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Simple Summary: This study aimed to create an intelligent computer model called TAFPred to
predict how proteins move and twist by looking at their sequences. By analyzing different features of
the protein sequences, the model can accurately estimate the degree of flexibility of protein structures
per residue. The investigators used an advanced machine learning technique called LightGBM to
make these predictions even better. Compared to existing methods, TAFPred significantly improved
in accurately predicting how proteins bend and twist within the individual and collective residual
degree of freedom. This study is vital because understanding protein flexibility helps us know how
they function in our bodies. By improving our ability to predict protein movements, this study brings
us closer to unlocking the secrets of how proteins work and the role of protein flexibility in cellular
functions, which can have critical applications in medicine and biology.

Abstract: Protein molecules show varying degrees of flexibility throughout their three-dimensional
structures. The flexibility is determined by the fluctuations in torsion angles, specifically phi (ϕ) and
psi (ψ), which define the protein backbone. These angle fluctuations are derived from variations in
backbone torsion angles observed in different models. By analyzing the fluctuations in Cartesian
coordinate space, we can understand the structural flexibility of proteins. Predicting torsion angle
fluctuations is valuable for determining protein function and structure when these angles act as
constraints. In this study, a machine learning method called TAFPred is developed to predict torsion
angle fluctuations using protein sequences directly. The method incorporates various features, such as
disorder probability, position-specific scoring matrix profiles, secondary structure probabilities, and
more. TAFPred, employing an optimized Light Gradient Boosting Machine Regressor (LightGBM),
achieved high accuracy with correlation coefficients of 0.746 and 0.737 and mean absolute errors
of 0.114 and 0.123 for the ϕ and ψ angles, respectively. Compared to the state-of-the-art method,
TAFPred demonstrated significant improvements of 10.08% in MAE and 24.83% in PCC for the phi
angle and 9.93% in MAE, and 22.37% in PCC for the psi angle.

Keywords: backbone torsion angle; torsion angle fluctuations; machine learning

1. Introduction

Proteins are organic molecules composed of carbon, hydrogen, nitrogen, oxygen, and
sulfur [1–5]. The core carbon atom is coupled to a side chain group, an amine group, a
carbonyl group, and a hydrogen atom [6] to form a protein molecule. Protein molecules
are essential and comprise many structures and functions within the cell. They also play
an important role in the cell, creating structures and performing numerous functions [7].
Protein molecules, such as actin and tubulin, can serve as structural and functional en-
tities, such as enzymes that facilitate vital metabolic reactions. The tertiary structure of
a protein refers to its spatial folding in three dimensions. Following ribosome-mediated
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synthesis, the polypeptide chain may require the assistance of chaperone proteins [8,9].
These chaperones also establish temporary hydrogen bonds with the polypeptide chain,
guiding it to the correct conformation. This process ensures proper folding, leading to the
protein’s appropriate functionality. Protein structure can be illustrated by backbone torsion
angles (Figure 1): rotational angles about the N-Cα bond (ϕ) and the Cα-C bond (ψ) or the
angle between Cαi-1-Cαi-Cαi + 1 (θ) and the rotational angle about the Cαi-Cαi + 1 bond
(τ) [10]. Prediction of the Cα atom-based angle has demonstrated their potential usefulness
in model quality assessment and structure prediction [11,12].
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Proteins are not static structures. They undergo conformational changes as part of their
function [3,13]. This might involve moving to bind to another molecule, changing shape
to carry out a catalytic function, or flexing to allow the passage of another molecule [5,14].
Some protein molecules do not fold to their native state and remain in a flexible state [15].
Torsion angle fluctuations, often referred to as changes in the dihedral angles along the
protein backbone, are critical to understanding protein dynamics and function in structural
biology [16]. These fluctuations often indicate the flexibility or rigidity of different regions
in the protein structure, giving insights into the dynamics and conformational changes
that proteins undergo to fulfill their functions. Understanding the range and frequency of
these torsional fluctuations helps predict the protein’s functional states [16]. Changes in
torsion angles guide the process by which a protein folds from a linear chain of amino acids
into its functional three-dimensional structure. By studying these changes, researchers can
gain insights into the protein folding process, which is crucial for understanding diseases
related to protein misfolding, like Alzheimer’s and Parkinson’s [17,18]. Fluctuations in
torsion angles can also affect how a protein interacts with other molecules, such as drugs,
substrates, or other proteins. Understanding these dynamics can guide the design of drugs
that can effectively bind to a protein and modulate its activity [17]. Moreover, torsion
angle changes can propagate through a protein structure leading to allosteric effects, where
binding at one site affects the protein’s behavior at a distant site. Understanding these
effects is crucial for developing drugs that can modulate protein function indirectly [19,20].
In addition, in silico prediction methods, like molecular dynamics simulations, also use the
principles of torsion angle changes to simulate protein movement and function [21].
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This study calculates the backbone torsion angle fluctuation by analyzing the variation
of backbone torsion angles from different NMR (nuclear magnetic resonance) models.
NMR and X-ray crystallography are two different techniques used to study the structure of
molecules, although they provide complementary information and are often used together
to obtain a more complete picture [22]. NMR provides information on different time
scales, ranging from picoseconds to seconds, making it a powerful tool for studying
protein dynamics [23]. The long-time scales, in particular, enable the observation of slow
conformational changes that would not be evident in short, instantaneous measurements,
such as X-ray crystallography [22]. As a result, it offers a unique view into the overall
flexibility and movement of protein structures [24,25]. The assumption that deposited
ensembles are representative of these time scales is crucial. These ensembles can provide
an aggregated view of possible protein conformations, which captures proteins’ inherent
flexibility and adaptability. This breadth of structural information, combined with NMR
data, allows for a more comprehensive picture of protein dynamics over time [14,26]. In
essence, the combination of NMR measurements and ensemble representation allows for
a more accurate prediction of protein dynamics and flexibility over long-time scales [27].
Given these considerations, this study has limitations in that it can provide predictions
regarding the overall flexibility of each residue, irrespective of their local or global roles.

Several methods have been developed to predict backbone torsion angles. Angle
predictions are useful in fold recognition [28,29] and fragment-based [30] or fragment-
free structure prediction [31]. ANGLOR [32] utilizes support vector machines and neural
networks for predicting the value of ϕ and ψ separately. TANGLE [33] uses a support
vector regression method to predict backbone torsion angles (ϕ, ψ). Li et al. [34] predicted
protein torsion angles by using four deep learning architectures, consisting of a deep
neural network (DNN), a deep restricted Boltzmann machine (DRBN), a deep recurrent
neural network (DRNN), and a deep recurrent restricted Boltzmann machine (DReRBM).
In addition, Heffernan et al. [11] captured the nonlocal interactions and yielded the highest
reported accuracy in angle prediction by using long short-term memory bidirectional
recurrent neural networks. A good prediction of angle probability may provide significant
information on structural flexibility and intrinsic protein disorder in extreme scenarios [33].
In recent times, there have been notable advancements in the field of protein structure
prediction using deep learning techniques. Notably, AlphaFold [35], OmegaFold [36], and
ESMFold [37] have exhibited impressive capabilities in predicting the three-dimensional
(3D) structure of well-structured proteins. However, it is important to recognize that
these methods excel primarily in predicting structured proteins [35]. On the contrary, the
prediction of phi and psi angle fluctuations shows promise in assisting the prediction of
unstructured or disordered protein structures.

However, to our knowledge, only one research project [16] presents work on backbone
torsion angle fluctuation which is derived from the variation of backbone torsion angles.
Since most proteins lack a known structure, identifying flexible regions, which may have
functional significance, is a primary motivation for predicting torsion angle fluctuation
based on protein sequence. Moreover, incorporating predicted torsion angles and flexi-
bility as constraints can contribute to protein structure and disordered region predictions.
Therefore, there is an urgent need to improve the extant method for predicting fluctuations
in torsion angle from protein sequences. The only method we found was developed by
Zhang et al. [16]. They only developed a neural network method for backbone torsion angle
fluctuation based on sequence information. Their model achieved ten-fold cross-validated
correlation coefficients of 0.59 and 0.60 and mean absolute errors (MAEs) of 22.7◦ and 24.3◦

for the angle fluctuation of ϕ and ψ, respectively.
In this work, we developed a machine learning method [38], TAFPred, to predict

backbone torsion angle fluctuation. Various features are directly extracted from protein
sequences. A sliding window is used to include information from the neighbor residues.
Furthermore, in TAFPred, we utilized a genetic algorithm (GA)-based feature selection
method to extract several relevant features from the protein sequence. Finally, we trained an
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optimized light gradient boosting machine to predict the backbone torsion angle fluctuation.
We believe this is the second work that presents a sequence-based prediction method for
backbone torsion angle fluctuation. We anticipate that our work will contribute to further
advancements in protein structure and protein disorder predictions.

2. Materials and Methods

In this section, we provide a detailed description of the dataset used, the method
employed for feature extraction, the evaluation metrics used to assess performance, the
process of feature window selection, and, ultimately, the selected method for training the
model. The workflow of the proposed TAFPred method is illustrated in Figure 2.
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2.1. Dataset

We collected 1268 protein chains from the author [16]. These protein chains are
determined using the nuclear magnetic resonance (NMR) method from the precompiled
CulledPDB lists by PISCES using a sequence identity threshold of 25%. 997 protein chains
are selected [16] by removing the chains with less than 5 NMR models, smaller than
25 amino acids, and consisting of nonstandard amino acid types. Finally, 936 protein chains
are obtained by removing chains for which features could not be obtained (referred to
as NMR936) [39]. The backbone torsion angle fluctuation is calculated by analyzing the
variation of backbone torsion angles from different NMR models.
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2.2. Feature Extraction

We extracted several relevant profiles from the protein sequences, i.e., the Residue
profile, Conservation profile, Physiochemical profile, Structural profile, and Flexibility
profile. Here, we briefly describe each of the profiles.

Residue profile. Twenty different numerical values are used to represent 20 standard
amino acids (AA) types, yielding one feature per amino acid. The importance of this feature
in solving bioinformatic problems has been shown in previous studies [40–42].

Physiochemical profile. In this work, five highly compact numeric patterns reflecting
polarity, secondary structure, molecular volume, codon diversity, and electrostatic charge
are extracted from [43] and used as features to represent the respective properties of each
amino acid.

Conservation profile. The protein sequence’s conservation profile is acquired through
a normalized position-specific scoring matrix (PSSM) obtained from the DisPredict2 pro-
gram [42]. The PSSM represents a matrix of L× 20 dimensions, where L denotes the protein
sequence length. Higher scores in the PSSM indicate highly conserved positions, while
scores near zero or that are negative indicate less conserved positions. The PSSM score
was utilized to calculate monogram (MG) and bi-gram (BG) features. In terms of transition
probabilities from one amino acid to another, the MG and BG properties can be used to
characterize the portion of a protein sequence that can be conserved within a fold. From
the DisPredict2 tool, we collect 1-D MG and 20-D BG characteristics.

Structural profile. Numerous biological problems have been solved using local struc-
tural features, such as the predicted secondary structure (SS) and accessible surface area
(ASA) of amino acids. Here, the predicted ASA and SS probabilities for helix (H), coil
(C), and beta-sheet (E) at the residue level are obtained from the DisPredict2 program.
Moreover, we collect a separate set of SS probabilities for H, C, and E at the residue level
from the BalancedSSP [44] program, as it provides a balanced prediction of these SS types.
Thus, we extracted seven total structural properties (one ASA per amino acid and six
predicted SS probabilities) as a structural profile of protein sequences.

Flexibility profile. Previous studies have demonstrated that an intrinsically disordered
region (IDR) contains PTM sites, sorting signals, and playing an important role in regulating
protein structures and functions [2,7,45]. In this study, we used a disorder predictor named
DisPredict2 [42] to accurately predict the protein’s disordered regions and obtain the
disorder probability as a feature. To further improve the feature quality, we obtained two
predicted backbone angle fluctuations, dphi (∆Φ) and dpsi (∆Ψ), the DAVAR program [16].

The energy profile by Iqbal and Hoque [42] proposed a novel method that uses contact
energy and predicted relative solvent accessibility (RSA) to estimate the position-specific
estimated energy (PSEE) of amino acid residues from sequence information alone. They
showed that the PSEE could distinguish between a protein’s structured and unstructured
or intrinsically disordered regions. We utilized the PSEE score per amino acid as a feature
in our study since it has been empirically demonstrated to have the ability to address a
number of biological issues.

2.3. Machine Learning Methods

We analyzed the performance of eight individual regression methods: (i) light gradient
boosting machine regressor (LightGBM) [46]; (ii) extreme gradient boosting regressor
(XGB) [47]; (iii) extra tree regressor (ET) [48]; (iv) decision tree regressor [49]; v) k-nearest
neighbors regressor [49,50]; (vi) convolutional neural network (CNN) [49]; and long short-
term memory (LSTM) [11]; and deep neural network (TabNet) [51]. The light gradient
boosting machine regressor (LightGBM) performs better, as shown in the Results section.

2.4. Feature Selection Using Genetic Algorithm (GA)

We collected a feature vector of 179 dimensions (Figure 3) from different tools during
the feature extraction process. This feature vector is relatively large, and to mitigate
dimensionality and enhance classification accuracy, we employed a genetic algorithm (GA),
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which belongs to the family of evolutionary algorithms, for feature selection. The GA
algorithm was utilized to select relevant features that can contribute to improving the
accuracy of classification. Further details regarding the feature selection approaches will be
elaborated upon in the following sections.
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A GA is a population-based stochastic search technique that mimics the natural process
of evolution. It contains a population of chromosomes, each representing a possible solution
to the problem under consideration. In general, a GA operates by initializing the population
randomly and iteratively updating the population through various operators, including
elitism, crossover, and mutation, to discover, prioritize, and recombine good building
blocks in parent chromosomes and finally obtain fitter ones [52–54].

Encoding the solution of the problem under consideration in the form of chromosomes
and computing the fitness of the chromosomes are two important steps in setting up the GA.
The length of the chromosome space is equal to the length of the feature space. Moreover, to
compute the chromosome’s fitness, we use the LightGBM algorithm [46,47]. LightGBM was
chosen because of its fast execution time and reasonable performance compared to other
machine learning classifiers. During feature selection, the values of LightGBM parameters,
max_depth, eta, silent, objective, num_class, n_estimators, min_child_weight, subsample,
scale_pos_weight, tree_method, and max_bin, were set to 6, 0.1, 1, ‘multi:softprob’, 2, 100,
5, 0.9, 3, ‘hist’, and 500, respectively, and the rest of the parameters were set to their default
value. The values of the LightGBM parameters mentioned above were identified through
the hit-and-trial approach. In our implementation, the objective fitness is defined as:

obj f it = 1−MAE + PCC (1)

2.5. Performance Evaluation

The performance evaluation of all the machine learning methods was conducted using
a 10-fold cross-validation approach with the evaluation metric displayed in Table 1. We
measure the performance of torsion angle fluctuation predictions by calculating the Pearson
correlation coefficient (PCC) and mean absolute error (MAE) with the following equations:

Table 1. Performance evaluation metrics.

Name of Metric Definition

Pearson Correlation Coefficient (PCC) = ∑N
i=1

(
xi−

−
x
)(

yi−
−
y
)

√[
∑N

i=1

(
xi−

−
x)2
][

∑N
i=1

(
yi−

−
y)2
]

Mean Absolute Error (MAE) = 1
N

N
∑

i=1
|xi − yi|

Here, xi is the predicted torsion angle fluctuation, yi is the native torsion angle fluctuation for the i residue in the

sequence, and
−
x and

−
y are their corresponding sample means.
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3. Results

In this section, we first show the performance of different machine learning methods.
Then, we present the performance of the best model with optimized hyperparameters. Next,
we present the applied sliding window technique results to find the optimum window size.
Finally, we compared the proposed method with the state-of-the-art method.

3.1. Comparison between Different Methods

We experimented with eight machine learning methods. The performance comparison
of the individual regressors on the training dataset for phi angle fluctuation is shown in
Table 2. Most of the methods perform better than the state-of-the-art method [16], except
decision tree regressor. Table 2 further shows that the LightGBM is the best-performing
regressor among the eight regressors implemented in our study regarding mean absolute
value (MAE) and Pearson correlation coefficient (PCC). Moreover, LightGBM improves by
6.59% and 24.50% in terms of MAE and PCC, respectively, compared to the existing method.

Table 2. Results from different machine learning methods (phi angle).

Methods/Metric MAE PCC MAE
(% imp.)

PCC
(% imp.)

Average
(% imp.)

State-of-the-art Method [16] 0.126 0.598 - - -

Extra Trees Regressor 0.122 0.741 3.57% 23.88% 13.73%

XGB Regressor 0.123 0.727 2.67% 21.57% 12.12%

KNN Regressor 0.129 0.681 −2.30% 13.89% 5.79%

Decision Tree Regressor 0.167 0.527 −24.38% −11.84% −18.11%

LSTM 0.125 0.678 1.13% 13.35% 7.24%

CNN 0.166 0.608 −24.21% 1.68% −11.27%

Tabnet 0.117 0.736 7.26% 23.09% 15.18%

LightGBM Regressor 0.118 0.745 6.59% 24.50% 15.54%
Best score values are boldfaced. Here, ‘imp.’ stands for improvement. The ‘% imp.’ represents the improvement
in percentage achieved by TAFPred compared to the state-of-the-art method. Likewise, the ‘Average (% imp.)’
represents the average percentage improvement achieved by TAFPred for both MAE and PCC. Additionally, ‘(-)’
denotes that the % imp. or (Average % imp.) cannot be calculated.

Table 3 compares the individual regressors’ performance for psi angle fluctuations.
Notably, the LightGBM regressor outperforms other methods, achieving an MAE of 0.127
and a PCC of 0.733. Furthermore, compared to the state-of-the-art method, the LightGBM
Regressor demonstrates a significant improvement of 6.59% in MAE and 24.50% in PCC.

3.2. Hyperparameters Optimization

We optimized the LightGBM regressor parameters, learning_rate, estimators, max_depth,
num_leaves, max_bin, feature_fraction, etc., to achieve the best 10-fold cross-validation
performance and for sampling hyperparameters and pruning efficiently unpromising trials.
We have used the custom objective function of [PCC+(1-MAE)] for optimization. The best
values of the parameters, learning_rate, estimators, max_depth, num_leaves, max_bin, and
feature_fraction, were found to be 0.014, 2561, 19, 380, 138, and 0.52, respectively.

3.3. Feature Window Selection

Here, we applied a widely used feature windowing technique to include the neigh-
boring residue features. We examined a suitable sliding window size that determines
the appropriate number of residues around a target residue that helps the model attain
improved performance. We designed several models with different window sizes (ws) (1,
3, 5, and so on). We used the custom metric given in Equation (1) as the objective function
to measure the performance of our proposed method.
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Table 3. Results from different machine learning methods (psi angle).

Methods/Metric MAE PCC MAE
(% imp.)

PCC
(% imp.)

Average
(% imp.)

State-of-the-art Method [16] 0.135 0.602 - - -

Extra Trees Regressor 0.131 0.729 2.77% 21.10% 11.94%

XGB Regressor 0.132 0.715 2.22% 18.73% 10.48%

KNN Regressor 0.139 0.670 −2.63% 11.24% 4.31%

Decision Tree Regressor 0.179 0.511 −24.65% −15.11% −19.88%

LSTM 0.132 0.665 2.29% 10.48% 6.38%

CNN 0.144 0.702 −6.46% 16.61% 5.07%

Tabnet 0.126 0.724 7.24% 20.28% 13.76%

LightGBM Regressor 0.127 0.733 6.09% 21.84% 13.96%
Best score values are boldfaced. Here, ‘imp.’ stands for improvement. The ‘% imp.’ represents the improvement
in percentage achieved by TAFPred compared to the state-of-the-art method. Likewise, the ‘Average (% imp.)’
represents the average percentage improvement achieved by TAFPred for both MAE and PCC. Additionally, ‘(-)’
denotes that the % imp. or (Average % imp.) cannot be calculated.

Figure 4 shows the performance of the optimized LightGBM regressor for different
window sizes for the phi angle. The LightGBM regressor slightly improves window size 3,
and the performance gradually decreases.
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wise, the ‘Average (% imp.)’ represents the average percentage improvement achieved by TAFPred 
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Figure 4. Selection of sliding window size with optimized LightGBM regressor (phi angle). Among
the tested window sizes, it was found that a window size of 3 achieved the highest 1-MAE+PCC
(mean absolute error + Pearson correlation coefficient) for the psi angle.

Figure 5 shows the performance of the optimized LightGBM regressor for different
widow sizes for psi angle. The LightGBM regressor performance improves for a window
size of 3, and then the performance gradually decreases. For this reason, we selected a
window size of 3 to train the final model.

3.4. Comparison with the State-of-the-Art Method

Here, we compare the performance of the proposed method, TAFPred, with an existing
state-of-the-art method [16] proposed by Zhang et al. Table 4 shows that our proposed
method improves by 10.08% in MAE and 24.83% in PCC in the phi angle compared to the
state-of-the-art method [16].
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Figure 5. Selection of sliding window size with optimized LightGBM regressor (psi angle). Among the
tested window sizes, it was found that a window size of 3 yielded the highest value of 1-MAE+PCC
for the psi angle.

Table 4. CV Results with optimized LightGBM regressor with a sliding windows size of 3 (phi angle).

Methods/Metric MAE PCC MAE
(% imp.)

PCC
(% imp.)

Average
(% imp.)

State-of-the-art Method [16] 0.126 0.598 - - -

TAFPred 0.114 0.746 10.08% 24.83% 17.45%
Best score values are boldfaced. Here, ‘imp.’ stands for improvement. The ‘% imp.’ represents the improvement
in percentage achieved by TAFPred compared to the state-of-the-art method. Likewise, the ‘Average (% imp.)’
represents the average percentage improvement achieved by TAFPred for both MAE and PCC. Additionally, ‘(-)’
denotes that the % imp. or (Average % imp.) cannot be calculated.

Table 5 shows that our proposed method improves by 9.93% in MAE and 22.37%
in PCC in psi angle compared to the state-of-the-art method. Our proposed method
significantly outperforms the existing state-of-the-art method and can more accurately
predict the protein’s backbone torsion angle fluctuations.

Table 5. Cross-validation results with a sliding windows size of 3 (psi angle).

Methods/Metric MAE PCC MAE
(% imp.)

PCC
(% imp.)

Average
(% imp.)

State-of-the-art Method [16] 0.135 0.602 - - -

TAFPred 0.123 0.737 9.93% 22.37% 16.15%
Best score values are boldfaced. Here, ‘imp.’ stands for improvement. The ‘% imp.’ represents the improvement
in percentage achieved by TAFPred compared to the state-of-the-art [16] method. Likewise, the ‘Average (% imp.)’
represents the average percentage improvement achieved by TAFPred for both MAE and PCC. Additionally, ‘(-)’
denotes that the % imp. or (Average % imp.) cannot be calculated.

4. Discussion

In this section, we explore diverse characteristics associated with the distribution of
torsion angle fluctuation. We examine the correlation between ∆ϕ and ∆ψ, as well as the
connection between torsion-angle fluctuation and disordered regions, utilizing our newly
generated dataset.

4.1. The Distribution of Torsion-Angle Fluctuation

Figure 6 displays the distribution of torsion-angle fluctuation, with the dataset divided
into 10 bins. The distributions are nonuniform, and most residues exhibit angle fluctu-
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ations below 0.2. This observation indicates that a limited presence of flexible residues
characterizes stable protein structures.
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Figure 6. The torsion-angle fluctuation is depicted in its distribution, with the data points divided
into 10 bins. The fluctuations of the phi and psi angles are visually represented using red and green
colors, respectively.

4.2. Relationship between ∆ϕ and ∆ψ

We further examined the relationship between the ∆ϕ and ∆ψ angles (Figure 7), which
represent the fluctuation of neighboring rotational angles in the protein backbone for the
same residue. A chemical bond linkage correlates these angles, as it is impossible to alter
one torsion angle without affecting the other. As expected, a pronounced and statistically
significant correlation was observed between them. In line with expectations, most residues
demonstrated minimal fluctuations below 0.2.
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4.3. Relationship between Torsion-Angle Fluctuation and Disordered Regions

We thoroughly investigated the connection between torsion-angle fluctuation and dis-
ordered regions. To gather disordered probability data, we utilized the SPOT-Disordered2
method. The figures provide clear evidence of the close relationship between phi and
psi angle fluctuations and the presence of disordered regions. In the majority of samples,
regions with low fluctuations exhibit a low disordered probability, while regions with
higher fluctuations display a higher disordered probability, as illustrated in Figures 8 and 9.
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Figure 8. Relationship between torsion-angle fluctuation in the phi angle and disordered regions.
The disordered probability was obtained from the SPOT-Disordered2 tool. The figure illustrates that
regions with low disordered probability exhibit correspondingly low fluctuations in the phi angle,
and conversely, regions with high disordered probability show higher fluctuations in the phi angle.
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Figure 9. Correlation between torsion-angle fluctuation in the psi angle and the presence of disordered
regions. The disordered probability was obtained through the utilization of the SPOT-Disordered2
tool. The figure clearly illustrates that regions with low disordered probability exhibit lower fluctua-
tions in the psi angle, while regions with high disordered probability tend to have higher fluctuations
in the psi angle.
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5. Conclusions

This study explored eight machine learning methods, including a recently published
Deep Neural Network (TabNet) [51], to determine their effectiveness. Among these meth-
ods, the light gradient boosting machine regressor (LightGBM) emerged as the best per-
former in terms of MAE and PCC. To optimize LightGBM regressor, we used state-of-the-art
sampling and pruning algorithms for hyperparameter tuning. Moreover, a custom objective
function is used for optimization, and a sliding window technique is used to extract more
information from the neighbor residues for improved performance. Our proposed method,
TAFPred, shows an average improvement of 15.54% and 13.96% in both metrics (MAE and
PCC) on phi and psi angles, respectively, compared to the state-of-the-art method [16]. In
the future, we also plan to investigate the impact of torsion angle fluctuation in disorder
proteins. We firmly believe the developed method will be helpful to the researcher in
protein structure prediction and disordered prediction.
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