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Simple Summary: Intrinsic immunogenic cell death (ICD) property plays an important role in the
prognosis and immune microenvironment of patients with lung adenocarcinoma (LUAD). In this
study, we performed an overall multi-omics analysis of the intrinsic ICD property and developed
a risk scoring system. We found two distinct ICD-associated transcriptomic molecular patterns
(termed ICD-high and ICD-low). We identified and validated ICDrisk subtypes (ICDrisk) which can
effectively predict overall survival (OS) in LUAD patients and immunotherapeutic response across
Pan-cancer. Our results may help to elucidate the underlying molecular mechanisms of intrinsic
immunogenicity and heterogeneous responses to immunotherapy in LUAD patients.

Abstract: Recent studies have highlighted the combination of activation of host immunogenic cell
death (ICD) and tumor-directed cytotoxic strategies. However, overall multiomic analysis of the
intrinsic ICD property in lung adenocarcinoma (LUAD) has not been performed. Therefore, the aim
of this study was to develop an ICD-based risk scoring system to predict overall survival (OS) and
immunotherapeutic efficacy in patients. In our study, both weighted gene co-expression network
analysis (WGCNA) and LASSO-Cox analysis were utilized to identify ICDrisk subtypes (ICDrisk).
Moreover, we identify genomic alterations and differences in biological processes, analyze the
immune microenvironment, and predict the response to immunotherapy in patients with pan-cancer.
Importantly, immunogenicity subgroup typing was performed based on the immune score (IS) and
microenvironmental tumor neoantigens (meTNAs). Our results demonstrate that ICDrisk subtypes
were identified based on 16 genes. Furthermore, high ICDrisk was proved to be a poor prognostic
factor in LUAD patients and indicated poor efficacy of immune checkpoint inhibitor (ICI) treatment
in patients with pan-cancer. The two ICDrisk subtypes displayed distinct clinicopathologic features,
tumor-infiltrating immune cell patterns, and biological processes. The ISlowmeTNAhigh subtype
showed low intratumoral heterogeneity (ITH) and immune-activated phenotypes and correlated
with better survival than the other subtypes within the high ICDrisk group. This study suggests
effective biomarkers for the prediction of OS in LUAD patients and immunotherapeutic response
across Pan-cancer and contributes to enhancing our understanding of intrinsic immunogenic tumor
cell death.

Keywords: immunogenic cell death; immunotherapy; lung adenocarcinoma; prognosis; tumor
microenvironment
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1. Introduction

Lung cancer is the leading cause of cancer-related death and the second most com-
monly diagnosed cancer [1]. Among all lung cancer subtypes, lung adenocarcinoma
(LUAD) is the most common subtype with a poor prognosis and high recurrence and
metastasis rates [2]. Therefore, improving the survival rate of LUAD patients remains a
great challenge.

Due to the wide variation in intratumor heterogeneity impacting the prognosis of
LUAD patients, it is difficult to accurately assess the prognosis of patients only with the
AJCC TNM staging system [3]. Therefore, it has become necessary to incorporate other
important factors to achieve accurate and personalized evaluations. In recent decades, many
emerging therapies have effectively improved the survival of LUAD patients, including
molecular targeted therapy and immune checkpoint inhibitors (ICIs) [4]. At present, many
biomarkers have been indicated to be effective in evaluating the efficacy of ICI treatments,
including programmed death-ligand 1 (PD-L1) and the tumor mutational burden (TMB) [5].
However, many studies recently have confirmed the deficiencies of PD-L1 and the TMB in
predicting response to immunotherapy in LUAD patients, which may cause LUAD patients
to lose the opportunity to be treated with immunotherapy [6,7]. Therefore, it is necessary
to explore more effective biomarkers to predict the response to ICIs in LUAD patients.

ICIs therapy was initially found to promote CD8+ T-cell activity and alleviate the
depletion of antitumor T cells, so it seems reasonable to evaluate ICB therapy based on
CD8+ T lymphocyte infiltration and function [8]. However, due to the complex interactions
between immune cells and tumor cells, the effect of immune checkpoint blockade (ICB) in
the treatment of cancer is highly heterogeneous. There is increasing evidence that tumors
with low rates of T-cell infiltration may respond reasonably well to ICB, whereas tumors
with high rates of T-cell infiltration may not necessarily respond well to ICB [9,10]. The
intrinsic immunogenicity of tumor cells in the tumor microenvironment (TME) is also a
crucial factor affecting immunotherapy and even affects the prognosis of patients [11].

Immunogenic cell death (ICD) recently has been proven to be a cell death modality
that can drive an adaptive immune response [12]. Briefly, dead cells release damage-
associated molecular patterns (DAMPs) and cytokines to drive inflammatory responses,
which may eventually activate the cytotoxic T cell (CTL)-driven acquired immune response
while establishing long-term immune memory. There is ample evidence that anticancer
immune responses caused by ICD inducers can reinforce the curative effect of anticancer
therapies, including chemotherapy, radiotherapy, and immunotherapy, in many preclinical
models [13–15]. However, only a few ICD inducers have been proven to be effective
in clinical anticancer therapies, especially in immunotherapy [16]. Both TME-intrinsic
factors and TME-extrinsic factors contribute to the response to ICB and the prognosis
of patients. At present, few studies have identified intrinsic ICD-associated molecular
patterns. Therefore, understanding the intrinsic ICD features in NSCLC is a critical area
that remains to be explored.

In our study, we systematically characterized the ICD level based on 34 ICD meta-
genes, which have been summarized in previous studies. Two distinct ICD-associated
transcriptomic molecular patterns (termed ICD-high and ICD-low) in the TCGA-LUAD
cohort were identified by WGCNA. Moreover, we established an ICDrisk scoring system to
assess the prognostic value in LUAD patients, identify genomic alterations and differences
in biological processes, analyze the immune microenvironment, and predict the response to
immunotherapy in patients with pan-cancer. Subgroup analysis based on intrinsic immuno-
genicity found that a low immune score and high neoantigen count subcluster indicated a
better prognosis. Our results may help to elucidate the underlying molecular mechanisms
of the intrinsic immunogenicity and heterogeneous responses to immunotherapy in LUAD
patients, thereby further improving immunotherapy in LUAD patients.



Biology 2023, 12, 808 3 of 23

2. Materials and Methods
2.1. Datasets and Preprocessing

The Cancer Genome Atlas (TCGA) cohort from the “TCGA-Lung Adenocarcinoma Car-
cinoma” (TCGA-LUAD) project transcriptomic datasets (FPKM format) was used. Genomic
Data Commons Data Portal (https://portal.gdc.cancer.gov/, accessed on 1 May 2021)
was used to download gene somatic mutations and follow-up data for LUAD patients
in November 2021. Several representative Gene Expression Omnibus (GEO) datasets
(http://www.ncbi.nlm.nih.gov/geo, accessed on 1 May 2021) that contained large popula-
tions of patients with LUAD (n > 80) with clinical information were enrolled as the public
validation cohorts, which included 442 cases from GSE68465, 398 cases from GSE72094,
and 86 cases from GSE68571. Between September 2012 and December 2017, 78 clinical
samples were collected at the Sun Yat-sen University Cancer Center (SYSUCC). Clinical
and pathologic information was collected during postoperative follow-up. This study
was approved by the Ethics and Research Committees of the Sun Yat-sen University Can-
cer Center. We selected 11 public independent pan-cancer immunotherapy cohorts for
external validation of the risk scoring system, including 3 NSCLC cohorts (GSE93157,
GSE126044, and GSE135222), 3 urologic tumor cohorts (IMvigor210, JAVELIN Renal
101, and RCC-Braun_2020), and 5 melanoma cohorts (GSE91061, GSE93157, Melanoma-
Nathanson, Melanoma-phs000452, and PRJEB23709 datasets) (Table S1). Information on
clonal/subclonal mutations, neoantigen counts, and tumor heterogeneity was obtained
from The Cancer Immunome Atlas (TCIA, https://tcia.at/, accessed on 1 May 2021) [17].

2.2. Identification of the ICD Level in TCGA-LUAD Samples

A large-scale meta-analysis summarized immunological metagene signatures for
immunogenic cell death [18]. We extracted 34 ICD-related parameters as a gene set and
single-sample GSEA (ssGSEA) was used to calculate the ICD level for each sample with the
R package “GSVA”, this method identifies genes whose expression is coordinated within a
sample [19].

2.3. WGCNA and Construction of a Scoring System to Assess Single-Sample Immunogenic Cell
Death (ICD) Patterns

Co-expressed gene modules closely related to ICD scores were identified using
WGCNA. First, we screened whole coding genes from the TCGA-LUAD dataset, cal-
culated the median absolute deviation of each mRNA, sorted by deviation from large to
small, and selected the top 75% of the genes for WGCNA which was performed using the
WGCNA R package [20]. We first choose a soft threshold of co-expression similarity to
compute adjacency. We set the soft threshold to 5, R square = 0.88. After the adjacency
matrix was transformed, a topological overlap matrix (TOM) was obtained, which was
then used as the input for hierarchical clustering. Then, module eigengenes (MEs) with
≥30 genes were selected using the dynamic tree-cut method. We merged modules with
similar expression profiles based on a threshold of 0.25. Gene significance (GS) and module
membership (MM) were used to distinguish the vital modules associated with immuno-
genic cell death. GS > 0.6 and MM > 0.6 were considered to identify strong ICD-related
modules. Subsequently, ICD-related genes were chosen from ICD-correlated modules. We
used ssGSEA to evaluate the ICD score of individual lung adenocarcinoma patients based
on the gene expression levels of ICD-related genes in a single sample, and we identified
patients as ICD high (ICD-H) and ICD low (ICD-L).

2.4. Functional and Pathway Enrichment Analysis

ICD-related genes were analyzed using the Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) databases [21,22]. The above functional enrichment
analysis was performed using the R package ‘clusterProfiler’, and the results were visual-
ized using the R package ‘ggplot2’.

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo
https://tcia.at/
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For gene set enrichment analysis (GSEA), we used the GSEA software (version 3.0)
on the GSEA website (http://software.broadinstitute.org/gsea/index.jsp, accessed on
1 May 2021) [23]. Potential biological functions were identified using the GSEA method and
annotated by Hallmark gene sets (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp,
accessed on 1 May 2021) and the GO and KEGG databases.

2.5. Detecting Differentially Expressed Genes (DEGs) and Protein-Protein Interaction (PPIs)

Transcriptomic data were imported into R software, and the “limma” package was em-
ployed to identify DEGs in different clusters. We constructed a PPI network from DEGs iden-
tified between different ICD scores using the STRING interactome (http://string-db.org,
accessed on 1 May 2021). Using Cytoscape software with the molecular complex detection
(MCODE) plug-in, the core protein-protein interaction network complex of these DEGs
was identified.

2.6. Establishment and Verification of an ICDrisk Model

Univariate Cox regression analysis was used to identify associations between the
expression levels of ICD-related genes in the TCGA-LUAD cohort RNA-seq dataset and pa-
tient prognosis. Then, in order to reduce overfitting and eliminate tightly correlated genes,
LASSO Cox regression models were used to analyze potential prognostic factors. Using
tenfold cross-validation, we selected the minimal penalty term (λ). Then, we established
an ICDrisk model for LUAD patients containing 16 hub genes. The ICDrisk formula was
constructed as follows:

ICDrisk score = ∑i = 1nCoefi × Xi

Coefi is the coefficient and Xi is the normalized count of each hub gene. The median
of the training series was used as the cut-off to stratify patients into high- and low- ICDrisk
subtypes. Kaplan–Meier survival differences between high- and low-ICDrisk subtypes
were further compared in the TCGA-LUAD training set and the GEO validation sets.

2.7. Extraction of RNA and qRT-PCR

For total RNA isolation from tissues, TRIzol reagent (Invitrogen, Carlsbad, CA, USA)
was used. For cDNA synthesis, HiScript II (R201-01, Vazyme, China) was used. Then,
hub genes and GAPDH were quantified with 2X SYBR Green qPCR Master Mix (K1070,
APExBIO, Houston, TX, USA). The primers for qRT-PCR were provided by Synbio Tech-
nologies. GAPDH was chosen as the internal reference. In Table S2, the primers used
for PCR are shown, including the relative mRNA expression of hub genes normalized
to GAPDH.

2.8. Human Protein Atlas Database Analysis

The KRT16, S100P, CYP24A1, SERPINB5, and KRT6A protein expression in LUAD tis-
sue was explored in The Human Protein Atlas (HPA) database (https://www.proteinatlas.
org/, accessed on 1 May 2021) [24]. Immunohistochemistry (IHC) showed a brown color
was determined as positive tissue.

2.9. Tumor Mutation Status in the Low- and High-ICDrisk Subtypes

We downloaded information for somatic mutations in TCGA-LUAD samples from
the Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov/, accessed on
1 May 2021). Mutated genes (p < 0.05) identified between different ICDrisk subtypes and
the correlation effect of gene mutations were analyzed with the R package ‘maftools’. A
one-sided z-test and two-sided chi-square test were used to evaluate the proportion of
mutations, and p < 0.05 was considered significant.

http://software.broadinstitute.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://string-db.org
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://portal.gdc.cancer.gov/
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2.10. Estimation of Immune Infiltration and Functional Enrichment for the ICDrisk

The TIMER, CIBERSORT, MCPcounter, QUANTISEQ, and EPIC algorithms were used
to compare the components in the immune microenvironment and activation of immune
cells between groups at high- and low-risk according to the ICDrisk [25–28]. The differences
in the immune response identified by the different algorithms were visualized using a
heatmap. In addition, the ESTIMATE and xCell algorithms were used to robustly quantify
tumor purity and the numerous cell populations in the immune microenvironment based
on transcriptomic data for each patient [29,30]. The gene expression of the human leukocyte
antigens gene family (HLAs) and immune checkpoint molecules were also retrieved from
the published literature [31].

2.11. TIDE (Tumor Immune Dysfunction and Exclusion) Analysis

The TIDE algorithm is a computational framework to predict cancer immunotherapy
response (http://tide. Dfci.harvard.edu, accessed on 1 May 2021). ICDrisk was tested
using the TIDE algorithm for predicting clinical responsiveness to ICIs. TIDE can also find
the level of T-cell dysfunction and T-cell exclusion which are two primary mechanisms
of tumor immune evasion and predicted multiple immunosuppressive cell subgroups,
including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs),
and myeloid-derived suppressor cells (MDSCs) [32].

2.12. Statistical Analysis

Statistical calculations were performed using R (version 4.1.1, http://www.R-project.
org, accessed on 1 May 2021). Patients’ overall survival was evaluated using Kaplan-
Meier analysis. Pearson or Spearman correlation analysis was used to generate correlation
matrices. We used the Wilcoxon test and the Kruskal-Wallis test to compare continuous
and ordered categorical variables, respectively. To adjust the p-value for multiple tests, the
false discovery rate (FDR) was corrected. p < 0.05 was considered statistically significant.

3. Results
3.1. Calculation of the ICD Level, Performance of WGCNA, and Identification of Key Modules

A total of 510 LUAD patients were collected from the TCGA database in our study.
Thirty-four immunological metagene signatures related to immunogenic cancer cell death
were used to calculate ICD levels based on the ssGSEA algorithm. The ICD levels of these
patients are listed in Table S3. To identify ICD-related modules, the relationship between
modules and clinical data was studied. Five was selected as the optimal soft threshold
for WGCNA (Figure S1). Thirty-three co-expressed gene modules with p < 0.05 were
identified, and the midnight blue and blue modules were strongly positively related to the
ICD level (Figure 1a). Thus, these two modules were selected as ICD-related modules for
further analysis. There was a significant correlation between module membership (MM)
and gene significance (GS) in midnight blue and blue modules (Figure 1b). ICD-related
genes were screened out with the thresholds GS > 0.6 and MM > 0.6, and 381 ICD-related
genes were found in both two modules. Subsequently, we analyzed the roles of these
genes in biologically relevant functions. These genes were enriched in multiple important
immune-related pathways (Figure 1c,d and Table S4).

http://tide
http://www.R-project.org
http://www.R-project.org
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Figure 1. Screening for ICD-related genes. (a) Thirty-three co-expressed gene modules identified by 
WGCNA and Correlation between gene modules and ICD scores. Midnight blue and blue modules 
are strongly correlated modules (|Cor| > 0.8 and p < 0.001) and are marked with red frames. (b) 
Scatted plot represented the relationship between Module Membership (MM) and Gene Significance 
(GS) in blue and midnight blue. Strongly ICD-related genes were marked with red frames (MM > 
0.6 and GS > 0.6). (c,d) GO and KEGG enrichment analyses were performed to identify the roles of 
these ICD-related genes in biologically relevant functions. 

Figure 1. Screening for ICD-related genes. (a) Thirty-three co-expressed gene modules identified by
WGCNA and Correlation between gene modules and ICD scores. Midnight blue and blue modules are
strongly correlated modules (|Cor| > 0.8 and p < 0.001) and are marked with red frames. (b) Scatted
plot represented the relationship between Module Membership (MM) and Gene Significance (GS) in
blue and midnight blue. Strongly ICD-related genes were marked with red frames (MM > 0.6 and
GS > 0.6). (c,d) GO and KEGG enrichment analyses were performed to identify the roles of these
ICD-related genes in biologically relevant functions.
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3.2. Potential Biological Role of the ICD Score as a Predictor

We first investigated the relationship between 381 ICD-related genes and the prognosis
of patients with lung adenocarcinoma. Owing to the individual variability and complexity
of the prognosis of LUAD patients, we construct a scoring system using ssGSEA and
quantified the prognosis of each sample, which we called the ICD score. Survival analysis
by ICD score demonstrated that the group with low ICD score had poor prognostic survival
in the TCGA-LUAD cohort (p = 0.006, HR = 0.65, 95% CI: 0.48–0.88, high: ICD score > 0.731
and low: ICD score < 0.731; Figure 2a). In addition, we further identified the distribution of
ICD scores in different AJCC TNM stage subgroups (Figure 2b and Table S5). In general,
the mean ICD score of the stages I and II subgroups was significantly higher than that
of the stages III and IV subgroups (p = 0.011). Similarly, the mean ICD score was also
significantly different among the different T-stage subgroups (p =0.003). As the different
ICD subtypes exhibited different clinical outcomes, we further identified the differentially
expressed genes (DEGs) in different ICD subtypes to explore the molecular mechanism
regulating prognosis. The volcano plot presents ICD-related DEGs identified between the
ICD-H and ICD-L subgroups (Figure 2c). In addition, the STRING database was further
utilized to analyze the PPI network of the above ICD-related DEGs and found 20 hub
genes including CD86, CD80, CD274, PDCD1LG2, PDCD1, HLA-DRA, MAP4K1, LCP2,
VAV1, ITK, B2M, CD28, CD3E, CD3D, HLA-DRB1, CD247, CD4, CD3G, LCK, and ZAP70
(Figure 2d). These genes were all core genes in the immune response. Next, we performed
GSEA of DEGs between the two ICD subtypes with the GO and KEGG databases, which
identified significant differences in biological processes, cellular components, molecular
functions, and signaling pathways such as the T-cell receptor signaling pathway, NK cell-
mediated cytotoxicity, cell activation involved in the immune response and the immune
effector process (Figure 2e, Tables S6 and S7).

3.3. Construction and Validation of the ICDrisk Score Model

To further establish a prognostic model, 381 ICD-related genes were screened
for subsequent analysis, and 151 potential prognostic genes were identified by uni-
variate Cox regression analysis. Afterward, 16 genes identified from 151 genes by
LASSO-Cox analysis were utilized to construct the risk score model. The prognostic
value of 16 genes was evaluated in the TCGA-LUAD cohort (Figure S2). Among the
16 genes, 9 genes were negatively correlated with the OS of patients, and 5 genes were
positively correlated with the OS of patients by univariate Cox analysis (Figure 3a,b).
The ICDrisk score was calculated with the formula below: ICDrisk = 0.009183×FGL2
+ 0.278419×GNG2 + 0.416996 × LHFPL2 − 0.207906 × RAB33A + 0.27315 × JAK2
− 0.5856 × CD200R1 − 0.37916 × CCR2 − 0.01948 × PIK3CD − 0.04153 × GAB3
− 0.0221 × ATP8B4 − 0.34285 × ATP6V1B2 − 0.09044 × CD5 − 0.03261 × PIK3CG
− 0.14181 × KBTBD8 − 0.01772 × HLA-DQA1 − 0.03841 × MS4A7.

Additionally, the relationship between the ICDrisk score and survival status was
investigated in our study. The results showed that patients with a low ICDrisk had a
better prognosis than patients with a high ICDrisk (Figure 3c). Moreover, the prognostic
value of the ICDrisk score model was demonstrated with the TCGA-LUAD cohort and
further externally verified with the GEO database (GSE72094, GSE68571, and GSE68465)
by utilizing Kaplan-Meier analysis, ROC curve analysis, and decision curve analysis (DCA)
(Figure 3d–g). Next, we selected the eight genes with the highest absolute value for qPCR
verification in SYSUCC clinical samples. The results showed that LUAD patients with low
expression of CCR2, KBTBD8, and RAB33A had a poor prognosis, as did patients with
high expression of LHFPL2 (Figure 3h,i).



Biology 2023, 12, 808 8 of 23Biology 2023, 12, x FOR PEER REVIEW 8 of 25 
 

 

  
Figure 2. The potential biological role of the ICD score. (a) Kaplan-Meier curves showed the OS in 
ICD-high and ICD-low subgroups. The Red and blue curves represented the ICD-high and ICD-low 
subgroups respectively. (b) The box plot presented the distribution of ICD scores at different stages. 
(c) Compared with the ICD-low subgroup, the volcano plot showed the differentially expressed 
genes with a threshold of |log2 Fold change| > 0.5 and FDR < 0.05 in the ICD-high subgroup. (d) 
Protein–protein interactions plot showed the hub-gene among ICD-related differentially expressed 
genes. (e) GSEA determined the underlying biological process, cellular component, molecular func-
tion, and signal pathway between ICD-high and ICD-low subtypes (|normalized enriched score 
(NES) | > 1 and FDR value < 0.05). *: p < 0.05; **: p < 0.01. 

3.3. Construction and Validation of the ICDrisk Score Model 
To further establish a prognostic model, 381 ICD-related genes were screened for 

subsequent analysis, and 151 potential prognostic genes were identified by univariate Cox 
regression analysis. Afterward, 16 genes identified from 151 genes by LASSO-Cox analy-
sis were utilized to construct the risk score model. The prognostic value of 16 genes was 
evaluated in the TCGA-LUAD cohort (Figure S2). Among the 16 genes, 9 genes were neg-
atively correlated with the OS of patients, and 5 genes were positively correlated with the 
OS of patients by univariate Cox analysis (Figure 3a,b). The ICDrisk score was calculated 
with the formula below: ICDrisk = 0.009183×FGL2 + 0.278419×GNG2 + 0.416996 × LHFPL2 
− 0.207906 × RAB33A + 0.27315 × JAK2 − 0.5856 × CD200R1 − 0.37916 × CCR2 − 0.01948 × 
PIK3CD − 0.04153 × GAB3 − 0.0221 × ATP8B4 − 0.34285 × ATP6V1B2 − 0.09044 × CD5 − 
0.03261 × PIK3CG − 0.14181 × KBTBD8 − 0.01772 × HLA-DQA1 − 0.03841 × MS4A7 

Figure 2. The potential biological role of the ICD score. (a) Kaplan-Meier curves showed the OS in
ICD-high and ICD-low subgroups. The Red and blue curves represented the ICD-high and ICD-low
subgroups respectively. (b) The box plot presented the distribution of ICD scores at different stages.
(c) Compared with the ICD-low subgroup, the volcano plot showed the differentially expressed genes
with a threshold of |log2 Fold change| > 0.5 and FDR < 0.05 in the ICD-high subgroup. (d) Protein–
protein interactions plot showed the hub-gene among ICD-related differentially expressed genes.
(e) GSEA determined the underlying biological process, cellular component, molecular function, and
signal pathway between ICD-high and ICD-low subtypes (|normalized enriched score (NES) | > 1
and FDR value < 0.05). *: p < 0.05; **: p < 0.01.
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Figure 3. Construction and validation of the ICDrisk subtype. (a) Lasso Cox analysis identified
16 genes most related to OS in the TCGA-LUAD cohort. (b) Model coefficient of the 16 genes in IC-
Drisk subtype construction. (c) ICDrisk distribution, survival status, and heatmap of 16 differentially
expressed genes among patients in TCGA-LUAD cohort. (d–g) Kaplan-Meier analysis demonstrated
the prognostic value of the ICDrisk score model in TCGA-LUAD, GSE72094, GSE68465, and GSE68571
cohorts. The area under the curve (AUC) and decision curve analysis (DCA) represented the accuracy
of the 16 genes model predicting the OS of patients. (h) The heatmap presented the qPCR expression
of eight high coefficient absolute value genes and clinical features among 78 patients in Sun Yat-sen
University Cancer Center (SYSUCC). (i) Kaplan-Meier curves showed different prognoses between
high- and low-expression subtypes of eight selected genes among the SYSUCC cohort.



Biology 2023, 12, 808 10 of 23

3.4. Transcriptome Analysis of LUAD Cohorts Divided into Low and High ICDrisk Subtypes

To explore the potential biological mechanisms between different ICDrisk subtypes,
transcriptome analysis of the TCGA-LUAD, GSE72094, and GSE68465 genesets was carried
out, and GSE68571 was excluded from this analysis because it covered incomplete gene
numbers. GSEA confirmed the activated signaling pathways in the high ICDrisk score
subtype, including MYC targets V1, MYC targets V2, and E2F targets. Some inhibited
signaling pathways in the high ICDrisk score subtype were also identified, including
PI3K/AKT/mTOR signaling, apoptosis, and notch signaling (Figure 4a). In addition, GSEA
demonstrated that five hallmark pathways were significantly co-enriched in the low ICDrisk
group among the three cohorts; these pathways included cell adhesion molecules (CAMs),
the Fc epsilon RI signaling pathway, the intestinal immune network for IGA production, the
VEGF signaling pathway and viral myocarditis (Figure 4b). Furthermore, we performed a
correlation analysis between the ICDrisk and gene scores of important biological pathways
in LUAD (Figure 4e). We found that the ICDrisk was negatively correlated with CD8 T
effector, immune checkpoint, APM, TMEscoreA, and TMEscoreB, but positively correlated
with mismatch repair, nucleotide excision repair, DNA damage response, DNA replication,
base excision repair, and pan-fibroblast TGFβ response signature (Pan-F TBRs).

To further explore ICDrisk-related genes in LUAD, we performed differentially expressed
gene analysis between the low and high ICDrisk subtypes with |log2 (fold change) | > 0.5
and p < 0.05 as the threshold. All five co-upregulated genes including S100P, SERPINB5,
KRT16, KRT6A, and CYP24A1 were identified among the TCGA-LUAD, GSE72094, and
GSE68465 cohorts (Figure 4c). To assess the expression of these five genes at the protein
level, we acquired immunohistochemical (IHC) data from the HPA database. The results
suggested that the protein expression of KRT6A, S100P, and SERPINB5 was positive in
LUAD, but that of CY24A1 and KRT16 was negative in all samples (Figure 4d). Moreover,
KRT6A, S100P, and SERPINB5 were all positively correlated with the ICDrisk score, which
was closely related to the terms CD8+ T cell effector, immune checkpoint, and EMT2. In
addition, S100P was negatively correlated with the terms CD8+ T cell effector and immune
checkpoint, while KRT6A and SERPINB5 were positively correlated with Pan-F TBRs and
negatively correlated with EMT2 (Figure 4e, Tables S8 and S9). Furthermore, we performed
a survival analysis and found that LUAD patients with high KRT6A, S100P, and SERPINB5
expression had worse survival outcomes (Figure 4f).

3.5. Mutation Statuses of LUAD Patients with Different ICDrisk Subtypes

To further identify the ICD-related molecular mechanism in LUAD, the somatic mutation
status of patients in the TCGA-LUAD cohort was analyzed. When compared with the low
ICDrisk subtype, the high ICDrisk subtype had more somatic mutations, including synonymous
and nonsynonymous mutations (all p < 0.05, Figure 5a). In addition, 21 mutated genes including
SMARCA4, KEAP1, UNC13C, KCNU1, FCGBP, DNAH11, SYNE1, ASTN1, RYR2, DNAH5,
SLITRK3, CDH18, COL19A1, ASTN2, KCNT2, PRUNE2, COL11A1, ASXL3, CNTNAP2, TPTE,
and CACNA1E were observed to be more frequent in the high ICDrisk subtype of LUAD
patients. However, FLG2 and TSHZ3 were more frequent in the low ICDrisk subtype of LUAD
patients (all p < 0.05, Figure 5b and Table S10). Furthermore, we examined the mutation status
of these 23 genes in LUAD patients and found many genes exhibited significant co-mutation
and an increased rate of mutation in the high ICDrisk subtype (Figure 5c,d). The rate of the
co-occurrence of at least two of the 23 gene mutations was 76.5% in the high ICDrisk subtype
and 63.1% in the low ICDrisk subtype (p < 0.01, Figure 5e). To further explore the genes with
potential for targeted therapy in LUAD patients, the co-mutation data of eight genes including
EGFR, RET, BRAF, HER2, KRAS, ALK, ROS1, and MET were analyzed. However, there was
no significant difference in the co-mutation of these eight genes between the low- and high-
ICDrisk subtypes (Figure 5e). Moreover, the co-mutation of SMARCA4, TP53, STK11, and
KRAS, which indicated a poor prognosis in lung cancer patients, occurred significantly more
frequently in the high ICDrisk subtype (12.4%) than in the low ICDrisk subtype (4.2%) (p < 0.01,
Figure 5e). Interestingly, the co-mutation of KEAP1, NFE2L2, TP53, STK11, and PBRM1, which
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exhibited a close correlation with immunotherapy, occurred significantly more frequently in the
high ICDrisk subtype (19.8%) than in the low ICDrisk subtype (12.9%) (p < 0.05, Figure 5e).
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Figure 4. Identification of activated pathways and differentially expressed genes in the high-ICDrisk
subtype of TCGA-LUAD, GSE72094, and GSE68465 cohorts. (a) GSEA for hallmark gene sets con-
firmed the activated and inhibited pathways in three databases. (b) GSEA for the KEGG database
confirmed five common activated pathways among all three databases. The five common activated
pathways are marked with a red frame. (c) Volcano and Venn plots represented the highly expressed
genes among all three databases. (d) Immunohistochemical (IHC) data from the HPA database
demonstrated that KRT6A, S100P, and SERPINB5 overexpressed in LUAD tumors. The black line
represented 20 µm. (e) The correlation between KRT6A, S100P, SERPINB5, and biological func-
tions. (f) Kaplan-Meier curves showed the OS with high and low expression of KRT6A, S100P, and
SERPINB5 in three cohorts. *: p < 0.05; **: p < 0.01.
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Figure 5. Tumor mutation status related to ICDrisk score. (a) Association between all mutation
counts, synonymous mutation counts, non-synonymous mutation counts, and ICDrisk score, and
their distribution in the low-ICD and high-ICDrisk score groups. (b) Forest plot of genes mutating
differentially in patients of low-ICD and high-ICDrisk groups. (c) Interaction effect of genes mutating
differentially in patients of the low-ICD and the high-ICDrisk groups. (d) The forms and counts
of genes mutating differentially in patients of low-ICD and high-ICDrisk groups. (e) Constitution
of wild type, a single mutation, and co-mutation among the 23 genes, 8 genes SMARCA4-X1 and
KEAP1-X2. X1 represented TP53, STK11, and KRAS. X2 represented NFE2L2, TP53, STK11 and
PBRM1. *: p < 0.05; **: p < 0.01; ***: p < 0.001; ns: not significant.

3.6. Relationship between Immune Cells Infiltration and ICDrisk Subtypes

Different levels of immunogenic cell death activation can lead to heterogeneity in
immune cell infiltration. Hence, immune cell components and tumor purity of both IC-
Drisk subtypes were further identified by using the TIMER, CIBERSORT, QUANTISEQ,



Biology 2023, 12, 808 13 of 23

MCPCOUNTER, EPIC, XCELL, and ESTIMATE algorithms (Tables S11 and S12). As
shown in Figure 6, there was a significant difference in immune cell composition between
ICDrisk subtypes. For instance, the scores for CD8 T cells, natural killer (NK) cells, den-
dritic cells (DCs), and B cells were significantly higher in the low ICDrisk subtype, while
that for cancer-associated fibroblasts was higher in the high ICDrisk subtype. Thus, the
low ICDrisk subtype was immunologically “hot”, while the high ICDrisk subtype was
immunologically “cold”.
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Figure 6. Landscape of immune and stromal cell infiltration in ICD-low and ICD-high subtypes. The
heatmap presents the normalized scores of immune and stromal cell infiltrations. Blue represents the
lower infiltration of cells in the ICD-high subtype and red represents the higher infiltration of cells
in the ICD-high subtype. The statistical difference between ICD-low and ICD-high subtypes was
defined as p< 0.05. The clinical features and gene mutation patterns of patients were also illustrated as
an annotation. *: p < 0.05; **: p < 0.01; ***: p < 0.001; ns: not significant; TMB: tumor mutation burden.
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Given the importance of immune checkpoints (ICPs) and the HLA family in anticancer
immunity, we further investigated the gene expression of 34 immune checkpoint molecules
and 20 HLA family genes in both ICDrisk subtypes. Patients with a high ICDrisk in
the TCGA-LUAD cohort had significantly higher expression of 31 immune checkpoint
molecules and all HLA family genes, while only TNFSF9 was more highly expressed in
the high ICDrisk subtype (Figure 7a). In addition, increases in the immune and stromal
scores were associated with a decrease in the ICDrisk, while an increase in tumor purity
was associated with an increase in the ICDrisk (Figures 6 and 7b).

3.7. Association between the LUAD Immune Signature and ICDrisk Score

TIDE scoring indicated that high ICDrisk tumors had a microenvironment charac-
terized by tumor immune exclusion (Figure 7d). Patients with a high ICDrisk exhibited
multifactor immunosuppression, and there were high proportions of CD39+ cells, CD73+
cells, Treg cells, Th1/Th2 cells, tumor-associated fibroblasts (CAFs), and M2 macrophages
(Figure 7c). Tumor-infiltrating lymphocytes and tumor neoantigens (TNAs) are two crucial
factors affecting immunogenic cell death. Immune suppression and exclusion activity
become increasingly significant with the malignant progression of tumors. Therefore, the
ICDrisk of LUAD patients was further analyzed by these two dimensions. Due to the differ-
ences in tumor purity among the studied tumor tissues, to better measure the relationship
between these dimensions in the tumor microenvironment (TME), we used the tumor purity
value obtained by the ESTIMATE algorithm to correct clonal neoantigen counts (TME-
neoantigen (meTNA) = clonal neoantigen counts/tumor purity). Patients were divided into
four subgroups based on the median value of the immune score (IS) and meTNA, namely,
the ISlowmeTNAhigh, ISlowmeTNAlow, IShighmeTNAlow, and IShighmeTNAhigh subgroups
(Figure 7e). In addition, these four subgroups accounted for different proportions in the
low and high ICDrisk subgroups (Figure 7f). Moreover, the survival of the ISlowmeTNAhigh

subtype was significantly better than that of the other three groups within the high ICDrisk
subtype (Figure 7g). Our results demonstrated that intratumor heterogeneity (ITH) was
lower in the ISlowmeTNAhigh subtype, while the numbers of clonal neoantigens and sub-
clonal neoantigens were higher in the ISlowmeTNAhigh subtype (Figure 7h). Additionally,
biological pathway analysis of the subgroups showed that mismatch repair, nucleotide
excision repair, base excision repair, DNA damage response, and DNA replication were
more active in the ISlowmeTNAhigh subtype. GSEA was further performed to compare
the ISlowmeTNAhigh subtype with the other subgroups within the high ICDrisk group,
which showed that KRAS signaling upregulation, TNFA signaling via NFκB, IL6-JAK-
STAT3 signaling, IL3-JAK-STAT3 signaling, and the P53 pathway were less active in the
ISlowmeTNAhigh subtype (Figure 7i,j).

3.8. Predictive Value of the ICDrisk for Response to Immunotherapy and Prognosis of
LUAD Patients

We further identified a role for ICDrisk in predicting response to immunotherapy and
prognosis among LUAD patients. The results showed that the subgroup responding to
immunotherapy in LUAD had a lower ICDrisk, and the low ICDrisk subtype had better
survival outcomes. Moreover, ROC curves indicated excellent performance for the ICDrisk
in predicting the 1-year overall survival (OS) of LUAD patients, with an AUC greater than
0.7 in each dataset (Figure 8a). To further explore the predictive efficiency of the ICDrisk in
other cancers, we analyzed melanoma and urinary tumor data. The results showed that
the ICDrisk had a consistent predictive value in melanoma (Figure 8b) and urinary tumors
(Figure 8c), as in LUAD.
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Figure 7. Analysis for correlation between ICDrisk subtypes and tumor microenvironment. (a) Anal-
ysis for expression of HLA family genes and immune checkpoints between ICDrisk subtypes. (b) 
Association between immune score, stromal score, tumor purity, microenvironment score, and 
ICDrisk score by using the TIMER and XCELL algorithms. (c) The count and proportion of clonal 
and sub-clonal between low and high ICDrisk score subgroups. (d) The distribution of microenvi-
ronment tumor neoantigen (meTNA) and immune score (IS) between low and high ICDrisk score 
subgroups. The dotted line represented the median of meTNA and IS. (e) The pie represented the 
proportion of ISlow meTNAhigh, ISlow meTNAlow, IShigh meTNAlow, and IShigh meTNAhigh. (f) The violin 
plot represented the distribution of CAFs-EPIC, M2M, MDSC, and Th1/Th2 between low and high 
ICDrisk score subgroups. (g) The survival curves represented the OS of ISlow meTNAhigh, ISlow 
meTNAlow, IShigh meTNAlow, and IShigh meTNAhigh between low and high ICDrisk score subgroups. 
(h,i) The violin plot and box plot represented the distribution of variates between ISlow meTNAhigh 
and other subgroups. (j) GSEA confirmed the suppressive pathways in ISlow meTNAhigh subgroup. 
*: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001; ns: not significant. 

Figure 7. Analysis for correlation between ICDrisk subtypes and tumor microenvironment.
(a) Analysis for expression of HLA family genes and immune checkpoints between ICDrisk subtypes.
(b) Association between immune score, stromal score, tumor purity, microenvironment score, and
ICDrisk score by using the TIMER and XCELL algorithms. (c) The count and proportion of clonal and
sub-clonal between low and high ICDrisk score subgroups. (d) The distribution of microenvironment
tumor neoantigen (meTNA) and immune score (IS) between low and high ICDrisk score subgroups.
The dotted line represented the median of meTNA and IS. (e) The pie represented the proportion of
ISlow meTNAhigh, ISlow meTNAlow, IShigh meTNAlow, and IShigh meTNAhigh. (f) The violin plot rep-
resented the distribution of CAFs-EPIC, M2M, MDSC, and Th1/Th2 between low and high ICDrisk
score subgroups. (g) The survival curves represented the OS of ISlow meTNAhigh, ISlow meTNAlow,
IShigh meTNAlow, and IShigh meTNAhigh between low and high ICDrisk score subgroups. (h,i) The
violin plot and box plot represented the distribution of variates between ISlow meTNAhigh and other
subgroups. (j) GSEA confirmed the suppressive pathways in ISlow meTNAhigh subgroup. *: p < 0.05;
**: p < 0.01; ***: p < 0.001; ****: p < 0.0001; ns: not significant.
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Figure 8. Prediction of survival and response to immunotherapy between high and low ICDrisk
subgroups among non-small cell lung cancer (NSCLC) (a), melanoma (b), and urinary tumor (c). The
survival curves represented the OS of low and high ICDrisk subgroups among patients treated with
immunotherapy. The box plot represented the distribution of ICDrisk scores among patients with or
without response to immunotherapy. The area under the curve (AUC) represented the accuracy of
predicting the response to immunotherapy. The bar chart represented the percentage of patients with
or without response to immunotherapy between low and high ICDrisk subgroups.
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4. Discussion

A comprehensive analysis of the intrinsic immunogenic cancer cell death property of
LUAD will provide new information for tumor vaccines and ICD inducers and potential
markers for the assessment of prognosis and the efficacy of immune checkpoint inhibitors.
In our study, the ICDrisk subtypes were identified based on the TCGA-LUAD cohort,
and multiple external validation analyses were performed to predict prognosis in LUAD
cohorts. Our findings clarify the relationship between clinicopathological features and
ICD subtypes. The two ICD subtypes had distinct clinical prognoses, immune infiltration
microenvironments, somatic mutation statuses, and activated molecular functions. Patients
with a low ICDrisk were associated with more active signaling pathways related to the
immune response, higher immunogenicity, fewer somatic mutations, higher immune and
stromal cell infiltration and lower tumor purity than patients with a high ICDrisk. Fur-
thermore, as far as we know, this is the first subgroup analysis based on two key elements
of immunogenic tumor cell death: immune infiltration and tumor neoantigens. Interest-
ingly, we found that tumors with both low immune infiltration and a high endogenous
neoantigen load had a better prognosis. Finally, the ICDrisk could be a potential predictive
biomarker for prognosis in LUAD and immunotherapeutic response in Pan-cancer.

Previous studies have demonstrated that ICD plays a key role in driving the adaptive
immune response and establishing long-term immune memory [33]. Previous studies on
ICD have mostly focused on factors with the potential to improve tumor immunogenic-
ity and antigen presentation, including cellular stressors; conventional chemotherapeutic
drugs, such as cyclophosphamide, oxaliplatin, and docetaxel [34,35]; tyrosine kinase in-
hibitors, such as crizotinib [36]; the epidermal growth factor receptor (EGFR) specific
monoclonal antibody cetuximab [37]; oncolytic virotherapy [38–40]; epigenetic modifiers;
and numerous physical interventions [41–44]. At present, there is a lack of omni-directional,
large-scale, and multiomic analyses of ICD characteristics in lung adenocarcinoma pa-
tients. Therefore, it is necessary to carry out ICD property analysis in both pretreatment
and intrinsic tumors for a more comprehensive understanding of the effects of intrinsic
immunogenic tumor death cell characteristics on prognosis, gene mutation, and tumor
microenvironment, thus providing guidance for the development of prophylactic tumor
vaccines and ICD inducers.

We used the WGCNA method to screen gene sets that were highly synergistic with
intrinsic ICD properties. Enrichment analysis showed that these genes were highly enriched
in immune response-related functions, which might play key roles in improving intrinsic
immunogenicity and activating cytotoxic T lymphocytes, consistent with the mechanism of
ICD. Next, using the ICD score obtained from ICD-related genes, we hypothesized that
ICD-H was associated with better survival and an earlier stage, implying that this score
could predict prognosis in LUAD, which also illustrated that there were different subtypes
defined by ICD properties in large-scale LUAD patient cohorts. To accurately predict the
prognosis of patients and further understand the subtype of ICD, we performed survival
and regression analyses based on ICD-related genes. We identified ICDrisk subtypes,
and the external validation results showed that the ICDrisk could be a reliable prognostic
indicator for LUAD patients.

The activation of some pathways was confirmed in the high ICDrisk subtype, including
MYC targets, E2F targets, and the G2M checkpoint [45–47]. The above-activated pathways
further explained the worse survival in the high ICDrisk subtype. Moreover, the down-
regulation of cell adhesion molecules (CAMs) and the Fc epsilon RI signaling pathway were
consistently confirmed in the high ICDrisk subtype in the three cohorts. Alterations in these
pathways were proven to enhance cancer progression and metastasis, inhibit the adaptive
immune system, and contribute to immune evasion [48,49]. In this study, we wanted to
collect as many immune cell signatures as possible to explore biological functions, similar
to the immune cell signature collection work of Sanjeev Mariathasan et al. [50]. Therefore,
the cell signatures of 15 identified biological functions were collected. The above results
indicated that tumors with a high ICDrisk might be associated with malignant progression
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and immunosuppression. Furthermore, high expression levels of KRT6A, S100P, and
SERPINB5 were consistently observed in patients with a high ICDrisk and associated
with a poor prognosis, which might play critical roles in the ICD process. In previous
studies, these gene families were defined as a panel affecting innate immunity and cell
differentiation in different diseases [51,52]. However, the functions of these genes in lung
cancer still need to be further explored.

Immunogenic cell death involves a multi-parameter interaction between dying cells
and the immune system [33]. Simply, there are three key elements involved in the activation
of ICD: an adjuvant, antigenicity, and microenvironmental factors, which are often pro-
duced by different cells in the tumor microenvironment, thus forming a complex molecular
mechanism. Adjuvants usually refer to DAMPs, cytokines, and chemokines, which are
mainly released by dying cancer cells first and are necessary for the recruitment and matu-
ration of antigen-presenting cells (APCs), which further drives a cytotoxic T-lymphocyte
(CTL)-dependent immune response [53–55]. In addition, DCs are key mediators in many
antitumor treatments, including immunotherapy, chemotherapy, and radiotherapy, that
act by regulating ICD [56]. In this study, patients with a low ICDrisk exhibited high DCs
infiltration and high expression of HLA family genes, which also suggested that with the
occurrence of ICD, not only were antigen-presenting cells recruited but also the subtype
had a stronger antigen-presenting function. Microenvironmental factors are regulated by
immune cells and stromal cells. At present, the direction of ICD inducer-based therapy
is to stimulate tumor immunogenicity and transform “cold” tumors lacking immune in-
filtration into “hot” tumors rich in immune infiltration. Our study found that with an
increase in the ICDrisk, tumors gradually transformed from a “hot” tumor to a “cold”
tumor; meanwhile, the purity of the tumor gradually increased until ultimately becoming
an immune-desert phenotype. In addition, some studies have noted that ICD inducers can
enhance the efficacy of immune checkpoint inhibitors on the premise of maintaining the
activity of tumor-infiltrating lymphocytes or normal immunostimulatory signaling [57,58].
In our study, patients with a high ICDrisk had a higher level of immune checkpoint gene ex-
pression, and we confirmed that ICDrisk subtypes could indicate efficacy through multiple
independent immunotherapy cohorts of NSCLC, melanoma, and urinary tumors. These
findings verified our hypothesis that ICDrisk subtypes can be used clinically to effectively
predict the efficacy of immunotherapy.

In the process of tumor development, tumor neoantigens (TNAs) appear with somatic
mutations, and they have both high tumor specificity and high immunogenicity [59]. With
the improvement of next-generation sequencing technology, people can further evaluate
the level of neoantigen immunogenicity [60]. Under continuous immune pressure, the mu-
tational load and TNA landscape change with tumor progression and immune infiltration
heterogeneity, and they are affected by increased genomic instability and intervention with
different treatments, resulting in tumor microenvironments with differences in antigenic-
ity [61,62]. TNAs also show intratumoral heterogeneity, as some are found in all tumor
cells (clonal neoantigens) and some are found only in some cells (subclonal neoantigens).
Many studies have noted that clonal neoantigens have sufficient antigenicity to drive an
immune response, so the tumor microenvironmental neoantigens (meTNAs) defined in this
study not only include clonal neoantigens as the main research object but can also eliminate
differences caused by tumor purity to some extent. In addition, effective TNAs reach the
threshold of T-cell recognition, thus breaking immune tolerance and successfully inducing
an antitumor immune response [63,64]. Many studies have demonstrated that higher
neoantigen load correlated with both higher cytotoxin release activity of T lymphocytes
and better prognosis. However, owing to the influence of immunosuppressive cells and
immunosuppressive factors in the immune microenvironment, neoantigens cannot be effec-
tively recognized by autologous T lymphocytes [65,66]. Therefore, we hypothesized that
with the change in the relationship between the level of immune infiltration in the tumor
microenvironment and the number of TNAs, the efficiency of T lymphocytes in recognizing
TNAs also changes dynamically. Subgroup analysis suggested that the ISlowmeTNAhigh
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subtype had a better prognosis than the high ICDrisk subtype. These findings not only
more accurately identified the subcluster with the best immunogenicity but also suggested
that high antigenicity and low levels of immunosuppressive cell infiltration in the mi-
croenvironment were more important. In addition, our further analysis showed that the
ISlowmeTNAhigh subtype showed lower tumor heterogeneity, and biological function analy-
sis suggested that this subgroup had a stronger DNA damage repair ability for maintaining
genomic stability and suppressed tumor progression-related pathways. Further study of
these phenomena will help achieve an accurate diagnosis and effective treatment, as well
as contribute to the development of ICD inducers and ICD-related tumor vaccines.

Despite some limitations, TMB is still considered a useful biomarker of immunother-
apy response, with higher TMB suggesting greater immunotherapy benefit [67]. In our
study, it was demonstrated that patients with high ICDrisk had high TMB. However, as
discussed above, the high ICDrisk subtype showed lower immune activity, suggesting
that high TMB did not necessarily predict high immunogenicity. Furthermore, the most
common mutations in the high ICDrisk group were in 21 genes, which could explain the
high TMB. Interestingly, the frequency of co-mutations in these genes was high in the high
ICDrisk group. Among these genes, SMARC4 and KEAP1 were more frequently mutated in
the high ICDrisk group. As previous studies have reported, the co-mutations of SMARCA4,
TP53, STK11, and KRAS occurred more frequently in SMARCA4-mutant lung cancer,
indicating worse survival and increased sensitivity to immunotherapy [68]. A previous
study revealed that the co-mutation of KEAP1 and TP53 influenced the prognosis in LUAD
by affecting the immune microenvironment composition, which played a crucial role in
immunotherapy [69,70]. LUAD with co-mutation of KEAP1 and NFE2L2 was also proven
to be relatively responsive to immunotherapy [71]. However, cases with co-mutation of
KEAP1, STK11, and PBRM1 were proven to be unresponsive to ICI treatment in LUAD [72].
In our study, the rates of both single mutations and co-mutations of SMARCA4, TP53,
STK11, KRAS KEAP1, NFE2L2, STK11, and PBRM1 were higher in the high ICDrisk group,
which had a high TMB and low immune checkpoint molecule expression.

This study still had some limitations. First, we used the transcriptome expression
level of the ICD metagene signature to represent the intrinsic ICD status. Although we
used a classic gene signature algorithm to elucidate the tumor landscape, due to technical
and methodological limitations, the actual ICD status was not fully recognized. Sec-
ond, although the high ICDrisk subtype was found to indicate a poor prognosis in many
LUAD cohorts, the biological or medical mechanism underlying this is still not very clear.
Additional experimental studies on the mechanism underlying immunogenic cell death
characteristics are needed to provide more important information to improve the under-
standing of the functional roles of these characteristics in LUAD. Third, the ICD-related
genes screened in this study need to be subjected to a series of in vitro and in vivo studies
to explore their functions. Finally, we are also aware that this study lacks a large-scale and
independent sequencing database, and the reliability and strength of the conclusions are
limited. Due to the limited public data available for the NSCLC immunotherapy cohort,
we used a small number of NSCLC cases to verify the effectiveness of the ICDrisk in the
prediction of immunotherapy response, so we are collecting relevant cases from an affiliated
hospital to complete the validation of the LUAD results, which is listed as our next priority.

5. Conclusions

In summary, we effectively identified ICDrisk subtypes to predict the OS of LUAD
patients, which were externally and extensively validated. Functionally, the ICDrisk score
was correlated with the immune response in pan-cancer patients. Favorable performance
in validation datasets suggested the robust and extensive potential for utilization.
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