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Simple Summary: If a perfume is released into a room, the occupants will immediately smell it;
however, after a few minutes, they will become desensitized to the odor, although it is still in the
room, as would be attested by newcomers to the gathering. Such behavior is called ‘adaptation.’ In
response to a stepwise increase in an incoming signal (perfume), a sensory cell (the olfactory cell in
the nose) sends an output signal (nerve impulses) to an organ (the brain) that responds appropriately
(attraction or repulsion, say); however, in the continued presence of the input signal, the sensory cell
ceases to respond and reverts to its ‘resting’ state. There are many examples of such near-perfect
adaptive responses in the physiology of living cells, and it is natural to inquire as to the underlying
molecular bases of such behavior. Using an evolutionary search procedure, this paper examines a
wide class of molecular interaction networks for their potential to exhibit near-perfect adaptation.
Adaptive networks that are stable to evolutionary fluctuations are characterized by a simple motif
with two paths: (i) an incoming signal activates a receptor molecule, which activates an output signal,
and simultaneously (ii) the receptor activates a modulator component that inhibits the output.

Abstract: Large-scale protein regulatory networks, such as signal transduction systems, contain small-
scale modules (‘motifs’) that carry out specific dynamical functions. Systematic characterization of
the properties of small network motifs is therefore of great interest to molecular systems biologists.
We simulate a generic model of three-node motifs in search of near-perfect adaptation, the property
that a system responds transiently to a change in an environmental signal and then returns near-
perfectly to its pre-signal state (even in the continued presence of the signal). Using an evolutionary
algorithm, we search the parameter space of these generic motifs for network topologies that score
well on a pre-defined measure of near-perfect adaptation. We find many high-scoring parameter sets
across a variety of three-node topologies. Of all possibilities, the highest scoring topologies contain
incoherent feed-forward loops (IFFLs), and these topologies are evolutionarily stable in the sense
that, under ‘macro-mutations’ that alter the topology of a network, the IFFL motif is consistently
maintained. Topologies that rely on negative feedback loops with buffering (NFLBs) are also high-
scoring; however, they are not evolutionarily stable in the sense that, under macro-mutations, they
tend to evolve an IFFL motif and may—or may not—lose the NFLB motif.

Keywords: perfect adaptation; molecular regulatory networks; evolutionary algorithm; evolutionary
stability; incoherent feedforward loops

1. Introduction

Living cells must adapt to environmental conditions in ways that promote their own
survival and reproduction (for unicellular organisms) or the fitness of the multicellular
organism to which they belong. Cells have evolved sensory systems that detect environ-
mental cues and signal-processing networks that interpret these cues and determine the
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appropriate response of the cell. In many cases, the appropriate behavior is to detect and
respond to an abrupt change in the external signal and then ‘adapt’ (that is, return to the
initial stable ‘resting’ state) in the presence of constant stimulus. For example, our sense of
smell works this way. We pick up a change in odor in a room but soon become desensitized
to the odor. In other words, we go back to the resting state even though the signal (the odor)
that triggered the response is still present and will be detected by a new person entering
the room. In ‘perfect’ adaptation, the signal-processing network returns to the same resting
state regardless of the final, constant level of stimulus (Figure 1A, green line). By this defi-
nition, perfect adaptation may be extremely rare, but near-perfect adaptation (Figure 1A,
blue line) might be good enough to serve the purposes of a living, responding cell.
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Figure 1. Basic concepts. (A) Perfect (green) and near-perfect (blue) adaptation in response to a
persistent signal (black). (B) A three-node motif with six possible regulatory signals (green arrows).
By specifying the interactions as + (activation), − (inhibition), or 0 (absent), we generate a universe of
729 distinct motif topologies.

Adaptive behaviors are crucial in contexts as varied as chemotaxis in Escherichia coli [1,2],
chemotaxis [3] and adenylate cyclase activation [4] in Dictyostelium, and osmo-response in
yeast [5]. Initial mathematical models [6,7] of these behaviors achieved perfect adaptation
through fine-tuning of the biochemical parameters, i.e., certain identities among the reaction
rate constants must be satisfied in order for the response to return exactly to its pre-stimulus
value. In 1997, Barkai and Leibler [8] put forward an alternative explanation of robust
perfect adaptation in bacterial chemotaxis based on a detailed model of the interactions
among the signal-receptor complex CheA:CheW and its methylase (CheR) and demethylase
(CheB). In their model, steady-state receptor activity is independent of signal strength
(ligand level), and the biochemical parameters that produce near-perfect adaptation can
vary over several orders of magnitude. To get this remarkable result, Barkai & Leibler had to
assume that the methylation reaction catalyzed by CheR is always ‘saturated’ (i.e., the rate
of the reaction is independent of the concentration of the unmethylated receptor complex),
along with three other constraints on the reaction network identified by Yi et al. [9]. As
the latter authors remarked, ‘Relaxing any of these four assumptions results in a deviation
from exact adaptation.’

Since then, many authors have proposed simple molecular mechanisms (‘motifs’) that
achieve robust perfect (or near-perfect) adaptation [9–21]. We summarize some of this
work in Supplementary Text S1 (A Catalogue of Mechanisms for Robust Perfect Adaptation
and Near Perfect Adaptation), and two excellent reviews have been published recently by
Ferrell [22] and Khammash [23]. The adaptive motifs fall into three general classes:

1. Integral Feedback Control. A feedback variable, Q(t), changes at a rate proportional
to the difference between the adaptive response variable, R(t), and its desired steady-
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state value, Rss: dQ
dt = k(R− Rss); i.e., Q(t) = Q(0) + k

∫ t
0 (R(τ)− Rss)dτ. Q(t), which

measures the deviation of the system from its setpoint, Rss, then feeds back on the
network to cancel the disturbance. If the system comes to a steady state where Q(t)
and R(t) are no longer changing in time, then lim

t→∞
R(t) = Rss, i.e., perfect adaptation.

For examples, see Mechanisms 1, 2, 9, 10, 11 and 14 in the Catalogue. In all these cases,
the degradation of Q is independent of the concentration of Q, which could be the

result of enzymatic degradation, dQ
dt = − VmaxQ

KM+Q ≈ −Vmax, in the limit KM → 0, as
assumed by Barkai and Leibler for the enzyme CheR. Mechanism 14 in the Catalogue
achieves perfect adaptation by assuming that the feedback variable is synthesized
autocatalytically, dQ

dt = k1QR− k2Q = k1Q
(

R− k2
k1

)
, so that, at steady-state, Rss =

k2
k1

regardless of the incoming signal.
2. Balancing Controls. The signal S upregulates two proteins, P and Q, that have op-

posite effects on the response variable, R. The activation of R by P is canceled by
the inhibition of R by Q. For examples, see Mechanisms 3, 4, 6, 7, 12, and 15 in the
Catalogue. Mechanism 5 combines balancing and integral feedback controls.

3. Antithetical Feedback. Two components, either P and R or P and Q, bind to make a
complex that is removed from the system, thereby canceling the upregulation of R by
S. See Mechanisms 8 and 13 in the Catalogue.

Two early studies are particularly relevant to our investigations in this paper. In
2008, Francois and Siggia [13] took an ‘evolutionary’ approach to the discovery of motifs
exhibiting near-perfect adaptation. Given a small number of interacting proteins, they
constructed regulatory motifs randomly from a collection of biochemical interactions (gene
expression, proteolysis, phosphorylation/dephosphorylation, and complex formation).
Rate-constant values were assigned randomly. One reaction was chosen to receive an
external signal, S, and one component, R, was chosen as the response variable. The
response of the motif to a step change of the signal from S1 to S2 at t = 0 was simulated, and
the motif’s behavior was assessed by a ‘fitness function’ f = ∆Rmax/(∆Rss + ε), where
∆Rmax = max

t>0
|R(t)− Rss(S1)| and ∆Rss = |Rss(S2)− Rss(S1)|. Fifty such motifs were

simulated simultaneously (in the ‘first generation’), and the 25 highest fitness motifs were
chosen to produce a ‘second generation’ of fifty offspring with mutations. Mutations
included changes to any kinetic parameter, the creation or removal of regulatory linkages,
the reassignment of the response variable, etc. After many generations of mutation and
selection, the algorithm settled on two specific motifs (#7 and 8 in the Catalogue) for which
an increase in S induces a transitory increase in R(t).

In 2009, Ma et al. [14] proposed a different way to search for adaptative motifs. They
considered all possible three-node networks of interacting enzymes (e.g., kinases and
phosphatases) governed by Michaelis-Menten kinetics:

dXi
dt

= ∑
j

kAjXj(1− Xi)

KMAj + 1− Xi
−∑

j

kIjXjXi

KMIj + Xi
, i, j = 1, 2, 3 (1)

where the parameters (kAj, KMAj) and (kIj, KMIj) are, respectively, (kcat, Michaelis constant)
for enzyme j in the ‘activation’ and ‘inactivation’ reactions. X1 receives the input sig-
nal, X3 denotes the adapting response, and X2 plays a regulatory role. For each of the
~16,000 motif topologies, they sampled 10,000 randomly chosen parameter values, looking
for examples of near-perfect adaptation, as judged by high scores for both precision (roughly
|X3ss(S2)− X3ss(S1)|−1) and sensitivity (roughly |X3max(t)− X3ss(S1)|). An advantage of
this approach is that the kinetics of the activation and inactivation reactions can be changed
smoothly from ‘linear’ to ‘hyperbolic’ to ‘saturated’ as KM is changed from KMj � Xi to
KMj ≈ Xi to KMj � Xi. Pursuing this approach, Ma et al. [14] identified two ‘minimal’
adaptation networks: motifs 11 and 12 in the Catalogue. Notice that both mechanisms
rely on saturation kinetics for reactions involving the ‘regulatory component’ (X3 in this
paragraph, Q in the Catalogue). Consequently, motif #11 is an integral-feedback mechanism
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(because dQ/dt is independent of Q), and motif #12 is a balanced-control network (because
Q/P is independent of S).

Later, Shi et al. [17] applied the same approach to three-node networks of interacting
transcription factors, Xi, i = 1, 2, 3,

dXi
dt

= kSi ∏
Xm

j

Km
j + Xm

j
∏

Ln
k

Ln
k + Xn

k
− kDiXi, (2)

where the first term describes the synthesis and the second term the degradation of Xi. In
the synthesis term, the first product is over all activators, and the second product is over
all inhibitors of transcription. Shi et al. identified two classes of robust perfect adaptation,
exemplified by motifs 14 (an integral feedback mechanism) and 15 (a balanced control
network) in the Catalogue.

2. Methods: The Mathematical Model

In this study, we combine the evolutionary approach of Francois and Siggia [13] with
the motif-topology framework of Ma et al. [14] and Shi et al. [17]. Following these authors,
we consider all possible three-node topologies (Figure 1B), where X1 receives the signal,
X3 generates the response, and X2 provides regulatory potential. Instead of the Michaelis-
Menten formulation of motif dynamics used by Ma et al. or the Hill function formulation
of Shi et al., we model our motifs using ‘Wilson–Cowan’ equations:

dXi
dt

= γi[F(Wi)− Xi] (3a)

Wi = S(t)δi1 + ωi0 + ∑
j 6=i

ωijXj, i = 1, 2, 3 (3b)

These dynamical equations were first used by Wilson and Cowan [24] to model
excitatory and inhibitory interactions in neural networks. In our context, Xi is the activity
of protein i (1, 2, or 3), and F(Wi) is the instantaneous ‘target’ activity of protein i, which
depends, through the function Wi, on the net regulation of Xi by the other two variables
Xj(t), j 6= i. At any moment in time, Xi(t) is moving towards F(Wi) at a rate determined by
γi. The interaction coefficients ωij determine the weights of the ‘influence’ of variable j on
variable i (ωij > 0 for activation, <0 for inhibition, and =0 for no interaction). The offset
ωi0 determines Wi in the absence of any regulatory influences on node i. For node 1, a
signal term S(t) is added to W1. For F(Wi) we choose the hyperbolic tangent function (‘soft
Heaviside’ function):

F(Wi) =
1
2

[
1 + tanh

(
σWi

2

)]
=

1
1 + e−σWi

(3c)

The parameter σ determines the steepness of the sigmoidal curve (Figure 2A). Note that 0 <
F(Wi) < 1; hence, 0 < Xi(t) < 1 for all t ≥ 0. In all our calculations, we choose σ = 10.

Equation (3a–c) have recently been used advantageously to model protein- and gene-
regulatory networks [25–28]. For our purposes, the Wilson–Cowan equations have simi-
larities to Equation (2) of Shi et al. [17] and have certain advantages over Equation (1) of
Ma et al. [14]. Equation (3) provides a simple and more flexible formalism for modeling
interaction networks of any complexity. In practical terms, it is easy for us to introduce both
micro- and macro-mutations into the model simply by changing parameters (the interaction
coefficients ωij) without changing the form of the differential equations. Micro-mutations
correspond to changes in the value of an ωij without changing its sign; macro-mutations
correspond to a change in the sign of an ωij. In conceptual terms, the Wilson-Cowan
approach is closely related to the well-studied piecewise-linear approximation to Boolean
dynamical systems [29], because lim

σ→∞
F(W) = Heav(W) = 0 if W < 0 and = 1 if W ≥ 0. This
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recognition brings the intuitive appeal of Boolean dynamics into our understanding of the
dynamical behavior of Equation (3a–c).
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computed from Equation (4).

Our goal is to identify networks of three interacting proteins (and/or genes) that
exhibit near-perfect adaptation to a stepwise increase in signal (S = 0 to S = 1). In principle,
this involves searching a 16-dimensional parameter space P = {ωij, ωi0, γi, σ}, subject
to the bounds specified in Table 1. To achieve our goal, we plan: (1) to introduce some
simplifying assumptions; (2) to subdivide the parameter space into subsets associated with
three-link networks (called pure signaling motifs); and (3) to pursue an evolutionary search
strategy similar to Francois and Siggia [13].

Table 1. The role and range of each parameter in the model.

Parameter Role Range

ωi0 Offsets [−2, 2]

ωij Interaction Coefficients
[−1, −0.1]

0
[0.1, 1]

γ1, γ2 Rate constants [0.1, 3]
γ3
−1 Time scale 1

σ Sigmoidicity 10

First, the search strategy. We create a population of potential adaptive networks
(drawn from the parameter space P ) and assess each one’s ‘fitness’ according to the
‘scoring’ function:

Z = ∆X3max/(∆X3ss + 0.05) (4)

where ∆X3max = max
t>0
|X3(t)− X3ss(S1)| and ∆X3ss = |X3ss(S2)− X3ss(S1)|. For an exam-

ple of the fitness function, see Figure 2B. (We shall refer to Z interchangeably as the ‘fitness’
or the ‘score’ of a network.) Based on their fitness, networks are chosen to contribute
progeny to the next generation. The population of competing networks is then allowed
to evolve from one generation to the next to achieve the highest possible score. (More
details on the evolutionary algorithm are provided in Appendix A). In creating progeny,
we allow for both micro-mutations (a fixed sign pattern of the ωij’s but random changes to
parameter values) in order to identify regions of parameter space (if any) where a particular
network topology can exhibit near perfect adaptation and macro-mutations (allowing
network topologies to mutate as well) to investigate the evolutionary relationships among
competing patterns of network interactions.

Second, we make two simplifying assumptions. (i) We do not allow for self-regulation,
i.e., ω11 = ω22 = ω33 = 0. This assumption greatly reduces the number of distinct topologies
from 39 = 19,683 to 36 = 729. It is reasonable because most earlier studies of near-perfect
adaptation (refer to the Catalogue; motif #14 is the exception) did not find any significant
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role for self-activation or self-inhibition. (ii) In implementing our evolutionary algorithm,
we require that, for S2 > S1, max

t>0
X3(t) > X3ss(S1), i.e., that an increase in signal induces

an initial rising response (i.e., a ‘bump’ rather than a ‘dip’). This restriction reduces the
complexity of the search process and the interpretation of the results. Furthermore, when
considering the evolutionary stability of networks, we suppose that a macro-mutation that
converts a bump response into a dip response will be disadvantageous because the response
is going in the opposite direction. So, we assume that fitness = 0 for all dip-responses. Once
we understand the evolutionary relationships of bump-responders, it is possible to convert
them to dip-responders by changing the signs of particular interaction coefficients.

Third, we subdivide the problem into smaller domains of parameter space by exploit-
ing the notion of ‘minimal’ signaling topologies, as explained in the next section.

3. Results
3.1. Classifying ‘Minimal’ Topologies That Might Exhibit Near-Perfect Adaption

Ma et al. [14] introduced the concept of ‘minimal’ three-node topologies that have
exactly three non-zero interaction coefficients. Within our model framework, it is trivial to
identify any network topology by its unique ‘sign pattern’ (s12, s13, s21, s23, s31, s32), where
sij = sign(ωij) = +1 if j activates i, −1 if j inhibits i, and 0 if there is no influence. A minimal
three-node topology corresponds to a sign pattern with three zero and three non-zero
entries; hence, there are 6-choose-3 = 20 different sign patterns (i.e., minimal three-node,
three-link topologies), which are displayed in Supplementary Table S1. Each sign pattern
has 23 = 8 distinct cases, corresponding to choosing either +1 or −1 for the non-zero entries.
Hence, among the 36 = 729 possible topologies, there are 160 minimal signaling motifs. Not
all of these motifs are candidates for near-perfect adaptation. In fact, only the first five sign
patterns in Supplementary Table S1 are likely candidates; the other fifteen are unlikely for
the reasons specified in the table. As a first step in identifying adaptive motifs, we allow
a partially random collection of network topologies to evolve together (with micro- and
macro-mutations) in order to see which topologies come out on top.

First, we introduce a convenient ‘code’ for network topologies: (d12, d13, d21, d23, d31, d32),
where dij = sij + 2. With this change, we replace a sign pattern with a digital code consisting
of the integers 1 (inactivation), 2 (no influence), and 3 (activation).

3.2. Initial Exploration of Topology Space

As a first step, we explored topology space by picking forty starting topologies (gen-
eration 0) and allowing them to compete (based on their fitness) and reproduce (with
mutations) from one generation to the next. Twenty-four of the forty starting topologies
were generated by randomly selecting each of the six digits of the topology’s code, thereby
ensuring that a variety of sign patterns (i.e., network topologies) were given a chance to
exhibit adaptation. The other sixteen topologies were chosen from four categories: incoher-
ent feed-forward loops (IFFLs), coherent feed-forward loops (CFFLs), negative feedback
loops with buffer nodes (NFLBs), and positive feedback loops with buffer nodes (PFLBs).
Each of these categories was represented by four different cases. For each starting topology,
we chose a random point in parameter space consistent with the topology’s code and the
bounds in Table 1. In each generation, every topology suffered micro-mutations by making
small random changes to ωij values (without changing the topology’s code), and some
topologies suffered macro-mutations by changing their code (i.e., changing one dij) and
then assigning the value of ωij from the appropriate range (Table 1). For more details, see
Appendix A.3: Evolutionary Algorithm.

Collectively, more than 500 unique topologies were generated across the forty runs. A
particular topology may be present in more than one run, so the outputs from all forty runs
were collated before calculating the average score of each topology over its lifetime. The
scores ranged from nearly 0 to ~14. All topologies that scored >6 are listed in Table 2. Our
first observation is that all top-scoring topologies contain incoherent feed-forward loops.
There are four distinct IFFLs, identified in Figure 3A. Of the 28 top-scoring topologies,
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20 carry an IFFL-1 motif (XX3X31) and 8 carry an IFFL-4 motif (XX1X33). (Not surprisingly,
IFFL-2 and IFFL-3 motifs are missing because they are associated with dip-responses rather
than bump-responses.) Mixed in among the IFFL-1 and -4 topologies (red and green)
in Table 2 are NFLB-1, -2, -3, and -4 motifs (Figure 3B). Surprisingly, our initial search
did not find any high-scoring NFLB-1 or NFLB-3 topologies uncoupled from IFFLs, even
though Ma et al. [14] identified NFLB-1 and NFLB-3 as minimal adaptation networks. This
observation prompted us to look more closely at how adapting networks evolve under
micro-mutations only and then under macro-mutations as well.

Table 2. The highest scoring toplogies from an initial evolutionary simulation with both micro- and
macro-mutations.

Code < Z > Code < Z > Code < Z >

123331 (1,3) 14.18 113331 (1,3) 10.40 113231 (1) 7.81
133231 (1) 13.84 233231 10.24 233331 (3) 7.40
123231 (1) 13.46 121333 10.07 121233 7.26
133331 (1,3) 13.35 333331 (3) 9.19 213331 (3) 7.04
233131 13.31 333231 9.12 321233 (2) 6.83
321133 (2) 12.10 131233 9.06 323231 6.50
223131 11.42 223331 (3) 8.79 221333 6.41
123131 (1) 11.14 133131 (1) 8.78 333131 6.07
131133 (4) 11.11 223231 8.39
111233 10.50 113131 (1) 8.08

Red: IFFL-1 topologies (XX3X31); green: IFFL-4 topologies (XX1X33); purple: NFLB-1,2,3,4 topologies; < Z >:
average score. Code 223231 (bold) is the only ‘minimal’ topology (IFFL-1).
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Figure 3. Common topologies supporting near-perfect adaptation. (A) Incoherent Feed Forward
Loops (IFFLs). (B) Negative Feedback Loops with Buffering (NFLBs). (C) Topologies that combine
the four NFLBs with the two dominant IFFLs. Red denotes IFFL-1, green denotes IFFL-4, blue
denotes ‘upper’ NFLBs, purple denotes ‘lower’ NFLBs. (D) Topologies that combine each of the two
high-scoring IFFLs with both an ‘upper’ and a ‘lower’ NFLB.



Biology 2023, 12, 841 8 of 23

3.3. Close Examination of IFFL and NFLB Topologies

Since Ma et al. [14] identified two classes of ‘minimal’ motifs (we call them pure motifs)
that exhibit near-perfect adaptation, namely IFFLs and NFLBs, we examined these two
classes separately for near-perfect adaptation. These motifs are diagramed in Figure 3A,B
and identified by ‘name’ and ‘code’ (d12d13d21d23d31d32).

3.3.1. IFFL Topologies

The code for each pure IFFL motif in Figure 3A has three 2s that can take any value 1,
2, or 3 without breaking the IFFL, so there are 27 members of each IFFL category that need
to be examined. Recall that we are only looking for bump responses (not dip responses), so
we focus on IFFL-1 and -4. We start by examining all 27 IFFL-1 and all 27 IFFL-4 motifs for
their ability to evolve near-perfect adaptation under micro-mutations only (i.e., changes in
the values of the ωij’s without changing the code of the motif; see the methods subsection).
Each simulation starts with a set of randomly chosen parameter values that yield a low
score. For each generation, we compute the average score of the parental parameter sets.
In Figure 4, we plot some examples of how these average scores change from generation
to generation.
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For each simulation, we monitor the first passage time (FPT), i.e., the number of genera-
tions it takes for the average score to exceed 10, and stop the simulation 50 generations after its
FPT. Then we calculate the topology’s overall average score over the last 50 generations; see
Table 3. All 27 IFFL-1s and 27 IFFL-4s achieve high-scoring results even from a poor start,
showing that these two classes of topologies can exhibit near-perfect adaptation. A similar
search of IFFL-2 and IFFL-3 topologies found much lower average scores (not shown), as
expected.

These simulations were done with N = 20 parents per generation and R = 20 offspring
per parent. With fewer than 20 progeny per parent, the evolutionary algorithm often does
not find a high-scoring region.
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Table 3. The average scores < Z > and First Passage Times (FPT) of all IFFL-1 (XX3X31) and IFFL-4
(XX1X33) topologies.

(A) IFFL-1 Topologies (B) IFFL-4 Topologies
Code < Z > FPT Code < Z > FPT

113131 16.87 118 111133 12.48 15
113231 16.26 27 111233 11.45 70
113331 16.10 20 111333 14.04 25
123131 16.92 17 121133 11.96 31
123231 17.15 28 121233 12.02 100
123331 16.76 16 121333 13.47 26
133131 17.68 11 131133 12.57 33
133231 17.03 24 131233 13.64 23
133331 16.77 22 131333 13.55 42
213131 11.43 34 211133 11.41 18
213231 13.19 49 211233 11.89 26
213331 10.93 38 211333 13.25 12
223131 15.18 7 221133 13.67 66
223231 15.25 26 221233 11.96 30
223331 9.34 17 221333 12.15 17
233131 13.88 53 231133 11.27 53
233231 14.38 69 231233 12.19 32
233331 14.99 10 231333 12.61 80
313131 13.14 28 311133 13.64 24
313231 14.73 6 311233 12.73 31
313331 10.33 134 311333 11.81 32
323131 10.80 48 321133 12.94 10
323231 15.62 5 321233 12.90 31
323331 14.91 25 321333 12.53 17
333131 15.49 21 331133 12.55 22
333231 14.40 8 331233 14.36 16
333331 9.19 41 331333 14.34 41

The pure topologies are bold-face. These micro-mutation only simulations were done with N = R = 20. (A) Red,
IFFL-1 + NFLB-1 topologies (1X3X31); underlined, IFFL-1 + NFLB-3 topologies (XX3331). (B) Green, IFFL-4 +
NFLB-4 topologies (1X1X33); underlined, IFFL-4 + NFLB-2 topologies (3X1X33).

3.3.2. NFLB Topologies

Next, we carried out the same micro-mutation-only simulations of the four NFLB
cases (Figure 3B), and we summarize the results of all 4 × 27 topologies in Table 4. The
highest-scoring topologies are (with one exception) NFLBs combined with IFFL-1 or IFFL-4.
Later, we shall examine the relative contributions of IFFLs and NFLBs to these topologies,
but first we investigate NFLBs that are not coupled to IFFL-1 or -4 (black in Table 4), referred
to as uncoupled NFLBs.

Starting from the four pure NFLBs shown in Figure 3B, we find that only the upper
NFLBs (NFLB-1 and NFLB-2) score decently on their own (9.80 and 7.10, respectively), in
contrast to the lower NFLBs (-3 and -4), which score poorly on their own (3.13 and 2.64).
These results contradict the conclusions of Ma et al. [14] that NFLB-1 and NFLB-3 are
‘minimal’ adaptive networks, and NFLB-2 and -4 are not. In general, the uncoupled NFLB-1
topologies score highest (8.6–15.4), followed well behind by uncoupled NFLB-2s (≤8.2) and
uncoupled NFLB-3s (≤5.7). With three exceptions, uncoupled NFLB-4s score poorly (≤3.2).

In summary, NFLB-1 and (to a lesser extent) NFLB-2 topologies score well on their
own and particularly well when combined with IFFL-1 and IFFL-4 topologies, respectively.
NFLB-3 and NFLB-4 (with three exceptions) score well only when combined with IFFL-1
and IFFL-4, respectively.

3.3.3. Evolution of IFFL-1 and IFFL-4 Topologies under Macro-Mutations

Next, we allowed the high-scoring IFFL-1 or IFFL-4 topologies to macro-mutate.
Starting from the highest-scoring parameter set obtained from the micro-mutations only run,
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the IFFL-1 topologies drift among themselves, keeping their high scores (e.g., Figure 5), and
similarly for the IFFL-4 topologies (not shown). These results suggest that the IFFL-1 and
IFFL-4 topologies (the two sets of 27 motifs in Table 1) form two separate ‘mesas’ in topology
space, in the sense that (1) they both exhibit very high average scores when examined on
their own; and (2) they are evolutionarily stable, i.e., they stay within themselves when
allowed to macro-mutate.

Table 4. The average scores < Z > of all four NFLB topologies.

(A) NFLB-1 (B) NFLB-2 (C) NFLB-3 (D) NFLB-4
Code < Z > Code < Z > Code < Z > Code < Z >

133131 17.68 331233 14.36 123331 16.77 221133 13.67
123231 17.15 331333 14.34 133331 16.69 311133 13.64
133231 17.03 311133 13.64 113331 16.11 133133 13.20
123131 16.92 321133 12.94 233331 14.99 321133 12.94
113131 16.87 321233 12.90 323331 14.91 131133 12.57
123331 16.76 331133 12.55 213331 10.93 331133 12.55
133331 16.77 321333 12.53 313331 10.33 111133 12.48
113231 16.26 311333 11.81 223331 9.34 121133 11.96
113331 16.10 311233 10.40 333331 9.19 211133 11.41
133132 15.40 331332 8.20 122331 5.67 231133 11.27
133232 15.00 331132 7.58 132331 5.67 123133 10.46
133332 14.29 321132 7.39 112331 5.05 113133 8.63
133133 13.20 321232 7.10 321331 4.55 322133 3.25
133233 12.48 311132 6.23 121331 4.19 332133 3.22
123332 12.29 321231 5.09 131331 3.91 312133 2.90
123132 12.06 331232 4.78 212331 3.39 112133 2.74
133333 11.99 331231 4.76 322331 3.36 122133 2.68
123333 10.71 311232 4.74 312331 3.35 222133 2.64
113332 10.69 331131 4.73 222331 3.13 212133 2.64
123233 10.55 311231 4.55 332331 3.11 323133 2.63
123133 10.46 321331 4.55 232331 2.96 313133 2.60
113232 10.32 321332 4.42 311331 2.80 132133 2.59
123232 9.80 311332 4.30 331331 2.80 233133 2.43
113132 9.35 331331 2.80 231331 2.77 223133 2.27
113333 8.97 311331 2.79 221331 2.49 213133 2.24
113233 8.73 311131 1.64 211331 2.40 232133 2.12
113133 8.63 321131 1.33 111331 2.13 333133 1.81

The pure topologies are bold-face. (A,C) Red, NFLB + IFFL-1 topologies; underlined, NFLB-1 + NFLB-3 topologies
(1X331). (B,D) Green, NFLB + IFFL-4 topologies; underlined, NFLB-2 + NFLB-4 topologies (3X1133).
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First, let us define a ‘mesa’ in topology space T = {(d12, d13, d21, d23, d31, d32) |
dij = 1, 2, or 3}. The ‘mesa’ for a pure motif, e.g., IFFL-1, is a subsetM IFFL1 = {(XX3X31)
| each X = 1, 2, or 3}. Each mesa of a pure motif has 33 = 27 elements. Since there are
160 minimal motifs and each one has a mesa of 27 elements, there is a great deal of overlap
among the mesas. Of the 160 pure motifs, most of them are unconducive to bump responses,
so we only need to focus on the subsets of those pure motifs that show up as ‘adaptive’ in
our evolutionary searches.

3.3.4. Why Are IFFL-1 Topologies Evolutionarily Stable?

To explore the evolutionary stability of the IFFL-1 motif in topology space, we focus
on the region of T occupied by the mesasM IFFL1,MNFLB1, andMNFLB3. These subsets
overlap, as indicated in Figure 6A. The union of the three mesas, called U , contains
63 topologies, and we arrange these topologies on a Venn diagram on the basis of their
average scores, < Z >, recorded in Tables 3 and 4. We stratifyU with dashed lines of fixed
Z in intervals of 2 units, from the highest score of 18 to the lowest of 2. In the absence of
macro-mutations, each topology will climb from a random location in the desert region of
parameter space to the peak fitness for that topology recorded in Figure 6A.

Each topology can undergo 12 different macro-mutations that flip a single dij. For
example, in Figure 6A, we show how the pure IFFL-1 topology (223231) can macro-mutate
to six other topologies inU (the solid red arrows induced by changing any ‘2’ to a ‘1’ or ‘3’)
or to six topologies outsideU (the dashed red arrow pointing into the desert region). For
the six macro-mutations that end up withinU , further macro-mutations will tend to drive
the network to the high-scoring region, say Z > 16. In particular, any mutant topology
that starts in M IFFL1 will remain in M IFFL1, i.e., IFFL-1 topologies are evolutionarily
stable. On the other hand, a mutant topology that starts inMNFLB3 but not inM IFFL1
will clearly evolve up the fitness landscape intoM IFFL1. SoMNFLB3 is not evolutionarily
stable. Similarly, although the fitness gradient is not so steep, a topology that starts in
MNFLB1\M IFFL1, can be expected to evolve by macro-mutations intoMNFLB1 ∪M IFFL1.
We have confirmed this expectation by numerical simulations: in Supplementary Table S2,
we trace the fate of the 18 uncoupled NFLB-1 topologies, showing that they evolve by macro-
mutations predominantly (>99%) into IFFL-1 + NFLB-1 topologies (1X3X31), which are the
highest fitness topologies, according to Figure 6A. (Two of the simulations did not reach a
high-scoring endpoint.) Supplementary Table S3 shows that uncoupled NFLB-3 topologies
macro-mutate predominantly into IFFL-1 + NFLB-1 topologies (1X3X31), as well. In one
case (212331), the final state was predominantly IFFL-1 + NFLB-3 or IFFL-1 only.

In Figure 6B, we show the Venn diagram of U ′ = M IFFL4 ∪ MNFLB2 ∪ MNFLB4,
which lies in a different region of topology space. The diagram confirms thatM IFFL4 is
evolutionarily stable, butMNFLB2 andMNFLB4 are not. Surprisingly, when NFLB-2 and
NFLB-4 topologies are subjected to macro-mutations, they tend to evolve into IFFL-1 +
NFLB-1 topologies (see Supplementary Tables S4 and S5). To understand why, consider
that many macro-mutations kick a starting topology out of bothU andU ′ into the desert
region, where mutants are likely to go extinct or, by some chance, find their way back
into U or U ′. In particular, it is impossible to move betweenM IFFL1 andM IFFL4 (the
evolutionarily stable mesas) by a single macro-mutation. For example, three of the six
macro-mutations that move the pure IFFL-1 motif into the desert are coherent feed-forward
loops (CFFLs): 221231, 223233, and 223211. Any of them can revert back to IFFL-1 (223231)
by a second macro-mutation; two of them can mutate further to IFFL-4 (221233); the third
can mutate to IFFL-2 (221211) or IFFL-3 (223213), which are not bump-responders and,
hence, are weeded out by selection. Since the fitness of topologies inU is generally higher
than that in U ′, it is reasonable to expect that a sequence of macro-mutations that push
mutants around in the desert region is more likely to end up inU than inU ′, as we observe.
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Figure 6. Venn diagrams illustrating the IFFL mesas in topology space. (A)M IFFL1 +MNFLB1 +
MNFLB3. (B)M IFFL4 +MNFLB2 +MNFLB4. Each Venn diagram subsumes 63 separate topologies,
whose fitness scores (from Tables 3 and 4) are recorded in the relevant subset to which they belong.
The scores are separated by dashed lines at 2 unit intervals. Pure motifs are indicated by bold scores.
Macro-mutations of the pure IFFL-1 and -4 motifs are indicated by red lines. In each case, there are six
solid red lines indicating macro-mutations that remain withinM IFFL1 andM IFFL4, respectively, and
the dashed red line represents the six macro-mutations that carry the topology into the ‘desert’ region
of low fitness. Notice that no single macro-mutation can carry a topology fromM IFFL1 toM IFFL4 or
vice versa. BothM IFFL1 andM IFFL4 are evolutionarily stable with respect to macro-mutations that
remain within the mesa. Macro-mutations in the desert region are likely to go extinct or to pick up a
second mutation and enterM IFFL1 orM IFFL4.

3.3.5. Examining the Interactions of IFFL and NFLB Topologies

Figure 3C shows the four-link topologies that result from coupling the IFFL and NFLB
topologies. Table 4 shows the average scores of the four NFLBs coupled with IFFL-1 (red)
and IFFL-4 (green). In almost all cases, these topologies have higher average scores than
the uncoupled NFLBs (black). To quantify the overall increase in score of an NFLB motif
by the addition of an IFFL, we build tables that show the percentage change in average
score per NFLB topology. For example, Supplementary Table S6 records the percentage
increase in score of an uncoupled NFLB-1 topology (an element ofMNFLB1\M IFFL1) when
the uncoupled topology is mutated to include an IFFL-1 motif. The change in score is
averaged over all uncoupled NFLB-1 topologies to get an overall percentage change (+52%),
as shown in Figure 7A, leftmost panel. Supplementary Tables S7–S9 correspond to the
other panels in Figure 7A.
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Figure 7. Fitness changes when NFLB and IFFL topologies are combined. (A) The fitness of an NFLB-
only topology is increased by adding an IFFL-1 motif. (B) The fitness of an IFFL-1 only topology
undergoes relatively small percentage changes (+ or −) when admixed with NFLB-1 and/or -3. (C)
Similarly, for IFFL4-only admixed with NFLB-2 and/or -4.

Next, we check the effect of adding NFLBs to IFFLs; the results are recorded in
Supplementary Tables S10–S14. From these tables, we calculate the average change in score
across all combinations and summarize the results in Figure 7B. Similar results for adding
NFLB-2 and/or NFLB-4 to IFFL-4 only are recorded in Supplementary Tables S15–S19 and
summarized in Figure 7C. In all cases, adding an NFLB increases an IFFL score by a much
lower percentage than when IFFLs are added to an NFLB. Therefore, we conclude that
IFFLs contribute much more significantly to the coupled topologies’ scores than do NFLBs.

Interestingly, adding NFLB-1 (an upper NFLB) increases IFFL-1 scores, whereas adding
NFLB-3 (a lower NFLB) decreases the scores. This pattern is reinforced by Figure 7C, where
adding the upper NFLB-2 increases the fitness of IFFL-4 much more than adding the lower
NFLB-4. These findings are consistent with our earlier observation that the uncoupled
upper NFLBs tend to score better on their own than the uncoupled lower NFLBs. In the next
section, we validate the contributions of upper NFLBs to high-scoring IFFLs, as compared
to lower NFLBs.
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3.3.6. Interaction Coefficients Measure the Relative Contributions of NFLB and IFFL Motifs
to High-Scoring Combination Topologies

To check that upper NFLBs contribute more significantly than lower NFLBs to high-
scoring NFLB+IFFL combinations, we compare the means of all the relevant interaction
coefficients (the ωij’s) in the combination topologies. For each of the micro-mutation-only
simulations presented earlier, we identify the high-scoring topologies (score ≥ 10) and
calculate the means of all six ωij’s. Supplementary Table S20 records their values for
IFFL-1 topologies.

From these results, we first observe that the three ωij’s corresponding to the underlying
IFFL-1 class (i.e., ω21, ω31, and ω32) have weights close to their most extreme values of ±1.
The interaction strengths are also strong in the case of negative ω12

′s, which account for the
negative feedback loop of the upper NFLB-1. In the case of positive ω23

′s, which account
for the negative feedback loop of the lower NFLB-3, the interaction coefficients are weak
(close to their minimum possible value of 0.1). This is clear evidence that the IFFL-1′s,
along with the upper NFLB-1’s, are driving the near-perfect adaptive responses. The lower
NFLB-3s play negligible roles in adaptation.

We reach a similar conclusion for IFFL-4s (see Supplementary Table S21). The interac-
tion strengths are strong in almost all cases of positive ω12

′s, which account for the negative
feedback loop of the upper NFLB-2. The negative ω23

′s, which account for the negative
feedback loop of the lower NFLB-4, are weak (close to their weakest possible value of −0.1).
Clearly, it is IFFL-4’s in combination with upper NFLB-2’s—not lower NFLB-4’s—that are
driving the near-perfect adaptive responses.

These results show that IFFLs combined with upper NFLBs score best among all
classes, and the interaction coefficients for these motifs tend to be close to ±1 in the high-
scoring sets.

Supplementary Tables S22 and S23 record the means and standard deviations of all
model parameters for IFFL-1 and -4 topologies, respectively.

4. Discussion
4.1. Summary of Results

Three-component signaling motifs (see Supplementary Table S1) are common in large-
scale regulatory networks involving interacting enzymes and transcription factors [30,31].
For example, in the transcription network of Escherichia coli, Ma et al. [32] have identified
~700 feed-forward loops, of which 70% are CFFLs and 30% are IFFLs (mostly CFFL-1 and
IFFL-1). As many authors have shown, these motifs play specific functional roles in the
physiology of living cells [31–35]. Of special interest here is the ability of cells to respond to
an abrupt stimulus but subsequently ‘adapt’ to a sustained stimulus by returning to the
pre-stimulus ‘resting’ state. Small network motifs are known to facilitate adaptive responses
in a variety of circumstances. For example, Takeda et al. [3] have attributed near-perfect
adaptation in the Ras signaling pathway in Dictyostelium amoebae to an IFFL motif; Muzzey
et al. [5] have shown that osmoregulation in yeast cells is governed by integral feedback
control; Basu et al. [36] have engineered E. coli cells to exhibit pulse-like expression of
GFP in response to an inducer, acyl-homoserine lactone; Csikasz-Nagy et al. [37] have
implicated IFFLs in the initiation of DNA replication and mitotic exit during reproduction
of yeast cells; and O’Donnell et al. [38] have implicated an IFFL in the regulation of E2F1
gene transcription by c-Myc and micro-RNAs.

In this work, we propose a mathematical model for studying the evolutionary stability
of near-perfect adaptation in simple three-component networks of interacting genes and/or
proteins. To this end, we model the dynamical behavior of these networks in terms of a
standardized, flexible set of ordinary differential equations, Equation (3a–c), introduced
years ago by Wilson and Cowan [24] to model neural networks and used more recently by
numerous authors to model gene/protein interaction networks [25–28]. A Wilson–Cowan
network on components X1, X2, and X3 is parameterized by a set of interaction coefficients
(ωij, i,j = 1,2,3) whose signs specify the topology of the network (ωij > 0 for activation, <0



Biology 2023, 12, 841 15 of 23

for inhibition, and = 0 for no interaction), and whose magnitudes determine the strength of
the interaction. The Wilson–Cowan approach is especially useful for us because we can
easily model mutations in the signaling network by changing one interaction coefficient at
a time. Micro-mutations correspond to changing the magnitude of an ωij without changing
its sign, and macro-mutations correspond to changing the sign (+, − or 0) of an ωij. We
follow the evolution of the network over the course of many generations by introducing, for
each specific ‘parental’ network, a ‘fitness’ function, Z, that quantifies its behavior as a near-
perfect adaptive response to a stepwise increase in signal. Parental networks contribute
‘offspring’ to the next generation in accordance with their fitness. We have followed the
evolution of the signaling networks under these conditions for many generations to identify
winners and losers. Since we are interested in the evolutionary stability of networks, we
must penalize disadvantageous mutations that convert a ‘bump’ response (a transient
increase) to the signal into a ‘dip’ response (a transient decrease); therefore, our fitness
function only rewards bump responses. In addition, we limit ourselves to networks without
self-activation or inhibition, i.e., ωii = 0 for i = 1,2,3. In this case, our space of possible
network topologies, T , has 36 = 729 elements.

We summarize the results of our study schematically in Figure 8. In the space T , we
find two separate ‘mesas’ of high fitness towering above a vast ‘desert’ of non-adaptive
networks. The mesas are associated with incoherent feed-forward loops of types 1 and 4
(IFFL-1 and IFFL-4; see Figure 3A). Each mesa has two shoulders associated with negative
feedback loops with a buffering node (NFLB-1, -2, -3, -4; see Figure 3B). Each mesa, with its
shoulders, accounts for 63 different topologies; so, the desert accounts for 603 non-adaptive
topologies. In set notation, the ‘IFFL-1 mesa’ isU =M IFFL1 ∪MNFLB1 ∪MNFLB3, where
M IFFL1 is the subset of 27 topologies that contain an IFFL-1 sign pattern, and similarly
forMNFLB1 andMNFLB3. We denote the ‘IFFL-4′ mesa as U ′ =M IFFL4 ∪ MNFLB2 ∪
MNFLB4. If we consider macro-mutations that change one topology into another, we find
that macro-mutations that stay within the ‘IFFL-1 mesa’ evolve to the top of the mesa, so
the subsetM IFFL1 is evolutionarily stable, but the shoulders,MNFLB1 andMNFLB3, are not
because they may lose the negative feedback loop during the course of evolution. Similarly,
M IFFL4 is evolutionarily stable, but the shoulders,MNFLB2 andMNFLB4, are not.
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Some macro-mutations carry a topology out ofU (or out ofU ′) into the desert. These
mutants will have very low fitness and are likely to go extinct unless they experience a
reverse mutation back intoU (or back intoU ′) or a further macro-mutation taking them
intoU ′ (or intoU ). In this sense,M IFFL1 ∪M IFFL4 is evolutionarily stable with respect to
all mutations. Since the IFFL-1 mesa exhibits higher fitness scores than the IFFL-4 mesa,
we might expect IFFL-1 topologies to dominate over IFFL-4 topologies over the long run
of evolutionary history. In fact, IFFL-1 motifs are ~ten times more prevalent than IFFL-4
motifs in modern transcriptional networks in E. coli and budding yeast [33–35]. Alon has
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given some reasons why IFFL-4 motifs are (unexpectedly for us) rare in adaptive signaling
networks; see Section 4.8 of [31].

4.2. Comparison with the Results of Ma et al. and Shi et al.

Our approach differs from that of Ma et al. [14] and Shi et al. [17] in several respects
(see Appendix B), and our results extend their work in several directions. Not only have
we quantified more precisely the dominance of IFFLs over NFLBs, but we have also shown
which particular classes of IFFLs and NFLBs score best. In fact, one of our adaptive motifs
(IFFL-4) was identified by Ma et al. as non-adaptive; see their Figure 2B. We show clearly
that both IFFL-1 and IFFL-4 exhibit near-perfect adaptation to a very high degree, forming
two separate ‘mesas’ in topology space. Since we are looking only for bump responses,
IFFL-2 and IFFL-3 topologies have low fitness. Of course, they would both do well in a
search for dip-responses.

An important mathematical difference between our model and Ma et al.’s needs to
be highlighted. Since they consider only small changes in input (from 0.5 to 0.6), they
are able to linearize the underlying Michaelis–Menten ODEs, and from their linearized
equations, they show that, for NFLBs to show perfect adaptation, J0

22
∼= 0, where J0

22 is a
diagonal element of the Jacobian matrix of the system at steady state. J0

22
∼= 0 is satisfied

when the enzymes acting on Node 2 (our variable X2) are in saturation, i.e., when the ODE
for Node 2 has Michaelis constants much smaller than substrate concentrations. Under
this condition, Node 2 implements integral feedback control in NFLBs by integrating the
difference between the activity of response Node 3 and Node 3′s signal-independent steady
state value. See Equations (2)–(4) in Ma et al. [14] for the mathematical details. In our
model, however, there is no requirement for integral feedback control (J0

22
∼= 0) to achieve

adaptation in NFLBs; indeed, from Equation (3a), we find J0
22 = −γ2, which is small but

not zero (i.e., 0 < γ2 < γ3 ≡ 1 < γ1).
In Appendix C, we discuss the ‘fine-tuning’ of parameter values in relation to our

model and Ma et al.’s.
Our work bears more similarity to Shi et al. [17] because the Wilson–Cowan equations

we use are applicable to both enzymatic regulatory networks and transcriptional regulatory
networks [26]. However, we do not find their case of a negative feedback loop with
exponential buffering (Mechanism #14 in the Catalogue) for two reasons: (1) we have
excluded self-activation in the network, and (2) even if we were to allow the term ω22X2 in
Equation (3b), we would not reproduce Shi’s result because the autocatalytic effect of the
regulatory node (X2) is highly nonlinear in the Wilson–Cowan equations.

5. Conclusions

In summary, using an evolutionary search algorithm similar to [13] and a modeling
formalism similar to [24], we have extended the work of Ma et al. [14] and Shi et al. [17]
by identifying the specific combination of IFFLs and NFLBs that are most conducive to
near-perfect adaptation. We confirmed the evolutionary stability of the optimal topology
classes, a result beyond the scope of the methodology used by other investigators. Finally,
we have provided a more concrete picture of the regions in parameter space where the
high-scoring topologies exhibit near-perfect adaptation.

None of the models of perfect and near-perfect adaptation in the Catalogue (Supplemen-
tary Text S1) consider the potential effects of molecular fluctuations that are inevitable in
signaling networks in bacterial and yeast cells, which are small in volume and have limited
numbers of macromolecules (maybe only 5–10 copies of crucial mRNAs). Characterizing
these effects is an important issue for future study.

Our evolutionary approach can be used to find motifs and parameter sets that display
other behaviors, such as bistability, oscillations, Turing patterns, and chaos. Once the
appropriate scoring function has been designed in each case, the evolutionary approach is
the same as the one taken here. By confirming that our approach works for the case of near-
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perfect adaptation, we have taken the first step in creating a topological structure-function
map that could be a useful tool for systems biologists.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology12060841/s1”. Text S1. A Catalogue of Mechanisms for Robust
Perfect Adaptation and Near Perfect Adaptation; Table S1: The pure signaling motifs; Table S2: NFLB-1
topologies (1X3X3X) macro-mutate predominantly into high-scoring IFFL-1 + NFLB-1 topologies
(1X3X31); Table S3. NFLB-3 topologies (XXX331) macro-mutate predominantly into high-scoring IFFL-
1 + NFLB-1 topologies (1X3X31); Table S4. NFLB-2 topologies (3X1X3X) macro-mutate predominantly
to high-scoring IFFL-1 + NFLB-1 topologies (1X3X31); Table S5. NFLB-4 topologies (XXX133) macro-
mutate predominantly to high-scoring IFFL-1 + NFLB-1 topologies (1X3X31); Table S6. The percentage
change in average score < Z > going from an uncoupled NFLB-1 topology to a coupled NFLB-1 +
IFFL-1 topology; Table S7. The percentage change in average score < Z > going from an uncoupled
NFLB-2 topology to a coupled NFLB-2 + IFFL-4 topology; Table S8. The percentage change in average
score < Z > going from an uncoupled NFLB-3 topology to a coupled NFLB-3 + IFFL-1 topology;
Table S9. The percentage change in average score < Z > going from an uncoupled NFLB-4 topology
to a coupled NFLB-4 + IFFL-4 topology; Table S10. The percentage changes in average score < Z >
going from an uncoupled IFFL-1 topology to a coupled IFFL-1 + NFLB-1 topology; Table S11. The
percentage changes in average score < Z > going from an uncoupled IFFL-1 topology to a coupled
IFFL-1 + NFLB-3 topology; Table S12. The percentage changes in average score < Z > going from
an uncoupled IFFL-1 topology to a coupled IFFL-1 + NFLB-1 + NFLB-3 topology; Table S13. The
percentage changes in average score < Z > adding an NFLB-3 topology to a coupled IFFL-1 + NFLB-1
topology; Table S14. The percentage changes in average score < Z > adding an NFLB-1 topology
to a coupled IFFL-1 + NFLB-3 topology; Table S15. The percentage changes in average score < Z >
going from an uncoupled IFFL-4 topology to a coupled IFFL-4 + NFLB-2 topology; Table S16. The
percentage changes in average score < Z > going from an uncoupled IFFL-4 topology to a coupled
IFFL-4 + NFLB-4 topology; Table S17. The percentage changes in average score < Z > going from
an uncoupled IFFL-4 topology to a coupled IFFL-4 + NFLB-2 + NFLB-4 topology; Table S18. The
percentage changes in average score < Z > adding an NFLB-4 topology to a coupled IFFL-4 + NFLB-2
topology; Table S19. The percentage changes in average score < Z > adding an NFLB-2 topology to a
coupled IFFL-4 + NFLB-4 topology; Table S20. Mean values of the six interaction coefficients from all
high-scoring samples of IFFL-1 topologies; Table S21. Mean values of the six interaction coefficients
from all high-scoring samples of IFFL-4 topologies; Table S22: Mean and standard deviation of each
parameter, for each of the 27 IFFL-1 topologies; Table S23: Mean and standard deviation of each
parameter, for each of the 27 IFFL-4 topologies.
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Appendix A. Methodological Details

Appendix A.1. Parameter Ranges

Every three-node motif can be described by Equation (3) with six interaction coef-
ficients (ωij’s), three offsets (ωi0

′s), and three timescale parameters (γi’s). We assign a
finite, continuous range to each of these parameters. We keep the interaction coefficients
between 0.1 and 1 for positive regulation, between −1 and −0.1 for negative regulation,
and, obviously, 0 for no regulation. The offsets, which assume any value between −2 and 2,
determine whether a node turns on or off in the absence of any external regulation. The
timescale parameters γ1 and γ2 take values between 0.1 and 3. The characteristic timescale
of the model is set by γ3 ≡ 1, which is appropriate as node 3 is the response-measuring
node of the network. Table 1 summarizes the role and range of each parameter in the
model.

Appendix A.2. Scoring a Parameter Set

Given a set of parameter values, {γ1, γ2, ω10, ω20, ω30, ω12, ω13, ω21, ω23, ω31, ω32},
we integrate Equation (2) starting at Xi(0) = 0, i = 1, 2, 3, for 250 time units with S = 0, to
let it settle on steady state levels of X1, X2, and X3 in the absence of any signal. If a steady
state is found, the signal is switched abruptly to 1; otherwise, a fitness of 0 is recorded
for that parameter set. Keeping the signal at 1, we follow the time courses of the three
variables until a new steady state is reached (or until another 250 time units have passed
and no steady state is found, in which case the fitness =0). Since we are interested in the
time course of X3 (the response variable), we record its value at the time point when the
signal is applied, its maximum value in the presence of the signal, and its value when the
simulation ends. Then we calculate the motif’s fitness according to Equation (4) in the main
text. This scoring function strongly favors a high peak response with a concomitant return
close to the initial steady-state value. We add 0.05 to the denominator so as not to give
undue significance to cases for which ∆X3ss is close to 0. The scores can range from as low
as 0 (no adaptation) to as high as 20 (perfect adaptation), since ∆X3max ≤ 1. A decent score
is Z ≥ 5; a high score is Z ≥ 10. A motif’s fitness score depends on its topology (its code)
and on the specific values assigned to its parameter set.

Appendix A.3. Evolutionary Algorithm

Appendix A.3.1. Generating Progeny Parameter Sets by Mutations

Armed with this fitness function, our aim is to identify a sample of parameter sets
that all exhibit high adaptation scores. To this end, we propose an evolutionary algorithm
(Figure A1) that systematically explores the parameter space. In generation k, each member
of a collection of Nk ‘parental’ parameter sets spawns off Rk ‘progeny’ parameter sets, and
these Nk·Rk = Mk progeny parameter sets compete against each other to yield a collection
of Nk+1 parental parameter sets of generation k + 1. It is not necessary that Nk+1 = Nk.

The progeny parameter sets Qprogeny are derived by mutation from the parental
parameter sets Qparent. First, we allow for macro-mutations, which correspond to changing
the sign of one of the six interaction coefficients ωij, resulting in the progeny having a
different topology than its parent. If ωij <−0.2, the macro-mutation converts ωij to zero or a
positive value; if ωij > 0.2, ωij becomes zero or negative; and, if ωij = 0, ωij becomes positive
or negative. In addition, if −0.2 < ωij < 0.2, ωij is set to 0. A newly positive (negative) ωij is
chosen from a Gaussian distribution with a mean = 1 (−1) and a standard deviation = 0.1.
The particular interaction coefficient that is chosen to macro-mutate is selected at random,
as is the direction of the mutation. Not all Nk parent parameter sets are macro-mutated, but
rather a fraction Gmacro of the Nk sets is calculated by:

Gmacro =
0.5

1 + Zmax
4

(A1)
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Here, Zmax is the highest score within the Nk parental parameter sets. This function
ensures that the higher the maximum score, the fewer parental parameter sets are macro-
mutated. For example, if Zmax = 0 (the worst possible score), then Gmacro = 0.5 and we
try lots of new topologies, whereas if Zmax = 10 (a good score), then Gmacro = 0.143 and
we stick with this promising topology most of the time. Macro-mutations are optional; in
some cases, we ban macro-mutations in order to examine the parameter space of only one
topology at a time.
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After macro-mutations are applied (or not), we introduce micro-mutations (not op-
tional). Micro-mutations introduce random changes by multiplying each parameter of
Qparent by 1 + r, where r is a Gaussian random number with mean = 0 and standard devia-
tion = 0.1 (for γ1 and γ2), = 0.25 (for the ωi0

′s), and = 0.15 (for the ωij’s). Note that γ3 is
never micro-mutated—it stays at 1. In contrast to macro-mutations, micro-mutations do
not change the sign of any of the interaction coefficients. After all mutations have been
applied, the values of the parameters are checked to make sure that they remain within
their pre-specified ranges. For example, any ωij > 1 is set to 1; any ωij < −1 is set to −1.
Any 0 < ωij < 0.1 is set to 0.1, and any negative −0.1 < ωij < 0 is set to −0.1. The offsets ωi0
are constrained to be between −2 and 2, and the γ’s between 0.1 and 3.

Once the mutations have occurred and the Mk progeny parameter sets, Qp (1 ≤ p ≤
Mk), have been derived, they are each given a score Zp by Equation (4). (Any progeny with
Zp = 0 is ignored.) The selection criterion for choosing Nk+1 of these Mk progeny to become
the parental population of the next generation is described in the next section.

Appendix A.3.2. Selection Criterion

For each progeny p, we assign a survival probability qp that determines the likelihood
that parameter set Qp is selected as a parent for the next generation. This probability qp is
a function of the score of that progeny relative to the highest and lowest scores of all Mk
progeny in the kth generation. Formally, the relative fitness Zp,rel is:

Zp,rel =
Zp − Zmin

Zmax − Zmin
(A2)

where Zp is the actual score of the progeny parameter set, as calculated by Equation (4),
and Zmax (Zmin) is the maximum (minimum) score of all progeny in the current generation.
The survival probability qp is defined by:

qp = e−β(1−Zp,rel), (A3)
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where β is a parameter controlling how many of the Mk progeny are likely to be selected.
We want to select ~2Nk survivors out of the Mk progeny so that we are more or less

guaranteed of getting at least Nk parents for the next generation. To this end, we set the
average survival probability <qp> = 2N/M (we drop the subscripts because this ratio is not
going to vary much from generation to generation). As a first guess for β, we compute the
survival probability when Zp,rel = 0.5,

qp =
2N
M
∼= e−β(1−0.5) (A4)

hence,

β = 2 ln
(

M
2N

)
(A5)

which is our initial guess for β in Equation (A3).
The survival probability qp for a progeny parameter set is compared to a uniform

random number r between 0 and 1, generated de novo for each progeny. If qp ≥ r, then the
progeny is selected as a parent for the next generation. Otherwise, the progeny parameter
set is discarded. Note that this process gives even low-scoring progeny a chance to survive.
For example, with β = 2 and Zp,rel = 0.05 (a very low score), q≈ 0.15, a significant probability
to survive to the next generation.

If, by chance, we get more than 2Nk survivors, we increase β by a factor of 1.33 and
repeat the selection procedure (with the same progeny set) in order to decrease the number
of survivors. Similarly, if we get fewer than Nk survivors, we decrease β by a factor of 0.5
to increase the number of survivors. In the end, between Nk and 2Nk survivors are chosen
for the next generation. The stochastic nature of the selection method makes it unlikely
that Nk+1 = Nk. However, in the case of macro-mutations, we select exactly N parents per
generation by randomly choosing that many sets from all survivors.

In some evolutionary simulations, we set a maximum value for β, and in others, we do
not. Setting βk+1 = βk as the initial guess for generation k + 1 did not speed up the process
of getting the correct value of β. So, the initial guess for β is always the value calculated
from Equation (A5).

Our selection criterion has some drawbacks. In the process of getting to the high-
scoring region, β usually increases to and remains at a large value because, at lower values
of β, even very low-scoring parameter sets have a fair chance to survive (as illustrated by
the example above), and therefore there is a good chance that the selection step ends up
with more than 2N survivors. At this point, we keep increasing β by a factor of 1.33 until
we get the desired number of survivors. With β high, there is a bias towards selecting only
the best-scoring parameter sets. Even though this helps the search algorithm remain in the
high-scoring region once such a region is found, an ideal evolutionary algorithm should
give low-scoring parameter sets the same chance to be selected at any stage in the search
process.

We employed the user-friendly R/parallel software to parallelize the code [39].

Appendix B. Comparison of Our Model to Ma et al. [14]

Although Equation (1) may appear to be biochemically realistic (say, for a network of
interacting kinases and phosphatases), it is not justified to use Michaelis-Menten kinetics
in this context. The Michaelis-Menten rate law is valid under the condition that substrate
concentration is much larger than enzyme concentration, but this condition cannot be met in
a protein interaction network where Xi and Xj swap places as ‘substrate’ and ‘enzyme’ in the
equations for dXi/dt and dXj/dt. Hence, as Ma et al. acknowledged (in their Supplementary
Material), their dynamical system is ‘phenomenological’ rather than biochemically realistic.

In Ma et al., the adaptation score is a combination of sensitivity (the height of output
response relative to the initial steady-state value) and precision (the inverse of the difference
between the pre- and post-stimulus steady states). In our approach, we combine sensitivity
and precision in a single fitness function, Equation (4), with sensitivity in the numerator
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and the inverse of precision in the denominator. In this way, motifs that are both highly
sensitive and highly precise will have the highest fitness.

To identify topologies exhibiting near-perfect adaptation, Ma et al. use a precision-
versus-sensitivity grid. For a given topology, they simulate 10,000 parameter sets and
require that at least 10 of them fall in the upper right quadrant of high precision and high
sensitivity in order to classify that topology as exhibiting near-perfect adaptation. Hence,
their notion of an adaptive topology is associated with how many parameter sets out of
10,000 show near-perfect adaptation. We classify a topology as exhibiting near-perfect
adaptation if its average score is found to be high over a large number of parameter sets
that are generated from an evolutionary search strategy.

Our evolutionary search strategy is pretty efficient because we are always looking for
better scoring parameter sets than the ones we have already found. We test a variety of
parameter sets every generation and favor the selection of those that increase the overall
score. So not only are we exploring parameter space in a broad sense, but we are also going
deeper at each iteration into the region that consistently shows the highest possible scores.
Crucially, our search procedure is able to stay in a high-scoring region once it is found. Even
in cases where a high-scoring region is not found, our broad search procedure over many
generations provides evidence that a high-scoring region does not exist. When searching
an eleven-dimensional parameter space, it may take many generations to stumble into a
high-scoring region, but overcoming this problem is just a matter of computing time and
resources.

Appendix C. Fine-Tuning of Parameters

For the pure IFFL-1 motif, the conditions for steady state are

X1 = 1
1+e−σ(S+ω10)

, X2 = 1
1+e−σ(ω20+ω21X1)

,

X3 = 1
1+e−σ(ω30+ω31X1+ω32X2)

.
(A6)

Using the mean values of the ωij’s in Supplementary Table S20 (and fixed σ = 10), we
find that, for

S = 0 : X1 = X2 = 0.013, X3 ≈
1

1 + e−σ(ω30)
= 0.018 (A7)

S = 1 : X1 = X2 ≈ 1, X3 ≈
1

1 + e−σ(ω30+ω31+ω32)
(A8)

The condition for near-perfect adaptation (NPA) is that X3ss(S = 1)≈ X3ss(S = 0), which
implies that ω32 ≈ −ω31, which is exactly what our evolutionary search algorithm found
to be the case.

One might object—not unjustly—that this amounts to ‘fine-tuning’ of parameters to
achieve NPA, so our approach is inferior to other cases in the Catalogue (Supplementary
Text S1) that achieve robust NPA. In response, we make two relevant observations. First,
except for Mechanisms 6-8, and 13-15 in the Catalogue, robust adaptation relies on the
biochemically suspect assumption that a ‘removal’ reaction is saturated in terms of substrate
concentration; e.g., dX2

dt = X3 −Vmax, so that, at steady state, X3ss = Vmax = constant. This
implies that the Michaelis constant for the removal reaction is much lower than typical
substrate concentrations: KM� X2(t). Not only is this a kind of ‘coarse-tuning’, but there is
also a limit to how small KM can be for the binding of two proteins (enzyme and substrate).
In another context, one of us [40] has estimated that KM must be (considerably) greater
than 1 nM, so X2(t) ≥ 100 nM. This biophysical constraint must be kept in mind whenever
‘integral feedback’ mechanisms are proposed for some actual examples of robust NPA.
Second, ‘fine-tuning’ is not so objectionable in an evolutionary context, where stabilizing
selection is always operating to maintain network architecture and rate constants in a
region of advantageous NPA.
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Robust perfect adaptation (RPA) in Mechanisms 14 and 15 in the Catalogue depends on
some special assumptions about the Hill functions used to model transcriptional control. In
Mechanism 14, the Hill function for self-activation of the regulatory node must be replaced
by a simple linear function of Q. In Mechanism 15, the Hill exponents for the regulatory
functions must satisfy m5 = m3·n5. On the other hand, the ‘antithetic’ mechanisms in the
Catalogue (#8 and 13) seem to involve the least restrictive assumptions for RPA.

References
1. Berg, H.C.; Brown, D.A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 1972, 239, 500–504.

[CrossRef] [PubMed]
2. Macnab, R.M.; Koshland, D.E., Jr. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 1972, 69,

2509–2512. [CrossRef] [PubMed]
3. Takeda, K.; Shao, D.; Adler, M.; Charest, P.G.; Loomis, W.F.; Levine, H.; Groisman, A.; Rappel, W.J.; Firtel, R.A. Incoherent

feedforward control governs adaptation of activated Ras in a eukaryotic chemotaxis pathway. Sci. Signal 2012, 5, ra2. [CrossRef]
[PubMed]

4. Dinauer, M.C.; Steck, T.L.; Devreotes, P.N. Cyclic 3′,5′-AMP relay in Dictyostelium discoideum V. Adaptation of the cAMP signaling
response during cAMP stimulation. J. Cell Biol. 1980, 86, 554–561. [CrossRef] [PubMed]

5. Muzzey, D.; Gomez-Uribe, C.A.; Mettetal, J.T.; van Oudenaarden, A. A systems-level analysis of perfect adaptation in yeast
osmoregulation. Cell 2009, 138, 160–171. [CrossRef]

6. Knox, B.E.; Devreotes, P.N.; Goldbeter, A.; Segel, L.A. A molecular mechanism for sensory adaptation based on ligand-induced
receptor modification. Proc. Natl. Acad. Sci. USA 1986, 83, 2345–2349. [CrossRef]

7. Hauri, D.C.; Ross, J. A model of excitation and adaptation in bacterial chemotaxis. Biophys. J. 1995, 68, 708–722. [CrossRef]
8. Barkai, N.; Leibler, S. Robustness in simple biochemical networks. Nature 1997, 387, 913–917. [CrossRef]
9. Yi, T.M.; Huang, Y.; Simon, M.I.; Doyle, J. Robust perfect adaptation in bacterial chemotaxis through integral feedback control.

Proc. Natl. Acad. Sci. USA 2000, 97, 4649–4653. [CrossRef]
10. Levchenko, A.; Iglesias, P.A. Models of eukaryotic gradient sensing: Application to chemotaxis of amoebae and neutrophils.

Biophys. J. 2002, 82, 50–63. [CrossRef]
11. Tyson, J.J.; Chen, K.C.; Novak, B. Sniffers, buzzers, toggles and blinkers: Dynamics of regulatory and signaling pathways in the

cell. Curr. Opin. Cell Biol. 2003, 15, 221–231. [CrossRef] [PubMed]
12. Mello, B.A.; Tu, Y. Quantitative modeling of sensitivity in bacterial chemotaxis: The role of coupling among different chemorecep-

tor species. Proc. Natl. Acad. Sci. USA 2003, 100, 8223–8228. [CrossRef] [PubMed]
13. Francois, P.; Siggia, E.D. A case study of evolutionary computation of biochemical adaptation. Phys. Biol. 2008, 5, 026009.

[CrossRef] [PubMed]
14. Ma, W.; Trusina, A.; El-Samad, H.; Lim, W.A.; Tang, C. Defining network topologies that can achieve biochemical adaptation. Cell

2009, 138, 760–773. [CrossRef]
15. Ni, X.Y.; Drengstig, T.; Ruoff, P. The control of the controller: Molecular mechanisms for robust perfect adaptation and temperature

compensation. Biophys. J. 2009, 97, 1244–1253. [CrossRef] [PubMed]
16. Briat, C.; Gupta, A.; Khammash, M. Antithetic Integral Feedback Ensures Robust Perfect Adaptation in Noisy Biomolecular

Networks. Cell Syst. 2016, 2, 15–26. [CrossRef]
17. Shi, W.; Ma, W.; Xiong, L.; Zhang, M.; Tang, C. Adaptation with transcriptional regulation. Sci. Rep. 2017, 7, 42648. [CrossRef]
18. Behar, M.; Hao, N.; Dohlman, H.G.; Elston, T.C. Mathematical and computational analysis of adaptation via feedback inhibition

in signal transduction pathways. Biophys. J. 2007, 93, 806–821. [CrossRef]
19. Drengstig, T.; Ueda, H.R.; Ruoff, P. Predicting perfect adaptation motifs in reaction kinetic networks. J. Phys. Chem. B 2008, 112,

16752–16758. [CrossRef]
20. Hao, N.; Behar, M.; Elston, T.C.; Dohlman, H.G. Systems biology analysis of G protein and MAP kinase signaling in yeast.

Oncogene 2007, 26, 3254–3266. [CrossRef]
21. Xiong, L.; Shi, W.; Tang, C. Adaptation through proportion. Phys. Biol. 2016, 13, 046007. [CrossRef] [PubMed]
22. Ferrell, J.E., Jr. Perfect and Near-Perfect Adaptation in Cell Signaling. Cell Syst. 2016, 2, 62–67. [CrossRef]
23. Khammash, M.H. Perfect adaptation in biology. Cell Syst. 2021, 12, 509–521. [CrossRef]
24. Wilson, H.R.; Cowan, J.D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 1972, 12,

1–24. [CrossRef] [PubMed]
25. Mjolsness, E.; Sharp, D.H.; Reinitz, J. A connectionist model of development. J. Theor. Biol. 1991, 152, 429–453. [CrossRef]

[PubMed]
26. Tyson, J.J.; Novak, B. Functional motifs in biochemical reaction networks. Annu. Rev. Phys. Chem. 2010, 61, 219–240. [CrossRef]
27. Molinelli, E.J.; Korkut, A.; Wang, W.; Miller, M.L.; Gauthier, N.P.; Jing, X.; Kaushik, P.; He, Q.; Mills, G.; Solit, D.B.; et al.

Perturbation biology: Inferring signaling networks in cellular systems. PLoS Comput. Biol. 2013, 9, e1003290. [CrossRef]
28. Laomettachit, T.; Chen, K.C.; Baumann, W.T.; Tyson, J.J. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component

Modeling Strategy for Protein Regulatory Networks. PLoS ONE 2016, 11, e0153738. [CrossRef]

https://doi.org/10.1038/239500a0
https://www.ncbi.nlm.nih.gov/pubmed/4563019
https://doi.org/10.1073/pnas.69.9.2509
https://www.ncbi.nlm.nih.gov/pubmed/4560688
https://doi.org/10.1126/scisignal.2002413
https://www.ncbi.nlm.nih.gov/pubmed/22215733
https://doi.org/10.1083/jcb.86.2.554
https://www.ncbi.nlm.nih.gov/pubmed/6249827
https://doi.org/10.1016/j.cell.2009.04.047
https://doi.org/10.1073/pnas.83.8.2345
https://doi.org/10.1016/S0006-3495(95)80232-8
https://doi.org/10.1038/43199
https://doi.org/10.1073/pnas.97.9.4649
https://doi.org/10.1016/S0006-3495(02)75373-3
https://doi.org/10.1016/S0955-0674(03)00017-6
https://www.ncbi.nlm.nih.gov/pubmed/12648679
https://doi.org/10.1073/pnas.1330839100
https://www.ncbi.nlm.nih.gov/pubmed/12826616
https://doi.org/10.1088/1478-3975/5/2/026009
https://www.ncbi.nlm.nih.gov/pubmed/18577806
https://doi.org/10.1016/j.cell.2009.06.013
https://doi.org/10.1016/j.bpj.2009.06.030
https://www.ncbi.nlm.nih.gov/pubmed/19720012
https://doi.org/10.1016/j.cels.2016.01.004
https://doi.org/10.1038/srep42648
https://doi.org/10.1529/biophysj.107.107516
https://doi.org/10.1021/jp806818c
https://doi.org/10.1038/sj.onc.1210416
https://doi.org/10.1088/1478-3975/13/4/046007
https://www.ncbi.nlm.nih.gov/pubmed/27526863
https://doi.org/10.1016/j.cels.2016.02.006
https://doi.org/10.1016/j.cels.2021.05.020
https://doi.org/10.1016/S0006-3495(72)86068-5
https://www.ncbi.nlm.nih.gov/pubmed/4332108
https://doi.org/10.1016/S0022-5193(05)80391-1
https://www.ncbi.nlm.nih.gov/pubmed/1758194
https://doi.org/10.1146/annurev.physchem.012809.103457
https://doi.org/10.1371/journal.pcbi.1003290
https://doi.org/10.1371/journal.pone.0153738


Biology 2023, 12, 841 23 of 23

29. Glass, L.; Kauffman, S.A. The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 1973, 39,
103–129. [CrossRef]

30. Alon, U. Network motifs: Theory and experimental approaches. Nat. Rev. Genet. 2007, 8, 450–461. [CrossRef]
31. Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits; Chapman & Hall/CRC: Boca Raton, FL, USA,

2007; p. 301.
32. Ma, H.W.; Kumar, B.; Ditges, U.; Gunzer, F.; Buer, J.; Zeng, A.P. An extended transcriptional regulatory network of Escherichia coli

and analysis of its hierarchical structure and network motifs. Nucleic Acids Res. 2004, 32, 6643–6649. [CrossRef]
33. Shen-Orr, S.S.; Milo, R.; Mangan, S.; Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat.

Genet. 2002, 31, 64–68. [CrossRef] [PubMed]
34. Mangan, S.; Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. USA 2003, 100,

11980–11985. [CrossRef] [PubMed]
35. Mangan, S.; Itzkovitz, S.; Zaslaver, A.; Alon, U. The incoherent feed-forward loop accelerates the response-time of the gal system

of Escherichia coli. J. Mol. Biol. 2006, 356, 1073–1081. [CrossRef]
36. Basu, S.; Mehreja, R.; Thiberge, S.; Chen, M.T.; Weiss, R. Spatiotemporal control of gene expression with pulse-generating

networks. Proc. Natl. Acad. Sci. USA 2004, 101, 6355–6360. [CrossRef] [PubMed]
37. Csikasz-Nagy, A.; Kapuy, O.; Toth, A.; Pal, C.; Jensen, L.J.; Uhlmann, F.; Tyson, J.J.; Novak, B. Cell cycle regulation by feed-forward

loops coupling transcription and phosphorylation. Mol. Syst. Biol. 2009, 5, 236. [CrossRef] [PubMed]
38. O’Donnell, K.A.; Wentzel, E.A.; Zeller, K.I.; Dang, C.V.; Mendell, J.T. c-Myc-regulated microRNAs modulate E2F1 expression.

Nature 2005, 435, 839–843. [CrossRef]
39. Vera, G.; Jansen, R.C.; Suppi, R.L. R/parallel—Speeding up bioinformatics analysis with R. BMC Bioinform. 2008, 9, 390. [CrossRef]
40. Yao, X.; Heidebrecht, B.L.; Chen, J.; Tyson, J.J. Mathematical analysis of robustness of oscillations in models of the mammalian

circadian clock. PLoS Comput. Biol. 2022, 18, e1008340. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/0022-5193(73)90208-7
https://doi.org/10.1038/nrg2102
https://doi.org/10.1093/nar/gkh1009
https://doi.org/10.1038/ng881
https://www.ncbi.nlm.nih.gov/pubmed/11967538
https://doi.org/10.1073/pnas.2133841100
https://www.ncbi.nlm.nih.gov/pubmed/14530388
https://doi.org/10.1016/j.jmb.2005.12.003
https://doi.org/10.1073/pnas.0307571101
https://www.ncbi.nlm.nih.gov/pubmed/15096621
https://doi.org/10.1038/msb.2008.73
https://www.ncbi.nlm.nih.gov/pubmed/19156128
https://doi.org/10.1038/nature03677
https://doi.org/10.1186/1471-2105-9-390
https://doi.org/10.1371/journal.pcbi.1008340

	Introduction 
	Methods: The Mathematical Model 
	Results 
	Classifying ‘Minimal’ Topologies That Might Exhibit Near-Perfect Adaption 
	Initial Exploration of Topology Space 
	Close Examination of IFFL and NFLB Topologies 
	IFFL Topologies 
	NFLB Topologies 
	Evolution of IFFL-1 and IFFL-4 Topologies under Macro-Mutations 
	Why Are IFFL-1 Topologies Evolutionarily Stable? 
	Examining the Interactions of IFFL and NFLB Topologies 
	Interaction Coefficients Measure the Relative Contributions of NFLB and IFFL Motifs to High-Scoring Combination Topologies 


	Discussion 
	Summary of Results 
	Comparison with the Results of Ma et al. and Shi et al. 

	Conclusions 
	Appendix A
	Parameter Ranges 
	Scoring a Parameter Set 
	Evolutionary Algorithm 
	Generating Progeny Parameter Sets by Mutations 
	Selection Criterion 


	Appendix B
	Appendix C
	References

