(taiga area) with deforestation for agriculture, and followed irrigation projects down south
(steppe area) [23,44,51]. The northward expansion was mainly associated with human
settlements [52,53]. During the second half of the 20th century, due to global climate



Biology 2023, 12, 1034 3 of 30

changes, the SFM range expansion was noted in Germany, Italy, Austria, Czech Republic,
Slovakia, Hungary, Slovenia, Ukraine, Moldova, Azerbaijan, and Kyrgyzstan [14,15,33,34].
The invasion of the species continued at the turn of the 20th and 21st centuries [36,37,41].

Spatial distribution models (SDMs) are powerful modelling tools for analyzing inva-
sion risk and predicting potential range under climate change using (1) mechanistic SDMs
based on functional traits and physiological constraints, and (2) correlative SDMs relating
occurrence data to spatial environmental data [54,55]. There are case studies showing
that the two methods give consistent predictions both under current and different climate
change scenarios [55]. However, correlative SDMs are relatively more used for predicting
the spatial distribution of species and the effects of climate change because they have im-
portant advantages over mechanistic modelling methods. The advantages of the correlative
methods include the simplicity and flexibility of their data requirements, their relative ease
of use within freeware packages, and the ability to account for interactions between differ-
ent environmental factors. In this study, we use correlative SDMs to build models of the
species under current and feature climate change conditions. There are several examples of
the successful application of ecological modelling tools for biogeographic analysis aiming
to construct species distribution models for the TOP-100 most dangerous invasive species
in Russia [56]. However, these studies only included invasive trend analysis and SDM
construction under current climate conditions.

The goal of this study was to assess the impact of climate change on the distribution
of the SFM in northern Eurasia, and predict areas which may be suitable for establishment
under current and future climate scenarios. First, we used ensemble predictions extracted
from seven individual species distribution models (iSDMs), using 12 global climate change
models from the Coupled Model Intercomparison Project 6, grouped into three types
(high-, medium-, and low-sensitivity models), and four scenarios to predict suitable cli-
matic regions for the SFM. Second, using these ensemble models, we created maps of
suitable regions for current (1970–2000) and future (2021–2040, 2041–2060, 2061–2080, and
2081–2100) periods. Third, using predicted range changes, we assessed the vulnerability of
Northern Eurasia to SFM invasion.

2. Materials and Methods
2.1. Species Occurrence Records

We created the database of species occurrence records (hereafter records) in ArcGis
Desktop 10.8.1 [57] using our original field data [38], together with data from international
open access sources (GBIF) (www.gbif.org, accessed on 3 April 2018) (https://doi.org/10.154
68/fv3hn3, accessed on 24 May 2021, https://doi.org/10.15468/dl.zmubis, accessed on
3 April 2018). We distinguished three types of records. The first type contained records
described by exact geographic coordinates. For this data type, we removed duplicates and
applied accuracy control filters (i.e., records with location accuracy greater than 5 km were
excluded). The second type included records with locations depicted in the maps without
accurate coordinates. For this type of record, we determined geographic coordinates
from the base maps through geo-registration and linking the available locations to base
maps using at least 30 control points selected in the ArcGis Desktop 10.8.1 environment.
Base maps were obtained from Natural Earth public domain map datasets (https://www.
naturalearthdata.com/downloads/10m-cultural-vectors, accessed on 3 June 2018 ). For
the third type of data, we used only records, which allowed us to determine the exact
geographic coordinates using GoogleEarth (https://earth.google.com, accessed on 11 July
2018 ) with an accuracy of at least 5 km. We obtained the final dataset of 2012 records by
eliminating duplicate records and combining all three types of records.

2.2. Environmental Data (Current Climate)

In our study, we used 19 bioclimatic variables (hereafter variables) averaged over the
period 1970–2000, with a spatial resolution of 2.5 arc minutes (~5 km × 5 km), from the
WorldClim 2.1 database (https://www.worldclim.org/data/worldclim21.html, accessed on

www.gbif.org
https://doi.org/10.15468/fv3hn3
https://doi.org/10.15468/fv3hn3
https://doi.org/10.15468/dl.zmubis
https://www.naturalearthdata.com/downloads/10m-cultural-vectors
https://www.naturalearthdata.com/downloads/10m-cultural-vectors
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11 July 2018) [58]. Current (1970–2000) variables were estimated based on monthly minimum,
average, and maximum values of temperature and precipitation. The variables used in our
study included Bio_01 (annual mean temperature, ◦C), Bio_02 (mean diurnal range (mean
of monthly (max temp–min temp) ◦C)), Bio_03 (isothermality (Bio_02/Bio_07) × 100, %),
Bio_04 (temperature seasonality (standard deviation × 100), ◦C), Bio_05 (max temperature
of warmest month, ◦C), Bio_06 (min temperature of coldest month, ◦C), Bio_07 (tempera-
ture annual range (Bio_05–Bio_06) ◦C), Bio_08 (mean temperature of wettest quarter, ◦C),
Bio_09 (mean temperature of driest quarter, ◦C), Bio_10 (mean temperature of warmest
quarter, ◦C), Bio_11 (mean temperature of the coldest quarter, ◦C), Bio_12 (annual precip-
itation, mm), Bio_13 (precipitation of the wettest month, mm), Bio_14 (precipitation of
the driest month, mm), Bio_15 (precipitation seasonality (coefficient of variation), mm),
Bio_16 (precipitation of the wettest quarter, mm), Bio_17 (precipitation of the driest quar-
ter, mm), Bio_18 (precipitation of the warmest quarter, mm), and Bio_19 (precipitation
of the coldest quarter, mm). Previous studies showed the high efficiency of this set of
variables for building species distribution models under current and future global climate
changes [56,59–64].

2.3. Thinning Records and of Environmental Variables

To identify and reduce the spatial autocorrelation of records, we used a two-step
process [56]. First, we generated 17 subsamples of records in the spThin R package [64] by
using 17 thinning parameters with minimum distances between points from 35 to 595 km
in intervals of 35 km. Then, these 17 datasets were subjected to cluster analysis through
the average nearest neighbor index (ANNI) in ArcGis 10.8.1. The ANNI metric estimates
the degree of clustering of the records, with an estimate of the ratio of the average distance
from each point to its nearest neighbor to the expected average distance for a random
distribution. If ANNI = 1, the distribution is random; if ANNI > 1, the distribution is
dispersed; if ANNI < 1, the distribution is clustered. After this analysis, we selected a
reduced set of geo-referenced records DSred for which ANNI = 1.

A two-stage procedure was also used to select variables from the full WorldClim 2.1
dataset. First, we determined the training area of the iSDM by using the conventional
choice of selecting minimal convex polygons, which contained DSred [65]. However, the
conventional choice of background localities in convex polygons may have some limita-
tions, as this minimizes the contrast between presence and absence, so we also employed
the recommendations provided in the previous literature [66,67]. These studies suggest
selecting backgrounds from areas that are immediately adjacent to occupied habitats, but
are known to be unoccupied. For this reason, we combined two convex polygons located in
the western (Europe–Siberia–Kazakhstan) and eastern (Far East-China) parts of the species’
range, which directly included both occupied and unoccupied areas. Second, all records
from the DSred and the background points from the training area were represented in the
multidimensional space of variables (Bio_01, Bio_02,..., Bio_19). Next, we used principal
component analysis (PCA) with the “ade4” R package to visualize the points in the plane
formed by two PCA axes, i.e., we obtained a graphical representation for: (a) distribution of
background points, and plotting the scattering ellipsoid of records; and (b) representation
of the correlation between climatic variables with the construction of a correlation circle [55].
The obtained graphical objects (ellipsoid, correlation circle) allowed us to select the first
two variables. The variable from the correlation circle that is parallel to the major axis of
the scattering ellipsoid is chosen as the first variable. The second variable is the one that
is parallel to the minor axis. The remaining variables from the dataset(Bio_01, Bio_02,. . .,
Bio_19) were selected for inclusion in the models using the ENMTools R package [68].
Those variables were excluded, between which, the Spearman’s pairwise rank correlation
coefficient was greater than 0.72 in absolute value. Multicollinearity was assessed by the
VIF (variation inflation factor) using the Usdm R package [69]. A predictor variable is
considered multicollinear and is excluded if VIF > 5 [55].
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2.4. Environmental Data (Future Climate)

Distributions of the SFM were also modeled for future climatic conditions. To assess
the potential impact of global climate change on range dynamics of A. agrarius, we analyzed
40 global circulation models (GCMs) from the Coupled Model Intercomparison Project
(phase 6) (CMIP6) for the various climate change scenarios (Shared Socioeconomic Path-
ways, SSPx-y): SSP1-2.6 (low greenhouse gas (GHG) emissions in which CO2 emissions
are reduced to zero around 2075), SSP2-4.5 (intermediate GHG emissions in which CO2
emissions increase around the current rate until 2050, and then decrease but not reach
net zero by 2100), SSP3-7.0 (high GHG emissions where CO2 emissions double by 2100),
and SSP5-8.5 (very high GHG emissions where CO2 emissions triple by 2075) [70,71]. The
CMIP6 GCMs account for physical, chemical, and biological processes more accurately than
the models used in the CMIP5 [72–74]. Forty CMIP6 GCMs predict equilibrium climate
sensitivity (ECS) values ranging from 1.83 to 5.67 ◦C [75,76].

The ECS is the most important climatic parameter. It is defined as the change in global
average surface air temperature resulting from a doubling of carbon dioxide (CO2) concen-
tration as soon as the associated ocean–atmosphere–sea ice system reaches equilibrium. To
account for the main trends of climate change and variability of predictions, we divided
all CMIP6 GCMs into three groups characterized by different ESC values and selected
12 GCMs, as recommended in the literature [75,76]. These 12 GCMs are divided into
three groups: high-sensitivity models (Hsens) GCMs—CanESM5 [77], CNRM-CM6 [78],
CNRM-ESM2-1 [79], and IPSL-CM6A-LR [80] (4.6 ≤ ECS ≤ 5.6); medium-sensitivity mod-
els (Msens) GCMs—CNRM-CM6-1-HR [81], EC-Earth3-Veg [82], MRI ESM2-0 [83], and
BCC-CSM2-MR [84] (3.0 ≤ ESM ≤ 4.3), and low-sensitivity models (Lsens) GCMs—MIROC-
ES2L [85], MIROC6 [86], GISS-E2.1 [87], and INM-CM4.8 [88] (1.8 ≤ ESM ≤ 2.7). For the
selected models (12) and scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), raster layers
were created in *.gtif format, including variables (Bio_01,..., Bio_19) for the time periods
(2021–2040, 2041–2060, 2061–2080, and 2081–2100) under four SSPx-y scenarios. We created
three sets of ensemble models (Hsens GCMs, Msens GCMs, and Lsens GCMs) by taking
average values, and used the ensemble values as predictors. Our multimodel ensembles
average accounts for inherent variability of different GCMs and future climate change
scenarios.

2.5. Species Distribution Modelling

In recent years, different methods, including regression, machine-learning, and clas-
sification, have been used to create SDMs [56,61,89,90]. Discrepancies between methods
can be significant, and the performance of algorithms can differ [56,91]. Considering the
variability between methods and algorithms, we decided to use the ensemble modelling
approach. Ensemble models that combine predictions from multiple habitat models (called
ensemble members or individual models—iSDMs) may demonstrate higher performance
and robustness [56,91–94]. By using a wide range of approaches, ensemble modelling can
account for intermodel variability and uncertainty in projections [93]. However, predic-
tion uncertainty may also depend on GCMs and SSPx-y variation, which is important for
understanding basic trends [93].

We used the seven most effective iSDM building methods [56,90,93], which are imple-
mented in the Biomod2 v.4.2 R package [95]. They include two regression methods (GLM:
generalized linear model, GAM: generalized additive model), four machine-learning meth-
ods (ANN: artificial neural network, GBM: generalized boosting model, RF: random forest,
and MaxEnt: maximum entropy method), and one classification method (FDA: flexible
discriminant analysis) [95].

2.5.1. Determination of the iSDM Optimal Parameters

Although the tuning parameters of seven iSDMs (GLM, GAM, GBM, FDA, RF, ANN,
and MaxEnt), defined by default in the Biomod2 package [90], are based on a large set of
empirical data, they are not always effective [56,95,96]. For this reason, we have deter-
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mined the optimal parameters for each of the iSDMs using the Biomod2_tuning function.
Determining these parameters usually requires (in single-threaded-sequential-computing
mode) a large amount of computer time. To avoid this, we took advantage of the multi-
threaded computation mode (i.e., parallel computation) in the R package doParallel [97].
The Biomod2_tuning function provides two metrics to determine optimal iSDM param-
eters: AUC and AIC. The area under the curve (AUC) allows for the evaluation of the
quality of the binary classification and the effectiveness of prediction, i.e., the AUC value
characterizes the predictive power of a model [98]. According to the AUC value, the
model was graded as “poor” (if AUC = 0.6–0.7), “satisfactory” (AUC = 0.7–0.8), “good”
(AUC = 0.8–0.9), or “excellent” (AUC = 0.9–1.0) [98]. The Akaike metric (AIC) is a widely
used measure of complexity (number of explanatory variables used) and log-likelihood
of a model. Among the models built, the one for which the AIC value is minimal is the
best for specific data [98]. For some models (including GLM, GAM, and MaxEnt), the
optimal parameters are determined by minimizing AIC. For others, the optimal param-
eters are determined by maximizing the AUC. A description of the basic methods and
algorithms that were used to determine the optimal parameters of iSDMs is presented in
the Supplementary Materials.

2.5.2. Building iSDMs and Evaluating Model Performance

We constructed iSDMs using seven methods (GLM, GAM, GBM, RF, FDA, ANN,
MaxEnt) implemented in the Biomod2 v.4.2 R package [89]. For all iSDMs, we generated
1000 pseudoabsence points in the training area. The number of pseudoabsence points
was generated [99] according to the number (N) of records (if N ≤ 1000 then 1000 points
were selected, else 10,000 were selected). This procedure was repeated three times. The
pseudoabsence points were obtained using the “Sre” generation strategy [95], because this
strategy reduces the random generation of false pseudoabsence points. Individual models
(iSDMs) were then constructed using the BIOMOD_Modeling function with the optimal
parameter values identified in the previous step (see Section 2.5.1). Optimal parameters in
Biomod2 were set using the function BIOMOD_ModelingOptions, i.e., all default parameters
for all models were replaced by their optimal values. The predictive performance of
each iSDM was evaluated by randomly splitting the records three times into two parts,
i.e., the models were trained using 80% records, and the accuracy was evaluated using the
remaining 20% of records. For each of the seven methods, nine iSDMs were created for
three different sets of pseudoabsence points, and three different runs of dividing the records
into two parts of samples for training and testing. The predictive performance of the iSDMs
was assessed using three metrics: true skills statistics (TSS), Cohen’s Kappa (KAPPA),
and AUC [98]. The TSS metric ranges from −1 and +1, where +1 indicates “perfect”
agreement, “excellent” 0.8 < TSS < 1, “good” 0.6 < TSS ≤ 0.8, “satisfactory” 0.4 < TSS ≤ 0.6,
and “poor” TSS ≤ 0.4 [55]. The KAPPA metric assesses model predictive performance
on the following scale: “excellent” KAPPA > 0.75, “good” 0.4 < KAPPA ≤ 0.75, and
“poor” KAPPA ≤ 0.40 [55].

For each iSDM, we also created response curves and the relative importance of each
variable [89]. In general, it is difficult to assess the importance of predictor variables because
they are not based on the same algorithms, methods, and approaches. However, the Biomod2
package provides a common approach for estimating a measure of the importance of each
variable, which is independent of the model. Once iSDMs with optimal parameters are
constructed (i.e., there is a standard or reference predictions), one particular variable is
randomized and a new prediction model is created. Then, the Pearson correlation coefficient
(Pcor) between this new prediction and the reference prediction is calculated, and this
Pcor coefficient is considered to give an estimate of the importance of the variable in the
model. The importance of a variable is determined by the formula: VarI = 1 − Pcor. This
means that if there is a high correlation between the two predictions, then the randomized
variable has little effect on the prediction, and it is considered not important to the model.
In contrast, a low correlation (Pcor close to 0) indicates a significant difference in prediction,
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indicating the importance of this variable to the model. It should be noted that this method
takes into account only the direct effects of the variables, and does not allow us to identify
the combined effect of the importance of the variables.

2.5.3. Building Ensemble Models (eSDMs) under Current and Future Climate Conditions

Ensemble modelling under current climate conditions. To ensure that the ensemble
models did not use spurious models with low metrics of predictive performance, we in-
cluded only those iSDMs for which the TSS metric was above 0.8 (see Section 2.5.2). In our
study, two relevant methods of ensemble aggregation were used—committee averaging
(CA), and weighted mean (WM) [55,89]. In addition, we determined the coefficient of varia-
tion (CV) of the models in the ensemble, which informs us about the extent of agreement or
divergence of predictions between models. These estimates allow us to identify the areas
where the predictions of the iSDMs diverge most. Since it is not known a priori which
method of combining iSDMs for building an eSDM is better, we first built three types of
models (eSDMCA, eSDMWM, and eSDMCV). Then, to obtain the final eSDMs, we evaluated
the model predictive performance of each method of aggregation using TSS metrics, and
selected the best one with the highest TSS value for projection from the training area into
Northern Eurasia.

For additional checking of the predictive performance of eSDMs, we also used the
Boyce index (Bind) [100,101]. The Bind only requires records, whereas KAPPA, AUC, and
TSS require both records and pseudoabsence points. The Boyce index measures how much
the predictive models differ from random distribution only using records. This index varies
from −1 to 1. Positive values indicate that the predictive model is consistent with the
occurrence data, values close to zero mean that the model does not differ from random
distribution, and negative values provide evidence of counter predictions, i.e., predict
poor-quality areas where presences are more frequent [101]. We calculated the Bind for each
of the 10 model replicates, and the averaged its estimates. The reasonableness of using this
index has been shown in previous studies [56,62,101–103].

Ensemble modelling under various group of GCMs and scenarios. Within the con-
cept of ensemble modelling in Biomod2, we used constructed iSDMs with optimal param-
eters and determined the best method of their combination to build eSDMs for different
groups of GCMs and scenarios of climate change in time. As a result, we built 48 ensemble
models for three groups of CMIP6 GCMs (Hsens, Msens, Lsens) and four climate change sce-
narios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) with 20-year steps (2021–2040, 2041–2060,
2061–2080, and 2081–2100).

2.6. Assessment of Range Dynamics under Future Climate (Various Groups of GCMs
and Scenarios)

First, we binarized the original 49 eSDMs maps for the analysis (1 current and 48 future
climate). We transformed the probabilistic maps obtained with help of Biomod2 binary
suitable/nonsuitable maps using the threshold maximizing the TSS [55]. Afterwards,
we evaluated the range shift under GCMs and climate change scenario for the selected
time period by comparing the binary eSDM under current climate conditions (1970–2000)
with the binary eSDMs obtained for a specific period (2021–2040, 2041–2060, 2061–2080,
2081–2100) using three metrics—gain, loss, change. The gain metric assesses the percentage
of area (number of pixels-locations) acquisition that was not used in the current climate.
The loss metric characterizes the percentage of area loss under the new climate. The change
metric is equal in value to gain − loss, and characterizes the percentage of area change under
the new climate. These estimates were made using the function of Biomod2_RangeChange.
This function allows us to estimate the proportion of area (relative number of pixels) lost,
gained, or stable for the time interval considered in the modelling of species range dynamics
under conditions of global climate change. Comparative analysis of gain, loss, and change
metrics for different GCM groups (Hsens, Msens, and Lsens), scenarios (SSP1-2.6, SSP2-4.5,
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SSP3-7.0, SSP5-8.5), and time periods (2021–2040, 2041–2060, 2061–2080, 2081–2100) was
performed using a three-factor analysis of variance (ANOVA) with fixed effects.

We constructed SDMs using R [104] and R packages Ape [105], Biomod2 [89], Raster [106],
Ecospat [107], ENMeval [108], ENMtools [68], SpThin [64], and Usdm [69]. In addition, we
applied R scripts presented in the literature [101] to assess the suitability of models using
RSTUDIO v. 1.4.1106 software [109]. Visualization of the eSDMs was carried out in the
ArcGis Desktop 10.8.1 environment [57].

3. Results
3.1. Characteristics of Records, Selected Predictor Variables, and Training Area

After applying the spThin subsampling procedure and the sequential removal of clus-
tering records, 78 records remained, for which the ANNI = 1.09, i.e., there is a random dis-
tribution of records (z-value = 1.59; p-value = 0.11; observed average distance = 292 km, ex-
pected average distance = 267 km). The full clustered records (z-value = −27.96; p << 0.01),
the reduced records (DSred), and the iSDMs training area are presented in Figure 1.
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Figure 1. Locations of the records and SDM training area based on the available data sets in Eurasia,
where A is the initial full clustered dataset, B is the reduced random distributed dataset, and C
represents masks (training area) used to calibrate iSDMs.

The distribution of A. agrarius records in the ecological space defined by the first
two PCA axes is presented in Figure 2. This figure shows that the directions of the scattering
ellipsoid axes for the full and reduced records are almost identical. In addition, the
major axis of the ellipsoid (Figure 2B) is approximately parallel to Bio_19 (Figure 2C),
and the minor axis to Bio_05 (Figure 2C). For this reason, the first two predictor variables
for A. agrarius are Bio_19 (precipitation of coldest quarter, mm) and Bio_05 (maximum
temperature of warmest month, ◦C). In Figure 2, these variables are highlighted in blue.
Bioclimatic variables Bio_01 (annual mean temperature, ◦C), Bio_02 (mean diurnal range
of temperature, ◦C), and Bio_12 (annual precipitation, mm) were also included in the set
of predictor variables because all pairwise Spearman rank correlation coefficients were
less than 0.72 in absolute value, and VIF coefficients for all variables were less than 5
(Figures S1 and S2, Table S1).
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3.2. Predictor Variables for Creating SDMs

The analysis of CMIP6 GCMs allowed the selection of three groups of high-, medium-,
and low-sensitivity (Hsens, Msens, Lsens) GCMs to study biological invasions in Northern
Eurasia. Below is a brief analysis of this group of GCMs and scenarios of climate change
in the 21st century. This is important, because we wanted to understand how much
warming and what range shifts of the SFM are expected in the 21st century, compared to
the 20th century. It is currently known that a warming of 0.7 ◦C in the 20th century has
already caused the shift in ranges of many species by 6.1 km in a decade [15]. Our estimates
show that the temporal patterns of temperature and precipitation changes averaged across
groups of GCMs and scenarios have similar features, but they differ in magnitude (Table S2,
Figures S3–S6). For example, if the average warming for GCMs and scenarios reaches
1.5 (±0.2) ◦C by 2021–2040 compared to the baseline of 1970–2000, then within the three
groups of Hsens, Msens, Lsens GCMs, the warming by 2021–2040 is 1.66 (±0.15) ◦C,
1.53 (±0.17) ◦C, and 1.30 (±0.17) ◦C, respectively (Figure 3, Table S2). The maximum level
of warming is expected at the end of the 21st century (2081–2100). For all GCMs and
scenarios, on average, the temperature will increase by 4.97 ◦C for the Hsens GCMs. For the
Msens and Lsens GCMs, the warming level is lower, − 4.76 (±2.21) ◦C and 4.03 (±1.86) ◦C,
respectively. The estimates show that the mean diurnal range of temperature (Bio_02)
decreases against the background of warming, the value of which takes on the greatest
value for the Hsens GCMs (Table S3, Hsens). At the end of the 21st century (2081–2100),
Bio_02 for the Hsens, Msens, and Lsens GCMs is expected to decrease by 9% (−1.26 ◦C), 4%
(−0.35 ◦C), and 1% (−0.09 ◦C), respectively. These GCMs show increases by 37% (Hsens),
34% (Msens), and 5.9 ◦C (32% Lsens) in the maximum temperature of the warmest month
of the year (Bio_05) at the end of the century (2081–2100). In contrast to temperature
(Bio_01, Bio_02, Bio_05), the difference in precipitation (Bio_12, Bio_19) is less significant
for different groups of GCMs. Estimates have shown that at the end of the 21st century
(2081–2100), the increase in total annual precipitation (Bio_12) and total precipitation in
the coldest quarter of the year (Bio_19) are characterized by the following values: for
Hsens GCMs: Bio_12 – 14% (62 mm), Bio_19 – 20% (12.4 mm); Msens GCMs: Bio_12 – 14%
(62 mm), Bio_19 – 14% (9.0 mm), and Lsens GCMs: Bio_12 – 11% (47 mm), Bio_19 – 12%
(7.6 mm) (Figures S3–S6).
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different groups of GCMs, Hsens (B), Msens (C), and Lsens (D), under different SSPx-y climate
change scenarios in Northern Eurasia.

The difference between the warming rates of the average annual temperature (Bio_01)
and the total amount of annual precipitation (Bio_12) leads to a shift in the aridity index
(IDM) of de Martonne [75], i.e., there is a decrease in the degree of moistening of the territo-
ries, and aridification of the entire Russian territory (Table S3). For example, if under current
climate conditions IDM = 8.3, then the index value by 2021–2040, 2041–2060, 2061–2080, and
2081–2100 for GCMs and scenarios will be 6.86, 5.94, 5.27, and 4.8, respectively.

3.3. Optimal Parameters of iSDMs

The optimal iSDM parameters obtained from the Biomod2_tuning function are shown
in Table 1. This table also lists the default model parameters. The dependence of the
AUC value on the parameters of the GAM, GBM, FDA, RF, ANN, and MaxEnt models
are shown in Figures S7–S12. From these figures, we can see that for the GAMs with
optimal parameters, predictive power improves by 0.13, i.e., the AUC metric with default
parameters is 0.86 (AUCdef = 0.86), and with optimal parameters it is 0.99 (AUCopt = 0.99)
(Figure S7). The improvement of the AUC for the GBMs is significantly less (0.03) than
GAMs, i.e., AUCdef = 0.94 and AUCopt = 0.97 (Figure S8). For FDA models, the predictive
power improvement in terms of AUC is 0.08, i.e., AUCdef = 0.9 and AUCopt = 0.98 (Figure S9).
For RF models, the improvement is the same as for FDA models, i.e., AUCdef = 0.915 and
AUCopt = 0.985 (Figure S10). For ANN, the quality improvement of the models is 0.09,
i.e., AUCdef = 0.89 and AUCopt = 0.98 (Figure S11). The improvement of the MaxEnt models
with optimal parameters in terms of AUC is 0.07, i.e., AUCdef = 0.91 and AUCopt = 0.98
(Figure S12).
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Table 1. Optimal parameters of iSDMs (GLM, GAM, GBM, FDA, RF, ANN, MaxEnt).

iSDM Methods Default Parameters Optimal Parameters

GLM type = ‘quadratic’; interaction.level = 0;
myFormula = NULL

type = ‘quadratic’; interaction.level = 0;
myFormula = A. agrarius~Bio_01 + I(Bio_012) + Bio_02 +
I(Bio_022) + Bio_05 + I(Bio_052) + Bio_12 + I(Bio_122) +

Bio_19 + I(Bio_192)

GAM k = −1, interaction.level = 0;
select = FALSE

k = 2, interaction.level = 1;
select = FALSE

GBM n.trees = 2500; interaction.depth = 7;
shrinkage = 0.001

n.trees = 10,000, interaction.depth = 9,
shrinkage = 0.0005

FDA add_args = NULL (degree = 1; nprune = NULL) degree = 2; nprune = 16

RF ntree = 500; mtry = 4, nodesize = 5,
maxnodes = NULL ntree = 500; mtry = 2, nodesize = 5, maxnodes = NULL

ANN size = NULL (=5); decay = NULL size = 6; weight decay = 0.001

MaxEnt
Linear = TRUE; Quadratic = TRUE;

Product = TRUE; Threshold = TRUE;
Hinge = TRUE, RM = 1

Linear = TRUE; Quadratic = TRUE; Product = FALSE;
Threshold = FALSE; Hinge = TRUE, RM = 4

3.4. Variable’s Importance in Created SDMs, Bioclimatic Niche Analysis, and Variable
Response Curves

Violin plots of the variable’s importance are shown in Figure S13. This figure shows
that for the two regression models (GLM, GAM), the most important variable is Bio_01
(VarI = 0.94 ± 0.006). For machine-learning models (ANN, GBM, RF), the importance of this
variable is not significantly lower (VarI = 0.89 ± 0.04). For the FDA and MaxEnt models,
the significance of this variable is VarI = 0.86 ± 0.01 and VarI = 0.87 ± 0.02, respectively. For
the eSDM ensemble model, the importance of variable Bio_01 has an intermediate value
(VarI = 0.90 ± 0.01). The second important variable for all models is Bio_05 (Figure S13).
The second and third important variables in all models are Bio_05 and Bio_19, respectively
(Figure S13). The next important variables differ little in the models, but in eSDM the
importance of variables Bio_02 and Bio_12 differ significantly (VarI = 0.09 ± 0.01 and
VarI = 0.18 ± 0.02) (Figure S13). Overall, a multiple analysis of the mean importance values
of the variables in the eSDM using the Tukey HSD criterion showed (F = 4612, p << 0.01)
that the importance of the variables differed significantly from one another.

The bioclimatic niche of A. agrarius can be described by the tolerance of environmental
factors at which the species can survive. Figure 4 shows the distribution of records along
five of the environmental gradients making key contributions to the models. The tolerance
of species for each predictor variable was estimated using the full set of A. agrarius occur-
rence records in the native and invasive parts of the range (Figure 4). The centroid of the
niche of A. agrarius, in terms of average annual temperature, occupies a position in the
region of positive temperatures (4.1 ± 3.83 ◦C), which differs significantly from the average
annual temperature (−4.82 ◦C) in Russia (t = 93.3, p << 0.01). Niche centroids with regard
to the other variables have a low coefficient of variation (CV = 17.8%) of average diurnal
range of temperature (9.7 ± 1.83 ◦C), a high value of the maximum temperature of the
warmest month (23.8 ± 1.83 ◦C) at a low value of CV (13.2), a relatively high value of CV
(33%) of total annual precipitation (534 ± 178, mm), and rather high values of CV (=58%)
of total annual precipitation in winter (85 ± 49, mm).

Although the response curve plots for the five variables in the GLM, GAM, GBM, FDA,
RF, ANN, and MaxEnt models were constructed from a reduced set of records, they cor-
rectly identify the tolerance zones of the species to environmental factors (Figures S14–S20).
In summary, these response curves for variables Bio_05 (maximum temperature in summer)
and Bio_19 (precipitation in winter) show that the species prefers habitats that are character-
ized by summer temperatures from 16 to 30 ◦C, and winter precipitation in the range from
10 to 200 mm. The response curves for Bio_12 show that the annual precipitation ranges
from 250 to 750 mm. The response curves for Bio_01 and Bio_02 show that the ranges of
variations are −1 to 10 ◦C and 8 to 15 ◦C, respectively.



Biology 2023, 12, 1034 12 of 30Biology 2023, 12, x FOR PEER REVIEW 12 of 30 
 

 

 
Figure 4. Histogram of A. agrarius occurrence along a gradient of (A) annual mean temperature, (B) 
mean diurnal range of temperature, (C) maximum temperature of the warmest month, (D) annual 
precipitation, and (E) precipitation of coldest quarter. Red lines indicate average positions (centroids) 
of ecological niches along environmental gradients. 

Although the response curve plots for the five variables in the GLM, GAM, GBM, 
FDA, RF, ANN, and MaxEnt models were constructed from a reduced set of records, they 
correctly identify the tolerance zones of the species to environmental factors (Figures S14–
S20). In summary, these response curves for variables Bio_05 (maximum temperature in 
summer) and Bio_19 (precipitation in winter) show that the species prefers habitats that 
are characterized by summer temperatures from 16 to 30 °C, and winter precipitation in 
the range from 10 to 200 mm. The response curves for Bio_12 show that the annual 
precipitation ranges from 250 to 750 mm. The response curves for Bio_01 and Bio_02 show 
that the ranges of variations are −1 to 10 °C and 8 to 15 °C, respectively. 

3.5. Predictive Performance of SDMs 
The predictive power assessments of iSDMs, as determined by the three metrics TSS, 

AUC, and KAPPA, are presented in Figure 5. The mean values of the TSS, KAPPA, and 
AUC metrics for all iSDMs obtained across all methods are 0.90 ± 0.05, 0.76 ± 0.08, and 0.97 
± 0.02, respectively. We will consider the assessments of the models’ accuracy using the 
TSS metric as an example, since it is recommended to use with a threshold value of 0.8 to 
create ensemble models. Using this threshold value to create ensemble models ensures 
that only “excellent” iSDMs will be used to create an ensemble model (see Section 2.5.2). 
Although the average value for TSS (Figure 5A) is quite high, 0.90, there is one 
implementation each from the FDA (TSS = 0.758), ANN (TSS = 0.763), and RF (TSS = 0.8) 
models, which have TSS metrics less than or equal to 0.8. It follows that, with a threshold 
value of TSS = 0.8, 60 iSDMs, i.e., 95% of all 63 models, will be taken into account when 
creating an ensemble model. 
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of ecological niches along environmental gradients.

3.5. Predictive Performance of SDMs

The predictive power assessments of iSDMs, as determined by the three metrics
TSS, AUC, and KAPPA, are presented in Figure 5. The mean values of the TSS, KAPPA,
and AUC metrics for all iSDMs obtained across all methods are 0.90 ± 0.05, 0.76 ± 0.08,
and 0.97 ± 0.02, respectively. We will consider the assessments of the models’ accuracy
using the TSS metric as an example, since it is recommended to use with a threshold
value of 0.8 to create ensemble models. Using this threshold value to create ensemble
models ensures that only “excellent” iSDMs will be used to create an ensemble model
(see Section 2.5.2). Although the average value for TSS (Figure 5A) is quite high, 0.90,
there is one implementation each from the FDA (TSS = 0.758), ANN (TSS = 0.763), and RF
(TSS = 0.8) models, which have TSS metrics less than or equal to 0.8. It follows that, with a
threshold value of TSS = 0.8, 60 iSDMs, i.e., 95% of all 63 models, will be taken into account
when creating an ensemble model.

The predictive power of ensemble models created using two aggregation strategies
(CA, WM) of iSDMs in term of TSS, KAPPA, AUC, and Boyce metrics is presented in
Figure 5. There is an improvement in the estimates of all TSS, AUC, and KAPPA metrics
obtained by both the CA and WM strategies. If the average of the TSS metric for iSDM
was 0.90 ± 0.05 (Figure 5A), then for ensemble models, these metrics were higher: for the
CA strategy–TSS-CA = 0.94 ± 0.0005, and for the WM strategy TSS-WM = 0.94 ± 0.004
(Figure 5D). At the same time, the dispersion of estimates decreased by more than 16 times.
We can see from the figure that the quality scores of the eSDMs also improved on the
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KAPPA metrics (Figure 5B,D); for iSDMs it was 0.76 ± 0.08, for eSDMs on the CA strategy
KAPPA-CA = 0.78 ± 0.002, and for the WM strategy KAPPA-WM = 0.77 ± 0.007. In
addition to the increase in accuracy, there also are 40 and 11 times decreases in variance for
the CA and WM strategies, respectively. The same significant improvements are observed
for the AUC metric (Figure 5C,D): for iSDM-AUC = 0.97 ± 0.02, for eSDM by CA-strategy
AUC-CA = 0.99 ± 0.0005, and by WM strategy AUC-WM = 0.99 ± 0.0005.
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Figure 5. Violin plots of predictive power of iSDMs and eSDM constructed by two strategies of
iSDM aggregation WM (TSS-WM, KAPPA-WM, AUC-WM, Boyce-WM) and CA (TSS-CA, KAPPA-
CA, AUC-CA, Boyce-CA), in panels (A–C) presented TSS, KAPPA, AUC metrics values for iSDMs
respectively, and in the panel (D) presented TSS, KAPPA AUC, Boyce metrics values of eSDMs for
both strategies (WM, CA) of aggregation.

We additionally assessed the quality of the ensemble models using the Boyce index
(Bind) (Figure 5D), which showed rather high Bind for both CA and WM strategies: Boyce-
CA = 0.98 ± 0.0009, and Boyce-WM = 0.98 ± 0.001. Subsequently, to build ensemble models
for various group of GCMs and scenarios of climate change in the 21st century, we chose
the CA strategy to combine models, because the variance of predictions by this strategy is
less than the WM strategy.

3.6. Potential Habitat Suitability of the SFM under Current Climatic Conditions

The eSDM created for current climate conditions shows that for the SFM, climatic
suitability is higher in the central and south of European Russia, in the south of Western
and Central Siberia, and in Russian Far East regions. Lower suitable ones are located in
the gap zone in Transbaikalia, in the north of the European part of Russia, including the
Republic of Karelia and the Arkhangelsk Region (Figure 6). The map (eSDM) also indicates
suitable regions for the SFM in western Kamchatka, although this species has not yet been
found in these regions.
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3.7. Assessment of Species Range Shifts under Global Climate Change

Below are the results of a comparative analysis of the impact of different GCMs (Hsens,
Msens, Lsens) and scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) on the SFM range shift
in 2021–2100 with a step of 20 years. A comparative analysis of the estimates of gain metric
of suitable areas shows that changes in terms of this index over time depend on the GCM
groups (F = 151.8, p << 0.001, R2 = 99.6%, Figure 7A, Table S4). The figure shows that while
gain in the initial period in 2021–2040 does not differ for all groups of GCMs, for Lsens
GCMs, this metric statistically significantly differs (p < 0.05) from Msens and Hsens GCMs
for 2061–2080. A statistically significant difference in terms of gain for Msens and Hsens
GCMs is observed only at end of the 21st century (2081–2100). The averaged values of
the gain across the GCMs show that the difference in this metric across the four scenarios
begins to differ particularly markedly (F = 384.5; p < 0.01) from the period 2061–2080
(Figure 7B). Estimates of the influence of different factors show that the gain of new areas
is influenced by both the main factors (models, scenarios, years) and their interaction
(p < 0.05) (Table S4). In contrast to gain, loss of areas is weakly expressed (F = 2.43, p = 0.03,
R2 = 79.6%), since a statistically significant difference is detected only for the main factors
(models: F = 3.83, p = 0.04; scenarios: F = 7.75, p = 0.02; years: F = 6.14, p = 0.005) (Table S4).
The interaction of these factors is not statistically significant (p > 0.05, Table S4). The average
area loss for the Lsens, Msens, and Hsens GCMs is 7.2% (±0.12) (Figure 7C,D).

Overall assessments of the change index show that statically significant differences
are revealed both by the main factors (models: F = 140.2, p << 0.01; scenarios: F = 403.2,
p << 0.01; years: F = 888.3, p << 0.01), and interactions of factors (models × scenarios:
F = 3.70, p = 0.01; models × years: F = 14.4, p << 0.01; scenarios × years: F = 78.0, p << 0.01)
(Table S4, Figure 7E,F). This is because these changes are more related to the gain of new
areas, and a shift in range from south to north and from west to east (Figures 8–10). The
average values of changes in the areas according to all GCMs and scenarios of the species
in Russia by 2081–2100 is 86.4% (±0.5). For the group of Lsens, Msens, and Hsens GCMs,
the changes in the species’ range area by 2081–2100 are 75.2% (±0.8), 89.3% (±0.8), and
94.8% (±0.8), respectively. The ordering of changes in the areas according to the SSPx-y
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scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) shows that the largest value is achieved
for SSP5-8.5 (107.8%), and the smallest for SSP1-2.6 (64.2%), i.e., the most aggressive
climate change scenario (SSP5-8.5) results in 1.7 times more area change compared to the
moderate scenario (SSP1-2.6). For other scenarios, SSP2-4.5 and SSP3-7.0, these metrics
are intermediate, and amount to 80.5% and 93.4%, respectively. A temporal comparative
analysis of the change in the area of the species range shows that by 2081–2100, the change
(117%) will be 2.2 times higher than in 2021–2040 (53%). Changes in the range area by
2041–2060 (76%) and 2061–2080 (100%) will increase by 1.4 and 1.9 times compared to
2021–2040, respectively.
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change are shown in Figures 8–10. These models predict that global warming will expand 
potentially suitable areas for A. agrarius. Moreover, these maps show that the centroid of 
species range will move from south to north and from west to east (Figure 11). Outcomes 
show that the centroid shift of range for Hsens is 753 (±9) km, while for other Msens and 
Lsens it is 670 (±9) km and 615.4 (±9) km, respectively. It is important to note that the shifts 
of the range centroids from west to east (Slong) and from south to north (SLat) differ 
significantly (Hsens: Slong = 720 km, Slat = 289 km; Msens: Slong = 621 km, Slat = 295 km; 
Lsens: Slong = 576 km, Slat = 258 km), i.e., the shift of the centroid by longitude is two 
times more than by latitude (Figure 11). 

Figure 7. Comparative analysis of gain, loss, and change metrics of A. agrarius areas under three
groups of GCNs and four scenarios of global climate change using three-way analysis of variance
(ANOVA) with fixed effects. Means are presented with Tukey’s 95% confidence intervals. In the
panels (A,C,E) presented Gain, Loss and Change metrics values respectively, depending on GCM
sensitivity (Hsens, Msens, Lsens), and in the panels (B,D,F) presented Gain, Loss and Change metrics
values respectively, depending on climate change scenarios (SSPx-y).

Changes in the potential distribution of A. agrarius from 2021 to 2100 under the
conditions of three groups of CMIP6 GCMs and four SSPx-y scenarios of global climate
change are shown in Figures 8–10. These models predict that global warming will expand
potentially suitable areas for A. agrarius. Moreover, these maps show that the centroid of
species range will move from south to north and from west to east (Figure 11). Outcomes
show that the centroid shift of range for Hsens is 753 (±9) km, while for other Msens and
Lsens it is 670 (±9) km and 615.4 (±9) km, respectively. It is important to note that the
shifts of the range centroids from west to east (Slong) and from south to north (SLat) differ
significantly (Hsens: Slong = 720 km, Slat = 289 km; Msens: Slong = 621 km, Slat = 295 km;
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Lsens: Slong = 576 km, Slat = 258 km), i.e., the shift of the centroid by longitude is two times
more than by latitude (Figure 11).
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Figure 8. Changes in the potential distribution of A. agrarius in Russia from 2021 to 2100 under Hsens
GCMs and four scenarios SSPx-y of global climate change. The red and black circles indicate the
centroids in the current (1970–2000) and under four climate change scenarios in the future, the blue
arrow indicates the direction of the centroid’s shift.
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Figure 9. Changes in the potential distribution of A. agrarius in Russia from 2021 to 2100 under Msens
GCMs and four scenarios SSPx-y of global climate change. The red and black circles indicate the
centroids in the current (1970–2000) and under four climate change scenarios in the future, the blue
arrow indicates the direction of the centroid’s shift.

These maps show that area loss under various climate change models and scenarios
happens mainly in the steppe (Volgograd, Astrakhan, Saratov, and Orenburg regions), as
well as the mountainous areas of the Dagestan Republic (Figures 8–10). Stable suitable areas
are confined to the south of western and central European Russia, the southern regions of
the Urals and Siberia, and the south of the Russian Far East.
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Figure 10. Changes in the potential distribution of A. agrarius in Russia from 2021 to 2100 under
Lsens GCMs and four scenarios SSPx-y of global climate change. The red and black circles indicate
the centroids in the current (1970–2000) and under four climate change scenarios in the future, the
blue arrow indicates the direction of the centroid’s shift.



Biology 2023, 12, 1034 19 of 30Biology 2023, 12, x FOR PEER REVIEW 19 of 30 
 

 

 
Figure 11. Geographical distribution of A. agrarius potential range centroids from the late 20th 
century to 2100s under groups of (A) Hsens, (B) Msens, and (C) Lsens GCMs and four scenarios 
SSPx-y of global climate change. The geographic position of the centroid of the potential range 
under current climate is indicated by blue star. 

Figure 11. Geographical distribution of A. agrarius potential range centroids from the late 20th century
to 2100s under groups of (A) Hsens, (B) Msens, and (C) Lsens GCMs and four scenarios SSPx-y of
global climate change. The geographic position of the centroid of the potential range under current
climate is indicated by blue star.
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4. Discussion
4.1. Model Considerations

A comprehensive consideration of the effects of various aspects (selection and/or
definition of randomly distributed records, uncorrelated predictor variables, training area
and optimal parameters of iSDMs, strategy and number of generation pseudoabsence
points, SDM quality assessment metrics, method of combining iSDMs, thresholds for
map binarization) of modelling is necessary for improving predictions of spatial pat-
terns of biological invasions under conditions of global climate change. Currently, the
above-mentioned aspects of modelling are among the important, but still insufficiently
resolved issues of environmental modelling. Nevertheless, we followed best modelling
practices [62–68,90–97,110–117] and created acceptable eSDMs with high values of Boyce
indices (0.98 ± 0.0009). There are many different scoring measures to determine the ac-
curacy and predictability of SDMs, such as the AUC, KAPPA, TSS, Boyce, or the Jaccard
and Sorensen indices [55,66,67,102,112]. In our study, we selected AUC, KAPPA, and TSS
to calibrate iSDMs. Although these methods are widely used in ecological modelling,
some studies showed that AUC, KAPPA, and TSS may give misleading measures of model
performance due to their dependence on prevalence [66,67,112]. For this reason, we addi-
tionally used the Boyce index to evaluate the accuracy of eSDMs. Final verification of the
constructed eSDMs under current climate conditions using the Boyce index is important
because it requires only records data, and guarantees the reliability of projecting the eS-
DMs in space and time under conditions of global climate change. Overall, SDMs are a
useful tool in determining how the SFM will change its current range under future climate
change. However, it is also clear that there are some limitations to SDMs in predicting the
invasive spread. Geographic shifts in species range involve multiple ecological factors,
such as dispersal, invasion pathways, physiology, between-species and interpopulation
interactions, and evolution, operating at multiple scales [39,41,55,56]. Correlative SDMs
cannot explicitly account for the effects of these factors, which interact with ecological
processes, and may ultimately cascade to influence the invasive process [94]. Furthermore,
there are other potential issues associated with the exclusion of topographic and landscape
variables from models that can influence model outcomes [102,103]. In addition, future
land use change scenarios (e.g., road building, deforestation for agriculture, expansion
of agricultural fields) can also alter future species distributions. Improvements of SDMs
based on long-term monitoring and ecological data, as well as increasing the dataset of
occurrence records, are critical issues for enhancing the predictive accuracy of the models.
However, we believe that the results we obtained are ecologically meaningful and mostly
in accordance with our field survey data [36,38,56]; thus, additional consideration of other
factors and alternative modelling options should not deviate significantly from the results
presented in this study.

4.2. Why Are Selected Variables Important for the Creation of iSDMs and eSDMs?

Our analysis showed that among the variables that determine the iSDMs and eSDMs,
four variables are the most important—Bio_01 (annual mean temperature), Bio_05 (max
temperature of warmest month), Bio_12 (annual precipitation), and Bio_19 (precipitation
of the coldest quarter). The importance of these variables for the species is confirmed by
numerous studies conducted in the native and invasive parts of the range [46,118–120].
Rodent reproductive activity is regulated by temperature, precipitation, and the availability
of sufficient food [119]. The temperature of the environment can have a strong influence
on the reproductive rates of A. agrarius. For example, on agricultural land in China, the
proportion of pregnant females increased with seasonal warming. At an average monthly
temperature of 10 ◦C, it was 20%, and at 15–24 ◦C it was 60% [120]. However, hot summers
(average monthly temperature ≥ 29 ◦C) reduced the rate of reproduction, which led to a
bimodal pattern of population growth [120]. In the Primorsky Territory Nature Reserve
in Russia, the litter size decreased in dry years. This confirms the hypothesis that acute
thermal stress can have a negative impact on survival and reproduction [121,122].
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Our estimates of average positions (centroids) of ecological niches along environmental
gradients show a good agreement between the literature and our data. The evaluation
of the centroid of the realized niches in terms of the Bio_05 variable showed that the
maximum temperature of the warmest month (23.8 ± 1.83 ◦C) is significantly less than 30 ◦C
(Figure 4C). The maximum temperature in summer is also consistent with the response
curves (Figures S14–S20). Although they differ for all models, nevertheless, most of the
curves of the Bio_05 variable in the GLM, GAM, GBM, RF, and MaxEnt models show the
optimal temperature range in summer—from 16 to 29 ◦C. Only for two FDA and ANN
types of iSDMs, the optimal range is not much wider—from 15 to 30 ◦C.

Westward expansion of A. agrarius in Central Europe, which was observed at the
turn of the 20th and 21st centuries, is associated with an increase in summer and winter
temperatures [121]. Numerous studies in the western part of the range (Bulgaria, Russia)
show that A. agrarius is more associated with higher moisture than other representatives
of its genus [38,47,120]. In regions with precipitation less than 500 mm/year, the habitat
preferences of the SFM become narrower, and it is found there mainly in humid habitats [23].
The assessment of the realized niche centroid in terms of variable Bio_12 showed that the
sum of annual precipitation is not significantly greater than 500 mm/year (534 ± 178, mm).
This estimate is also consistent with the response curves for the Bio_12 variable in the GLM
(Figure S14), GAM (Figure S15), GBM (Figure S16), RF (Figure S18), ANN (Figure S19),
and MaxEnt (Figure S20) iSDMs. From these curves, we can see that the optimal range of
annual precipitation is from 250 to 750 mm.

Overall, our study suggests that temperature (Bio_01) influences the survival and
reproduction of A. agrarius [118–121]. Of course, other environmental variables, such
as Bio_08 (mean temperature of wettest quarter, ◦C) and Bio_10 (mean temperature of
warmest quarter, ◦C), can also effect A. agrarius reproduction, but these were not used
because of the high Spearman correlation coefficient (Pspear) between Bio_01 and these
variables (Pspear > 0.72, Figure S1). Frequent or severe changes in temperature can also
have negative effects, so the variable of mean diurnal range of temperature was used in
model construction (Bio_02) [42]. It follows from both our and the literature data that
Bio_12 precipitation also influences species survival and reproduction [23], so this variable
was also used to construct the SDMs. While the importance of variables Bio_01, Bio_02,
Bio_05, and Bio_12 agrees with the published data [46,118–121], the importance of variable
Bio_19 is due to the presence of the winter precipitation threshold. On the one hand, the
small amount of snow in winter provides thermal conditions for the SFM to overwinter in
their burrows. On the other hand, rapid snowmelt in spring prepares them for the breeding
season to come. Based on our results, we can suggest a set of environmental drivers that
control the distribution of A. agrarius in Northern Eurasia.

4.3. Specific Features of the Potential Range of the SFM at the End of the 20th Century

The SFM is a common species and its distribution is relatively well-studied [23,24,26,37,38].
However, the current distribution of the species needs to be constantly adjusted, as the
mouse keeps invading different regions [36]. The potential range of the SFM (eSDM)
in Russia, based on seven iSDMs (GLM, GAM, GBM, RF, FDA, ANN, MaxEnt) under
the current climate conditions (Figure 6), is in good agreement with the known records,
including confirming the presence of the European–East Asian range gap.

The European–Eastern Asian range gap can be traced in vertebrates of different classes
(amphibians, reptiles, birds, mammals) [123,124]. This gap is revealed at different levels
of taxonomic differentiation of western and eastern forms. For species that spread to the
west, the gap often lies between 100◦ E and 110◦ E in Transbaikalia [125]. The range gap of
the SFM fits into this range gap, and almost until the end of the 20th century it extended
from Baikal to the upper reaches of the Amur River (Figure 6). At the same time, the
differentiation of the SFM from the western and eastern parts of the range does not reach the
subspecies level [39,41]. The range gaps began to be discussed as early as the 19th century,
largely because paleontologists and zoogeographers discovered East Asian species in
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Europe [125–127]. In the last 50 years, the emergence of the European–East Asian range gap
is more often associated with the events of the glacial period (more than 12 thousand years
ago) [124]. The SFM ventured westward during one of the interglacial periods at the end of
the Pleistocene, and the range gap may have occurred 38-9 thousand years ago [39,40]. It
is important to point out that the pathogens of the SFM inhabiting the west (the European–
Siberian–Kazakh part of the range) and the east of Eurasia (Far East-China) are different.
This is observed, for example, for hantaviruses and leptospiruses (see Introduction). In
other words, westward-dispersing SFM did not carry with them the causative agents of the
main infectious diseases that formed in east of Eurasia.

4.4. Expected Changes in Global Climate in the 21st Century

CMIP6 GCMs are used by scientists and policy-makers to interpret past and future cli-
mate change, and to determine appropriate policies and optimal responses to the dangerous
effects of climate change. However, these models are characterized by considerable uncer-
tainty. As we noted previously, the ECS metric ranges from 1.83 ◦C to 5.67 ◦C, which makes
their 21st century predicted warming levels very uncertain. In recent years (2020–2022),
studies have performed uncertainty reduction by testing for consistency between model
estimates of warming levels in 1980–2021, derived from CMIP6 GCMs and real ERA5-T2m
surface air temperature records [128–130]. Thirty-eight CMIP6 GCMs, divided into three
groups according to ECS (low-ECS, 1.80–3.00 ◦C; medium-ECS, 3.01–4.50 ◦C; high-ECS,
4.51–6.00 ◦C), were used for comparative analysis [130]. The results showed that the
GCMs with high- and medium-ECS agree poorly with the observed field data. Several
other studies have also shown that high ECS values (ECS > 3.0) are not supported by
observations [131–134]. However, the GCM groups with low ESC have been found to be
fully compatible, at least globally. Nijsse et al. [132] concluded that the most likely ECS
interval should be 1.9–3.4 ◦C, whereas alternative studies based on empirical data suggest
that the actual ECS may be even lower, probably between 1 and 2.5 ◦C [135–137]. Despite
the importance of this retrospective comparative analysis, however, the main findings
are tentative and require further verification. It is not obvious that the poor agreement
between the high- and moderate-sensitivity GCM estimates and experimental data for the
1980–2020 time period can automatically be extended to other future time intervals for the
period 2021–2100. Given the large range of ECS, and subsequent broad GCM predictions,
having information on which GCM to have more confidence in would be of great value
for biological invasions. However, in the absence of accurate estimates, there is a need to
use Hsens, Msens, and Lsens GCMs to account for major trends in climate change. For this
reason, we used all three groups of GCMs in this study. Among them is a group of Lsens
GCMs under the SSP1-2.6 scenario (Lsens GCMs-SSP1-2.6), which is in perfect agreement
with the empirical data [130]. For these Lsens GCMs-SSP1-2.6 models, moderate warming
(∆T) is expected over the next decades of the 21st century, i.e., ∆T for periods 2021–2040 and
2041–2060 will be less than 2.0 ◦C (∆T = 1.13 ◦C, ∆T = 1.89 ◦C, respectively) (Table S2). The
warming for the period 2061–2080 could be 2.15 ◦C, but after CO2 emissions are reduced to
zero by about 2075, the temperature for the period 2081–2100 would be 1.93 ◦C (Table S2,
Figure S6).

4.5. What Conclusions Can Be Drawn from the eSDMs under Climate Change?

Our predictive eSDMs, taking into account different groups of GCMs and scenarios of
climate change, show that the two parts of the range of the SFM may merge in the future.
However, the continuous range starts forming at different times in different GMCs and
scenarios. For example, if for Hsens GCMs, the gap loss occurs by 2061–2080 under the
SSP2-4.5 scenario, then for the SSP3-7.0 and SSP5-8.5 scenarios, it happens even earlier,
by 2041–2060 (Figure 8). For moderate-sensitivity (Msens) GCMs, this change becomes
noticeable under the SSP2-4.5 scenario by 2081–2100, and under the SSP3-7.0 and SSP5-
8.5 scenarios, by 2061–2080 (Figure 9). For the Lsens GCMs, the loss of the range gap is
noticeable by 2061–2080 under the SSP3-7.0 and SSP5-8.5 scenarios (Figure 10).
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Although the connection of the two parts of the range is a long process, the gap in the
range has already begun to shrink: at the end of the 20th century, the SFM was found in
Southeastern Transbaikalia within the territory that had been a range gap for this species
for more than a millennium [138,139]. It is difficult now to predict the consequences of the
merging of the western and eastern parts of the range, including the evolution of the SFM
pathogens. However, it should be remembered that the dispersal of mice from the eastern
part of the range, which is currently observed and predicted in the future, could trigger the
spread of a severe form of hantavirus infection that is dangerous for humans. These results
lead us to consider that the expected changes in the global climate, even under the most
realistic scenario of moderate warming (GCM Lsens SSP1-2.6), can lead to the formation of
a continuous range not only of the SFM, but also of other species with a European–East
Asian range gap, such as muskrat (Ondatra zibethicus) and mink (Neogale vison) [140].

Range dynamics of the species also show that in some parts of the steppe zone,
regardless of GCM sensitivity and climate change scenarios, the range of the SFM will
decrease in the future. This is due to the difference in the rate of change in temperature
and precipitation. Our climate change assessments (Table S3) show that by 2021–2040,
2041–2060, 2061–2080, and 2081–2100, the temperature will increase by 30%, 56%, 81%, and
103%, but precipitation will increase by only 6%, 9%, 11%, and 13%, respectively, i.e., there is
a decrease in the aridification index for the whole of Russia (Supplementary Table S3). This
conclusion is consistent with the decrease in the de Martonne aridity index [141] (Table S3).
Although, for different GCMs and scenarios, these indices differ from the means, but the
general patterns remain (Table S3). For example, for the group of the most realistic Lsens
warming GCMs, the de Martonne index decreases for the periods 2021–2040, 2041–2060,
2061–2080, and 2081–2100 are 7.02, 6.13, 5.55, and 5.18, respectively, i.e., the index decreases
will be 15%, 26%, 33%, and 38%, respectively. For this reason, in the steppe zone, the aridity
of the current habitats of the SFM will increase, natural habitats will become unsuitable
for the species, and irrigation is unlikely to be economically profitable, i.e., such habitats
will be lost [142]. Global climate change will affect the forest-steppe and forest zones
of the habitat to a lesser degree. The eSDMs also show that in the north of the Asian
part of Russia, the low-suitability habitat remains largely unchanged, while the medium
(moderate)-suitability habitat in the south of the Asian part of Russia and in the northwest
of the European part increases. Highly suitable habitats in central European Russia and
the Far East remained unchanged. Overall, our results indicate that future habitats will
be predominantly located in warm, humid, flat or low-mountain environments, with the
northern regions, including the Kola Peninsula, and eastern Northern Eurasia, including
Kamchatka, being at the highest risk of invasion.

4.6. Differences in the Impact of GCMs and Scenarios on the Dynamics of Range Change

The location and area of habitat suitable for the SFM vary across GCMs (Hsens, Msens,
Lsens) and SSPx-y scenarios, indicating increasing uncertainty about the pattern and rate of
its distribution under climate change. To understand the invasion processes of the species,
and to identify the most sensitive invasion regions, one cannot be limited to a single GCM
and scenario of global climate change. Differences between alternative SSPx-y scenarios are
mainly related to changes in greenhouse gas concentrations, especially the effect of CO2
concentration on temperature [71,72]. Climate change under the SSP1-2.6 scenario or, in
the worst case, SSP2-4.5, could slow down the expansion of the SFM as much as possible.
Additionally, an increase in the high consumption of fossil fuels (SSP3.70, SSP5-8.5) will
lead to a clear expansion of the species to the northwest. Thus, sustainable development
will not only protect our environment, but also limit the spread of invasive organisms and
their subsequent naturalization.

5. Conclusions

In this study, we used an ensemble approach, with the application of seven different
algorithms, bioclimatic variables, and species occurrence records in the native and invasive
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parts of the range, to modelling the spatial distribution of A. agrarius under current and
future climate changes in Russia. Mean annual temperature, mean monthly temperature
variation, maximum summer temperature, total annual precipitation, and total precipitation
in the coldest period of the year play key roles in its reproduction and overwintering. Our
analysis highlights that global climate change may further extend the invasive range of
A. agrarius to the northeast, and transform the range gap of the SFM (and possibly other
species with similar distribution), which has existed for the past 12 thousand years, into a
continuous range from Central Europe to East Asia, including various countries of northern
Eurasia. Our results provide an important scientific basis for organizing SFM population
limitation measures, and for predicting the distribution of this species in the context of
global climate change.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biology12071034/s1, Figure S1: Spearman’s correlation
matrix heatmap of bioclimatic variables. The variables include: Bio_01 (annual mean tempera-
ture), Bio_02 (mean diurnal range (mean of monthly (max temp–min temp))), Bio_03 (isothermality
Bio_02/Bio_07) (× 100), Bio_4 ( temperature seasonality (standard deviation × 100)), Bio_05 (max
temperature of warmest month), Bio_06 (min temperature of coldest month), Bio_07 (temperature
annual range (Bio_05–Bio_06)), Bio_08 (mean temperature of wettest quarter), Bio_09 (mean tempera-
ture of driest quarter), Bio_10 (mean temperature of warmest quarter), Bio_11 (mean temperature
of coldest quarter), Bio_12 (annual precipitation), Bio_13 (precipitation of wettest month), Bio_14
(precipitation of driest month), Bio_15 (precipitation seasonality (coefficient of variation)), Bio_16
(precipitation of wettest quarter), Bio_17 (precipitation of driest quarter), Bio_18 (precipitation of
warmest quarter), and Bio_19 (precipitation of coldest quarter); Figure S2: Spearman’s correlation
matrix heatmap of predictor variables. The variables include: Bio_01 (mean annual temperature),
Bio_02 (mean diurnal range of temperature). Bio_05 (maximum temperature of warmest month),
Bio_12 (annual precipitation), and Bio_19 (precipitation of coldest quarter); Figure S3: Predicted
means of variables averaged for all GCMs under four scenarios of climate change in 2021–2100;
Figure S4: Assessment of the predictor variable means for high-sensitivity (Hsens) GCMs under
four climate change scenarios in 2021–2100; Figure S5: Assessment of the predictor variable means
for medium-sensitivity (Msens) GCMs under four climate change scenarios in 2021–2100; Figure S6:
Assessment of the predictor variable means for low-sensitivity (Lsens) GCMs under four climate
change scenarios in 2021-2100; Figure S7: Dependence of the AUC values on GAM parameters (k,
interaction.selection). The optimal and default GAM parameters are represented by the red and
blue arrows, respectively; Figure S8: Dependence of the AUC values on GBM parameters (n.trees,
interaction.depth, shrinkage). The optimal and default GBM parameters are represented by the red
and blue arrows, respectively; Figure S9: Dependence of the AUC values on FDA model parameters
(degree, nprune). The optimal and default FDA model parameters are represented by the red and blue
arrows, respectively; Figure S10: Dependence of the AUC values on RF model parameter (mtry). The
optimal and default RF model parameters are represented by the red and blue arrows, respectively;
Figure S11: Dependence of the AUC values on ANN model parameters (size, weight decay). The
optimal and default ANN model parameters are represented by the red and blue arrows, respectively;
Figure S12: Dependences of average AUC values of MaxEnt models for a number of combinations of
feature classes (L = linear, Q = quadratic, P = product, T = threshold, H = hinged) and regularization
parameters (RPs). The optimal and default MaxEnt model parameters (combinations of feature classes
and regularization parameters) are indicated by the red and blue arrows, respectively; Figure S13:
Violin plots of the variables importance in the created individual GLM (A), GAM (B), GBM (C), FDA
(D), RF (E), ANN (F), MaxEnt (G) and eSDM (H) under current climate condition; Figure S14: Plot of
the response curves of five variables in GLMs for Apodemus agrarius; Figure S15: Plot of the response
curves of five variables in GAMs for Apodemus agrarius; Figure S16: Plot of the response curves of five
variables in GBMs for Apodemus agrarius; Figure S17: Plot of the response curves of five variables in
FDA models for Apodemus agrarius; Figure S18: Plot of the response curves of five variables in RF
models for Apodemus agrarius; Figure S19: Plot of the response curves of five variables in ANN models
for Apodemus agrarius; Figure S20: Plot of the response curves of five variables in MaxEnt models
for Apodemus agrarius; Table S1: Spearman’s correlation matrix between predictor variables and VIF
(Variation Inflation Factor) for every predictor variables; Table S2: Assessment of predicted mean
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annual temperature (◦C) for three groups of GCMs (Hsens, Msens, Lsens) under four climate change
scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) in 2021–2100; Table S3: Assessment of predicted
means of variables for three groups of GCMs (Hsens, Msens, Lsens) under climate change scenarios
SSPx-y (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) in 2021-2100;Table S4: Results of a three-factor GLM
ANOVA analysis of range changes in A. agrarius using gain, loss, and change metrics under GCMs
and scenarios.
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