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Simple Summary: This study investigated how different doses of the chemotherapeutic drug dox-
orubicin affected physiological parameters and autonomic function in rats. A positive correlation
was found between doxorubicin dose and blood pressure, heart rate, urinary norepinephrine, LF/HF
ratio, and fibrotic heart area. We also found that higher doses of doxorubicin resulted in hypotension,
bradycardia, and a decrease in the balance of autonomic activity (LF/HF), with 16 mg/kg being
the threshold dose at which these changes became evident. These data suggest impaired control
of cardiac function and highlight the importance of knowing the correct dosage of doxorubicin to
minimize its adverse effects on the heart and improve treatment strategies for cancer patients.

Abstract: Doxorubicin (DOX) is commonly used in several chemotherapies to treat various cancers,
but it is known to cause cardiotoxicity and cardiac symptoms. Autonomic dysfunction is thought to
contribute to the cardiotoxic effects of DOX, but the specific dose required to disrupt homeostatic
processes is still unclear and is influenced by numerous factors. This study aimed to investigate
how the DOX dosage affects autonomic function and physiological parameters, to elucidate the
neurocardiac mechanisms underlying the observed cardiovascular side effects. Wistar rats were
treated with DOX for four weeks and divided into three dosing groups: DOX8 (2 mg/kg/week),
DOX16 (4 mg/kg/week), and DOX20 (5 mg/kg/week). A control group received NaCl 0.9% saline
(1 mL/kg/week). In an acute experiment, we recorded blood pressure (BP), electrocardiogram, heart
rate (HR), and respiratory rate (RF). Baroreflex gain and chemoreflex sensitivity were calculated, and
cardiac tissue was analyzed with picrosirius histochemistry to measure collagen content. Our results
showed that the LF/HF ratio, indicative of autonomic activity, was altered along with hypotension
and bradycardia at a cumulative DOX dose threshold of 16 mg/kg. We observed a positive correla-
tion between DOX dose and BP, HR, urinary norepinephrine, LF/HF ratio, and fibrotic heart area.
Lower LF/HF ratios were associated with high DOX doses, reflecting drug-induced impairment
of autonomic control of HR. This study provides valuable insights into the dose-dependent effects
of DOX on physiological parameters and the development of cardiovascular dysfunction. These
findings are critical, which is important for optimizing the management and therapeutic strategies
for patients undergoing DOX-based chemotherapy.

Keywords: doxorubicin dosage; autonomic nervous system; HRV; physiological parameters

1. Introduction

Doxorubicin (DOX) is a commonly used chemotherapeutic agent in clinical practice
for various cancers, including leukemias, lymphomas, and solid tumors [1,2]. However, its
clinical utility is often compromised by known side effects such as cardiotoxicity and cardiac
symptoms, which may manifest years after initial exposure and lead to a poor prognosis [3].
Autonomic dysfunction has been implicated in the underlying mechanisms of DOX-related
cardiotoxicity, with the sympathetic nervous system (SNS) playing an important role.
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However, the overall effects of DOX on the SNS are complex and multifactorial, depending
on factors such as dose, treatment duration, and individual variability [4–6].

The specific dose of DOX required to affect the SNS remains uncertain and may depend
on factors such as age, pre-existing cardiovascular disease, and concomitant use of drugs
that may affect autonomic function. Clinical trials have attempted to assess the potential
dose-dependent effects of DOX on homeostatic processes, often focusing on heart rate
variability (HRV) as a non-invasive measure of autonomic function and assessing its effects
on the autonomic nervous system [7–9].

Studies suggest that higher doses or longer treatment durations of DOX may lead to
more pronounced effects on the SNS. Some studies have reported increased SNS activity
following DOX administration [4,10–13]. Animal studies, such as that conducted by Moro
et al., have shown that DOX treatment can increase sympathetic nerve activity in rats,
which may contribute to the cardiotoxicity associated with this drug [14]. Similarly, in
human studies, an increase in the low-frequency band (LF) has been observed after DOX
treatment, indicating SNS activity [10,15–17]. Conversely, conflicting findings suggest that
DOX may indirectly affect the SNS by damaging the myocardium, including neurotoxic
effects on cardiac sympathetic neurons, revealing a previously unrecognized effect of DOX
on cardiac autonomic regulation, which plays a crucial role in both cardiac physiology and
pathology [14].

Several mechanisms shed light on how DOX negatively affects the autonomic nervous
system and contributes to cardiovascular adverse effects. DOX can damage sympathetic
neurons in the heart and affect the central nervous system, leading to mitochondrial
degeneration, neuronal dysfunction, neurotoxicity, and changes in autonomic activity.
These effects can occur through a variety of pathways, including oxidative stress, DNA
damage, disruption of cellular processes, disruption of myocyte calcium balance, and
inflammation [18–23].

Consequently, these mechanisms can affect autonomic reflexes, such as the barorecep-
tor and chemoreceptor reflexes, which are responsible for regulating blood pressure and
ventilation, and they can cause inflammation, which activates the SNS and contributes to
sympatho-excitation. Consequently, these changes can lead to cardiovascular side effects
such as hypertension and cardiac arrhythmias. In addition, DOX may affect the release of
neurotransmitters, including norepinephrine, an important neurotransmitter of the SNS.
These cumulative changes can lead to altered autonomic activity and contribute to vascular
dysfunction and significant changes in blood pressure [24,25].

However, several limitations and challenges hinder a clear understanding of the dose-
dependent effects of DOX on autonomic function. These limitations include heterogeneity
of study designs, lack of standardized measures, confounding factors such as age, sex,
pre-existing cardiovascular disease and concomitant medications, and small sample sizes
that may limit the statistical power to detect significant associations between DOX doses
and impaired homeostatic processes [4].

Therefore, the present study aims to investigate the dose-dependent effects of DOX
on physiological parameters and autonomic function in order to gain valuable insights
into the neurocardiac mechanisms underlying the observed cardiovascular side effects. By
investigating different DOX doses and their effects on autonomic function, our study aims
to elucidate the relationship between DOX dosing and impaired homeostatic processes.

2. Materials and Methods
2.1. Animal Model Development

Female Wistar rats (n = 30), aged more than 12 weeks, were divided into four
groups: a low DOX dosage (2 mg/kg/week, DOX8, n = 8), an intermediate DOX dosage
(4 mg/kg/week, DOX16, n = 8), and a high DOX dosage (5 mg/kg/week, DOX20,
n = 8) that received a weekly i.p. injection of DOX (doxorubicin hydrochloride Merck
Life Science S.L., Barcelona, Spain, Ref D2975000) for 4 weeks [25–27]. An age-matched
control group (CTL; n = 6; NaCl 0.9% saline solution; 1 mL/kg/week) without DOX treat-
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ment was used. The selection of DOX doses was guided by the aim of ensuring clinical
relevance by incorporating a range of exposure levels. This includes a low cumulative
DOX exposure (equivalent to approximately 48 mg/m2 in humans), an intermediate dose
of DOX (equivalent to approximately 96 mg/m2), and a high dose of DOX (equivalent to
approximately 120 mg/m2). The sample size calculation employed the resource equation
method, using simple algebra to allocate a total of 30 animals across four groups. This
approach ensured the attainment of an appropriate E value, aligning with the criteria
outlined by Festing et al. [28].

Animals were housed in the animal facility of the Faculty of Medicine of the University
of Lisbon, in a maximum number of 4 animals per cage, with controlled temperature
(22 ± 1 ◦C) and humidity (50 ± 5%) and synchronized for 12/12 h light/dark cycle.
Food (Mucedola, Italy) and tap water (Epal, Portugal) were provided ad libitum. All the
experimental procedures were in accordance with the European Community legislation
on animal experimentation (Directive 2010/63/EU) and were approved by the Ethical
Committee of the Academic Centre of Lisbon (CAML).

2.2. Physiological and Autonomic Evaluation

Animals were anesthetized with sodium pentobarbital (60 mg/kg, IP). The levels of
anesthesia were maintained with a 20% solution (v/v) of the same anesthetic after assessing
the withdrawal response. Rectal temperature was maintained through a homoeothermic
blanket (Harvard Apparatus, Cambourne, UK). The trachea was cannulated below the
larynx to record tracheal pressure. The femoral artery and vein were cannulated for blood
pressure (BP) monitoring and injection of saline and drugs, respectively. The electrocardio-
gram (ECG) was recorded from subcutaneous electrodes placed into three limbs, and the
heart rate was derived from the ECG recording (Neurology, Digitimer, Welwyn Garden
City, UK).

The right carotid artery was cannulated, and chemoreceptors were stimulated by
lobeline injection (0.2 mL, 25 µg/mL, Sigma, St. Louis, MO, USA). Baroreflexes were
stimulated by phenylephrine injection (0.2 mL, 25 µg/mL, Sigma, St. Louis, MO, USA) in
the femoral vein [29–31]. At the end of the above-mentioned acute experience, the animal
was sacrificed with an overdose of anesthetic. The heart was then removed and placed in
4% paraformaldehyde (Sigma-Aldrich) at 4 ◦C for further histological studies.

2.3. Data Acquisition

BP, ECG, heart rate, and respiratory frequency were continuously recorded (PowerLab,
ADInstruments, Colorado Springs, CO, USA) and acquired, amplified, and filtered at 1 kHz
(Neurology, Digitimer, Welwyn Garden City, UK; PowerLab, ADInstruments, Colorado
Springs, CO, USA). For basal autonomic evaluation, a baseline recording of 10 min was
obtained. There was an interval of at least 3 min between each stimulation.

2.4. Data Analysis
2.4.1. Baro- and Chemoreceptor Reflex Evaluation

The autonomic evaluation focused on the assessment of the overall autonomic tonus
and the evaluation of baro- and chemoreceptor reflexes. The baroreceptor reflex gain (BRG)
was quantified by calculating ∆HR/∆BP (bpm/mmHg), upon phenylephrine provocation.
The chemoreflex response was calculated through respiratory frequency (RF) derived from
the tracheal pressure before and after stimulation with lobeline: ∆RF = RFstimulation-
RFbasal. BP and HR were also evaluated.

2.4.2. Analysis of BP and HR Variability

Cardiovascular variability is widely used for autonomic nervous system
analysis [32,33]. For its implementation, Systolic BP and R-R interval data were ana-
lyzed (periods of 3 min) through wavelet transform using in-house software, Fisiosinal, to
evaluate sympathetic (low-frequency band, LF, 0.15–0.6 Hz of SBP) and parasympathetic
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(high-frequency band, HF, 0.6–2.0 Hz of HR) activity over time [9,34]. The LF/HF ratio was
computed as a measure of the autonomic tone [32,33].

2.5. Catecholamines ELISA

Animals were kept in metabolic cages for 24 h. Urine was collected and acidified
with chloride acid 6M. Dopamine, noradrenaline, and adrenaline urinary concentrations
were determined using commercially available ELISA kits for catecholamines (3 Cate-
cholamines ELISA kit—Ref: BA-E-6600, ImmuSmol, Bordeaux, France). All ELISA samples
and protocols were run in accordance with the manufacturer’s instructions.

2.6. Heart Histology

For histological examination, all samples were preserved in a 4% solution of
paraformaldehyde until they were embedded in paraffin to allow the longitudinal section-
ing of the entire heart into sections of 5 µm in thickness. After mounting these sections
onto glass slides, they were stained with a picric acid–Sirius red solution (consisting of
0.1% Sirius red in saturated aqueous picric acid) to identify any cardiac fibrosis as stated
elsewhere [35,36]. The stained sections were then examined through a colorimetric proce-
dure, and digitized at a final 20× magnification using the image analysis and processing
NanoZoomer SQ system. The digitalized images were then analyzed and picrosirius stain-
ing was quantified using a macro developed by the IMM-Bioimaging unit in accordance
with Hadi et al. [37]. Picric acid–Sirius red staining showed the myocardial collagen stained
in red [35,36].

2.7. Statistical Analyses

All data were analyzed using the software GraphPad Prism 9 (GraphPad Software
Inc., Boston, MA, USA). The results are expressed as the mean ± standard error of the mean
(SEM). Values of p < 0.05 or less were considered statistically significant. The normality
distribution of the continuous variables was analyzed with the Kolmogorov–Smirnov test,
and Levene’s test was used for the assessment of homogeneity of variance. Statistical
differences were determined with one-way ANOVA Dunnett’s multiple comparison tests
for comparison to the CTL group and unpaired t-tests for comparison inter-group (DOX8
vs. DOX16 vs. DOX20).

3. Results
3.1. Dose-Dependent Effects of DOX in Physiological and Autonomic Parameters
3.1.1. DOX Treatment Leads to a Decrease in Blood Pressure and Heart Rate without
Changes in Respiratory Frequency

Cardiovascular and respiratory functions were evaluated in the acute experiment.
The blood pressure data changes are depicted in Figure 1a–c, indicating a dependence on
DOX dosage. Notably, the DOX20 dosage exhibits the most prominent hypotensive effect.
Figure 1a–c shows that DOX16 and DOX20 groups presented a statistically significant
decrease (p < 0.05) in systolic (sBP), diastolic (dBP), and mean blood pressure (mBP), when
compared to the control group (CTL sBP: 150 ± 5.3 mmHg, dBP: 111 ± 3.9 mmHg and
mBP: 129 ± 3.5 mmHg vs. DOX16 sBP: 107 ± 9.2 mmHg, dBP: 84 ± 9.2 mmHg, and mBP:
95 ± 9.3 mmHg, p < 0.05; and DOX20 sBP: 104.9 ± 7.2 mmHg, dBP: 73 ± 6.6 mmHg,
mBP: 87 ± 6.6 mmHg, p < 0.05), without significant changes in DOX8 group (sBP:
136 ± 4.7 mmHg, dBP: 136 ± 4.7 mmHg, mBP: 136 ± 4.7 mmHg, p > 0.05). DOX16
and DOX20 showed a significant decrease in heart rate compared to the control group
(379 ± 22 bpm vs. 290 ± 26 bpm and 242 ± 25 bpm, respectively, p < 0.05, Figure 1d). No
changes in respiratory rate were observed (Figure 1e).



Biology 2023, 12, 1031 5 of 13Biology 2023, 12, x  5 of 14 
 

 

 

Figure 1. Dose-dependent effects of DOX in cardiovascular and respiratory parameters: (a) systolic, 

(b) diastolic, and (c) mean blood pressure. (d) Heart rate values were obtained from the electrocar-

diogram and (e) respiratory rate was calculated from tracheal pressure. Measurements were taken 

in all experimental groups: CTL, DOX8, DOX16, and DOX20. Values are mean ± SEM. * p < 0.05, ** 

p < 0.01, *** p < 0.001 for comparison to CTL group, one-way ANOVA, Dunnett’s multiple compari-

sons tests. # p < 0.05, ## p < 0.01 for comparison intergroup, unpaired Student t-test. 

3.1.2. DOX16 Caused Baroreflex and Chemoreceptor Reflexes Impairments 

Baroreflex and chemoreflex are vital mechanisms that regulate autonomic reflexes in 

the body. Baroreceptors detect blood pressure changes and initiate appropriate responses, 

while chemoreceptors respond to oxygen and carbon dioxide variations [38]. Measuring 

the baroreflex provides insights into autonomic nervous system function, aiding in the 

diagnosis and monitoring of conditions such as hypertension, heart failure, and respira-

tory disorders [38–40]. Assessing these reflexes enhances our understanding of the body’s 

ability to regulate blood pressure and oxygen levels, contributing to improved knowledge 

of cardiovascular and respiratory health [38–40]. 

Autonomic reflexes were pharmacologically provoked with phenylephrine, and the 

data are shown in Figure 2. Injection of phenylephrine triggered a progressive increase in 

the mean BP, which was accompanied by a progressive reduction in HR. No changes in 

the baroreceptor reflex gain (BRG) were found in all groups evaluated, except in the 

DOX16 group, which showed a significant increase in BRG when compared to the control 

group (Figure 2a: CTL 0.28 ± 0.02 bpm2/mmHg vs. DOX16 0.49 ± 0.06 bpm2/mmHg, p < 

0.05), and DOX20 showed a decrease in BRG when compared to the DOX8 and DOX16 

group (DOX20: 0.24 ± 0.3 bpm2/mmHg vs. DOX8: 0.37 ± 0.04 bpm2/mmHg, p < 0.05 vs. 

DOX16 0.49 ± 0.06 bpm2/mmHg, p < 0.001). Regarding chemoreceptor reflex sensitivity, a 

significant increase in the data was observed in DOX8 and DOX16 groups compared to 

Figure 1. Dose-dependent effects of DOX in cardiovascular and respiratory parameters: (a) systolic,
(b) diastolic, and (c) mean blood pressure. (d) Heart rate values were obtained from the electrocar-
diogram and (e) respiratory rate was calculated from tracheal pressure. Measurements were taken
in all experimental groups: CTL, DOX8, DOX16, and DOX20. Values are mean ± SEM. * p < 0.05,
** p < 0.01, *** p < 0.001 for comparison to CTL group, one-way ANOVA, Dunnett’s multiple compar-
isons tests. # p < 0.05, ## p < 0.01 for comparison intergroup, unpaired Student t-test.

3.1.2. DOX16 Caused Baroreflex and Chemoreceptor Reflexes Impairments

Baroreflex and chemoreflex are vital mechanisms that regulate autonomic reflexes in
the body. Baroreceptors detect blood pressure changes and initiate appropriate responses,
while chemoreceptors respond to oxygen and carbon dioxide variations [38]. Measuring
the baroreflex provides insights into autonomic nervous system function, aiding in the
diagnosis and monitoring of conditions such as hypertension, heart failure, and respiratory
disorders [38–40]. Assessing these reflexes enhances our understanding of the body’s
ability to regulate blood pressure and oxygen levels, contributing to improved knowledge
of cardiovascular and respiratory health [38–40].
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Autonomic reflexes were pharmacologically provoked with phenylephrine, and the
data are shown in Figure 2. Injection of phenylephrine triggered a progressive increase
in the mean BP, which was accompanied by a progressive reduction in HR. No changes
in the baroreceptor reflex gain (BRG) were found in all groups evaluated, except in the
DOX16 group, which showed a significant increase in BRG when compared to the control
group (Figure 2a: CTL 0.28 ± 0.02 bpm2/mmHg vs. DOX16 0.49 ± 0.06 bpm2/mmHg,
p < 0.05), and DOX20 showed a decrease in BRG when compared to the DOX8 and DOX16
group (DOX20: 0.24 ± 0.3 bpm2/mmHg vs. DOX8: 0.37 ± 0.04 bpm2/mmHg, p < 0.05
vs. DOX16 0.49 ± 0.06 bpm2/mmHg, p < 0.001). Regarding chemoreceptor reflex sensi-
tivity, a significant increase in the data was observed in DOX8 and DOX16 groups com-
pared to the CTL and DOX20 groups (Figure 2b: DOX8 12.5 ± 1 bpm2/mmHg, DOX16
15.4 ± 1.9 bpm2/mmHg vs. CTL 8.4 ± 1.1 bpm2/mmHg, DOX20 7.2 ± 0.8 bpm2/mmHg,
p < 0.05).
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Figure 2. The histograms show the effect of different DOX dosages on baroreflex gain and chemoreflex
variation. (a) BRG was calculated from the heart rate and blood pressure variation after phenylephrine
stimulation. (b) Chemoreceptor reflex sensitivity is calculated from the variation in respiratory rate
upon lobeline stimulation. Values are mean ± SEM. * p < 0.05 for comparison to CTL group, one-
way ANOVA, Dunnett’s multiple comparisons tests. ## p < 0.01 and ### p < 0.001 for comparison
intergroup, unpaired Student t-test.

3.1.3. Positive Correlation between DOX Dosage and Autonomic Nervous System Output

DOX groups showed an overall decrease in cardiovascular autonomic outflow that
is negatively correlated with the increase in DOX dosage. By using wavelet analysis
applied to systolic BP and inter-pulse intervals, an observed decrease in the LF/HF
ratio was correlated with the increasing dose of DOX (0.54 ± 0.16, 0.69 ± 0.39,
0.21 ± 0.12 mmHg2/bpm, p < 0.05). The parasympathetic output expressed by HF
band power was from 1.13 ± 0.17 in CTL to 22.23 ± 11.18 bpm in DOX20, p = 0.0266
(Figure 3b). In contrast, the LF in all DOX groups remains unchanged (Figure 3a). The varia-
tions in the LF/HF, for each DOX group, are depicted in Figure 3c. High DOX dosage seems
to associate with lower LF/HF balance, and this difference was statistically different when
comparing the CTL group to the DOX20 group (1.14 ± 0.19 vs. 0.21 ± 0.12 mmHg2/bpm,
p = 0.0054). No significant changes in the LF/HF balance were observed between
DOX groups.
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Figure 3. Dose-dependent DOX effect on sympathetic and parasympathetic tone. The sympathetic
output was assessed by (a) LF, the parasympathetic output by (b) HF, and the balance between
sympathetic and parasympathetic tone by (c) LF/HF ratio in all experimental groups: CTL, DOX8,
DOX16, and DOX20. Values are mean ± SEM. * p < 0.05 and ** p < 0.01 for comparison to CTL group
one-way ANOVA, Dunnett´s multiple comparisons tests.

3.2. Changes in Urinary Catecholamines

Urinary adrenaline concentration was evaluated in all groups (Figure 4a), and no
differences were found in CTL: 19.77 ± 2.044; DOX8: 28.91 ± 6.827; DOX16: 28.16 ± 5.302;
DOX20: 22.20 ± 11.33 ng/mL). Additionally, no statistical difference was observed in
urinary noradrenaline concentrations (Figure 4b); the data show a tendency for nora-
drenaline elevation with higher DOX dosages (CTL: 76.20 ± 11.89; DOX8: 73.96 ± 14.24;
DOX16: 111.2 ± 24.75; DOX20: 125.6 ± 62.80 ng/mL). Urinary dopamine (Figure 4c) was
similar between all groups evaluated (CTL: 669.5 ± 145.2; DOX8: 615.2 ± 144.8; DOX16:
707.0 ± 145.9; DOX20: 623.4 ± 287.6 ng/mL).

Biology 2023, 12, x  7 of 14 
 

 

Urinary adrenaline concentration was evaluated in all groups (Figure 4a), and no dif-

ferences were found in CTL: 19.77 ± 2.044; DOX8: 28.91 ± 6.827; DOX16: 28.16 ± 5.302; 

DOX20: 22.20 ± 11.33 ng/mL). Additionally, no statistical difference was observed in uri-

nary noradrenaline concentrations (Figure 4b); the data show a tendency for noradrena-

line elevation with higher DOX dosages (CTL: 76.20 ± 11.89; DOX8: 73.96 ± 14.24; DOX16: 

111.2 ± 24.75; DOX20: 125.6 ± 62.80 ng/mL). Urinary dopamine (Figure 4c) was similar 

between all groups evaluated (CTL: 669.5 ± 145.2; DOX8: 615.2 ± 144.8; DOX16: 707.0 ± 

145.9; DOX20: 623.4 ± 287.6 ng/mL). 

 

Figure 4. Dose-dependent effects of DOX on urinary adrenaline, noradrenaline, and dopamine. (a) 

The urinary concentration of adrenaline, (b) noradrenaline, and (c) dopamine were assessed in all 

experimental groups: CTL, DOX8, DOX16, and DOX20. Values are mean ± SEM. No statistical dif-

ferences were observed. 

3.3. Increased Heart Fibrotic Area through Collagen Quantification with Higher DOX Dosages 

Heart tissue was stained for collagen quantification following the picrosirius histo-

chemistry technique. Representative histology images are shown in Figure 5. The percent-

age of collagen fibrotic tissue was quantified, and data are represented in Figure 5e. An 

increase in cumulative DOX dosage leads to a consistent increase in heart fibrotic area 

when comparing the CTL group (59.9 ± 0.95) vs. DOX16 group (65.8 ± 2.36, p = 0.0394) and 

vs. DOX20 group (65.7 ± 1.88, p = 0.0208). The increase in heart fibrotic area is statistically 

different also between DOX8 (55.04 ± 0.25) vs. DOX16 (p < 0.0001) and vs. DOX20 group 

(p < 0.0001). 

Figure 4. Dose-dependent effects of DOX on urinary adrenaline, noradrenaline, and dopamine.
(a) The urinary concentration of adrenaline, (b) noradrenaline, and (c) dopamine were assessed in
all experimental groups: CTL, DOX8, DOX16, and DOX20. Values are mean ± SEM. No statistical
differences were observed.

3.3. Increased Heart Fibrotic Area through Collagen Quantification with Higher DOX Dosages

Heart tissue was stained for collagen quantification following the picrosirius his-
tochemistry technique. Representative histology images are shown in Figure 5. The
percentage of collagen fibrotic tissue was quantified, and data are represented in Figure 5e.
An increase in cumulative DOX dosage leads to a consistent increase in heart fibrotic area
when comparing the CTL group (59.9 ± 0.95) vs. DOX16 group (65.8 ± 2.36, p = 0.0394) and
vs. DOX20 group (65.7 ± 1.88, p = 0.0208). The increase in heart fibrotic area is statistically
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different also between DOX8 (55.04 ± 0.25) vs. DOX16 (p < 0.0001) and vs. DOX20 group
(p < 0.0001).
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Figure 5. Representative images of collagen deposits in heart tissue in (a) CTL, (b) DOX8, (c) DOX16,
and (d) DOX20 groups stained with picrosirius red. Arrows indicate the collagen fibers in the tissue.
The scale bar provided in the image indicates that each mark corresponds to a length of 1 mm. The
histograms (e) show the effect of different DOX dosages on the heart fibrotic area. The heart fibrotic
area percentage was accessed by dividing the fibrotic area by the total area from all experimental
groups: CTL, DOX8, DOX16, and DOX20. Values are mean ± SEM. * p < 0.05 for comparison to CTL
group, one-way ANOVA, Dunnett´s multiple comparisons tests. #### p < 0.0001 for comparison
intergroup, unpaired student t-test.

4. Discussion

The present study provides new insights into the dose-dependent effects of DOX
on autonomic function and cardiovascular parameters. Our results present a positive
correlation between the DOX dosage and physiological parameters, such as blood pressure,
heart rate, urinary noradrenaline, LF/HF, and fibrotic heart area, and suggest that a
cumulative dose of 16 mg/kg may serve as a threshold for the onset of adverse effects on
blood pressure and heart rate. Interestingly, we observed a significant decrease in blood
pressure and heart rate at higher doses of DOX, in contrast to the expected sympathetic
excitation reported in most studies [41–43]. The discrepancy between our results and
previous literature could be due to several factors, such as the cumulative dose used, the
timing of the evaluation, the age of the animals, the experimental protocol, or the specific
method used to assess autonomic function. In our study, wavelet analysis and the LF/HF
ratio were used as measures of autonomic control [34,44].

Our study shows that at higher doses of DOX, the HF band increased rather than
the LF band. This finding, associated with lower blood pressure and heart rate, suggests
impaired autonomic regulation of heart rate caused by the drug. One possible mechanism
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associated with DOX-induced cardiotoxicity is chemoreceptor dysfunction. The chemore-
ceptors, located in the carotid and aortic bodies, are responsible for detecting changes
in oxygen and carbon dioxide levels in the blood [45,46]. These receptors trigger reflex-
ive responses to regulate respiration and cardiovascular function [46]. However, DOX
treatment could lead to a dysfunction of the chemoreceptors and impair their ability to
sense and respond to changes in blood gas levels. This dysfunction could contribute to
the observed attenuation of the chemoreflex response due to reduced neuronal output,
particularly seen at higher doses. Interactions with other signaling pathways that reg-
ulate autonomic function could also contribute to this finding. For example, DOX can
induce oxidative stress and inflammation that can impair neuronal signaling within auto-
nomic pathways [47]. This disruption of neuronal communication can lead to impaired
autonomic regulation.

In addition, the effects of DOX on cardiac function and general health may indirectly
influence the chemoreceptor reflex, potentially leading to an attenuated response. Under-
standing these potential mechanisms is important for DOX-induced cardiotoxicity, as the
chemoreceptor reflex plays a critical role in maintaining cardiovascular homeostasis [44].
Impairments of the chemoreceptor reflex can disrupt autonomic regulation, leading to
changes in blood pressure, heart rate, and respiration [46].

In the context of DOX-induced cardiotoxicity, a blunted chemoreflex response in the
DOX20 group may contribute to the hypotension and decreased heart rate observed. In
addition, the observed hypotensive effect may also be due to direct cardiac toxicity, as
DOX is known to impair cardiac muscle function and disrupt calcium balance, leading
to a decrease in cardiac inotropism [48]. This reduced pumping action of the heart could
contribute to reduced vascular resistance and, consequently, lower blood pressure. In
addition, DOX may cause endothelial dysfunction characterized by impaired vasodilation
and increased vasoconstriction [49].

Endothelial cells play a critical role in regulating blood vessel tone and blood pres-
sure. Disruption of endothelial function by DOX may result in decreased production of
vasodilators such as nitric oxide and increased production of vasoconstrictors, leading
to hypotension. Other factors such as direct vascular toxicity may also influence lower
blood pressure in a complementary manner, especially at higher doses [50]. In fact, DOX
has been shown to induce direct vascular toxicity, leading to endothelial cell damage and
dysfunction, resulting in structural and functional changes in blood vessels, which in turn
contributes to hypotension [50]. Of course, the reduced sympathetic activity observed in
our study also contributed to the observed hypotension.

Indeed, DOX may have direct effects on the sympathetic nervous system, leading to
a decreased release of norepinephrine, which can cause vasodilation and consequently
hypotension [51]. In addition, the decrease in blood pressure and heart rate at higher doses
of DOX may be related to an increase in baroreflex gain. This increase in baroreflex gain
subsequently increases parasympathetic activity, which decreases heart rate. A sustained
increase in baroreflex gain could potentially lead to a significant decrease in mean arterial
pressure by suppressing the sympathetic nervous system.

Our results also showed an increase in fibrosis with the increase in DOX dose. These
results are consistent with the literature [52–54]. Indeed, an association between DOX and
cardiac fibrosis is well-established. DOX, as an anthracycline-containing chemotherapeutic
agent, is associated with the development of cardiac fibrosis, which refers to the excessive
deposition of collagen and other extracellular matrix components in cardiac tissue, leading
to structural remodeling of the myocardium and impaired cardiac function.

The exact mechanisms by which DOX induces cardiac fibrosis are complex and not
fully understood. However, several possible pathways have been identified, such as the
formation of reactive oxygen species (ROS) leading to cardiac cell damage and fibroblast
activation, the formation of reactive oxygen species causing oxidative stress in cardiac
cells, the initiation of an inflammatory response in the heart with cytokines and growth
factors release, promoting, therefore, fibroblast activation together with the activation of



Biology 2023, 12, 1031 10 of 13

profibrotic pathways and endothelial dysfunction [18,55–57]. As our results show, the
severity and extent of DOX-induced cardiac fibrosis depend on factors such as cumula-
tive dose. The observed cardiac fibrosis may result in decreased myocardial contractility,
impaired relaxation, and increased myocardial stiffness ultimately compromising cardiac
function [58]. Accordingly, additional cardiac evaluation with echocardiographic param-
eters measurements will be essential to correlate the observed histological changes and
cardiac dysfunction. Moreover, we are considering the implementation of other histological
staining techniques to further validate and fortify our findings.

It is important to note that this study has limitations. An important aspect to con-
sider in our study is the exclusive utilization of female animals, which may give rise to
certain concerns. Nevertheless, it is crucial to acknowledge the existence of sex-related
variations in the pharmacokinetics and pharmacodynamics of DOX [59,60]. The exclusive
inclusion of female animals in our study raises the concern of potentially overlooking
the influence of sex hormones on the outcomes of DOX treatment. To achieve a more
comprehensive assessment of the drug’s effects, it would be beneficial to conduct a future
study incorporating both male and female subjects, thereby accounting for the underlying
hormonal disparities. Additionally, the observed effects are specific to the animal model
used; further research is needed to confirm the results in humans. This approach will allow
us to investigate the potential correlation between the observed histological changes and
cardiac dysfunction. In addition, the study did not examine the long-term effects of DOX
on autonomic function, which may provide additional insight into the development and
progression of cardiotoxicity.

5. Conclusions

In conclusion, our study provides new insights into the dose-dependent effects of
DOX on autonomic function and cardiovascular parameters. The observed decrease in
blood pressure and heart rate, as well as the altered LF/HF ratio, indicate impaired auto-
nomic control in response to DOX. The identified cumulative dose threshold of 16 mg/kg
highlights the importance of dose monitoring and individualized treatment strategies.
Our results confirm the association between DOX and increased fibrosis associated with
oxidative stress, inflammation, and profibrotic metabolic pathways. Although our study
has its limitations, further studies in humans are needed to investigate the long-term effects
and clinical consequences of these dose-dependent autonomic changes.

Overall, our study improves our understanding of DOX-induced cardiotoxicity and
highlights the need to monitor autonomic function and cardiovascular parameters in DOX-
based chemotherapy. By improving our knowledge of these effects, treatment strategies
can be optimized to achieve better outcomes for patients and will enable us to gain deeper
insights into the mechanisms and long-term effects of DOX treatment.
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43. Vasić, M.; Lončar-Turukalo, T.; Tasić, T.; Matić, M.; Glumac, S.; Bajić, D.; Popović, B.; Japundžić-Žigon, N. Cardiovascular
Variability and β-ARs Gene Expression at Two Stages of Doxorubicin–Induced Cardiomyopathy. Toxicol. Appl. Pharmacol. 2019,
362, 43–51. [CrossRef]

44. Laranjo, S.; Geraldes, V.; Oliveira, M.; Rocha, I. Insights into the Background of Autonomic Medicine. Rev. Port. Cardiol. 2017, 36,
757–771. [CrossRef] [PubMed]

45. Schultz, H.D.; Sun, S.-Y. Chemoreflex Function in Heart Failure. Heart Fail. Rev. 2000, 5, 45–57. [CrossRef]
46. Iturriaga, R.; Alcayaga, J.; Chapleau, M.W.; Somers, V.K. Carotid Body Chemoreceptors: Physiology, Pathology, and Implications

for Health and Disease. Physiol. Rev. 2021, 101, 1177–1235. [CrossRef] [PubMed]
47. Shi, S.; Chen, Y.; Luo, Z.; Nie, G.; Dai, Y. Role of Oxidative Stress and Inflammation-Related Signaling Pathways in Doxorubicin-

Induced Cardiomyopathy. Cell Commun. Signal. 2023, 21, 61. [CrossRef] [PubMed]

https://doi.org/10.1111/jcmm.15305
https://www.ncbi.nlm.nih.gov/pubmed/32336039
https://doi.org/10.3389/fonc.2021.673340
https://www.ncbi.nlm.nih.gov/pubmed/34055643
https://doi.org/10.3390/ijms222312812
https://doi.org/10.1002/jat.2550050609
https://doi.org/10.3390/ph16030391
https://www.ncbi.nlm.nih.gov/pubmed/36986490
https://doi.org/10.3389/fphar.2021.670479
https://doi.org/10.1093/ilar.43.4.244
https://doi.org/10.1007/s12640-020-00162-8
https://doi.org/10.1016/j.neuro.2016.04.016
https://doi.org/10.3390/cells12050818
https://doi.org/10.1371/journal.pone.0182611
https://doi.org/10.1016/j.jelectrocard.2005.08.001
https://www.ncbi.nlm.nih.gov/pubmed/16387047
https://doi.org/10.1007/BF01002772
https://www.ncbi.nlm.nih.gov/pubmed/91593
https://doi.org/10.1016/S0005-8165(73)80016-2
https://doi.org/10.1155/2010/858356
https://doi.org/10.1113/jphysiol.2003.050708
https://doi.org/10.1212/01.wnl.0000335246.93495.92
https://doi.org/10.1161/HYPERTENSIONAHA.106.076083
https://doi.org/10.1088/0967-3334/36/4/727
https://doi.org/10.1016/j.taap.2018.10.015
https://doi.org/10.1016/j.repc.2017.01.007
https://www.ncbi.nlm.nih.gov/pubmed/29037833
https://doi.org/10.1023/A:1009846123893
https://doi.org/10.1152/physrev.00039.2019
https://www.ncbi.nlm.nih.gov/pubmed/33570461
https://doi.org/10.1186/s12964-023-01077-5
https://www.ncbi.nlm.nih.gov/pubmed/36918950


Biology 2023, 12, 1031 13 of 13

48. Octavia, Y.; Tocchetti, C.G.; Gabrielson, K.L.; Janssens, S.; Crijns, H.J.; Moens, A.L. Doxorubicin-Induced Cardiomyopathy: From
Molecular Mechanisms to Therapeutic Strategies. J. Mol. Cell. Cardiol. 2012, 52, 1213–1225. [CrossRef]

49. Menna, P.; Salvatorelli, E.; Minotti, G. Cardiotoxicity of Antitumor Drugs. Chem. Res. Toxicol. 2008, 21, 978–989. [CrossRef]
50. Lenneman, C.G.; Sawyer, D.B. Cardio-Oncology: An Update on Cardiotoxicity of Cancer-Related Treatment. Circ. Res. 2016, 118,

1008–1020. [CrossRef]
51. Medeiros-Lima, D.J.M.; Carvalho, J.J.; Tibirica, E.; Borges, J.P.; Matsuura, C. Time Course of Cardiomyopathy Induced by

Doxorubicin in Rats. Pharmacol. Rep. 2019, 71, 583–590. [CrossRef]
52. Tao, H.; Yang, J.J.; Shi, K.H.; Li, J. Wnt Signaling Pathway in Cardiac Fibrosis: New Insights and Directions. Metabolism 2016, 65,

30–40. [CrossRef]
53. Packard, R.R.S. Cardiac Fibrosis in Oncologic Therapies. Curr. Opin. Physiol. 2022, 29, 100575. [CrossRef]
54. Cappetta, D.; Rossi, F.; Piegari, E.; Quaini, F.; Berrino, L.; Urbanek, K.; De Angelis, A. Doxorubicin Targets Multiple Players: A

New View of an Old Problem. Pharmacol. Res. 2018, 127, 4–14. [CrossRef] [PubMed]
55. Rababa’h, A.M.; Guillory, A.N.; Mustafa, R.; Hijjawi, T. Oxidative Stress and Cardiac Remodeling: An Updated Edge. Curr.

Cardiol. Rev. 2018, 14, 53–59. [CrossRef] [PubMed]
56. Prud’homme, G.J. Pathobiology of Transforming Growth Factor β in Cancer, Fibrosis and Immunologic Disease, and Therapeutic

Considerations. Lab. Investig. 2007, 87, 1077–1091. [CrossRef] [PubMed]
57. Kalyanaraman, B.; Joseph, J.; Kalivendi, S.; Wang, S.; Konorev, E.; Kotamraju, S. Doxorubicin-Induced Apoptosis: Implications in

Cardiotoxicity. Mol. Cell. Biochem. 2002, 234, 119–124. [CrossRef]
58. Kang, J.; Cai, L.; Kang, Y.J. Oxidative Stress and Diabetic Cardiomyopathy Oxidative Stress and Diabetic Cardiomyopathy A Brief

Review. Cardiovasc. Toxicol. 2001, 1, 181–193. [CrossRef]
59. Soldin, O.P.; Mattison, D.R. Sex Differences in Pharmacokinetics and Pharmacodynamics. Clin. Pharmacokinet. 2009, 48, 143–157.

[CrossRef]
60. Liu, Z.; Martin, J.; Orme, L.; Seddon, B.; Desai, J.; Nicholls, W.; Thomson, D.; Porter, D.; McCowage, G.; Underhill, C.; et al. Gender

Differences in Doxorubicin Pharmacology for Subjects with Chemosensitive Cancers of Young Adulthood. Cancer Chemother.
Pharmacol. 2018, 82, 887–898. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.yjmcc.2012.03.006
https://doi.org/10.1021/tx800002r
https://doi.org/10.1161/CIRCRESAHA.115.303633
https://doi.org/10.1016/j.pharep.2019.02.013
https://doi.org/10.1016/j.metabol.2015.10.013
https://doi.org/10.1016/j.cophys.2022.100575
https://doi.org/10.1016/j.phrs.2017.03.016
https://www.ncbi.nlm.nih.gov/pubmed/28336372
https://doi.org/10.2174/1573403X14666180111145207
https://www.ncbi.nlm.nih.gov/pubmed/29332590
https://doi.org/10.1038/labinvest.3700669
https://www.ncbi.nlm.nih.gov/pubmed/17724448
https://doi.org/10.1023/A:1015976430790
https://doi.org/10.1385/ct:1:3:181
https://doi.org/10.2165/00003088-200948030-00001
https://doi.org/10.1007/s00280-018-3683-8

	Introduction 
	Materials and Methods 
	Animal Model Development 
	Physiological and Autonomic Evaluation 
	Data Acquisition 
	Data Analysis 
	Baro- and Chemoreceptor Reflex Evaluation 
	Analysis of BP and HR Variability 

	Catecholamines ELISA 
	Heart Histology 
	Statistical Analyses 

	Results 
	Dose-Dependent Effects of DOX in Physiological and Autonomic Parameters 
	DOX Treatment Leads to a Decrease in Blood Pressure and Heart Rate without Changes in Respiratory Frequency 
	DOX16 Caused Baroreflex and Chemoreceptor Reflexes Impairments 
	Positive Correlation between DOX Dosage and Autonomic Nervous System Output 

	Changes in Urinary Catecholamines 
	Increased Heart Fibrotic Area through Collagen Quantification with Higher DOX Dosages 

	Discussion 
	Conclusions 
	References

