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Simple Summary: It is challenging to deduce the bioactivity of volatile compounds from their
chemical characteristics. We therefore previously used parameter mapping sonification to study
volatiles secreted by some insects that repel predators. Chemical parameters from single volatiles
were linked to sound parameters. The peak sound pressure values from the gathered audio clips
contain information about the repellent effect of the compounds. Here, human olfactory thresholds
were investigated. The volatiles were subjected to parameter mapping, and the results show that
these thresholds are correlated with the peak sound pressures. More generally, the results illustrate
that the sonification of volatiles helps to better understand their bioactivity.

Abstract: An objective of chemical ecology is to understand the chemical diversity across and
within species, as well as the bioactivity of chemical compounds. We previously studied defensive
volatiles from phytophagous insects that were subjected to parameter mapping sonification. The
created sounds contained information about the repellent bioactivity of the volatiles, such as the
repellence from the volatiles themselves when tested against live predators. Here, we applied
a similar sonification process to data about human olfactory thresholds. Randomized mapping
conditions were used and a peak sound pressure, Lpeak, was calculated from each audio file. The
results indicate that Lpeak values were significantly correlated with the olfactory threshold values
(e.g., rS = 0.72, t = 10.19, p < 0.001, Spearman rank-order correlation; standardized olfactory thresholds
of 100 volatiles). Furthermore, multiple linear regressions used the olfactory threshold as a dependent
variable. The regressions revealed that the molecular weight, the number of carbon and oxygen
atoms, as well as the functional groups aldehyde, acid, and (remaining) double bond were significant
determinants of the bioactivity, while the functional groups ester, ketone, and alcohol were not. We
conclude that the presented sonification methodology that converts chemicals into sound data allows
for the study of their bioactivities by integrating compound characteristics that are easily accessible.

Keywords: human olfactory detection; sonification; parameter mapping; random setting; chemical
parameter; sound parameter

1. Introduction

Living organisms produce a huge diversity of chemical compounds that are often used
in defence against attacking predators. Defensive compounds constitute interspecific chem-
ical signals that are adaptively beneficial to the emitter but not the receiver [1]. Chemical
compounds with a defensive function occur in many plants and animals [2–4]. The high
diversity of defensive chemicals throughout living organisms is manifest among different
species, but also intra-specifically, as a species often emits a complex mixture of defensive
compounds [5].

Volatiles acting as repellents, that is, at distance and through the olfactory sense [6],
are often used by phytophagous insects against the attack of predators [1,7–9]. As a first
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application of sonification [10,11] to chemical ecology, several insect species belonging to
a group of phytophagous hymenopterans, the nematines, were studied [12]. From the
chemical profile of the defensive volatile secretions of these insects, each single compound,
or molecule, was subjected to sonification, by which chemical parameters were converted
into sound parameters (Figure 1). The single compound audio obtained in this way
were combined into new, species-specific audio based on the relative concentration of
each compound in the given species (not shown in Figure 1). The repellent effect of the
single or mixed compounds was tested by bioassays on predatory ants, while both sets of
corresponding audio were tested on humans. As a measure of loudness, or volume, the
maximum peak reached by the sound pressure (Lpeak, in dB) was calculated from each
audio. Testing correlations between Lpeak values and bioassay results revealed that both
datasets are significantly positively correlated, which suggests that the audio clips contain
information about the repellent bioactivity (Figure 1). Thus, practically speaking, testing
audio on humans can be replaced by the more convenient process of measuring Lpeak
values from the audio [12].
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Figure 1. Schematic representations of the causal relationships and correlations between elements
dealing with volatile compounds studied by sonification in Boevé and Giot [12] (A) and in this study
(B). In (B), data about bioassay on humans were gathered from the literature. Datasets are mentioned
in a box, ‘objects’ in a circle. (A) causal relationship is shown by an arrow, and a statistical correlation
is shown by a thick bar. Notice that in (A), the insect secretion was tested on ants indirectly by
confronting them with live insects. Gaz chromatography-mass spectrometry (GC-MS). Molecular
weight (MW). Standardized human olfactory threshold (SHOT). Peak sound pressure (Lpeak). For
more information, see text.
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Any sonification process involves some subjectivity and arbitrary choices when assign-
ing datasets to sound parameters. This is illustrated in many studies applying sonification to
various scientific, technical, and societal domains: chemistry [13,14], genomics–proteomics–
medicine [15–23], animal migration [24], geographic data [25], climatic data [26], seis-
mology [27,28], petroleum engineering [29], astronomy [30], mathematics [31], internet
monitoring [32], market data [33], and vision impairment [34,35]. Those studies about
(organic) chemistry show that sonification allows an efficient analysis of experimental
data and a pattern recognition of chemical samples [13,14,18,20,22,23]. In neuroscience
and cardiology, it allows a better monitoring of physiological activities than by statistical
approaches [16,21].

Here, one aim was to better understand the pros and cons of the sonification method-
ology by studying a biological system other than insect predator–prey relationships. Bioas-
says of volatiles rarely involve numerous compounds tested in identical conditions on one
species, an exception being volatiles tested on humans [36–38]. Our aim is to propose an al-
ternative approach to the use of regression models to estimate the bioactivity of volatiles on
humans [39–47]. These models involve variables such as the presence/absence of functional
groups, such as aldehyde or acid, but also other variables that may be difficult to obtain
from the literature on compounds rarely encountered in living organisms. More recent
data modelling includes two-dimensional gas chromatography retention parameters [48]
to determine pungency or irritation thresholds [43,44,49,50]. Here, the human olfactory
thresholds of single molecules from Devos et al. [41] were compared with the Lpeak values
obtained by the sonification of the same molecules (Figure 1). We reduced the degree
of subjectivity by randomizing the mapping conditions. Furthermore, we tested sound
parameters separately to evaluate their specific impact on the audio. By randomizing and
gradually refining the mapping conditions, we succeeded in increasing the correlation
strength between olfactory thresholds and Lpeak values.

2. Materials and Methods
2.1. Human Olfactory Threshold

As a bioactivity measure, the standardized human olfactory threshold (SHOT, in a log
unit of ‘olfactory power’ that can be converted into ppm or ppb units) was acquired from a
dataset of 529 molecules [41] based on more than 100 literature references. It includes for
each molecule the following data: molecule name, synonyms, reference number, chemical
formula, molecular weight (MW), and two SHOT values, viz. mass (d1) or volume (d2)
weighted. In short, the higher a SHOT value, the easier the volatile is detected by the
human nose. In the present study, the following additional data were gathered from
PubChem [51] and other online sources [52]: the Chemical Abstracts Service (CAS) registry
number to resolve synonymy ambiguities of chemical names compared with those from
its own data sources, and the functional groups. For statistical tests not directly related to
the sonification, a first subset of 272 molecules was selected (Table S1). These molecules
were mainly aliphatics, and they contained only carbon, hydrogen, and oxygen for some of
them. For the sonification, a more restricted subset of 100 molecules was used, being listed
in Devos et al. [41] and Abraham et al. [40]. The latter reference is based on Nagata [53] and
others, who measured an odour detection threshold (ODT, in ppm, v/v, and negatively
correlated with the SHOT) from which Abraham et al. [40] derived values of log (1/ODT).

2.2. Sonification

Working under MacOS Monterey (version 12), the sonification process was applied on
single molecules. The chemical descriptors (Table S1) were linearly scaled to fit the general
musical instrument digital interface (MIDI) specification, and subjected to a process of
parameter mapping [11,25] by using the synthesizer Massive version 1.5.1 (R637) (Native
Instruments, Berlin, Germany) and an application written in Processing version 2.2.1
(Processing Foundation, MIT Media Laboratory, Cambridge, MA, USA) (Figure 2).
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Figure 2. Screenshot of the layout interface used in an illustrative condition of parameter mapping
by which chemical parameters are linked to sound parameters (green nodes). Letters and digits with
a black background are added to the screenshot, as the mapping preset names refer to them in Table 1.
By clicking the “Record All” (below, right), the Processing script performs a batch export of one audio
file per molecule listed in a CSV file. For more information, see text.

A single synthesizer’s preset sound was assigned to all molecules; it is close to the
preset sound “Cloud N9” available in Massive. Only two chemical–sound links (i.e., nodes)
were left unchanged throughout the study: a negative relationship was set between the
number of carbon atoms in the molecule (1–12; ‘#C’) and the note pitch (MIDI note range
of 108–33; see ‘Pitch’ in Figure 2) of the sound assigned to it; a positive relationship was
set between the MW (30–170) of the molecule and the note duration (1–10 s; ‘Duration’)
of the sound assigned to it. These two links were kept the same to reflect that smaller,
compared with larger, molecules are more volatile, thus evaporating more rapidly, which
we also linked to the perception of higher sound frequencies. The other chemical and
sound parameters were linked together in various combinations across 50 settings to
assess the statistical correlation of the resulting audio Lpeak values with the SHOT values
(see later). The chemical parameters were the number of oxygen atoms (0–2; ‘#O’), acid
groups (0–1; ‘f.ac’), aldehydes (0–1; ‘f.al’), double bonds (0–2; ‘f.db’; not part of other
functional groups), esters (0–1; ‘f.es’), ketones (0–2; ‘f.ke’), and alcohols (0–1; ‘f.ol’). The
sound parameters were the equalizer frequency (MIDI control 127–0, i.e., decreasing; ‘EQ-
Freq’), feedback amplitude (0–127; ‘Feedback’), noise metallic amplitude (0–127; ‘Noise’),
equalizer boost (0–64; ‘EQ-Boost’), modulation oscillator filter FM (0–127; ‘Modulation’),
insert 1 hardclipper dry/wet (0–127; ‘Clip-DW’), and filter 2 high-pass 4 resonance (80–127;
‘HP-Reson’).

The recorded WAV sounds were gathered via the virtual audio driver BlackHole 16ch
version 1.3.0.65 [54], a single batch record of 100 molecules lasting 40–50 min. Different
mapping conditions were referred to by a code corresponding to the node positions, with
letters “A” to “J” for the chemical parameters and numbers “1” to “9” for the sound
parameters (Figure 2). For instance, A2-D1–C8-E3-F4-G6-H7-I5-J9 represents the mapping
condition shown in Figure 2. Notice that the number of hydrogen atoms (“B”) was never
used, since it is obviously correlated with the #C in organic compounds. As mentioned, we
always used the two same nodes that connect the #C with pitch (A2), and the MW with
duration (D1). For the seven other chemical parameters (“C”, “E”, “F”, “G”, “H”, “I”, and
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“J”), 24 assignments to sound parameters “3” to “9” were randomly selected for testing
out of 5040 possible combinations; the assignments were randomized by using random
functions in Excel. More specific mapping conditions were also tested.

Table 1. Mapping conditions and statistical results obtained by comparing human olfactory thresh-
olds with gathered peak sound pressures. Each mapping condition with a reference code (set) was
applied to 100 molecules by running the Processing application (Figure 2). Part of the mapping nodes
was determined randomly (mapping goal). Lpeak values were calculated from the resulting audio.
These values were then statistically compared with the SHOT d1 values, using the Spearman rank-
order correlations with p values (p), two-tailed, at α = 0.05. Sample size (n); Spearman’s correlation
coefficient (rS); size of difference relative to variation in the sample data (t). The p values remaining
statistically significant after Holm’s sequential Bonferroni correction are given in bold. For more
explanation, see text.

Set Mapping Condition Mapping Goal rS t p
set01 A2-D1–C3-E7-F4-G5-H8-I6-J9 random C E F G H I J 0.1529 1.53 0.129
set02 A2-D1–C5-E3-F6-G7-H9-I4-J8 random C E F G H I J 0.465 5.2 <0.001
set03 A2-D1–C6-E3-F8-G4-H7-I5-J9 random C E F G H I J 0.4738 5.33 <0.001
set04 A2-D1–C4-E9-F6-G5-H3-I7-J8 random C E F G H I J 0.3194 3.34 0.001
set05 A2-D1–C4-E5-F8-G6-H7-I9-J3 random C E F G H I J 0.2514 2.57 0.012
set06 A2-D1–C8-E3-F6-G7-H9-I4-J5 random C E F G H I J 0.3572 3.79 <0.001
set07 A2-D1–C6-E3-F4-G7-H5-I8-J9 random C E F G H I J 0.46 5.13 <0.001
set08 A2-D1–C5-E6-F3-G7-H9-I8-J4 random C E F G H I J 0.2048 2.07 0.041
set09 A2-D1–C7-E3-F4-G9-H8-I5-J6 random C E F G H I J 0.5212 6.04 <0.001
set10 A2-D1–C3-E7-F6-G4-H5-I8-J9 random C E F G H I J 0.0917 0.91 0.365
set11 A2-D1–C9-E3-F8-G7-H6-I5-J4 random C E F G H I J 0.2718 2.8 0.006
set12 A2-D1–C7-E8-F5-G3-H4-I6-J9 random C E F G H I J 0.3874 4.16 <0.001
set13 A2-D1–C4-E7-F3-G8-H9-I5-J6 random C E F G H I J 0.2424 2.47 0.015
set14 A2-D1–C4-E3-F5-G8-H6-I7-J9 random C E F G H I J 0.4246 4.64 <0.001
set15 A2-D1–C3-E7-F8-G4-H9-I5-J6 random C E F G H I J −0.0325 −0.32 0.750
set16 A2-D1–C9-E4-F3-G5-H6-I8-J7 random C E F G H I J 0.2613 2.68 0.009
set17 A2-D1–C8-E7-F9-G3-H4-I5-J6 random C E F G H I J 0.186 1.87 0.064
set18 A2-D1–C5-E9-F4-G6-H7-I8-J3 random C E F G H I J 0.3953 4.26 <0.001
set19 A2-D1–C7-E3-F9-G6-H4-I5-J8 random C E F G H I J 0.2825 2.92 0.004
set20 A2-D1–C9-E4-F3-G5-H6-I7-J8 random C E F G H I J 0.3283 3.44 0.001
set21 A2-D1–C3-E7-F4-G6-H5-I8-J9 random C E F G H I J 0.2306 2.35 0.021
set22 A2-D1–C6-E4-F8-G7-H9-I5-J3 random C E F G H I J 0.4456 4.93 <0.001
set23 A2-D1–C5-E3-F8-G6-H7-I9-J4 random C E F G H I J 0.4013 4.34 <0.001
set24 A2-D1–C9-E3-F4-G6-H5-I8-J7 random C E F G H I J 0.5892 7.22 <0.001
set26 A2-D1–C9-E3-F4-G7-H5-I8-J6 random C G H I J 0.5789 7.03 <0.001
set27 A2-D1–C5-E3-F4-G7-H8-I6-J9 random C G H I J 0.6049 7.52 <0.001
set28 A2-D1–C6-E3-F4-G5-H7-I8-J9 random C G H I J 0.5681 6.83 <0.001
set29 A2-D1–C5-E3-F4-G7-H9-I6-J8 random C G H I J 0.663 8.77 <0.001
set30 A2-D1–C5-E3-F4-G9-H6-I8-J7 random C G H I J 0.5095 5.86 <0.001
set54 A2-D1–C9-E3-F4-G7-H6-I5-J8 random C G H I J 0.5951 7.33 <0.001
set55 A2-D1–C7-E3-F4-G5-H6-I8-J9 random C G H I J 0.5711 6.89 <0.001
set56 A2-D1–C9-E3-F4-G6-H7-I8-J5 random C G H I J 0.6461 8.38 <0.001
set57 A2-D1–C8-E3-F4-G6-H7-I5-J9 random C G H I J 0.7138 10.09 <0.001
set58 A2-D1–C7-E3-F4-G8-H9-I5-J6 random C G H I J 0.5539 6.59 <0.001
set59 A2-D1–C6-E3-F4-G8-H7-I9-J5 random C G H I J 0.4435 4.9 <0.001
set60 A2-D1–C5-E3-F4-G6-H7-I8-J9 random C G H I J 0.6306 8.04 <0.001
set61 A2-D1–C6-E3-F4-G5-H7-I9-J8 random C G H I J 0.5282 6.16 <0.001
set62 A2-D1–C5-E3-F4-G8-H9-I7-J6 random C G H I J 0.5202 6.03 <0.001
set63 A2-D1–C7-E3-F4-G8-H6-I9-J5 random C G H I J 0.4822 5.45 <0.001
set64 A2-D1–C9-E3-F4-G7-H5-I6-J8 random C G H I J 0.648 8.42 <0.001
set65 A2-D1–C5-E3-F4-G9-H6-I7-J8 random C G H I J 0.5155 5.96 <0.001
set66 A2-D1–C5-E3-F4-G6-H7-I9-J8 random C G H I J 0.6062 7.55 <0.001
set67 A2-D1–C5-E3-F4-G7-H6-I9-J8 random C G H I J 0.4492 4.98 <0.001
set68 A2-D1–C6-E3-F4-G5-H9-I7-J8 random C G H I J 0.5061 5.81 <0.001
set69 A2-D1–C9-E3-F4-G6-H5-I7-J8 random C G H I J 0.6192 7.81 <0.001
set70 A2-D1–C6-E3-F4-G8-H9-I7-J5 random C G H I J 0.3521 3.72 <0.001
set71 A2-D1–C8-E3-F4-G5-H7-I6-J9 random C G H I J 0.7172 10.19 <0.001
set72 A2-D1–C7-E3-F4-G5-H8-I9-J6 random C G H I J 0.502 5.75 <0.001

set57b A2-D1–C8-E3-F4-G6-H7-I5-J9 set57 but Feedback 0–64 0.6479 8.42 <0.001
set73 A2-D1–C8-E3-F4-G5-H7-I6-J9 set71 but Feedback 0–64 0.5136 5.93 <0.001
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A general workflow was applied as follows: Two CSV files contained the compound
name and its chemical descriptors, one file for the 272 molecules, the other for the subset
of 100 molecules (Table S1). The master volume of Massive was kept the same, the wheel
cursor being positioned as it would be at 10:30 on an analogue clock. In the Processing
script, “silence threshold” was set at −60 dB, “duration” at 5 s, and in the mapping interface,
the volume was set at 35. A batch record of all 100 molecules led to as many WAV files.
Each audio file was analyzed with another application written in Processing to calculate
the Lpeak values that were then averaged over the left and right audio channels [12,55].
Overall, at least 5000 audio files were generated during the study.

To estimate the respective impact of each sound parameter on Lpeak, each one was
tested separately. To this end, a CSV file contained five theoretical molecules with the
following #C vs. MW values: 1 vs. 30, 3 vs. 65, 7 vs. 100, 10 vs. 135, and 12 vs. 170,
respectively. The #C was mapped to ‘Pitch’ and MW to ‘Duration’. Audio was gathered
with this simple mapping (“A2-D1”, see above) and then with a supplementary node that
successively linked a third chemical parameter with each of the seven remaining sound
parameters.

2.3. Statistical Analyses

Spearman rank-order correlations were tested and computed online [56] between
the SHOT d1 values and the Lpeak values originating from the batch sonification of
100 molecules. The calculation was performed for each mapping condition. These asso-
ciation analyses were explorative in nature and used the same SHOT values throughout
the correlation tests. The correlations were followed by the Holm’s sequential Bonferroni
correction at significance level α = 0.05. Such Spearman correlations corrected for multiple
testing were also performed between SHOT d1 vs. d2, d1 vs. Lpeak, and log (1/ODT)
vs. Lpeak.

To assess the added value of the sonification process, the relationships among the
chemical parameters, or variables, were modelled by multiple linear regressions (MLRs)
using PAST version 4.09 [57]. SHOT d1 was considered as the dependent variable, the
eight independent variables being the number of carbon atoms, oxygen atoms, and the
functional groups: acid, aldehyde, ester, ketone, alcohol, and (remaining) double bond.

3. Results

Among 24 sonification batch runs selected randomly (except for the nodes “A2” and
“D1”), 20 were significantly correlated with the SHOT d1 values, and five resulted in a
Spearman’s correlation coefficient (rS) > 0.45 (Table 1, set01 to set24). In these five mapping
conditions, the node “E3” occurred five times and “F4” three times. Therefore, 24 new
conditions were selected randomly out of 120 possible combinations by keeping constant
the nodes “A2”, “D1”, “E3”, and “F4” (Table 1, set26 to set30 plus set54 to set72). The
24 consequent correlations were all significant (p < 0.001, Spearman rank-order correlation;
Table 1). A detailed survey of these 24 batches of 100 molecules revealed that Lpeak values
tended to be equal or close to 0 dB for molecules containing an aldehyde. This suggested
that the sound parameter Feedback, to which this function group was assigned, had a
strong impact on the Lpeak values. By restricting the MIDI range of Feedback from 0 to
64 (instead of 0–127), all Lpeak data points had less than −10 dB (Figure 3), although the
rS was not increased (see set57b and set73, Table 1). At the lowest dB values, two outliers
were observed with less than −40 dB, which corresponded to the data point of methanol
and methanal (Figure 3).
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Figure 3. Scatterplot and regression line of the SHOT d1 versus Lpeak values for 100 molecules. The
molecules and their values are listed in Table S1. The regression formula is Y = −34.474 + 1.9131 X.

Significant correlations were obtained by comparing the bioactivity variables SHOT
d1 with d2, SHOT d1 with Lpeak, and log (1/ODT) with Lpeak (Table 2).

Table 2. Correlations between bioactivity datasets. Results from Spearman rank-order correlations
with p values (p), two-tailed, at α = 0.05. Sample size (n); Spearman’s correlation coefficient (rS); size
of difference relative to variation in the sample data (t); and degrees of freedom (df). The three p
values remained significant after Holm’s sequential Bonferroni correction. The variables refer to
Table S1. The second listed comparison, SHOT d1 vs. Lpeak, refers to ‘set57b’ in Table 1 and is
illustrated in Figure 3.

Variable Comparison n rS t df p

SHOT d1 vs. SHOT d2 272 0.9858 96.62 270 5 × 10−7

SHOT d1 vs. Lpeak 100 0.6479 8.42 98 <1 × 10−6

Log(1/ODT) vs. Lpeak 100 0.6837 9.27 98 <1 × 10−6

Based on the list of 272 molecules, an MLR using SHOT as a dependent variable led to
an overall significant regression (R2 = 0.43, F8.263 = 25.19, and p < 0.0001), yet excluding the
independent variables ester, ketone, and alcohol (Table S2). In a following MLR, these three
functional groups were discarded. Such a reduced model, containing only the number of
carbon and oxygen atoms, as well as the functional groups acid, aldehyde, and double
bond, still provided a significantly better fit than the null model (R2 = 0.42, F5.266 = 38.39,
and p < 0.0001). Based on the subset of 100 molecules, a third MLR using these same
dependent and five independent variables also resulted in a significant better fit than the
null model (R2 = 0.54, F5.94 = 21.91, p < 0.0001) without excluding any of the independent
variables (Table S2).

Testing the respective impact of each sound parameter on Lpeak revealed that Lpeak
values were generally lower (<−30 dB) for the largest molecule compared with the smaller
ones (Figure 4). The sound parameter ‘EQ-Freq’ was particular in that larger molecules led
to high Lpeak values over −10 dB (Figure 4).
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mapping conditions that included a reduced set of linking nodes. For more explanation, see text.

4. Discussion

Starting with a dataset about volatile compounds, a sonification process was per-
formed by randomly selecting the parameter mapping conditions. Correlations were
calculated between the values of Lpeak from the audio clips and the thresholds, SHOTs, at
which humans perceive these volatiles. Relationships between chemical and bioactivity
variables were already studied by other methodologies, but acquiring these variables often
requires a bioassay series, advanced computing, and/or analytical chemistry [40,48,58].
In the present study, the highest achieved Spearman correlation coefficients (of 0.7) can
be interpreted as moderate to nearly strong [59], and outliers were observed. However,
interestingly, the overall (i.e., multiple) correlation coefficients from the MLRs reached a
similar relationship strength, and the datapoint distribution on the scatterplot indicated no
polynomiality. Thus, for the chemical variables considered here, an equivalent performance
was reached by using Lpeak values resulting from the sonification process versus using
classical statistics only, yet it should be possible to still enhance the relationship strength
by further adapting the parameter mapping conditions. This way, and compared with the
linear modelling approach, parameter mapping sonification would provide a better insight
into the influence of chemical attributes on a bioactivity.

In chemical ecology, bioassays are used to obtain quantitative data about the effect of
volatiles on organisms. For instance, rates of repellence are gathered from ants confronted
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to volatile vapours [1,8,9,60], while the SHOT values used here were gathered from humans
detecting odours [53]. Screening volatiles by such experiments allows the ranking of their
activity level. In this context, sonification is a complementary or alternative way to obtain
comparative, quantitative data. Its advantage is that bioassays are less necessary; such
experiments using living organisms may be difficult to set up [12]. More generally, the
sonification of medical measures, biological and seismological data, etc., sometimes allows
a better interpretation of raw data than via their visual representation that may be less
informative [14,20], but listening to such sonified data often requires a preliminary auditory
training of the operator [13,14,21]. A training is unwarranted for humans used in bioassays
to test their response against volatiles, since they are “detectors” that react upon perceiving
a chemical (or an auditory) stimulus, not “translators” that should interpretate the meaning
of raw data obtained from analytical chemistry, physiology, or physics.

Reference [12] made three levels of arbitrary choices: (1) the assignment in Massive
of a specific preset sound to each chemical class; (2) a general, preselected setting of the
parameter mapping condition, on which most of the study relies, then randomizing the
conditions to find those leading to higher correlation results; and (3) the mixing of molecule
audio into a species audio, according to the relative chemical concentrations in the original
insect secretion. Here, the first and third levels were not considered, the first one since the
present sound was kept the same for all sonified molecules, and the third one because only
single molecules were studied.

From the list of molecules analyzed by parameter mapping, the molecule with lowest
#C was assigned to the sound with the highest frequency, and vice versa. In Boevé and
Giot [12], the molecules had a #C from 2 to 29 and a MW from 32 to 425, while in the present
study, these ranges were 1–12 and 30–170, respectively. Generally, any list of molecules
may lead to a particular scaling between chemical and sound parameters, possibly causing
the audio of identical molecules from different lists to sound at differing frequencies.

Results from the MLR statistics reveal that among the six functional groups, acid,
aldehyde, double bond, ester, ketone, and alcohol, the last three ones can be considered
as dispensable, although all six were used in the Spearman correlations between Lpeak
versus SHOT and log (1/ODT). Furthermore, the MW of organic molecules is obviously
correlated with their #C. Therefore, only the second variable was used in MLRs, while both
variables were kept in the sonification. This is because we consider parameter mapping as
resulting in audio characteristics that are not properly inferable from a particular chemical
parameter. In fact, each distinct sound parameter influenced Lpeak differently, and in
a variable way depending on sound frequency (determined by the MW). In contrast to
sound frequency (pitch) and duration, the Lpeak, as a measure of sound loudness, was not
directly mapped with a chemical trait, although ‘EQ-Freq’ taken alone increased the Lpeak
values. The sound parameters that were used together in parameter mapping appear to
have intertwined effects that may be difficult to predict, thus requiring a trial-and-error
strategy to improve the sonification effectiveness.

In our research, volatiles were not tested for their hedonic perception (i.e., as pleas-
ant versus unpleasant), but detectability and repellent properties. Nevertheless, a next
step in the sonification approach of volatiles may be to start with floral bouquets. The
audio should then be tested on humans in an adapted experimental setup. An example
might be testing human panellists for a sensory evaluation by which they rate the audio
(un)pleasantness. Such a setup would also include a combination of sound parameters
other than Lpeak to quantify the pleasantness of odour perception via sound traits such as
pitch [61] or rhythm [15]. This sonification approach needs to be phased in, distinguishing
between chemical attributes of single volatiles and relative concentrations in mixtures
of volatiles. Still another application of the sonification described here would be to test
feeding deterrent compounds, acting on gustation, that are probably even more diversified
in nature than volatiles.
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5. Conclusions

Sonification is a heuristic technique that presents new perspectives in data repre-
sentation, interpretation, and understanding. Here, we showed that parameter mapping
between chemical attributes of volatiles and sound parameters leads to estimating the
level of olfactory perception of those chemicals by humans. Sonification is constrained,
as are other modelling systems [35,39,40,43–46], by the specific settings involved in its
implementation. In this context, the stepwise enhancement of mapping conditions by
the setting of randomized chemical–sound nodes resulted gradually in sounds that more
reliably reflect the volatile bioactivity. However, we are aware that the bivariate plot graph
included more than one outlier, and that the strength of the correlations between the sound
trait Lpeak with the human olfactory threshold remained relatively weak. Whether the
chemical–sound correspondence can be further enhanced by omitting some chemical at-
tributes and/or by adding new ones, thus also adding new sound parameters, requires
further investigation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology12050670/s1, Table S1: Descriptors and bioactivities of
the molecules used in the study; Table S2: Statistical results from multiple linear regressions.
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