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Simple Summary: This study examined how prenatal stress affects embryonic skin development.
For this purpose, the model organism of the chicken embryo was used to inject the stress hormone
corticosterone at an early embryonic stage. After a certain period of stress hormone exposure,
macroscopic observations and tissue examinations were undertaken in order to pursue this research
question. The investigations demonstrated that physiological skin development was significantly
impaired by prenatal stress. This could be attributed to the fact that both cell-internal and -external
components promoting cellular integrity were downregulated by the effects of stress hormones. In
addition, it could be shown that the physiological cell proliferation was decreased due to prenatal
stress exposure. Since artificially-produced stress hormones, so-called synthetic glucocorticoids, are
also frequently used in everyday clinical practice, the authors suggest a constant reevaluation of
glucocorticoid-associated treatment strategies on the basis of these results.

Abstract: Prenatal stress exposure is considered a risk factor for developmental deficits and postnatal
behavioral disorders. While the effect of glucocorticoid-associated prenatal stress exposure has been
comprehensively studied in many organ systems, there is a lack of in-depth embryological investiga-
tions regarding the effects of stress on the integumentary system. To approach this, we employed the
avian embryo as a model organism and investigated the effects of systemic pathologically-elevated
glucocorticoid exposure on the development of the integumentary system. After standardized corti-
costerone injections on embryonic day 6, we compared the stress-exposed embryos with a control
cohort, using histological and immunohistochemical analyses as well as in situ hybridization. The
overarching developmental deficits observed in the stress-exposed embryos were reflected through
downregulation of both vimentin as well as fibronectin. In addition, a deficient composition in the
different skin layers became apparent, which could be linked to a reduced expression of Dermo-1
along with significantly reduced proliferation rates. An impairment of skin appendage formation
could be demonstrated by diminished expression of Sonic hedgehog. These results contribute to a
more profound understanding of prenatal stress causing severe deficits in the integumentary system
of developing organisms.

Keywords: prenatal stress; glucocorticoids; skin development; chicken embryo

1. Introduction

Prenatal stress impairs developmental processes in the vertebrate embryo; as well, it
influences physiological functions and behaviors after birth [1–3].

When the maternal organism is stressed, the hypothalamic–pituitary–adrenal axis be-
comes activated and glucocorticoids—commonly known as stress hormones—are secreted
into the circulatory system [4]. Previous evidence has shown that maternal cortisol plasma
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levels correlate with fetal cortisol plasma levels [5,6]. Therefore, the occurrence of elevated
glucocorticoid levels in fetal circulatory systems is a common event.

Glucocorticoids are lipophilic steroid hormones, which employ their functions—apart
from other non-genomic pathways—by passing through the cells’ membranes and binding
to the glucocorticoid receptor (GR) [7].

It has been observed that almost every organ system, such as the cardiovascular system,
the immune system, the endocrine system, and the nervous system, can be influenced by
stress-induced elevated glucocorticoid exposure [8–11].

Moreover, it is well-explored that glucocorticoids influence embryonic development
in various ways [12]. By altering developmental mechanisms from “tissue accretion to
differentiation” [12], the development of the brain, the heart, and skeletal muscle can be
altered [13–15].

While numerous glucocorticoid-associated effects have been explored, their impact on
the development of the skin, as the human body’s largest organ, is still partially unclear.

The skin and its appendages—also called the integumentary system—serve several
essential functions. As the outermost layer of an organism’s body, the skin protects against
environmental factors such as temperature and UV rays, it is part of the innate immune
system by protecting against infectious organisms, it protects the body from dehydration,
and it synthesizes vitamin D [16].

The skin of vertebrates is made of two major tissues: the epidermis and the dermis. The
epidermis is the superficial layer, consisting of stratified squamous epithelial cells, which
form the first barrier to the outer environment. It also contains immune cells, pigmented
melanocytes, and cells that register tactile information. The dermis is separated from the
epidermis by a basement membrane, and connects the skin to the subcutaneous tissues. It
contains connective tissue with fibroblasts that produce an extracellular matrix comprising
collagen and elastic fibers. The dermis also contains mechanoreceptors and cutaneous
appendages, contributing to its numerous functions.

The effects of glucocorticoids on adult skin are well-explored. With their anti-inflammatory
and immune-suppressive functions, they serve—in a dose-dependent manner—as therapeu-
tics for various dermatological pathologies, such as different forms of eczema and psoriasis
vulgaris [17]. Exemplary cytokines or transcription factors modulated by or within the steroid
pathway are Interleukins, tumor necrosis factor-α (TNF-α), and nuclear factor ‘kappa-light-
chain-enhancer’ of activated B-cells (NF-κB) [18,19].

One of the most common side effects of dermal glucocorticoid therapy is skin atrophy,
presenting with skin hypoplasia and dysfunction, loss of elasticity, and an increase in
fragility [17]. On a cellular level, glucocorticoids employ their negative side effects on
the skin by inhibiting fibroblast proliferation and migration, and, moreover, altering the
extracellular matrix [20–22]. The stress hormones reduce collagen synthesis and thereby
also impair the process of dermal wound healing [23,24]. Furthermore, glucocorticoids
have been determined to regulate apoptosis in keratinocytes [25].

Further investigation of the influence of prenatal stress exposure on skin development
is of substantial interest because a viable skin is a crucial aspect of a physiologically-
functioning and healthy organism.

The embryonic development of the skin is a complex process. While the origin of the
epidermis is the ectoderm, the outermost layer of the three embryonic germ layers, the
origin of the dermal connective tissue differs depending on the anatomic region. The dermis
of the face and head develops mostly from neural crest cells, a temporary group of unique
cells that arise from the ectoderm layer [26]. In the trunk region, the origin of the dermis can
be divided into two groups: the dorsal dense dermis develops from the dermomyotome of
the paraxial mesoderm, the so-called somites [27]; the dermis of the ventro-lateral body
wall develops from the lateral plate mesoderm [28–30]. On embryonic day 6, the dermis
is firstly distinguishable from the subcutaneous mesenchyme as a layer with higher cell
density [31,32]. This differentiating dermal layer is characterized by Dermo-1 expression,
which also plays a role during skin appendage development [33,34].
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In the present study, we explored the influence of prenatal stress on the development
of the skin in the avian embryo. Therefore, we investigated transcriptional changes of
Dermo-1 after systemic glucocorticoid exposure during embryonic development. Moreover,
we analyzed the expression of several other markers in the skin. For mesenchymal cells,
we examined the expression of vimentin as an intermediate filament protein, which is
responsible for strength and integrity of respective cells [35]. Moreover, we compared the
expression of fibronectin, a protein that mediates interactions between mesenchymal cells
and the extracellular matrix, regulating cell adhesion, migration, and differentiation [36]. To
examine changes in cell proliferation, we compared the expression of phospho-histone H3
and proliferating cell nuclear antigen (PCNA) [37,38]. For specification of skin appendage
development, we used Sonic hedgehog (SHH) as a relevant marker for epithelial placode
formation during avian feather bud morphogenesis [39,40]. Lastly, as another epithelial
marker important for epidermal maintenance and skin appendage growth, we investigated
E-cadherin (E-Cad), a protein mediating intercellular adhesion [41].

Based on the summarized findings, we hypothesized that pathologically-elevated
systemic prenatal stress exposure alters skin morphogenesis in the developing embryo.
To investigate the hypothesis with the best possible comparability of glucocorticoid con-
centrations, the avian embryo is particularly suitable, because it allows for controlled
administration of glucocorticoids with further analysis [42–44].

We performed in ovo injections of corticosterone (cort), a major avian physiological
glucocorticoid, into the yolk sac of the developing chicken embryo, leading to an excessive
systemic administration of the stress hormone during development [45]. Since the yolk
sac stores the nutrients of the developing chicken embryo, the great advantage is that sub-
stances injected here gradually enter the circulation in a time-dependent manner. It should
be mentioned here that the effects of the deliberately unphysiologically-high corticosterone
concentration chosen may differ from chronic and low stress exposure in the developing
organism. In order to select a reasonable and possibly early time point for the induction of
glucocorticoid exposure, we relied on the results of a glucocorticoid expression analysis
in chicken embryo, which revealed that—in the integumentary system—the associated
glucocorticoid receptors are expressed from day 6 of development [46].

The knowledge gained by comparing the cort-exposed group with a control group
contributes to a better comprehension of prenatal stress and its effects on embryonic
development. Moreover, a deepened understanding of glucocorticoid signaling during
vertebrate embryonic development is crucial for the discussion of exogenous glucocorticoid
therapies in clinical contexts of prenatal medicine.

2. Materials and Methods
2.1. Chicken Embryo Treatment

Fertilized chicken eggs of Gallus domesticus were purchased from a local breeder,
disinfected with 70% ethanol, and thereafter incubated at 37 ◦C and 80% relative humidity.
The developmental stage was assessed according to Hamburger and Hamilton (HH) [47].

For our study, we used 140 fertilized chicken eggs, which were divided into a cort-
exposed group (n = 70) and a control group (n = 70).

On the third day of embryonic development (E3) (Stages HH20-HH23), 3 mL of
albumen was removed with a syringe, and a 2 cm-wide window was cut into the eggshell
in order to access and inspect the embryo. Afterwards, the opened eggshell was covered
with medical tape.

On embryonic day 6 (E6) of incubation (Stages HH28-HH30), 15 µg of corticosterone
dissolved in 100 µL phosphate-buffered saline (PBS) with 1% ethanol was injected into the yolk
sac of the developing chicken embryo, leading to a systemic administration of the glucocorti-
coid. For the experimental control, only the solvent of corticosterone—i.e., 100 µL PBS with
1% ethanol—was injected. The corticosterone dose used in this respective research design was
based on previous investigations by Heiblum et al. (2001) [48], and additional dose-ranging
experiments aimed at mimicking pathologically-elevated glucocorticoid concentrations.
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The embryos were fixed after 2–7 days of further incubation by opening the amnion
with forceps, and immersing them in 4% phosphate-buffered paraformaldehyde (PFA).
After 24 h of fixation, the two experimental groups were compared.

2.2. Histological Analysis

The PFA-fixed specimens were washed in PBS and thereafter immersed in dehydrating
ethanol solutions. After paraffin embedding, the embryos were sectioned transversally
at 7 µm thickness. RotiHistol (Carl Roth, Karlsruhe, Germany) was used to remove the
paraffin, and the rehydrated sections were treated with standard staining techniques.

The hematoxylin–eosin staining included immersing the sections in hematoxylin for
15 min, and afterwards in eosin for 2 min.

To differentiate the connective tissue of the skin, Masson–Goldner–Trichrome staining
(Carl Roth, Karlsruhe, Germany) was performed. For this, the nuclei were stained with
hematoxylin, according to Weigert, for 5 min. Afterwards, the trichromatic stain was
conducted with ponceau–acid fuchsin, phosphotungstic acid–orange G, and 0.2% light
green. A solution of 1% acetic acid was utilized for differentiation.

When the staining protocols were completed, the sections were dehydrated with
ethanol solutions again, and covered with cover slips. For microscopic evaluation, the
virtual slide microscope VS120 (Olympus, Tokyo, Japan)was utilized. Further analyses were
carried out with Olympus OlyVia (Version 2.9) software and QuPath (Version 0.3.2) [49].

2.3. Immunohistochemical Analysis

The histological sections were deparaffinized and rehydrated as described above.
Afterwards, they were put into a citrate buffer, which was microwaved in order to unmask
antigens. After further washing with PBS, permeabilization with 1% Triton X 100 (Sigma
Aldrich, St. Louis, MO, USA) and blocking with 7.5% bovine serum in PBS, the sections
were treated with primary antibodies.

Vimentin (AMF-17b, Hybridoma Bank, Iowa City, IA, USA), fibronectin (B3/D6, Hy-
bridoma Bank), and phospho-histone H3 (pHH3) (06-570, Merck, Darmstadt, Germany)
were diluted in the blocking solution. Afterwards, the sections were incubated with the
primary antibody solution overnight. The next day, the secondary fluorescent antibodies
Alexa Fluor goat anti-mouse 488 and Alexa Fluor goat anti-mouse 568 (Thermo Fisher,
Waltham, MA, USA) were pipetted onto the sections after removing the primary anti-
body and rinsing with PBS. 4′,6-Diamidino-2-phenylindol (DAPI) (Carl Roth, Karlsruhe,
Germany) was utilized for staining the nuclei.

2.4. Whole-Mount In Situ Hybridization (ISH)

Whole-mount in situ hybridization was performed as previously described [50,51],
using riboprobes for E-cadherin, Sonic hedgehog, Dermo-1, and proliferating cell nuclear
antigen (PCNA). Proteinase K (10 µg/mL) (Sigma Aldrich, St. Louis, MO, USA) was
applied onto the embryos for 20–40 min at room temperature to permeabilize the tissue.
Thereafter, 1–2 µg/µL of the respective riboprobe was dissolved in a hybridization solution
and applied onto the embryo for 48 h at 65 ◦C. The detection of the hybridization product
was accomplished by an anti-DIG antibody conjugated to alkaline phosphatase (Roche,
Basel, Switzerland).

After in situ hybridization, the specimens were photographed with a stereo micro-
scope (M165 FC, Leica, Wetzlar, Germany) equipped with a digital camera (DFC420 C,
Leica, Wetzlar, Germany). InkScape software was utilized for generating the figures (Ver-
sion 1.2.1, 2022).

In order to generate sections of hybridized whole mounts, the embryos were embedded
in 2.5–4% agarose gel and cut with a Vibratome (VT 1000 S, Leica, Wetzlar, Germany)
at 50µm. The sections were collected with a brush, and covered with cover slips and
Aquatex (Merck, Darmstadt, Germany). The sections were scanned and processed as
described above.
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2.5. TUNEL Analysis

The TUNEL-reaction was performed using a cell death detection kit (Elabscience,
Wuhan, China). Briefly, the paraffin sections were deparaffinized and rehydrated as
described above. Afterwards the TUNEL reaction was performed according to the manu-
facturer’s instructions.

DNAse was applied onto the section to serve as a positive control. For the negative
control, the labeling was skipped. The control images are available as Figure S3 of the
Supplementary Material.

2.6. RNA Isolation, Reverse Transcription, and Real-Time PCR (RT-PCR)

RNA isolation of the skin of chicken embryos was performed employing the TRI
reagent (Sigma Aldrich, St. Louis, MO, USA). The cDNA was synthesized utilizing Go-
Script Reverse transcriptase (Promega, Madison, WI, USA). Afterwards, real-time quan-
tification was conducted with GoTaq qPCR master mix (Promega, Madison, WI, USA).
All steps were completed according to the respective manufacturer’s instructions. For
the quantification of relative RNA levels, the Livak method was performed [52]. The
displayed gene expression was normalized to 18 s. The primers used are available in
Table S1 of the Supplementary Material.

2.7. Statistical Analysis

The Shapiro–Wilk test was employed in order to differentiate parametric from non-
parametric distributions (p < 0.05). Following this evaluation, either an unpaired t-test or
the Mann–Whitney U test was performed to assess significance. Significance is indicated
by (*) for p < 0.05, (**) for p < 0.01, and (***) for p < 0.001. All results are presented as
mean ± standard error.

3. Results

Apart from specific effects on skin development, systemic developmental effects were
observed in the cort-exposed embryos including effects on extra-embryonic structures.

3.1. Prenatal Stress Impairs Angiogenesis of the Chorioallantoic Membrane (CAM)

Following prenatal in ovo corticosterone administration on embryonic day 6 (E6), the
further development of chicken embryos was analyzed.

On E12—6 days after systemic prenatal stress exposure—the chorioallantoic membrane
(CAM) showed a decrease in vascularization (Supplementary Material, Figure S1A,B). The
number of blood vessels and moreover the diameter of the blood vessels were immensely
reduced. The reduction of CAM-vascularization in the cort-exposed group in comparison
to the control group was observed in 90% of cort-exposed embryos (control: n = 20; cort:
n = 20).

3.2. Prenatal Stress Increases the Risk of Developmental Deficits

On E13—7 days after systemic prenatal stress exposure—the developmental status
of both experimental groups was compared. The survival rate on E13 of both groups was
75% (control: n = 20; cort: n = 20). Macroscopic evaluation of respective embryos showed
a reduction in body size for the cort-exposed embryos (Figure 1A,B). Furthermore, the
cort-exposed embryos presented developmental deficits and malformations such as ectopia
cordis. The chest wall of cort-exposed embryos had not closed but remained with a bifid
sternum, causing the heart to protrude through the chest wall (Figure 1C,D). Moreover,
cort-exposed embryos showed less-developed eyes and smaller lungs. The musculoskeletal
system was considerably less formed. For the skin appendages as part of the integumentary
system, a reduction in the number of feather buds, as well as length and pigmentation, was
observed (Figure 1A–D).
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Figure 1. Prenatal stress exposure impairs overall development of avian embryos. The macroscopic
images show lateral views of chicken embryos on E13. The control embryo (A) is further developed
than the much smaller cort-exposed embryo (B). The open chest wall with the protruding heart is
marked by a dotted line in (B). The transversal lines indicate the sectioning level for the histological
sections (C,D). The control section (C) shows larger organs and a regular anatomy in comparison
with the cort-exposed embryo section (D), which presents with an open chest wall and reduced organ
size. H: heart, L: lungs, S: sternum, V: vertebrae.

3.3. Prenatal Stress Reduces Embryonic Growth

Following macroscopic evaluation on E13, the embryos of both experimental groups
were weighed and measured for growth analysis (Supplementary Material, Figure S2A,B).

For body length, a reduction was measured for the cort-exposed embryos. The mean
body length of control embryos was 4.05 cm, while the mean body length of cort-exposed
embryos was 2.88 cm. This is a significant decrease by 28.9% (p < 0.001; control: n = 20; cort:
n = 20).

For bodyweight, a decrease was detected for the cort-exposed embryos. The mean
bodyweight of control embryos was 3.97 g, while the mean bodyweight of cort-exposed
embryos was 2.65 g. This is a significant decrease by 33.3% (p < 0.001; control: n = 20; cort:
n = 20).
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3.4. Prenatal Stress Reduces the Expression of Dermo-1

For Dermo-1, a gene encoding a transcription factor important for skin development
and feather bud formation, a decrease in expression was observed.

On E8—2 days after systemic prenatal stress exposure—the expression pattern of
Dermo-1 was disturbed in cort-exposed embryos (Figure 2A–E). The control embryos
showed extensive transcripts of Dermo-1 in the dorsolateral skin. Moreover, the first row of
developing feather buds in the median line on the back of control embryos was positive for
Dermo-1 (Figure 2A). The cort-exposed embryos showed an overall weaker expression of
Dermo-1 in the dorsal skin, and a reduction in quantity of Dermo-1-positive feather buds
(Figure 2B). The vibratome sections further showed that Dermo-1 expression was reduced
in cort-exposed embryos (Figure 2C,D’, arrow). The quantification confirmed a significant
decrease in Dermo-1 expression, indicated through a reduced ISH staining intensity by
30.5% in the cort-exposed group (Figure 2E; p < 0.001; control: n = 8; cort: n = 8).
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systemic prenatal stress exposure. (A) shows a dorsal view of a hybridized control embryo on E8.
(B) shows a dorsal view of a hybridized cort-exposed embryo on E8. Note the reduction in the number
of feather buds. (C) shows a transversal vibratome section of (A). (D) shows a transversal vibratome
section of (B). (C’) shows (C) in higher magnification. (D’) shows (D) in higher magnification. The
quantity of transcripts ((D’), arrow), as well as the expression pattern of Dermo-1, was disturbed
in cort-exposed embryos on E8. (E) displays the quantification of Dermo-1 expression on E8. The
data are presented as mean ± standard error (control: n = 8; cort: n = 8). (F) shows a dorsal view
of a hybridized control embryo on E10. (G) shows a dorsal view of a hybridized cort-exposed
embryo on E10. (H) shows a transversal vibratome section of (F). (I) shows a transversal vibratome
section of (G). (H’) shows (H) in higher magnification. (I’) shows (I) in higher magnification. On
E10, cort-exposed embryos showed a reduction in transcripts of Dermo-1 ((I’), arrow) and a reduced
number of developed feather buds. (J) displays the quantification of Dermo-1 expression on E10. The
data are presented as mean ± standard error (control: n = 5; cort: n = 5). *** p < 0.001.

On E10—4 days after systemic prenatal stress exposure—the expression pattern of
Dermo-1 in cort-exposed embryos was further diminished. Dermo-1 transcripts were now
mostly found in the feather buds of the dorsal skin (Figure 2F–I). Within one feather bud,
the control embryos showed a cranio-caudal gradient of Dermo-1 transcripts, indicating
a polarization in skin appendage establishment (Figure 2F). The cort-exposed embryos
showed an immense decrease in Dermo-1 expression (Figure 2I’, arrow) and in the total
feather bud number in comparison to the control group (Figure 2F–I). Moreover, the de-
scribed polarization within individual feather buds was less prominent in cort-exposed
embryos (Figure 2F,G). Furthermore, the vibratome sections revealed that the layer of
Dermo-1-positive cells was thinner in cort-exposed embryos (Figure 2H,I). The quantifica-
tion confirmed a significant decrease in Dermo-1 expression, indicated through a reduced
ISH staining intensity by 60% in the cort-exposed group (Figure 2J; p < 0.001; control: n = 5;
cort: n = 5).

3.5. Prenatal Stress Alters the Composition of the Different Skin Layers

To further investigate the effects of glucocorticoids on skin development, histologi-
cal sections of E13 embryos—7 days after systemic prenatal stress exposure—from both
experimental groups were analyzed and compared.

For the cort-exposed embryos, the sections revealed a minor increase in epidermis
thickness. Moreover, the dermis—indicated by the green-appearing connective tissue—was
remarkably reduced in size. The cell density in the subcutaneous mesenchyme was also
visibly reduced (Figure 3B,C).

The histological sections were quantitatively compared. For the epidermis, we found
an insignificant increase in thickness (21.9%) for the cort-exposed embryos (p = 0.08, control:
n = 5; cort: n = 5) (Figure 3D). For the dermis, we found a significant decrease in thickness
by 73% for the cort-exposed embryos (p < 0.001, control: n = 5; cort: n = 5) (Figure 3E).

Moreover, the cell density in the subcutaneous mesenchymal layer was significantly
reduced by 51.2% (p = 0.032, control: n = 5; cort: n = 5) (Figure 3F).
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the skin of a control embryo. (C) shows the skin of a cort-exposed embryo. Note the reduction in
dermis thickness and cell density for the cort-exposed embryo. The diagrams compare different
parameters of skin composition such as the thickness of the epidermis (D), the thickness of the dermis
(E), and the cell density in the subcutaneous mesenchymal layer (F). The data are presented as mean
± standard error (control: n = 5; cort: n = 5). * p < 0.05; *** p < 0.001; n.s.—not significant.

3.6. Prenatal Stress Reduces the Expression of Mesenchymal Markers

To compare the expression of mesenchymal markers, we detected vimentin as an
intracellular intermediate filament and fibronectin as a protein of the extracellular ma-
trix, employing immunohistochemical methods, on E13—7 days after systemic prenatal
stress exposure.

For vimentin, the immunohistochemical staining showed a decrease in expression
in the cort-exposed embryos, especially prominent in the subcutaneous mesenchyme
(Figure 4A,B). The filaments appeared shorter and thinner, and the pattern was less orga-
nized in comparison to the control. The quantification of vimentin expression revealed a
decrease in fluorescent intensity by 74.3% in cort-exposed embryos (Figure 4C) (p = 0.037;
control: n = 3; cort: n = 3).

For fibronectin, the immunohistochemical sections demonstrated that fibronectin ex-
pression was remarkably reduced in the dermal connective tissue (Figure 4D,E). Moreover,
a minor reduction of fibronectin expression was found in subcutaneous perivascular re-
gions. The quantification showed that the relative fluorescent intensity of fibronectin was
reduced by 60.1% in cort-exposed embryos (Figure 4F; p = 0.032; control: n = 3; cort: n = 3).
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Figure 4. The images demonstrate the decrease in the expression of mesenchymal markers in the skin
on E13. The images (A) (control) and (B) (corticosterone) show the immunohistochemical detection of
vimentin. Note the reduction of vimentin expression in the dermis and subcutaneous mesenchyme.
(C) shows the respective quantification of the fluorescent intensity. The images (D) (control) and
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intensity. The data are presented as mean ± standard error (control: n = 3; cort: n = 3). * p < 0.05.

3.7. Prenatal Stress Reduces the Mitotic Activity in the Skin

The mitotic activity on E13 in the skin was analyzed, using immunohistochemistry for
phospho-histone H3 and quantifying the positively-stained cells (phh3+ cells) (Figure 5A,B).
For the epidermis, the number of mitotic cells was significantly reduced in the cort-exposed
group by 46.9% (Figure 5E; p = 0.03; control: n = 3; cort: n = 3).
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Figure 5. The images show the comparison of mitotic and apoptotic activity in the skin on E13
after prenatal systemic stress exposure. (A,B) show the immunohistochemical detection of phospho-
histone H3, indicating cell proliferation. (C,D) show the TUNEL-detection visualization of apoptotic
cells. The diagrams show the respective quantifications of proliferating phospho-histone H3-positive
cells (phh3+ cells) for both the epidermis (E) and the dermis (F), as well as of the apoptotic TUNEL-
positive cells in the dermis (G). The data are presented as mean ± standard error (control: n = 3; cort:
n = 3). * p < 0.05; n.s. = not significant.

For the dermis and the subdermal mesenchyme, the number of mitotic cells was
significantly reduced by 88.4% in the cort-exposed embryo group (Figure 5F; p = 0.026;
control: n = 3; cort: n = 3).

The apoptotic activity on E13 in the skin was assessed using a TUNEL-reaction
(Figure 5C,D). While the number of positively-stained apoptotic cells (TUNEL+ cells) was
elevated by 13% in the cort-exposed embryos, the difference was insignificant (Figure 5G;
p = 0.364; control: n = 3; cort: n = 3). For positive and negative controls of the TUNEL-
reaction, see Figure S3 of the Supplementary Material.

3.8. Prenatal Stress Impairs Embryonic Skin Appendage Formation

To analyze skin appendage formation, we performed whole-mount in situ hybridiza-
tion (ISH) on E11—five days after systemic prenatal stress exposure—with different markers
for feather establishment.
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For Sonic hedgehog (SHH), we found a disorganized and asymmetric feather pattern,
with fewer and less-developed feather buds on the dorsal skin of cort-exposed embryos
(Figure 6A,B). The higher magnification shows that, in the cort-exposed group, the feather
buds were smaller in size. Moreover, they showed a different, rounder shape and fewer
transcripts of SHH (Figure 6C,D), indicated by a significant decrease by 18.9% in ISH
staining intensity in the cort-exposed embryos (Figure 6E; p < 0.001; control: n = 5; cort:
n = 5).
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Figure 6. The images demonstrate skin appendage formation using different markers for whole-
mount in situ hybridization on E11, 5 days after systemic stress exposure. (A,B) display an exemplary
dorsal overview of Sonic hedgehog (SHH) for the control and cort-exposed embryos. The squares
indicate the areas of further comparison. (C,D) compare the expression of SHH in higher magnifica-
tion. (E) displays the respective quantification for SHH. (F,G) demonstrate expression of proliferating
cell nuclear antigen (PCNA). (H) displays the respective quantification for PCNA. (I,J) show the
expression of E-cadherin (E-Cad) for both the control and cort-exposed embryos. (K) displays the
respective quantification for E-Cad. The data are presented as mean ± standard error (control: n = 5;
cort: n = 5). ** p < 0.01; *** p < 0.001.
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For proliferating nuclear cell antigen (PCNA), a further mitotic marker, we found a
decrease in mRNA expression indicated through a reduced ISH staining intensity by 30.9%
in the cort-exposed embryo group (Figure 6F–H; p = 0.001; control: n = 5; cort: n = 5).

The expression of E-cadherin (E-Cad), an epithelial adhesion protein, was upregulated
in the feather buds of the cort-exposed embryos, indicated through an increased ISH
staining intensity by 29% in this group (Figure 6I–K; p < 0.001; control: n = 5; cort: n = 5).

3.9. Prenatal Stress Increases Expression of NF-κB in the Skin

For further comprehension of transcriptional changes within the steroid pathway,
embryonic skin from both the control and the experimental group was isolated on E10—
4 days after systemic prenatal stress exposure—and analyzed via RT-PCR.

For nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells (NF-κB), we de-
termined a significant increase by 51.2% in mRNA expression in the cort-exposed group
(Figure 7; p = 0.033; control: n = 3; cort: n = 3).
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Figure 7. The diagram displays transcriptional changes within the steroid pathway in the skin of chicken
embryos on E10—4 days after systemic prenatal stress exposure—analyzed via RT-PCR. The data are
presented as mean ± standard error (control: n = 3; cort: n = 3). * p < 0.05; n.s. = not significant.

For Interleukin-16 (IL-16) and tumor necrosis factor-α (TNF-α), the transcriptional
changes between the control and the cort-exposed groups were insignificant (Figure 7;
p = 0.141 and p = 0.095, respectively; control: n = 3; cort: n = 3).

4. Discussion

The goal of the presented research was to analyze the effects of prenatal stress on
avian embryonic development, with a focus on the integumentary system. Following in-
ovo injections of corticosterone, we observed stress-induced developmental deficits, and,
moreover, a disturbance in skin establishment and skin appendage formation through
histological and molecular biological methods.

Embryos from the cort-exposed group presented an impairment in the formation
of the chorioallantoic membrane, overall retardation in development indicated through
a reduction in body growth, an increased incidence of chest wall malformations, and
decreased organ size. The observations of developmental deficits and growth retardation
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in prenatally-stressed organisms is congruent with numerous previous findings [53]. The
prenatal administration of the synthetic glucocorticoid dexamethasone has been previously-
described to cause growth retardations in avian embryos [53]. Moreover, these findings are
compliant with mammalian model organisms such as rats, which displayed intrauterine
growth retardation after being exposed to prenatal stress [53]. This supports the idea that
the observed effects of glucocorticoids are comparable across species and across different
kinds of glucocorticoids.

For the chorioallantoic membrane (CAM), we detected an impaired vascularization
in the cort-exposed group. This is in line with various previous descriptions, elaborat-
ing on the angiostatic potential of glucocorticoids [54]. The resulting decrease in CAM
vascularization—possibly leading to hypoxic conditions—could be a contributing factor
in the developmental global and skin-related deficits observed in the cort-exposed group,
with potentially long-lasting consequences into adulthood [55,56].

Our findings of a higher incidence in anterior body wall malformations in the cort-
exposed group are in line with observations by Xu et al. (2021), who detected skeletal
muscle abnormalities and ventral body wall deformities in chicken embryos [57] that had
been exposed to the synthetic glucocorticoid dexamethasone in an earlier stage than in our
experimental design.

For avian skin development, the gene Dermo-1 has been shown to play an important
role in dermis differentiation and in initiating skin appendage formation [34,58]. Previous
investigations revealed that an overexpression of Dermo-1 in avian embryos results in a
feather-tract typical increase in dermis thickness and higher cell density of the dermal mes-
enchyme, acting as an early positive regulator of skin appendage establishment upstream
from epidermal β-catenin and dermal FGF-10 [58]. Our results of a corticosterone-induced
decrease in Dermo-1 expression, accompanied by a reduction in dermis thickness, further
contextualize these previous findings, particularly because a forced Dermo-1 upregulation
has been shown to provoke a denser and more thickened dermis in avian embryos [58]. It
is important to note that Dermo-1 knockout in zebrafish did not prevent skin development
completely, but resulted in a “qualitative change” [59] in skin appendage formation, further
suggesting a functional role of Dermo-1 in the morphology and organization of cutaneous
appendages [59]. Our findings of a disturbed feather bud pattern after glucocorticoid-
induced downregulation of Dermo-1 in the avian embryo supports this concept.

Furthermore, we demonstrated that the impairment of embryonic dermis formation
by prenatal stress hormones is also comparable with the described effects of glucocorticoids
on adult skin and connective tissue. Glucocorticoids are known to cause skin atrophy
resulting in morphological changes of the dermis, presenting an inhibition of fibroblast
proliferation and reduced collagen synthesis [17,60,61]. Our findings of a decrease in mitotic
activity, cell density, and dermis thickness further extend these observations for the avian
embryonic organism. The negative effects of a systemic glucocorticoid exposure on the
subdermal mesenchyme, indicated through a downregulation of vimentin and fibronectin,
contextualize and strengthen previous observations suggesting that glucocorticoids induce
mesenchymal-to-epithelial transition via inhibiting TGF-β1-signaling [62,63]. This is further
supported by the upregulation of the epithelial adhesion protein E-cadherin, as well
as the comparably smaller decrease in epidermal cell proliferation in the cort-exposed
group. Moreover, this is consistent with observations in glucocorticoid receptor (GR)
overexpressing mice, which, accordingly, presented epidermal hypoplasia [64].

Taken together, these processes could hypothetically be explained by the concept
suggested by Fowden et al. (2015), who stated that prenatal glucocorticoid exposure
induces a switch from tissue growth towards tissue differentiation [12]. This includes
a decrease in cell number in certain tissues, but, moreover, an activation of certain cell
differentiation pathways, and a shift of proliferation towards tissues that are more likely to
ensure neonatal viability [12]. Hypothetically, the upregulation of the intercellular adhesion
protein E-cadherin could contribute to the environmentally stressor-adapted phenotype of
the developing organism.
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For the skin appendages, we found underdeveloped feathers with a more disorganized
feather bud distribution in the cort-exposed group. Moreover, we detected a decrease in
SHH expression in the developing appendages, indicating an altered formation of the
epithelial placodes [39,40]. The observation of a glucocorticoid-induced downregulation
of SHH in the developing integumentary system is in line with the findings of decreased
SHH expression during avian somitic differentiation after earlier dexamethasone adminis-
tration [57]. The reduced mitotic activity in the skin, indicated trough a decrease in PCNA
expression and in the number of phospho-histone H3-positive cells, could be a contributing
factor towards the underdevelopment of the feathers, and is congruent with previous
descriptions of a glucocorticoid-induced inhibition of cellular proliferation [65,66].

Regarding the modulation of potential mediators within the steroid pathway, we
detected an increase in the expression of NF-κB in the skin of stress-exposed embryos.
NF-κB has been characterized as an important transcription factor in skin morphogenesis
and homeostasis [67,68]. While therapeutic glucocorticoids are commonly-known for their
anti-inflammatory capacity—associated with a downregulation of inflammatory cytokines
and transcription factors such as NF-κB [19]—prenatal maternal stress has been described to
cause an increase in the inflammatory response of developing organisms [69,70]. Moreover,
prolonged GR activation—as is the case in chronic stress or in the present developmental
model—has been shown to cause synergistic effects between GR and NF-κB [71,72], sup-
porting the notion that the detrimental developmental deficits seen after prenatal systemic
corticosterone administration are mediated through glucocorticoid signaling.

5. Conclusions

Systemic prenatal stress exposure impaired the overall developmental status of avian
embryos. Glucocorticoid administration led to decreased vascularization of the CAM,
reduced body growth, and malformations of the ventral body wall.

Focusing on the integumentary system, we determined a reduced Dermo-1 expres-
sion, resulting in an altered composition of the different skin layers, with a decrease in
dermis thickness and, moreover, a disturbance of the subdermal mesenchyme, indicated
by a reduced expression of mesenchymal markers, cell density, and cellular proliferation.
Moreover, the formation of skin appendages was impacted, shown by a reduced expression
of SHH and PCNA, as well as an increase in E-cadherin expression. However, because of
the deliberately unphysiologically-high corticosterone concentration chosen, the results
may not be transferable to physiologically slightly-elevated corticosterone concentrations.

The avian embryo serves as a useful model organism for prenatal stress research,
allowing for a controlled administration of glucocorticoids. The insights gained contribute
to a better comprehension of the effects of prenatal stress on vertebrate embryonic develop-
ment, and the role of glucocorticoid exposure during the developmental establishment of
the integumentary system.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology12050656/s1, Figure S1: vascularization of the CAM in cort-
exposed embryos; Figure S2: body length and weight of cort-exposed embryos; Figure S3: controls of
the TUNEL-reaction; Table S1: primers used for RT-PCR.
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